KARAKTERISTIK TRAKSI DAN KINERJA TRANSMISI PADA SISTEM GEAR TRANSMISSION DAN GEARLESS TRANSMISSION

dokumen-dokumen yang mirip
Perbaikan Performa Traksi dengan Modifikasi Rasio Gigi Tansmisi

Karakteristik Traksi dan Kinerja Transmisi pada Sistem Gear Transmission dan Gearless Transmission

Analisis Kinerja Traksi Dan Redesign Transmisi Armored Personnel Carrier Komodo 4x4

Pengaruh Variasi Konstanta Pegas dan Massa Roller CVT Terhadap Performa Honda Vario 150 cc

Analisis Kinerja Traksi dan Redesign Rasio Transmisi pada Panser ANOA APC 3 6x6

Analisis Karakteristik Traksi Serta Redesign Rasio Transmisi Mobil Toyota Fortuner 4.0 V6 Sr (At 4x4)

Perancangan Rasio Sistem Transmisi Kendaraan Penggerak Roda Belakang Untuk Meningkatkan Kinerja Traksi

LOGO. Mohamad Fikki Rizki NRP DOSEN PEMBIMBING Prof. Ir Nyoman Sutantra,Msc,PhD Yohanes.ST,MSc

BAB III PERENCANAAN DAN PERHITUNGAN

PERANCANGAN ELECTRIC ENERGY RECOVERY SYSTEM PADA SEPEDA LISTRIK

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER

BAB II LANDASAN TEORI

SIMULASI CRASH DEFORMATION PADA BODI PART MODEL KENDARAAN

BAB IV PENGUJIAN DAN ANALISA

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

Analisa Perilaku Arah Kendaraan dengan Variasi Posisi Titik Berat, Sudut Belok dan Kecepatan Pada Mobil Formula Sapuangin Speed 3

SIMULASI PENGENDALIAN SUDUT KEMIRINGAN BELOK SEPEDA MOTOR MELALUI PENAMBAHAN KOMPONEN GYROSCOPIC

HADID BISMARA TEDJI

Perbaikan Karakteristik Aerodinamika pada Kendaraan Niaga

Rizqi An Naafi Dosen Pembimbing: Ir. J. Lubi

Perancangan dan Analisis Karakteristik Traksi Pada Mobil Pedesaan Serbaguna WAPRODES

Kata kunci: understeer, oversteer.

METODOLOGI PERANCANGAN. Dari data yang di peroleh di lapangan ( pada brosur ),motor TOYOTA. 1. Daya maksimum (N) : 109 dk

Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD

Studi Eksperimen Pengaruh Variasi Pegas Kopling Terhadap Gaya Dorong dan Percepatan Pada Kendaraan Yamaha Vixion 150 cc

Seminar Nasional Mesin dan Industri (SNMI4) 2008 PENENTUAN REGION SKID-NON SKID (2WS) TYPE MODEL KENDARAAN REAR WHEEL DRIVE (RWD)

Wiwik Sulistyono, Naif Fuhaid, Ahmad Farid (2013), PROTON, Vol. 5 No. 1/Hal

ANALISA DESAIN STRUKTUR DAN KESTABILAN SUSPENSI PASSIVE PADA SMART PERSONAL VEHICLE 2 RODA

BAB II LANDASAN TEORI


PEMBUATAN SEPEDA LISTRIK BERTENAGA SURYA SEBAGAI ALAT TRANSPORTASI ALTERNATIF MASYARAKAT

Karakteristik Traksi Sepeda Motor dengan Continuose Variable Transmission System

PROGRAM SARJANA JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

Oleh : Bimo Arindra Hapsara Dosen Pembimbing : Ir. J. Lubi. Proposal Tugas Akhir. Tugas Akhir

Perancangan Kampas Rem Beralur dalam Usaha Meningkatkan Kinerja serta Umur dari Kampas Rem

ANALISIS KESTABILAN KENDARAAN MINI TRUCK SANG SURYA PADA SAAT PENGEREMAN

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.

