SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU

dokumen-dokumen yang mirip
Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data. Identifikasi model ARCH

Suma Suci Sholihah, Heni Kusdarwati, Rahma Fitriani. Jurusan Matematika, F.MIPA, Universitas Brawijaya

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH)

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH

TEKNIK PERAMALAN DENGANMODEL AUTOREGRESSIVE CONDITIONALHETEROSCEDASTIC (ARCH) (Studi KasusPada PT. Astra Agro Lestari Indonesia Tbk)

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

BAB IV KESIMPULAN DAN SARAN. maka dapat disimpulkan sebagai berikut: 1. Langkah-langkah dalam menentukan model EGARCH pada pemodelan data

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

PEMODELAN TARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH. Retno Hestiningtyas dan Winita Sulandari, M.Si. Jurusan Matematika FMIPA UNS

BAB I PENDAHULUAN. Peramalan merupakan salah satu unsur yang sangat penting dalam

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

PERBANDINGAN AKURASI MODEL ARCH DAN GARCH PADA PERAMALAN HARGA SAHAM BERBANTUAN MATLAB Sunarti, Scolastika Mariani, Sugiman

Kata Kunci: Analisis Regresi Linier, Penduga OLS, Penduga GLS, Autokorelasi, Regresor Bersifat Stokastik

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data

Jurnal Dinamika, April 2015, halaman Vol. 06. No. 1 ISSN

BAB I PENDAHULUAN. untuk menjual, menahan, atau membeli saham dengan menggunakan indeks

IV. METODE PENELITIAN

BAB I PENDAHULUAN 1.1. Latar Belakang

3 Kesimpulan. 4 Daftar Pustaka

PERAMALAN DATA NILAI EKSPOR NON MIGAS INDONESIA KE WILAYAH ASEAN MENGGUNAKAN MODEL EGARCH

IV METODE PENELITIAN 4.1 Lokasi Penelitian 4.2. Data dan Sumber Data 4.3 Metode Pengumpulan Data

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB III METODE PENELITIAN

Anis Nur Aini, Sugiyanto, dan Siswanto Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM

PENERAPAN MODEL GARCH DAN MODEL EWMA DALAM MENGUKUR RISIKO BERINVESTASI (Studi Kasus: Saham Syariah di Jakarta Islamic Indeks)) Yuyun Yunarti

PENANGANAN MASALAH HETEROSKEDASITAS DENGAN MODEL ARCH-GARCH DAN MODEL BLACK-SCHOLES MOSES ALFIAN SIMANJUNTAK

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

BAB 1 PENDAHULUAN. adalah di bidang ekonometrika. Ekonometrika merupakan bidang ilmu ekonomi yang

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

Analisis Statistik Faktor Faktor Yang Mempengaruhi Pergerakan Harga Saham di Bursa Efek Indonesia (BEI) Menggunakan Regresi Time Series

BAB I PENDAHULUAN. menyelidiki hubungan di antara dua atau lebih peubah prediktor X terhadap peubah

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN

ANALISIS ARCH UNTUK MENELAAH POLA NILAI TUKAR RUPIAH TERHADAP DOLAR AMERIKA. Mulyana **

PENERAPAN MODEL EGARCH-M DALAM PERAMALAN NILAI HARGA SAHAM DAN PENGUKURAN VALUE AT RISK (VAR)

PERBANDINGAN TRANSFORMASI BOX-COX DAN REGRESI KUANTIL MEDIAN DALAM MENGATASI HETEROSKEDASTISITAS

BAB 2 LANDASAN TEORI

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA DENGAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING PADA INDIKATOR IMPOR, EKSPOR, DAN CADANGAN DEVISA

Prediksi Jumlah Penumpang Kapal Laut di Pelabuhan Laut Manado Menggunakan Model ARMA

HASIL DAN PEMBAHASAN. Suara sah calon nomor urut 4 Jumlah Rata-Rata Ragam

SIMULASI DAMPAK MULTIKOLINEARITAS PADA KONDISI PENYIMPANGAN ASUMSI NORMALITAS

METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER

Bab IV. Pembahasan dan Hasil Penelitian

PEMODELAN RETURN SAHAM PERBANKAN MENGGUNAKAN EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH)

