Analisa Gangguan Satu Fasa ke Tanah yang Mengakibatkan Sympathetic Trip pada Penyulang yang tidak Terganggu di PLN APJ Surabaya Selatan

dokumen-dokumen yang mirip
Analisa Pengaruh Pemasangan Directional Ground Relay (DGR) sebagai Pengaman Gangguan Fasa Tanah Penyulang 20 kv

PEMASANGAN DGR ( DIRECTIONAL GROUND RELE

PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

SIMULASI OVER CURRENT RELAY (OCR) MENGGUNAKAN KARATERISTIK STANDAR INVERSE SEBAGAI PROTEKSI TRAFO DAYA 30 MVA ABSTRAK

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

Analisa Koordinasi Over Current Relay Dan Ground Fault Relay Di Sistem Proteksi Feeder Gardu Induk 20 kv Jababeka

PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

BAB V PENUTUP 5.1 Simpulan Saran DAFTAR PUSTAKA LAMPIRAN LAMPIRAN

Pemasangan DGR (Directional Ground Relay) untuk Mengatasi Gangguan Sympathetic Trip pada GIS Bandara Penyulang Ngurah Rai I dan Ngurah Rai II

STUDI PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

BAB 2 GANGGUAN HUBUNG SINGKAT DAN PROTEKSI SISTEM TENAGA LISTRIK

Penentuan Nilai Arus Pemutusan Pemutus Tenaga Sisi 20 KV pada Gardu Induk 30 MVA Pangururan

2.2.6 Daerah Proteksi (Protective Zone) Bagian-bagian Sistem Pengaman Rele a. Jenis-jenis Rele b.

Praktikum SISTEM PROTEKSI

AKIBAT KETIDAKSEIMBANGAN BEBAN TERHADAP ARUS NETRAL DAN LOSSES PADA TRANSFORMATOR DISTRIBUSI

Analisis Koordinasi Rele Arus Lebih Pda Incoming dan Penyulang 20 kv Gardu Induk Sengkaling Menggunakan Pola Non Kaskade

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB

PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT PADA JARINGAN DISTRIBUSI DI KOTA PONTIANAK

Analisa Relai Arus Lebih Dan Relai Gangguan Tanah Pada Penyulang LM5 Di Gardu Induk Lamhotma

STUDI PENGARUH KETIDAKSEIMBANGAN PEMBEBANAN TRANSFORMATOR DISTRIBUSI 20 KV PT PLN (PERSERO) CABANG PONTIANAK

ANALISIS ARUS GANGGUAN HUBUNG SINGKAT PADA PENYULANG 20 KV DENGAN OVER CURRENT RELAY (OCR) DAN GROUND FAULT RELAY (GFR)

ANALISA KEDIP TEGANGAN PADA SISTEM DISTRIBUSI TENAGA LISTRIK 20 KV AKIBAT HUBUNG SINGKAT PADA PENYULANG PEDAN 1 KLATEN

SILABUS. 5. Evaluasi - Kehadiran - Tugas - partisipasi diskusi, tanya jawab - UTS - UAS

BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH

Analisis Pengaruh Penambahan Unit Pembangkit Baru terhadap Arus Gangguan ke Tanah pada Gardu Induk Grati

STUDI PERENCANAAN KOORDINASI RELE PROTEKSI PADA SALURAN UDARA TEGANGAN TINGGI GARDU INDUK GAMBIR LAMA - PULOMAS SKRIPSI

Analisis Gangguan Hubung Singkat untuk Penentuan Breaking Capacity Pada Penyulang Kutai, Ludruk, dan Reog di GIS Gambir Lama

EVALUASI SISTEM PENTANAHAN TRANSFORMATOR DAYA 60 MVA PLTGU INDRALAYA

Evaluasi Ground Fault Relay Akibat Perubahan Sistem Pentanahan di Kaltim 1 PT. Pupuk Kaltim

Kinerja Ground Fault Relay (Rele Gangguan Tanah) pada Penyulang 4 dan Penyulang 6 Gardu Induk Srondol

EVALUASI SETTING RELAY PROTEKSI DAN DROP VOLTAGE PADA GARDU INDUK SRONDOL SEMARANG MENGGUNAKAN ETAP 7.5

Pengaruh Harmonisa Pada Gardu Trafo Tiang Daya 100 kva di PLN APJ Surabaya Selatan

Pengaruh Ketidakseimbangan Beban Terhadap Arus Netral dan Losses pada Trafo Distribusi