BAB IV ANALISA DATA DAN PERHITUNGAN

KOPLING. Kopling ditinjau dari cara kerjanya dapat dibedakan atas dua jenis: 1. Kopling Tetap 2. Kopling Tak Tetap

Simulation Characteristics Continous Variable Transmission of Motor Cycle using Torque Control Based Fuzzy Logic

BAB III PERANCANGAN SISTEM REM DAN PERHITUNGAN. Tahap-tahap perancangan yang harus dilakukan adalah :

Fenomena Parameter Design Pengaruh Tipe Ban dan Kontak Permukaan Jalan Terhadap Transformasi Gaya Dorong Gabungan Tingkatan Transmisi Jalan Datar

Mesin Kompresi Udara Untuk Aplikasi Alat Transportasi Ramah Lingkungan Bebas Polusi

BAB III METODOLOGI KAJI EKSPERIMENTAL

RANCANG BANGUN KURSI RODA YANG BISA NAIK TANGGA

BAB III PEMBUATAN DAN GAMBAR

Aspek Perancangan Kendaraan

ANALISIS KOEFISIEN TAHANAN GULIR ALAT ANGKUT DUMP TRUCK PADA JALAN ANGKUT DI KUARI BATUGAMPING

PENGARUH POSISI BEBAN DAN MOMEN INERSIA TERHADAP PUTARAN KRITIS PADA MODEL POROS MESIN KAPAL

BAB III TEORI DASAR. Mesin Diesel. Diferensial Kontrol Kemudi Drive Shaft. Gambar 3.1 Powertrain (Ipscorpusa.com, 2008)

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN:

TUGAS AKHIR BIDANG STUDI DESAIN ANALISA KEKUATAN DAN KEMULURAN RANTAI SUPRA X 125 DD OLEH: WAHYUDDIN ROMADHON

BAB III PERANCANGAN LAPORAN TUGAS AKHIR. 3.1 Rangkaian Rem. Desain alat yang digunakan pada rangkaian rem merupakan desain alat

TRANSMISI RANTAI ROL

BAB II LANDASAN TEORI

BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN. penelitian lapangan, dimana tujuan dari penelitian ini adalah :

TRANSMISI RANTAI ROL 12/15/2011

V. HASIL DAN PEMBAHASAN

Analisis Stabilitas Arah Mobil Toyota Agya G dengan Variasi Jumlah Penumpang, Kecepatan Belok, Sudut Belok dan Kemiringan Melintang Jalan

Edi Sarwono, Toni Dwi Putra, Agus Suyatno (2013), PROTON, Vol. 5 No. 1/Hal

BAB III METODOLOGI PENELITIAN. Studi Pustaka. Persiapan Dan Pengesetan Mesin. Kondisi Baik. Persiapan Pengujian. Pemasangan Alat Ukur

PETUNJUK PRAKTIKUM MESIN KAPAL JURUSAN TEKNIK SISTEM PERKAPALAN MARINE ENGINEERING

BAB III PERENCANAAN DAN PERHITUNGAN

BAB VI POROS DAN PASAK

PERHITUNGAN DAYA DAN KAPASITAS MESIN PRESS SERBUK KAYU SEBAGAI MEDIA PENANAMAN JAMUR TIRAM PUTIH RIKO PRIANDHANY

BAB III METODOLOGI PENGUKURAN

UNJUK KERJA MOBIL MSG 01 DENGAN SISTEM TENAGA UDARA

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD

Perancangan Electric Energy Recovery System Pada Sepeda Listrik

KONFERENSI NASIONAL ENGINEERING PERHOTELAN

BAB II TINJAUAN PUSTAKA

Studi Eksperimen Kinerja Traksi Kendaraan Hybrid Sapujagad

Gambar 3.1 Diagram alir metodologi pengujian

IV. ANALISIS TEKNIK. Pd n. Besarnya tegangan geser yang diijinkan (τ a ) dapat dihitung dengan persamaan :

RANCANGAN KEGIATAN BELAJAR MENGAJAR (SATUAN ACUAN PERKULIAHAN)