Analisis Harga Saham Properti di Indonesia menggunakan metode GARCH

PERMASALAHAN AUTOKORELASI PADA ANALISIS REGRESI LINIER SEDERHANA

BAB I PENDAHULUAN. satu sumber tetap yang terjadi berdasarkan waktu t secara berurutan dan dengan

III. METODE PENELITIAN

MODEL NON LINIER GARCH (NGARCH) UNTUK MENGESTIMASI NILAI VALUE at RISK (VaR) PADA IHSG

PENERAPAN MODEL EGARCH PADA ESTIMASI VOLATILITAS HARGA MINYAK KELAPA SAWIT

Metode Cochrane-Orcutt untuk Mengatasi Autokorelasi pada Regresi Ordinary Least Squares

HASIL DAN PEMBAHASAN. Analisis data dilakukan dengan menggunakan Software Eviews Versi 4.1 dan Microsoft Office Excel Gambar 2 Plot IHSG.

Regresi dengan Microsoft Office Excel

UNIVERSITAS BINA NUSANTARA

BAB I PENDAHULUAN. Perilaku dari harga suatu aset finansial dapat dilihat dari dua parameter,

PEMODELAN NEURO-GARCH PADA RETURN NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA

BAB 4 ANALISIS DAN PEMBAHASAN

PERBANDINGAN HASIL ESTIMASI PARAMETER GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) DENGAN VARIABEL EKSOGEN BERTIPE METRIK

BAB 2 LANDASAN TEORI

Pengaruh Outlier Terhadap Estimator Parameter Regresi dan Metode Regresi Robust

BAB I PENDAHULUAN. penting dalam proses pengambilan keputusan di suatu instansi. Untuk melakukan

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 2 LANDASAN TEORI

MENGGUNAKAN METODE GARCH ASIMETRIS

Ekonometrika Deret Waktu: Teori dan Aplikasi

MA6281 Topik Statistika IV: Analisis Deret Waktu Keuangan

I. PENDAHULUAN. Investasi pada umumnya dapat dikelompokkan dalam dua golongan

PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH

BAB I PENDAHULUAN. memberikan informasi tentang rata-rata bersyarat pada Y

Penerapan Model ARIMA

PENDUGAAN PARAMETER MODEL AUTOREGRESSIVE PADA DERET WAKTU

UNNES Journal of Mathematics

Estimasi MCMC untuk Model GARCH(1,1) Studi Kasus: Kurs beli JPY dan EUR terhadap IDR

BAB I PENDAHULUAN. Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

III. METODE PENELITIAN

BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH

ANALISIS ESTIMASI PARAMETER REGRESI KUANTIL DENGAN METODE BOOTSTRAP

BAB 3 METODOLOGI PENELITIAN

PEMODELAN RETURN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (TGARCH)

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q)

PADA PORTOFOLIO SAHAM

PEMODELAN DATA DERET WAKTU MENGGUNAKAN MIXTURE AUTOREGRESSIVE (MAR) SKRIPSI

BAB 2 TINJAUAN PUSTAKA

METODE PENELITIAN. Struktur, Perilaku, dan Kinerja Industri Kakao di Indonesia. Kegiatan penelitian ini

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Value at Risk (VaR) telah menjadi ukuran standar dalam resiko pasar di

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan

Karakteristik Pendugaan Emperical Best Linear Unbiased Prediction (EBLUP) Pada Pendugaan Area Kecil

Peramalan dalam Selang GARCH(1,1)

III. METODE PENELITIAN. series dan (2) cross section. Data time series yang digunakan adalah data tahunan

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman Online di:

Pendugaan Selang Kepercayaan Persentil Bootstrap Nonparametrik untuk Parameter Regresi

Transkripsi:

SENSITIFITAS MODEL GARCH UNTUK MENGATASI HETEROKEDASTIK PADA DATA DERET WAKTU Asep Saefuddin, Anang Kurnia dan Sutriyati Departemen Statistika FMIPA IPB Ringkasan Data deret waktu pada bidang keuangan sering kali memiliki galat yang tidak homogen (heteroskedastik). Hal ini bersifat alami terutama yang berhubungan dengan resiko memegang aset, dimana semakin besar resiko akan semakin besar pengembalian yang diterima dan sebaliknya. Metode yang cukup sederhana yang menggunakan informasi ragam galat sebelumnya untuk menghitung ragam galat saat ini adalah Model GARCH. Penelitian ini mencoba untuk mempelajari sensitifitas model GARCH dalam mengatasi heterokedastik pada data deret waktu. Hasil penelitian menunjukkan bahwa kemunculan nilai ekstrim > 1% secara berurutan pada akhir periode, membuat pemodelan berbias untuk berbagai nilai T. Sedangkan apabila ekstrim menyebar secara acak di tengah periode pengamatan, menyebabkan penduga berbias pada T kecil (5). Untuk T=, penduga akan bias apabila terdapat nilai ekstrim lebih dari 1, sehingga untuk mendapatkan model yang kekar diperlukan jumlah data cukup besar (lebih dari 1). Adapun untuk T kecil, ketika mulai terdapat volatilitas yang besar maka model cenderung untuk bias. Kata kunci : Heterokedastis, GARCH. Latar Belakang PENDAHULUAN Salah satu kegunaan analisis data deret waktu adalah untuk menemukan pola sistematis sehingga dapat menyusun suatu model matematika yang dapat menjelaskan perilaku masa lalu dari deret tersebut. Kegunaan lain adalah untuk meramalkan nilai yang akan datang dari deret tersebut, yang pada akhirnya dapat mendukung proses pengambilan keputusan berdasarkan ketidakpastian. Pada umumnya, pemodelan dilakukan dengan asumsi galat konstan (homoscedastic). Pengalaman praktis menunjukkan banyak deret waktu yang memperlihatkan adanya periode-periode dengan volatilitas besar diikuti oleh periode-periode yang relatif tenang. Dalam hal ini, asumsi galat konstan menjadi tidak terpenuhi. Apabila analisis dengan asumsi galat konstan digunakan pada data seperti ini, akan mengakibatkan pengujian hipotesis mengenai parameter menjadi tidak sah. Lo (3) mencatat beberapa karakteristik khusus dari peubah ekonomi yang tidak dapat diatasi oleh analisis deret waktu biasa, yaitu 1. Sebaran tak bersyarat dari data deret waktu memiliki ekor yang lebih panjang dari sebaran normal (fat tail).. Nilai Y t tidak memiliki autokorelasi yang tinggi, tetapi nilai Y t memiliki autokorelasi yang tinggi. 3. Perubahan pada Y t cenderung menggerombol. Perubahan besar/kecil pada Y t diikuti oleh perubahan yang besar/kecil pada periode berikutnya (volatility clustering). Ada beberapa pendekatan yang dapat digunakan untuk menangani heteroskedastisitas. Salah satu pendekatan adalah secara eksplisit memasukkan peubah bebas yang dapat membantu memprediksi volatilitas. Akan tetapi pemilihan peubah bebas ini tidak mudah, karena dalam bidang ekonomi banyak sekali peubah bebas yang diduga berpengaruh tetapi bersifat kualitatif. Selain itu, peubah bebas yang digunakan harus memiliki periode yang sama (berpasangan). Bollerslev dalam Enders (1995) menunjukkan, selain menggunakan peubah bebas dan melakukan transformasi, ada cara lain yaitu memodelkan rataan dan ragam secara simultan. Model ini dikenal dengan nama model GARCH (Generalized Autoregressive Conditional Heteroscedasticity). Model GARCH adalah model tak linier bagi proses yang stasioner, dengan memasukkan ragam bersyarat sebagai parameter. Ragam diduga dari sisaan. Adapun sisaan tersebut tidak harus berasal dari model 1