STUDI HUBUNG SINGKAT UNTUK GANGGUAN SIMETRIS DAN TIDAK SIMETRIS PADA SISTEM TENAGA LISTRIK PT. PLN P3B SUMATERA

ANALISA SETTING RELAI PENGAMAN AKIBAT REKONFIGURASI PADA PENYULANG BLAHBATUH

PENGARUH KETIDAKSEIMBANGAN BEBAN TERHADAP ARUS NETRAL DAN LOSSES PADA TRAFO DISTRIBUSI

ANALISA SETTING GROUND FAULT RELAY (GFR) TERHADAP SISTEM PENTANAHAN NETRAL PENYULANG PANDEANLAMPER 06 JTM 20 KV SEMARANG

BAB III SISTEM PROTEKSI DAN ANALISA HUBUNG SINGKAT

BAB III METODE PENELITIAN

PENGARUH PENGETANAHAN SISTEM PADA KOORDINASI RELE PENGAMAN PT. PUPUK SRIWIDJAJA PALEMBANG

Perancangan Sistem Proteksi (Over Current dan Ground Fault Relay) Untuk Koordinasi Pengaman Sistem Kelistrikan PT. Semen Gresik Pabrik Tuban IV

STUDI PENENTUAN KAPASITAS PEMUTUS TENAGA SISI 20 KV PADA GARDU INDUK SEKAYU

ABSTRAK Kata Kunci :

Analisa Perancangan Gardu Induk Sistem Outdoor 150 kv di Tallasa, Kabupaten Takalar, Sulawesi Selatan

KOORDINASI RELAY ARUS LEBIH DAN RECLOSER PADA TRAFO 60 MVA GARDU INDUK PANDEAN LAMPER SEMARANG DENGAN SIMULASI ETAP

JURNAL IPTEKS TERAPAN Research of Applied Science and Education V8.i4 ( ) Perbaikan Jatuh Tegangan Dengan Pemasangan Automatic Voltage Regulator

KAJIAN PROTEKSI MOTOR 200 KW,6000 V, 50 HZ DENGAN SEPAM SERI M41

PROTEKSI SISTEM TRANSMISI TERHADAP GANGGUAN TANAH. Oleh : Fitrizawati ABSTRACT

POLITEKNIK NEGERI SRIWIJAYA BAB I PENDAHULUAN

Kata kunci hubung singkat, recloser, rele arus lebih

Analisis Koordinasi Sistem Pengaman Incoming dan Penyulang Transformator 3 di GI Sukolilo Surabaya

STUDI PENGARUH PEMASANGAN SISTEM PROTEKSI RELE TERHADAP KEMUNGKINAN GANGGUAN SYMPATHETIC TRIPPING PADA PENYULANG

D. Relay Arus Lebih Berarah E. Koordinasi Proteksi Distribusi Tenaga Listrik BAB V PENUTUP A. KESIMPULAN B. SARAN...

STUDI PERENCANAAN PENGGUNAAN PROTEKSI POWER BUS DI PT. LINDE INDONESIA GRESIK

BAB III PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT

BAB II TINJAUAN PUSTAKA

ANALISIS KOORDINASI RELE PENGAMAN FEEDER WBO04 SISTEM KELISTRIKAN PT. PLN (PERSERO) RAYON WONOSOBO

BAB II DASAR TEORI. Sistem proteksi adalah sistem yang memisahkan bagian sistem yang. b. Melepaskan bagian sistem yang terganggu (fault clearing)

STUDI PENGARUH SETTING RELE PENGAMAN UNTUK MEMINIMALKAN GANGGUAN SYMPATHETIC TRIP PADA PENYULANG BUNISARI - SUWUNG

TUGAS AKHIR ANALISA DAN SOLUSI KEGAGALAN SISTEM PROTEKSI ARUS LEBIH PADA GARDU DISTRIBUSI JTU5 FEEDER ARSITEK

PENGARUH PENGETANAHAN SISTEM PADA KOORDINASI RELE PENGAMAN PT. PUPUK SRIWIDJAJA PALEMBANG

Studi Koordinasi Pengaman Rele Arus Lebih Akibat Adanya Proses Integrasi Sistem Kelistrikan Joint Operating Body Pertamina-Petrochina East Java

Pengaturan Ulang Rele Arus Lebih Sebagai Pengaman Utama Compressor Pada Feeder 2F PT. Ajinomoto Mojokerto

Jurnal Teknik Elektro, Universitas Mercu Buana ISSN :

III PENGUMPULAN DAN PENGOLAHAN DATA

SALURAN UDARA TEGANGAN MENENGAH (SUTM) DAN GARDU DISTRIBUSI Oleh : Rusiyanto, SPd. MPd.