BAB IV HASIL DAN PEMBAHASAN

BAB I KOMPONEN UTAMA SEPEDA MOTOR

Kata Kunci : Transmisi, Ratio, Pengereman

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

Presentasi Tugas Akhir

PRESTASI MOTOR BENSIN HONDA KARISMA 125 CC TERHADAP BAHAN BAKAR BIOGASOLINE, GAS LPG DAN ASETILEN

REKAYASA JALAN REL. Modul 2 : GERAK DINAMIK JALAN REL PROGRAM STUDI TEKNIK SIPIL

BAB II DASAR TEORI Sistem Transmisi

SISTEM KONTROL PADA KENDARAAN RODA DUA BERPENGGERAK HIBRIDA

BAB II LANDASAN TEORI

ANALISIS KERJA MOBIL TENAGA UDARA MSG 01 DENGAN SISTEM DUA TABUNG

ANALISA KEGAGALAN POROS DENGAN PENDEKATAN METODE ELEMEN HINGGA

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA

Tugas Akhir TM

PENELITIAN DAN RANCANGAN OPTIMAL TURBIN PENGGERAK TEROWONGAN ANGIN SUBSONIK SIRKUIT TERBUKA LAPAN

BAB IV HASIL DAN PEMBAHASAN

NANANG ISMAIL FAHMI JURUSAN TEKNIK MESIN. Dosen Pembimbing : Dr. Eng. Harus Laksana Guntur, ST. MEng TUGAS AKHIR BIDANG STUDI DESAIN

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

PENGARUH PEMAKAIAN VARIASI PEGAS SLIDING SHEAVE TERHADAP PERFORMANCE MOTOR HONDA BEAT 2011

Modifikasi Transmisi dan Final Gear pada Mobil Prototype Ronggo Jumeno

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI 2.1 Sistem Transmisi 2.2 Motor Listrik

Transkripsi:

KARAKTERISTIK TRAKSI DAN KINERJA TRANSMISI PADA SISTEM GEAR TRANSMISSION DAN GEARLESS TRANSMISSION I G N P Tenaya dan I Ketut Adi Atmika Staf pengajar PST. Mesin Fakultas Teknik Universitas Udayana ABSTRAK Kebutuhan akan sarana transportasi yang dapat menunjang kelancaran arus lalu lintas belakangan ini telah meningkat dengan pesat. Hal ini mengakibatkan dibutuhkannya kendaraan-kendaraan dengan karakteristik mesin yang mampu menghasilkan traksi yang besar untuk dapat memberikan percepatan pada kendaraan. Untuk mendapatkan karakteristik traksi yang lebih baik, akan dicoba dengan melakukan analisa terhadap kendaraan yang dimodifikasi sistem driveline, khususnya sistem transmisinya dengan metode Progresi Geometri. Analisa juga dilakukan untuk sistem tanpa gigi (gearless), kemudian dilihat karakteristiknya. Dari analisa yang dilakukan, modifikasi terhadap sistem transmisi baik sistem gear maupun gearless memberikan beberapa keuntungan dibandingkan dengan kendaraan pada kondisi standarnya.. PENDAHULUAN Sistem transmisi adalah salah satu komponen penting pada sistem drive train, yang fungsi utamanya adalah mentramsmisikan atau mentransformasikan torsi yang keluar dari mesin sampai ke torsi yang terjadi pada roda penggerak. Ratio transmisi berpengaruh terhadap besarnya torsi yang dapat ditransmisikan, sedangkan jumlah tingkat kecepatannya berpengaruh terhadap kehalusan (smoothness) proses transmisi dan transformasi daya pada sistem transmisi tersebut. Sistem tansmisi dengan roda gigi mempunyai batas range ratio dan jumlah tingkat kecepatan yang terbatas juga. Batas ini berpengaruh besar terhadap performan traksi kendaraan. Disamping faktor getaran (noise) yang ditimbulkan, juga kehilangan energi yang lebih besar dibandingkan dengan type gearless transmission.. METODE.. Traksi Pada Kendaraan Karakteristik traksi pada kendaraan bermotor pada pokoknya meliputi kemampuan kendaraan untuk dipercepat, dan mengatasi hambatan-hambatan yang terjadi, diantaranya hambatan rolling (rolling resistance), hambatan tanjakan, juga hambatan aerodinamis. Dari konsep gaya inertia, diturunkan persamaan traksi dan secara umum dituliskan : W F = Ra + Rr + Rd + Rg +. a...() g F= total gaya traksi yang dibutuhkan R a = hambatan aerodinamis R r = Rolling resistance R d = hambatan karena menarik beban R g = hambatan tanjakan. W = berat total kendaraan a = percepatan kendaraan g = percepatan grafitasi.. Hambatan Aerodinamis Apabila ada suatu benda yang bergerak dalam suatu media fluida atau sebaliknya, fluida yang bergerak melewati suatu benda akan mengalami gayagaya yang bekerja padanya. Demikian juga halnya dengan kendaraan yang bergerak dalam udara atmosfer juga dipengaruhi adanya interaksi antara mobil dengan jalan, akan mengalami gaya-gaya aerodinamika, yang besarnya tergantung pada kecepatan relatif antara udara dan benda itu sendiri. Komponen gaya-gaya aerodiamis adalah gaya hambat aerodinamis (F d ), gaya angkat aerodinamis (F L ), dan gaya samping aerodinamis (F s ), dimana rumusannya adalah : Fd =. ρ. A f. Cd. V FL. ρ. A f. CL. V Fs =. ρ. A f. Cs. V =...() ρ = densitas udara A f = luasan frontal kendaraan V = kecepatan relatif antara angin dan kendaraan C d, C L, C s = koefisien-koefisien aerodinamis Sedangkan komponen momen aerodinamis adalah momen rolling aerodinamis (M R ), momen yawing aerodinamis (M Y ), momen pitching aerodinamis (M P ), yang rumusannya adalah sebagai berikut : M R = Fs. zc + FL. yc Teknologi Elektro Vol.3 No. Juli Desember 4