autoregresi, tetapi dapat merupakan sisaan dari model ARMA atau model regresi standar. Salah satu masalah yang dihadapi dalam penggunaan model GARCH adalah penentuan jumlah data yang digunakan. Umumnya, dalam analisis deret waktu semakin banyak data yang digunakan, akan menghasilkan pemodelan yang lebih baik. Anggapan ini akan tidak berlaku apabila sifat data mengalami perubahan perilaku yang mencolok dari waktu ke waktu. Penelitian ini menggunakan pendekatan simulasi untuk melihat sejauh mana jumlah data pengamatan menimbulkan pendugaan yang berbias. Setelah diperoleh jumlah pengamatan optimum, dilanjutkan dengan simulasi untuk melihat pengaruh nilai-nilai ekstrim pada akhir pengamatan. Model GARCH yang dikaji dalam simulasi adalah GARCH(1,1) dengan fungsi rataan berupa konstanta. Model ini dipilih karena merupakan model yang sering dijumpai dalam aplikasi. Secara matematis dituliskan sebagai : u h. v y t = c + u t ; t t t h t = δ + δ 1 h t-1 + α 1 u t-1 = ; 1. Simulasi penentuan jumlah pengamatan optimal; dengan melakukan pemodelan menggunakan parameter awal yang berbedabeda dengan jumlah pengamatan T ={5, 1, 15,, 5, 3,, 5,, 1, }.. Simulasi pemodelan melibatkan nilai-nilai ekstrim; data ekstrim sebanyak 1% sampai 5% dari jumlah data diletakkan secara acak ditengah pengamatan maupun secara berurutan pada akhir pengamatan. Simulasi dilakukan dengan langkah-langkah rekursif sebagai berikut: 1. Membangkitkan data v t dari sebaran normal(,1). Nilai awal h 1 = δ /(1-δ 1 -α 1) dan y 1= c + u 1 3. Menghitung h t dan y t secara rekursif untuk t=, 3,...,T.. Simulasi diulang sebanyak 3 kali untuk mendapatkan selang kepercayaan 95% bagi rataan penduga δ 1 Tujuan Penelitian ini bertujuan untuk : 1. Menentukan banyaknya pengamatan yang optimal untuk pemodelan data dengan ragam galat tak homogen.. Menganalisis pengaruh nilai-nilai ekstrim terhadap pendugaan koefisien GARCH. 3. Menganalisis hasil pemodelan secara menyeluruh dibandingkan hasil pemodelan dengan pemotongan horison waktu. DATA DAN METODE Data yang digunakan dalam penelitian ini adalah data simulasi proses GARCH(1,1). Langkah-langkah yang akan dilakukan dalam penelitian ini adalah : HASIL DAN PEMBAHASAN Simulasi Penentuan Jumlah Pengamatan Optimal Simulasi dilakukan dengan membangkitkan data dari model GARCH(1,1) dengan parameter δ 1 = (,,,,,,,.). Nilai-nilai ini dipilih berdasarkan syarat bahwa ragam bernilai positif dan <(δ 1 + α 1)<1 sehingga menghasilkan deret yang stasioner. Sebelum melakukan simulasi, terlebih dahulu dilihat karakteristik data dengan ragam galat tak homogen. Gambar 1 adalah contoh plot data dengan fungsi rataan berupa konstanta (c) dan fungsi ragam GARCH(1,1) dengan persamaan : y t u h. v = c + u t ; t = t t ; h t = δ + δ 1 h t-1 + α 1 u t-1. Hasil pembangkitan data dengan parameter - - - 1 3 5 Case Numbers - - - 1 3 5 Case Numbers a). c =, δ 1= α 1= b). c =, δ 1=. α 1= - - - Gambar 1. Contoh hasil pembangkitan data dengan ragam galat tak homogen. - - -