Studi Perencanaan Penggunaan Proteksi Power Bus di Sistem Kelistrikan Industri Gas

ANALISA GANGGUAN SISTEM TENAGA LISTRIK TEK (2SKS)

KOORDINASI SETTING RELAI ARUS LEBIH PADA INCOMING 2 KUDUS TERHADAP OUTGOING KUDUS 5 DAN 6 YANG MENGGUNAKAN JARINGAN DOUBLE CIRCUIT DI GI 150 KV KUDUS

Analisis Koordinasi Sistem Pengaman Incoming dan Penyulang Transformator 3 di GI Sukolilo Surabaya

ANALISIS RESETTING RECLOSER PADA SALURAN WLI 06 TRAFO 30 MVA 150 KV GARDU INDUK WELERI KENDAL DENGAN SIMULASI ETAP

LANDASAN TEORI Sistem Tenaga Listrik Tegangan Menengah. adalah jaringan distribusi primer yang dipasok dari Gardu Induk

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6

EVALUASI SISTEM PROTEKSI PEMBUMIAN TRANSFORMATOR 15 MVA TERHADAP GANGGUAN SATU FASA KE TANAH SUBIANTO ABSTRAK

BAB IV ANALISIA DAN PEMBAHASAN. 4.1 Koordinasi Proteksi Pada Gardu Induk Wonosobo. Gardu induk Wonosobo mempunyai pengaman berupa OCR (Over Current

PENENTUAN KAPASITAS PEMUTUS TENAGA SISI 20 KV PADA GARDU INDUK SEI. RAYA

PERBAIKAN JATUH TEGANGAN PADA FEEDER B KB 31P SETIABUDI JAKARTA DENGAN METODE PECAH BEBAN

BAB II LANDASAN TEORI

Penentuan Kapasitas CB Dengan Analisa Hubung Singkat Pada Jaringan 70 kv Sistem Minahasa

ANALISIS KETIDAKSEIMBANGAN BEBAN PADA JARINGAN DISTRIBUSI SEKUNDER GARDU DISTRIBUSI DS 0587 DI PT. PLN (Persero) DISTRIBUSI BALI RAYON DENPASAR

Analisis Sympathetic Trip pada Penyulang Ungasan dan Bali Resort, Bali

ANALISIS PENGARUH PEMASANGAN KAWAT TANAH TERHADAP GANGGUAN SURJA PETIR PADA SISTEM DISTRIBUSI SALURAN UDARA TEGANGAN MENENGAH 20 KV

BAB I PENDAHULUAN. Pada sistem penyaluran tenaga listrik, kita menginginkan agar pemadaman tidak

PENGARUH KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR KERING BHT02 RSG GA SIWABESSY TERHADAP ARUS NETRAL DAN RUGI-RUGI

Analisis Setting Relay Proteksi Pengaman Arus Lebih Pada Generator (Studi Kasus di PLTU 2X300 MW Cilacap)

Perbaikan Jatuh Tegangan Dengan Pemasangan Automatic Voltage Regulator

BAB III SISTEM PROTEKSI TEGANGAN TINGGI

KOORDINASI RELE ARUS LEBIH DI GARDU INDUK BUKIT SIGUNTANG DENGAN SIMULASI (ETAP 6.00)

PENGGUNAAN RELAY DIFFERENSIAL. Relay differensial merupakan suatu relay yang prinsip kerjanya berdasarkan

ANALISIS TEGANGAN JATUH PADA JARINGAN DISTRIBUSI RADIAL TEGANGAN RENDAH oleh : Fitrizawati ABSTRACT

BAB II LANDASAN TEORI

BAB III LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB III. Transformator

BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT

Koordinasi Proteksi Sebagai Upaya Pencegahan Terjadinya Sympathetic Trip Di Kawasan Tursina, PT. Pupuk Kaltim

SINGUDA ENSIKOM VOL. 7 NO. 1/April 2014

BAB IV PEMBAHASAN. Gardu Induk Godean berada di jalan Godean Yogyakarta, ditinjau dari


BAB III GANGGUAN SIMPATETIK TRIP PADA GARDU INDUK PUNCAK ARDI MULIA. Simpatetik Trip adalah sebuah kejadian yang sering terjadi pada sebuah gardu

Transkripsi:

Analisa Gangguan Satu Fasa ke Tanah yang Mengakibatkan Sympathetic Trip pada Penyulang yang tidak Terganggu di PLN APJ Surabaya Selatan Analisa Gangguan Satu Fasa ke Tanah yang Mengakibatkan Sympathetic Trip pada Penyulang yang tidak Terganggu di PLN APJ Surabaya Selatan Julius Sentosa Setiadji 1, Tabrani Machmudsyah 2, Rusli Kongdoro 1 Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra 2 PT. PLN(Persero) Distribusi Jawa Timur E-mail: julius@petra.ac.id Abstrak Sistem distribusi tenaga listrik 20 kv di Jawa Timur menggunakan sistem pentanahan dengan tahanan tinggi 500 Ohm sehingga arus gangguan satu fasa ke tanah maksimum adalah sebesar 25 Ampere. Untuk mendeteksi arus gangguan ini digunakan DGR (Directional Ground Relay). Apabila pada penyulang Semolo terjadi gangguan satu fasa ke tanah, maka penyulang Gebanglor dan Srikana yang dicatu dari bus yang sama dengan penyulang Semolo (bus Nissin) juga ikut trip (sympathetic trip). Penyebab terjadinya sympathetic trip adalah arus total kebocoran dari arrester, body trafo dan body panel TR GTT pada penyulang Gebanglor dan Srikana yang melebihi tap setting arus DGR sebesar 2 Ampere. Setelah dilakukan perbaikan, arus total kebocoran arrester pada penyulang Gebanglor menjadi sebesar 0.046 Ampere dan penyulang Srikana sebesar 0.026 Ampere. Kata kunci: penyulang, gangguan satu fasa ke tanah, sympathetic trip, dan directional ground relay. Abstract Twenty kilovolts power distribution network system at East Java use high resistance (500 Ω) grounding system that makes maximum single phase to ground fault current 25 Amperes. To detect this fault current, a Directional Ground Relay (DGR) is used. If a single phase to ground fault occurrs on Semolo feeder, then Gebanglor feeder and Srikana feeder which are supplied by the same bus with Semolo feeder (Nissin bus) will also trip (sympathetic trip). Sympathetic trip is caused by the total leakage current of arresters, transformers and low voltage panels on Gebanglor feeder dan Srikana feeder which is more than 2 Amperes (tap current setting of DGR is 2 Amperes). After maintenance, the total leakage current of the arresters on Gebanglor feeder is 0.046 Amperes and Srikana feeder is 0.026 Amperes. Keywords: feeder, single phase to ground fault, sympathetic trip, and directional ground relay. Pendahuluan Salah satu gangguan yang terjadi pada jaringan 20 kv sistem distribusi adalah gangguan 1 fasa ke tanah. Karena PLN Distribusi Jawa Timur menerapkan pola-1 : pengamanan distribusi High Resistance 500 Ohm, maka arus gangguan 1 fasa ke tanah maksimum 25 A. Arus gangguan ini relatif kecil, untuk itu digunakan Directional Ground Relay (DGR) yang sensitif terhadap arus gangguan kecil dengan dilengkapi sudut (arah). Permasalahan timbul jika terjadi gangguan 1 fasa ke tanah pada penyulang Semolo dari bus 20 kv Nissin, maka penyulang Gebanglor dan Srikana yang juga dicatu oleh bus Nissin akan ikut terganggu (trip). Hal ini akan mengganggu pasokan tenaga listrik ke konsumen PLN. Fenomena ini disebut dengan sympathetic trip (jatuh bersamaan). Catatan: Diskusi untuk makalah ini diterima sebelum tanggal 1 Juni 2006. Diskusi yang layak muat akan diterbitkan pada Jurnal Teknik Elektro volume 6, nomor 2, September 2006. Directional Ground Relay (DGR) DGR (Directional Ground Relay) bekerja berdasarkan komponen arus urutan nol (Io) dan tegangan urutan nol (Vo) yang mana Io dideteksi oleh ZCT (Zero Current Transformer) dan Vo dideteksi oleh GPT (Ground Potential Transformer). Apabila terjadi ketidakseimbangan tegangan pada sistem maka GPT akan mendeteksi Vo. Apabila terjadi ketidakseimbangan arus pada sistem maka ZCT akan mendeteksi Io. DGR merupakan rele tanah yang disertai dengan arah, sehingga digunakan untuk memproteksi satu arah saja. ZCT dipasang pada masing-masing penyulang, sedangkan GPT dipasang pada bus Nissin. DGR yang digunakan pada penyulang Semolo, Gebanglor dan Srikana adalah rele tipe statik yakni tipe EGR-EC dengan konstruksi drawout. External connection dan internal connection dari DGR tipe EGR-EC dapat dilihat pada gambar 3 dan gambar 4. 15