M Y = Fs. xc + Fd. yc..(3) M P = Fd. zc FL. xc dimana x c, y c, dan z c adalah posisi CP (Center of Pressure) terhadap CG (Center of Gravity). Dalam permasalahan traksi kendaraan, kontribusi terbesar dalam hambatan aerodinamis adalah dari gaya drag atau gaya hambat..3. Rolling Resistance Rolling resistance adalah gaya hambatan yang timbul akibat terjadinya defleksi pada ban yang berputar. Ada beberapa faktor yang mempengaruhi rolling resistance, diantarnya konstruksi ban, kondisi permukaan jalan, tekanan ban, temperatur operasi ban, diameter dari ban dan juga gaya traksi itu sendiri. Hubungan yang komplek antara desain parameter dan operasional parameter dari ban diatas terhadap rolling resistance, membuat sangat sulit untuk memprediksi besar dari rolling resistance secara analitis, sehingga harga rolling resistance didapatkan dari eksperimen. Berdasarkan hasil-hasil eksperimen, beberapa rumusan diajukan untuk menghitung koefisien rolling resisstance (fr) pada permukaan jalan keras. Sebagai contoh, untuk kendaraan penumpang pada jalan beton dapat dihitung dengan rumus :,5 V fr = f + fs.. (4) V = kecepatan kendaraan (km/h) fo, fs = koefisien-koefisien yang tergantung dari tekanan ban Untuk tekanan ban 6 psi, perumusan diatas dapat disederhanakan sebagai berikut : V f =, +........(5) r 6 Dalam beberapa hal juga, pengaruh kecepatanpun dapat diabaikan dan harga rata-rata f r dapat dipakai untuk beberapa permukaan jalan. Kemudian rolling resistance dirumuskan sebagai berikut : Rr = fr N...(6) dimana N adalah gaya normal pada ban (roda penggerak)..4. Transmisi Pada Kendaraan Bermotor Untuk pemakaian pada kendaraan bermotor, karakteristik daya guna ideal dari sumber tenaga penggeraknya adalah dihasilkan tenaga yang konstan pada semua tingkat kecepatan. Dengan tersedianya tenaga yang konstan tersebut, pada kecepatan yang rendah akan tersedia torsi yang cukup besar, akan dipergunakan untuk menghasilkan traksi yang cukup pada ban untuk mempercepat kendaraan. Dengan bertambahnya kecepatan, torsi mesin akan menurun secara hiperbolis. Hal ini sesuai dengan kebutuhan traksi pada kendaraan, dimana pada kecepatan yang cukup tinggi, kebutuhan traksi tidak lagi besar. Kemudian secara khusus untuk kendaraan Toyota Kijang, grafik putaran mesin vs daya, dicuplikan seperti gambar dibawah. 5 4 3 Daya (KW) y = -.748x +.463843x + 9.8435463 daya y = -.385x +.376938x - 46.835676 4 8 3 36 4 44 48 5 Putaran (Rpm) torsi Torsi (Nm) Gambar. Karakteristik Daya-Torsi kendaraan Toyota Kijang tahun 997.5. Sistem Driveline Kendaraan Untuk memindahkan daya (power) dari putaran mesin ke roda penggerak diperlukan suatu mekanisme tertentu. Mekanisme yang digunakan untuk memindahkan daya dari motor hingga ke roda penggerak tersebut dinamakan Sistem Transmisi Daya atau Sistem Driveline. Secara umum rangkaian mekanisme yang digunakan untuk memindahkan daya dari motor ke roda penggerak yang terdiri dari komponen kopling, gear box, poros propeler dan differensial. Dalam sistem driveline akan terjadi losses atau kerugian yang disebabkan oleh gesekan yang terjadi antar gigi pada roda gigi, gesekan pada bantalan, juga akibat tahanan minyak pelumas. Berikut ini adalah harga effisiensi yang biasa untuk beberapa komponen sistem drive line. Kopling: 99% Tiap pasangan roda gigi : 95-97 % Bantalan dan sambungan: 98-99% Bila suatu sistem drive train dikarakteristikkan dengan parameter-parameter efisiensi sistem driveline (η t ) dan perbandingan gigi reduksi (i), maka traksi pada roda penggerak dapat dirumuskan : 96 7 48 4 Teknologi Elektro Vol.3 No. Juli Desember 4