.... 5... 5... GARCH1 MSE 3.. 3.. 5 15 5 1 3 5 Jml Data 1 5 15 5 1 3 5 JML DATA 1 a). Penduga δ 1, b). Mean Square Error (MSE) Gambar. Grafik statistik hasil simulasi pemodelan GARCH(1,1) untuk berbagai jumlah pengamatan. δ 1= (Gambar 1.a) memiliki volatilitas yang lebih tenang dibandingkan pola data dengan parameter δ 1=. (Gambar 1.b). Bagaimana pengaruh volatilitas seperti ini dalam proses pendugaan parameter disajikan dalam Gambar. Kemiringan plot yang berbeda-beda pada pada Gambar.a menunjukkan bahwa semakin besar parameter δ 1, semakin banyak jumlah pengamatan (T) yang diperlukan untuk mendapatkan penduga yang tak bias. Hasil penduga beserta selang kepercayaan bagi rataan penduga disajikan pada Lampiran 1. Untuk δ 1, 5 titik data sudah menghasilkan penduga yang tak bias, sedangkan untuk δ 1 memerlukan 5 titik data atau lebih. Hal ini berkaitan dengan makna model GARCH(1,1), dimana nilai δ 1 berbanding lurus dengan volatilitasnya. Volatilitas yang besar berarti memiliki banyak nilai-nilai yang dapat dianggap ekstrim. Banyaknya nilai ekstrim akan mengganggu proses pemodelan terutama pada δ 1 dimana untuk membuat model yang tak bias diperlukan T 1. Pengaruh keheterogenan ragam sulit dideteksi untuk jumlah pengamatan (T) yang kecil. Pada Gambar terlihat bahwa untuk T = 5, dan δ 1, penduga yang diperoleh selalu berada di sekitar atau selalu lebih kecil dari parameternya. Hal ini dapat terjadi karena proses pendugaan dilakukan dengan cara iterasi. Secara umum iterasi dilakukan dengan nilai awal nol. Alternatif pemecahan masalah penduga yang underestimated adalah dengan membuat batasan nilai awal koefisien δ 1 yang tidak terlalu jauh dari nilai sebenarnya. Berdasarkan hasil simulasi di atas, dapat digunakan nilai awal =. Cara lain untuk memdapatkan nilai awal adalah menggunakan koefisien δ 1 adalah dari koefisien yang diperoleh dari penduga OLS dari regresi diri nilai sisaan kuadrat (u t pada persamaan [3]). Keuntungan menggunakan nilai awal adalah memperoleh penduga yang tak bias serta mempercepat proses kekonvergenan Pola garis lurus pada Gambar.b mengindikasikan bahwa MSE (ragam sisaan) tidak dipengaruhi oleh T, makin besar δ 1, makin besar juga MSE, artinya sejalan dengan penduga δ 1, makin besar δ 1 sebenarnya, makin sulit untuk memperoleh model yang fit akibat banyaknya nilai-nilai ekstrim. MSE yang diperoleh hampir sama untuk semua T, tetapi sebenarnya pendugaan berbias untuk T yang kecil. Oleh karena itu MSE tidak dapat diandalkan untuk memeriksa keefisienan model. Simulasi Pengaruh Nilai Ekstrim dalam Pendugaan Parameter δ 1 Simulasi dilakukan dengan membangkitkan nilai-nilai ekstrim antara 1% sampai 5% relatif terhadap jumlah data asal (T = 5, 1, ). Nilai ekstrim diletakkan pada akhir pengamatan secara berurutan. Data asal dibangkitkan dengan parameter δ 11 dan c 1, sedangkan data ekstrim dari populasi dengan parameter δ 1 dan c. Skenario disusun untuk bentuk : perubahan sedang (c 1= menjadi dan δ 1 berubah sebesar ); perubahan sangat ekstrim pada nilai tengah ragam ( c 1 = menjadi 5 atau δ 1 berubah sebesar ). Ada skenario awal, yaitu : a). δ 11= δ 1= c 1= c =; b). δ 11= δ 1= c 1= c = c). δ 11= δ 1= c 1= c =5; d). δ 11= δ 1= c 1= c = Model dievaluasi dengan menghitung selisih penduga δ 1 (setelah ada ekstrim -sebelum ada ekstrim). Dari 3 kali ulangan, diperoleh rataan selisih penduga δ 1 beserta selang kepercayaan 95%. Pendugaan dikatakan berbias 3