Jurnal Teknik Elektro Vol. 6, No. 1, Maret 2006: 15-21 Trafo III 150/20 kv-60mva Arah proteksi DGR Tidak bekerja Bekerja Nissin 67G A P. S Pada ZCT, kutub K dan L adalah kumparan primer, sedangkan kutub k dan l adalah kumparan sekunder. Pada GPT, kutub G1 dan G4 merupakan kumparan tersier. 67G B P. G 500 Ohm 67G C P. S Gambar 1. Pemasangan DGR Besarta Arah Proteksinya Gambar 4. Internal Connection DGR tipe EGR-EC Gambar 2. Koneksi Antara DGR, GPT dan ZCT Pada gambar 4, terminal terminal pada DGR tipe EGR-EC terhubung sebagai berikut : o Terminal 1 terhubung dengan kutub k dari kumparan sekunder ZCT o Terminal 2 terhubung dengan kutub l dari kumparan sekunder ZCT o Terminal 4 dan 5 terhubung dengan trip coil dari Circuit Breaker o Terminal 7 terhubung dengan kutub G4 dari kumparan tersier GPT o Terminal 8 terhubung dengan kutub G1 dari kumparan tersier GPT o Terminal 9 terhubung dengan kutub negatif (-) dari supply 110 V DC o Terminal 10 terhubung dengan kutub positif (+) dari supply 110 V DC Sistem per unit Jaringan distribusi menggunakan banyak transformator dengan tingkat tegangan yang berbeda-beda sehingga untuk mempermudah perhitungan digunakan sistem per unit. Gambar 3. External Connection DGR tipe EGR-EC Harga per unit adalah harga yang sebenarnya dibagi harga dasar dari sistem. nilai asli Nilai per unit = (1) nilai dasar Untuk menentukan besarnya I dasar dan Z dasar pada sistem tiga fasa dapat menggunakan rumus sebagai berikut: 16

Analisa Gangguan Satu Fasa ke Tanah yang Mengakibatkan Sympathetic Trip pada Penyulang yang tidak Terganggu di PLN APJ Surabaya Selatan I dasar = kva3φdasar kvlldasar x 3 (A) (2) 2 kvlldasar Z dasar = (Ω) (3) MVA3φdasar Nilai sebenarnya dapat diperoleh kembali dengan cara mengalikan nilai per unit dengan nilai dasarnya. Komponen Simetri Perhitungan tegangan dan arus pada titik hubung singkat dapat dilakukan apabila sistem sederhana atau seimbang. Apabila sistem tidak seimbang maka digunakan metode komponen simetri untuk menganalisanya. Menurut teorema Forstescue, tiga fasor tak seimbang dari sistem tiga fasa yang timbul akibat ketidakseimbangan beban ataupun gangguan lainnya dapat diuraikan menjadi tiga sistem fasor yang seimbang. Fasor yang asli merupakan fasor tidak seimbang, dan merupakan jumlah komponen. Fasor asli dinyatakan dalam suku-suku komponen sebagai berikut: Va = Va 1 + Va 2 + Va 0 Vb = Vb 1 + Vb 2 + Vb 0 Vc = Vc 1 + Vc 2 + Vc 0 Ia = Ia 1 + Ia 2 + Ia 0 Ib = a 2 Ia 1 + aia 2 + Ia 0 Ic = aia 1 + a 2 Ia 2 + Ia 0 Dimana a = 1 120 Dalam sistem tiga fasa, jumlah arus saluran sama dengan arus residu (Ir) dalam jalur kembali lewat netral. Sehingga Ia + Ib + Ic = Ir Ir = 3Ia 0 Jika tidak ada jalur kembali yang melalui netral sistem tiga fasa, Ir adalah nol, dan arus saluran tidak mengandung komponen urutan nol. Analisa Gangguan Satu Fasa ke Tanah Pethitungan arus gangguan satu fasa ke tanah diperlukan agar dapat menentukan setting DGR yang tepat. kva 3Ф dasar = 60000 (sesuai dengan rating trafo yang digunakan) = 20 (sesuai dengan tegangan kerja) kv LL dasar Berdasarkan rumus 2 dan 3, maka : kva3 I dasar = φ dasar kvlldasar 3 = 60000 20 3 = 1732.050808 A Z dasar = = 2 kv LLdasar MVA 20 2 60 3φ = 6.666667 Ω Impedansi trafo urutan positif, negatif dan nol dari trafo Zt(pu) = j0.125 (sesuai rating trafo) Impedansi gangguan untuk gangguan maksimum Zf = 0 Impedansi pentanahan netral pada trafo Zn = 500 Ω Impedansi pentanahan netral dalam sistem per unit (pu) berdasarkan rumus 1 adalah: Zn (pu) = 500 = 74.99999625 75 pu 6.666667 3Zn = 225 pu Berdasarkan gambar 6, maka jaringan urutan dari sistem dengan asumsi gangguan terjadi pada penyulang Semolo dekat GI Sukolilo dengan impedansi gangguan (Zf = 0) adalah sebagai berikut: j0.125 j0.125 j0.125 Trafo I II Unindo 150/20-60 MVA Busbar Nissin Penyulang Semolo 0.81 km 6.372 km 4.158 km 4.05 km XLPE 150 mm2 XLPE 150 mm2 AAAC 15 0 mm2 AAAC 150 mm2 AAAC 150 mm2 AAAC 150 mm2 AAAC 70 mm2 AAAC 70 mm2 AAAC 70 mm2 500 Ohm Gambar 5. Penyulang Semolo 225 Gambar 6. Rangkaian Urutan Untuk Hubung Singkat 1 Fasa ke Tanah. 17