M e ( v). ik. id Fk = ηt...(7) r F k = gaya traksi pada tingkat ke- k ( N) M e = torsi mesin untuk kecepatan v (Nm) r = jari-jari roda penggerak (m) i k = ratio roda gigi ke-k. i d = ratio roda gigi differensial Kemudian hubungan antara kecepatan kendaraan dan kecepatan putaran mesin adalah : ne. r V = ( s) (8) id ik terakhir roda gigi diketahui, dan jumlah tingkat kecepatan (n) ditentukan, maka faktor Kg dapat ditentukan : i n Kg = n i..() Ratio gigi pada tingkat transmisi I dapat dihitung dengan rumus : F r i. =......() M e. i d.η t Kemudian Ratio pada tingkat gigi terakhir (n) dirumuskan sebagai berikut : V = Kecepatan kendaraan (m/s) s = Koefisien slip pada ban (-5 %) n e = kecepatan putar mesin (rad/s) in Fn. r Me. id.η t =..().6. Metoda Progresi Geometri Dalam perhitungan awal, ratio gigi antara yang tertinggi dan terendah dapat dicari dengan menggunakan hukum Progresi Geometri. Dasar dari metoda ini adalah batas kecepatan operasi dari mesin terendah (ne ) dan tertinggi (ne ) harus ditentukan lebih dahulu. Penetapan ini berdasarkan karakteristik torsi dari mesin, biasanya dipilih disekitar torsi maksimum mesin. Konsep dari metode progresi geometris, ditunjukkan seperti gambar dibawah : Putaran Mesin I V V V3 V4 V5 Kecepatan Kendaraan Gambar. Pemilihan ratio gigi dengan progresi geometri ne ne 3. HASIL DAN ANALISIS Berdasarkan data teknis kendaraan kijang standar dibuat karakteristik traksi dan kinerja transmisinya. Analisa dan perhitungan dilakukan : pada kondisi jalan datar karakteristik daya dan torsi diambil pada gambar kecepatan (V) dihitung dengan persamaan (8) traksi (F k ) dihitung dengan persamaan (7) beban angin yang diperhitungkan hanya gaya drag, dihitung dengan persamaan () rolling resistance dihitung dengan persamaan (6) dengan mengambil fr sebagai fungsi kecepatan (persamaan (4)). Hasil perhitungan dan grafik kecepatan vs traksi disajikan gambar 3 dibawah. Perancangan Karakteristik Traksi Ratio dari roda gigi akhir (terendah) ditentukan oleh kecepatan maksimum kendaraan yang akan dirancang. Sedangkan traksi maksimum atau tanjakan maksimum menentukan besar ratio roda gigi awal (tertinggi). Kemudian ratio diantara kedua batas tersebut dibuat sedemikian rupa agar traksi yang dihasilkan kendaraan dapat mendekati karakteristik idealnya. Sistem dengan n jumlah tingkat kecepatan, hubungannya dapat dituliskan sebagai berikut : i i i3 = i in ne =... = = Kg.(9) in ne Pada umumnya ratio gigi awal dan ratio Teknologi Elektro Vol.3 No. Juli Desember 4