apabila selisih penduga δ 1 berada diluar selang kepercayaan 95% (berbeda nyata dari nol). Hasil pendugaan skenario a-d dapat dilihat pada Lampiran. Hasil pendugaan untuk skenario a memperlihatkan bahwa kemunculan nilai-nilai ekstrim lebih dari 1% akan menghasilkan dugaan yang bias. MSE relatif sama untuk berbagai nilai T. MSE akan berubah menjadi besar ketika persentase ekstrim melebihi kemudian mengalami perubahan yang besar. Gambar 3 adalah bias dari penduga δ 1. Garis terputus artinya penduga tidak bias. Semakin banyak jumlah data yang digunakan, semakin kecil pengaruh nilai-nilai ekstrim yang ditunjukkan oleh nilai d. Perbedaan pola garis dari Gambar 3.a dan 3.b menunjukkan bahwa kemunculan ekstrim secara berurutan akan menyebabkan penyimpangan dari model secara 5 1 d d - persen ekstrim - persen ekstrim a) Nilai ekstrim acak b). Nilai ekstrim di akhir Gambar 3. Bias (d) penduga δ 1 dengan Menambahkan Nilai-Nilai Ekstrim dengan Parameter δ 11= δ 1= c 1= c =5 Ket. gambar: garis terputus artinya penduga tidak berbias. d = selisih penduga δ1 setelah dan sebelum ditambah data ekstrim 5%. Dari empat skenario yang dievaluasi, rata-rata penduga akan berbias pada penambahan nilai ekstrim lebih dari 1% dan bias semakin besar dengan bertambahnya T. Berdasarkan hasil di atas, dikembangkan simulasi untuk menghitung bias secara umum dengan mengambil parameter dari skenario c. Simulasi dilakukan dengan : a) menambahkan ekstrim secara acak di tengah periode pengamatan; b) menambahkan ekstrim secara berurutan pada akhir periode pengamatan. Ide dasar dari bentuk (b) adalah apabila mulai terjadi perubahan perilaku deret secara mencolok (ekstrim) dari kondisi yang relatif tenang lebih cepat dan lebih besar. Hal ini terlihat dari kemiringan garis yang lebih tajam serta adanya bias yang lebih besar. Adanya nilai-nilai ekstrim secara acak sejumlah kurang dari 15% tidak akan mengakibatkan pendugaan berbias pada T=. Kemunculan nilai ekstrim secara berurutan akan menyebabkan penduga berbias kecuali untuk T = 5 dan nilai ekstrim = 1%. Dari hasil ini dapat disimpulkan bahwa untuk medapatkan model yang kekar diperlukan jumlah data yang banyak (lebih dari 1). Sedangkan kegunaan model dengan jumlah data sedikit adalah akan dapat digunakan untuk deteksi adanya nilai-nilai yang 35 3 5 15 1 5 ds BC 1 3 5 7 1 1 5 5 p e rse n e kstrim 5 3 1 dm S E p e rse n e kstrim a) Nilai ekstrim acak b). Nilai ekstrim di akhir Gambar. Grafik selisih SBC maupun MSE pendugaan parameter Ket. gambar : dsbc = selisih SBC setelah dan sebelum ditambah data ekstrim dmse = selisih MSE setelah dan sebelum ditambah data ekstrim

tak wajar. Pengaruh persentase nilai ekstrim terhadap pendugaan dapat dilihat dari besarnya selisih SBC maupun selisih MSE (Gambar ). SBC dan MSE meningkat secara linier dengan meningkatnya persentase nilai ekstrim yang terlibat. Dari 3 ulangan, penduga δ 1 tidak menyebar normal, karena banyak ditemukan kasus hasil dugaan δ 1 =, meskipun parameter sebenarnya adalah. KESIMPULAN Hasil penelitian menunjukkan bahwa jumlah pengamatan yang diperlukan untuk memperoleh penduga yang tak bias tergantung pada volatilitas data (nilai δ 1), dimana semakin besar volatilitas semakin banyak jumlah data yang diperlukan. Simulasi nilai ekstrim menunjukkan bahwa kemunculan nilai ekstrim lebih besar dari 1% secara berurutan pada akhir periode, membuat pemodelan berbias untuk berbagai nilai T. Sedangkan apabila ekstrim menyebar secara acak di tengah periode pengamatan, menyebabkan penduga berbias pada T kecil (5). Untuk T cukup besar () penduga akan bias apabila terdapat nilai ekstrim lebih dari 1%. Untuk mendapatkan model yang kekar diperlukan jumlah data yang cukup besar (lebih dari 1) dan jika T kecil, ketika mulai terdapat volatilitas yang besar maka model cenderung untuk bias. DAFTAR PUSTAKA Arsham, H.. Time Series Analysis and Forecasting techniques. http://ubmail.ubalt.edu/~harsham/statdata/opre33forecast.htm. Dikunjungi pada tanggal 1 September Campbell, J. Y., A. W. Lo. & A.C. MacKinlay. 199. The Econometrics of Financial Markets. University Press. Princeton. Cryer, J. D. 19. Time-series Analysis. PWS Publishers. USA. Enders, W. 1995. Applied Econometric Time Series. 1 st ed. John Wiley & Sons, Inc. Canada. Engle, R. F. 1. The Use of ARCH/GARCH models in Applied Econometrics. Journal of Economic Perspectives.157-1. Eviews User s Guide. nd Edition. 199. Quantitative Micro Software. USA. Hamilton, J. D. 199. Time Series Analysis. Princeton University Press. New Jersey. Li, W. K, Ling, S, McAleer, M. 1. A Survey of Recent Theoritical Result for Time Series Models with GARCH Errors. The Institute of Social & Economic Research, Osaka University. Lo, M.S. 3. Generalized Autoregressive Conditional Heteroscedasticity Time Series Model. Thesis Department of Statistics and Actuaria Science. Simon Fraser University, Spanyol. Mankiw, N. G.. Ed.. Teori Makroekonomi. Alih bahasa, Imam Nurmawan. Erlangga, Jakarta. SAS Institute Inc. 19. SAS/ETS User s Guide. Version, First Edition. Cary, NC : SAS Institue Inc. Wei, W. W. S. 199. Time Series Analysis. Addison-Wesley Publishing Company. USA. 5