Jurnal Teknik Elektro Vol. 6, No. 1, Maret 2006: 15-21 Arus urutan maksimum: Ia 1 (pu) = 1 225 + j0.375 1 = 225.0003125 0. 0954928 = 0.004444438272 0. 0954928 Arus gangguan maksimum yang mengalir pada fasa yang terganggu adalah: Ia (pu) = 3 Ia 1 = 3 x 0.004444438272 = 0.0133333148 pu If = Ia = Ia(pu) x I dasar = 0.0133333148 x 1732.050808 = 23.09397867 A Tabel 1. Hasil Perhitungan Arus Gangguan Hubung Singkat 1 Fasa ke Tanah Maksimum dan Minimum Pada Penyulang Semolo Arus Gangguan (A) Tegangan Minimum (kv) Maksimum 20 23.09397867 7.191338618 7.156877521 7.133762954 7.10808007 20.5 23.67130556 7.371114699 7.335792108 7.3120997 7.28577477 Tabel 2. Hasil Perhitungan Arus Gangguan Hubung Singkat 1 Fasa ke Tanah Maksimum dan Minimum Pada Penyulang Gebanglor Arus Gangguan (A) Tegangan (kv) Minimum Maksimum 20 23.09397867 7.191033862 7.159041588 7.138578915 7.113911572 20.5 23.67130556 7.370802323 7.338010272 7.317036056 7.291752053 Kebocoran Arrester, Body Trafo dan Body Panel TR GTT dari Penyulang Gebanglor dan Penyulang Srikana Kebocoran terjadi sepanjang jaringan pada penyulang Gebanglor dan Srikana. Pada tiang awal penyulang merupakan kebocoran arrester murni. L.A 0.06 Gambar 7. Kebocoran Arrester Pada Tiang Awal Penyulang Sedangkan untuk kebocoran pada Gardu Trafo Tiang merupakan kebocoran dari arrester, kebocoran body trafo, dan kebocoran panel Tegangan Rendah dari GTT. Tabel 3. Hasil Perhitungan Arus Gangguan Hubung Singkat 1 Fasa ke Tanah Maksimum dan Minimum pada Penyulang Srikana Arus Gangguan (A) Tegangan (kv) Minimum Maksimum 20 23.09397867 7.193269304 7.166197653 7.161388966 7.154019429 20.5 23.67130556 7.373093648 7.345345234 7.340416333 7.332862568 Fuse Cut Out 20 / 0.38 kv 20 kv Ib = 0.37 L.A Ia = Setting arus kerja DGR DGR akan bekerja pada saat terjadi gangguan 1 fasa ke tanah. Oleh karena itu, harus diketahui besarnya arus gangguan satu fasa ke tanah maksimum dan minimum. Sehingga dapat dilakukan penyetelan pada DGR. Pada DGR tipe EGR EC yang digunakan pada penyulang Semolo, Gebanglor dan Srikana terdapat tap setting arus kerja pada Io = 1 A sampai 5 A. Untuk menentukan tap setting arus kerja dari DGR maka digunakan rumus: Isetting = 10 % x If Maksimum Isetting = 10 % x 23.67 A Isetting = 2.367 A Dengan pembulatan ke bawah maka DGR menggunakan tap setting Io = 2 A. A B C G Id = 0.49 Ic = 0 Gambar 8. Kebocoran Arrester, Body Trafo, dan Body Panel TR GTT Ie = 18