7 6 5 4 3 - Kecepatan vs traksi (kijang standar) I 4 6 8 4 F max = µ. W r Fmax = 54, 58 N Melihat keadaan traksi maksimal yang terjadi pada roda penggerak lebih kecil dari gaya maksimal yang mampu ditahan oleh bidang kontak antara ban dan jalan, maka roda penggerak tidak akan slip. Sehingga dari pers (), ratio pada tingkat transmisi I adalah 54,,95 i = = 3, 45,74. 4,777,95 Gambar 3. Karakteristik kinerja transmisi kijang standar Penentuan Ratio Gigi awal Pada gigi awal hambatan yang bekerja pada kendaraan adalah rolling resistance dan gaya inersia, sedangkan hambatan aerodinamis diasumsikan berharga nol karena kecepatan kendaraan masih rendah, sehingga daya yang dibutuhkan dihitung untuk mengatasi gaya-gaya hambatan tersebut. Dari data daya maksimum mesin, dan mengambil atau memperkirakan sepanjang driveline terjadi kerugian sebesar 9,5 %, maka daya maksimum pada roda penggerak adalah ; P mak = η T. P e =.95.47 KW = 4,535 KW Untuk ratio gigi I (awal), dirancang dengan mempertimbangkan percepatan yang ingin dicapai pada ratio gigi awal tersebut. Sebagai acuan bisa dipakai daya maksimum pada roda penggerak diatas, dengan memisalkan akan dicapai pada kecepatan 3 km/jam, sehingga : W Pmak = Rr. V +. a. V g Ratio Roda Gigi Akhir Ratio roda gigi akhir dirancang berdasarkan kecepatan maksimum kendaraan yang diharapkan bisa dicapai. Untuk kasus ini misalkan kecepatan tersebut adalah 4 km/jam F m = Rr + Ra Dari pers (), (4), dan (6) didapat : Rr = 337,67 N, Ra = 996,9 N Sehingga : F = 337,67 + 996, 9 m F m = 333, 86 N Selanjutnya dari pers (), ratio gigi akhir adalah; 333,86,95 i =, i n n =, 8,74 4,777,95 Kemudian ratio roda gigi diantara kedua batas dicari dengan menghitung besarnya Kg untuk jumlah tingkat kecepatan yang ingin dirancang. Misalkan dilakukan untuk pemasangan 4, 5, dan 6 tingkat kecepatan. Memamfaatkan persamaan (9), harga Kg dan i k dapat dihitung. Dari persamaan (4), fr =.3, sehingga : 33 4535 =,3 33 8,33 + a 8,33 9,8 a = 3,7 m / s Kemudian dari persamaan () : a F = W fr. + g F = 33,3 + F = 54, N 3,7 9,8 Traksi yang mampu ditahan bidang kontak antara ban dan jalan (jalan datar) adalah : Pemasangan 4 tingkat kecepatan :,8 4 Kg = 3, 45, Kg =, 639 Sehingga ; i = Kg i =,639 3, 45 =, i 3 = Kg i =,639, =,86 Pemasangan 5 tingkat kecepatan,8 5, Kg = Kg =, 75 3, 45 Sehingga ; i = Kg i =,75 3, 45 =,49 i 3 = Kg i =,75,49 =,68 Teknologi Elektro 3 Vol.3 No. Juli Desember 4