Lampiran 1. Hasil simulasi pendugaan parameter GARCH(1,1) pada berbagai kombinasi koefisien GARCH1 dan jumlah data pengamatan a. Penduga GARCH1 Jml Data GARCH1= GARCH1= GARCH1= GARCH1= GARCH1= GARCH1= GARCH1= GARCH1=. LCLM UCLM LCLM UCLM LCLM UCLM LCLM UCLM LCLM UCLM LCLM UCLM LCLM UCLM LCLM UCLM 5 5 3 3 7 1 5 3 9 1 7 5 3 9 1 5 9 7 3 15 1 3 9 7 1 7 9 1 7 3 7 1 5 9 1 9 1 3 9 3 9 5 1 9 5 1 5 1 3 9 7 7 5 3 1 3 1 9 5 3 9 1 9 1 5 5 5 9 5 1 9 1 9 1 7 5 9 5 3 7 7 3 9 5 9 9 7 9 1 7 7 1 9 1 9 7 1 7 5 9 9 7 9 9 1 1 9 1 9 1 9 9 9 7 1 7 7 7 9 5 5 9 9 9 9 9 9 9 9 9 9. b. MSE (Mean Square Error) Jml Data GARCH1= GARCH1= GARCH1= GARCH1= GARCH1= GARCH1= GARCH1= GARCH1=. MSE LCLM UCLM MSE LCLM UCLM MSE LCLM UCLM MSE LCLM UCLM MSE LCLM UCLM MSE LCLM UCLM MSE LCLM UCLM MSE LCLM UCLM 5 1.17 1.1 1.3.3.13.7 9 5 1. 1. 1.9 1.7 1.1 1.7.3...5.7..97.7 5. 1 1.3 1.17 1.3.5.. 7 1.5 1. 1. 1.7 1.3 1.7.7.3.55.9.3.5 5..9 5. 15 1.9 1. 1.35.73.1 3.35.9 1.3 1. 1.5 1. 1. 1.7.5.3.5.51..5 5.7.9 5. 1.3 1.1 1..3.1 3.11.9 1. 1. 1. 1.7 1. 1.73.59.5..51..55 5..9 5.1 5 1.31 1.15 1.. 1.9 3.7.9 1 1. 1. 1. 1. 1.3 1..9..55.51.7.55 5.5.95 5.1 3 1.3 1. 1..3..5 1 1.3 1.1 1.5 1. 1.3 1.9.9..5.5..5.9.9 5.7 1.5 1. 1..1..5 7 1. 1.3 1. 1.7 1. 1.7.51..55.9..51 5.11 5.1 5.1 5 1. 1.19 1..53.3.75 1 1 1.5 1. 1. 1. 1. 1..51.7.55.9..5 5. 5. 5.17 1. 1. 1.7..31.53 9 1 1. 1. 1.7 1.7 1.5 1.9.7..5.5.9.55 5..99 5.13 1 1. 1.3 1.9.51.37. 9 1 1.5 1.3 1. 1.7 1.5 1..5.7.5.5..5.9.91 5. 1.3 1. 1.5..3.5 1 1.5 1.5 1. 1. 1.5 1.7.5..5.9..51.97.93 5.1 Keterangan : LCLM = Lower Confidence Limit of Mean LCLM = Upper Confidence Limit of Mean

Lampiran. Hasil pendugaan GARCH1 dengan Menambahkan Nilai-Nilai Ekstrim dengan beberapa kombinasi parameter Skenario A: garch1= garch= intercep1= intercept=. N=5 N=1 N=. 1.5 MSE 5 1 Skenario B: garch1= garch= intercep1= intercept=. N=5 N=1 N= 3..5. 1.5 5 1 Skenario C: garch1= garch= intercep1= intercept= */. N=5 N=1 N=.5. 1.5 5 1 Skenario D: garch1= garch= intercep1= intercept=5. N=5 N=1 N=. 5.. 3.. 5 1 7