NGR Analisa Gangguan Satu Fasa ke Tanah yang Mengakibatkan Sympathetic Trip pada Penyulang yang tidak Terganggu di PLN APJ Surabaya Selatan Kebocoran ini akan menyebabkan ZCT mendeteksi Io dan memberikan input Io pada DGR dari penyulang tersebut. Tiang pertama P.G eba nglor GTT I GTT II GTT III Semolo. Sehingga timbul arus gangguan satu fasa ke tanah maksimum yakni sebesar 23.67 A dan juga timbul Vo. GPT akan mendeteksi Vo dan memberikan input Vo pada DGR Penyulang Semolo, penyulang Gebanglor dan penyulang Srikana (penyulang pada bus Nissin). 2.59 0.06 0.92 0.84 0.77 Gambar 9. Kebocoran Pada Tiang Awal dan GTT 150/20 kv - 60 MVA 2.59 A Penyulang Gebanglor Tiang Awal GTT I GTT II GTT III 0.06 A 0.92 A 0.84 A 0.77 A 2.59 A 500 Ohm 2.59 A Gambar 10. Kebocoran Pada Penyulang Gebanglor Nissin 150/20-60 MVA Penyulang Srikana 2.62 A Tiang pertama GTT I GTT II GTT III 0.07 A 0.83 A 0.88 A 0.84 A Gambar 12. Penyulang Semolo dan Penyulang Gebanglor Serta Penyulang Srikana Pada Kondisi Tidak Ada Gangguan 1 Fasa ke Tanah 2.62 A 500 Ohm 2.62 A Gambar 11. Kebocoran Pada Penyulang Srikana DGR dari penyulang Gebanglor akan memperoleh input Io sebesar 2.59 A dan DGR dari penyulang Srikana akan memperoleh input Io sebesar 2.62 A. Input Io ini melebihi setting arus kerja dari DGR (pada Io = 2 A). Tetapi DGR belum bekerja karena belum memperoleh input Vo. Terjadinya Sympathetic Trip Sympathetic trip terjadi pada penyulang Gebanglor dan Srikana, yang disebabkan oleh gangguan satu fasa ke tanah pada penyulang Semolo. Gangguan satu fasa ke tanah pada penyulang Semolo disebabkan oleh sambaran petir yang mengakibatkan putusnya fasa R pada tiang pertama dari penyulang Gambar 13. Penyulang Semolo dan Penyulang Gebanglor Serta Penyulang Srikana Pada Kondisi Gangguan 1 Fasa ke Tanah Pada Penyulang Semolo 19