i 4 = Kg i3 =,75,68 =,5 Pemasangan 6 tingkat kecepatan,8 6, Kg = Kg =, 765 3, 45 Sehingga ; i = Kg i =,765 3, 45 =,4 i 3 = Kg i =,765,4 =,839 6 5 4 3 - Kecepatan vs traksi (modifikasi 5 tingkat) I 4 6 8 4 i 4 = Kg i3 =,765,839 =,46 i 5 = Kg i4 =,765,46 =,75 Analisa dan perhitungan untuk masingmasing tingkat kecepatan diatas dilakukan dengan asumsi dan langkah-langkah yang sama dengan analisa pada kijang standar diatas. Hasil perhitungan dan grafik karakteritik traksi pada masing-masing tingkat kecepatan tersebut ditampilkan gambar 4, gambar 5, dan gambar 6. Sedangkan karakteristik kinerja traksi pada gearless transmission dengan stages ditampilkan pada gambar 7. Gambar 5. Karakteristik kinerja transmisi pada 5 tingkat kecepatan 6 5 4 Kecepatan vs traksi (modifikasi 6 tingkat) 3 I I 4 6 8 4-6 Kecepatan vs traksi (modifikasi 4 tingkat) Gambar 6. Karakteristik kinerja transmisi pada 6 tingkat kecepatan 5 4 Gearless stages 3 I 4 6 8 4 - Gambar 4. Karakteristik kinerja transmisi pada 4 tingkat kecepatan 5 4 3 --- - 4 6 8 4 ---i = 3.45 ---i =.79 ---i 3 =.34 ---i 4 =. ---i 5 =.73 ---i 6 =.49 ---i 7 =.86 ---i 8 =.8 ---i 9 =.954 ---i =.8 Gambar 7. Karakteristik kinerja transmisi pada gearless transmission stages Teknologi Elektro 4 Vol.3 No. Juli Desember 4

3. SIMPULAN Dengan mengubah ratio gigi transmisi kendaraan, maka gaya traksi yang dihasilkan akan bervariasi dan akan berpengaruh pada kemampuan kendaraan dalam melalui kondisi operasi tertentu. Modifikasi ratio gigi transmisi dari standarnya mendapatkan kebutuhan traksi yang lebih kecil untuk kecepatan yang sama, baik pemasangan 4 tingkat, 5 tingkat, maupun 6 tingkat kecepatan. Jarak kurva traksi antara dua ratio gigi menunjukkan besarnya traksi yang tidak terpakai. Dari grafik kinerja transmisi menunjukkan semakin banyak tingkat transmisi, semakin kecil traksi yang terbuang. Karakteristik traksi kecepatan mendekati karakteristik idealnya pada gearless transmission system dengan stages. 4. DAFTAR PUSTAKA [] Agus Sigit P, I. Nyoman Sutantra, Iwan Fauzan, Design and Performance of Gearless Variable Transmission Applied for Automotive, Proc.FISITA, Korea selatan. [] I Nyoman Sutantra, Teknologi Otomatif, Teori dan Aplikasinya, Guna Widya [3] J.Y. Wong, PhD., Theory of Ground Vehicles, Jhon Wiley & Sons Inc. [4] Ketut Wira K, Pengaruh Ratio Gigi terhadap Kemampuan Traksi Toyota Kijang, Tugas Akhir 994. Teknologi Elektro 5 Vol.3 No. Juli Desember 4