Jurnal Teknik Elektro Vol. 6, No. 1, Maret 2006: 15-21 Akibat adanya gangguan satu fasa ke tanah pada penyulang Semolo maka: DGR penyulang Semolo akan bekerja karena memperoleh input Io dan Vo, sebagai akibat terjadinya gangguan satu fasa ke tanah pada penyulang Semolo. DGR penyulang Gebanglor akan bekerja karena memperoleh input Io dan Vo, dimana input Io diperoleh akibat kebocoran arus sepanjang penyulang Gebanglor sementara input Vo diperoleh akibat gangguan satu fasa ke tanah pada penyulang Semolo. DGR penyulang Srikana akan bekerja karena memperoleh input Io dan Vo, dimana input Io diperoleh akibat kebocoran arus sepanjang penyulang Srikana sementara input Vo diperoleh akibat gangguan satu fasa ke tanah pada penyulang Semolo. Pada saat terjadi gangguan satu fasa ke tanah pada penyulang Semolo, maka penyulang Semolo akan trip. Penyulang Gebanglor dan penyulang Srikana akan trip bersamaan (sympathetic trip) dengan tripnya penyulang Semolo. Tabel 4. Kebocoran Arus Pada Penyulang Gebanglor Arus Bocor Sebelum Perbaikan (A) Arus Bocor Setelah Perbaikan (A) Arrester Trafo Panel TR Arrester Trafo Panel TR Tiang I 0.06 - - 0.001 - - GTT I 0.06 0.37 0.49 0.001 0 0 GTT II 0.07 0.32 0.45 0.001 0 0 GTT III 0.06 0.30 0.41 0.001 0 0 Tabel 5. Kebocoran Arus Pada Penyulang Srikana Arus Bocor sebelum perbaikan (A) Arus Bocor Setelah Perbaikan (A) Arrester Trafo Panel TR Arrester Trafo Panel TR Tiang I 0.07 - - 0.001 - - GTT I 0.08 0.32 0.43 0.001 0 0 GTT II 0.07 0.34 0.47 0.001 0 0 GTT III 0.06 0.33 0.45 0.001 0 0 Dari tabel 4 dapat dihitung besarnya arus total kebocoran arrester pada penyulang Gebanglor setelah perbaikan yakni: I bocor total = (0.001A x 45 GTT) + (0.001A x 1 Tiang Awal) I bocor total = 0.046 A Dari tabel 5 dapat dihitung besarnya arus total kebocoran arrester pada penyulang Srikana setelah perbaikan yakni: I bocor total = (0.001A x 25 GTT) + (0.001A x 1 Tiang Awal) I bocor total = 0.026 A Kesimpulan Sympathetic trip pada penyulang Gebanglor dan Srikana terjadi akibat adanya kebocoran arrester, body trafo dan body panel TR pada penyulang Gebanglor dan Srikana. Input Io diperoleh dari arus residu yang ditimbulkan oleh arus total kebocoran arrester, body trafo dan body panel TR. Sedangkan input Vo diperoleh dari tegangan residu yang timbul akibat gangguan satu fasa ke tanah pada penyulang Semolo. Arus total kebocoran arrester, body trafo dan body panel TR pada penyulang Gebanglor adalah sebesar 2.59 A dan pada penyulang Srikana sebesar 2.62 A. Nilai arus bocor total pada penyulang Gebanglor dan Srikana melebihi tap setting arus dari DGR tipe EGR-EC yakni sebesar 2 A. Setelah dilakukan perbaikan, arus total kebocoran arrester untuk penyulang Gebanglor adalah sebesar 0.046 A dan untuk penyulang Srikana sebesar 0.026 A. Sympathetic trip tidak akan terjadi karena arus urutan nol pada masing-masing penyulang tidak melebihi tap setting arus Io = 2 A pada DGR. Daftar Pustaka [1] Anthony J. Pansini, Electrical Distribution Engineering, Singapura: McGraw-Hill, 1986. [2] A.E. Fitzgerald, C. Kingsley, dan S.D. Umans, Mesin-mesin Listrik, Jakarta: Erlangga, 1992. [3] Badan Standarisasi Nasional, Persyaratan Umum Instalasi Listrik 2000, Jakarta: Yayasan PUIL, 2000. [4] B. Ravindranath and M. Chander, Power System Protection and Switchgear, Singapura: John Wiley & Sons, 1987. [5] C.L. Wadhwa, Electrical Power Systems, New Delhi : Wiley Eastern Limited, 1989. [6] GEC Alsthom. Protective Relays: Application Guide, London Balding+Mansel, 1987. [7] James J. Burke, Power Distribution Engineering, New York: Marcel Dekker Inc, 1994. [8] J. Lewis Blackburn, Protective Relaying: Principles and Applications, New York: Marcel Dekker, 1987. [9] J. Lewis Blackburn, Symmetrical Component for Power System Engineering. New York: Marcel Dekker, 1993. [10] M.Titarenko, dan I. Noskov-Dukelsky, Protective Relaying In Electrical Power System, Moscow : Peace Publisher. [11] Perusahaan Umum Listrik Negara. SPLN 52-3 :1983 Pola Pengamanan Sistem, Jakarta: Departemen Pertambangan dan Energi, 1983. [12] Turan Gonen, Electric Power Distribution System Engineering, Singapore: McGraw-Hill, 1986. 20

Analisa Gangguan Satu Fasa ke Tanah yang Mengakibatkan Sympathetic Trip pada Penyulang yang tidak Terganggu di PLN APJ Surabaya Selatan [13] Turan Gonen, Electrical Power Transmission System Engineering: Analysis and Design, USA: John Wiley &Sons Inc, 1988. [14] T.S. Hutauruk, Gelombang Berjalan & Proteksi Surja, Jakarta: Erlangga, 1989. [15] T.S. Hutauruk, Pengetanahan Netral Sistem Tenaga & Pengetanahan Peralatan, Jakarta: Erlangga, 1987. [16] William D. Stevenson Jr, Analisa Sistem Tenaga Listrik, Jakarta : Erlangga, 1996. [17] Zuhal. Dasar Teknik Tenaga Listrik dan Elektronika Daya, Jakarta: PT.Gramedia Pustaka Utama, 2000. [18] Zuhal. Dasar Tenaga Listrik, Bandung: Penerbit ITB, 1991. 21