Potensi Hidrogen sebagai Bahan Bakar untuk Kelistrikan Nasional

dokumen-dokumen yang mirip
BAB I PENDAHULUAN. 1. UU Presiden RI Kegiatan Pokok RKP 2009: b. Pengembangan Material Baru dan Nano Teknologi

Kebijakan. Manajemen Energi Listrik. Oleh: Dr. Giri Wiyono, M.T. Jurusan Pendidikan Teknik Elektro, Fakultas Teknik Universitas Negeri Yogyakarta

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan

BAB I PENDAHULUAN. permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan

OPTIMASI SUPLAI ENERGI DALAM MEMENUHI KEBUTUHAN TENAGA LISTRIK JANGKA PANJANG DI INDONESIA

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

STRATEGI KEN DALAM MEWUJUDKAN KETAHANAN ENERGI NASIONAL

BAB I PENDAHULUAN. manajemen baik dari sisi demand maupun sisi supply energi. Pada kondisi saat ini

OPSI NUKLIR DALAM BAURAN ENERGI NASIONAL

BAB I PENDAHULUAN. perhatian utama saat ini adalah terus meningkatnya konsumsi energi di Indonesia.

ENERGI BIOMASSA, BIOGAS & BIOFUEL. Hasbullah, S.Pd, M.T.

Soal-soal Open Ended Bidang Kimia

BAB I PENDAHULUAN. Tabel 1.1. Potensi Sumber Daya Energi Fosil [1]

ESDM untuk Kesejahteraan Rakyat

I. PENDAHULUAN. Rencana kenaikan harga bahan bakar minyak (BBM) di Indonesia yang terjadi

KEBIJAKAN & RPP DI KEBIJAKAN & RPP BIDANG ENERGI BARU TERBARUKAN BARU

Disampaikan pada Seminar Nasional Optimalisasi Pengembangan Energi Baru dan Terbarukan Menuju Ketahanan Energi yang Berkelanjutan

KEBIJAKAN PENYEDIAAN TENAGA LISTRIK DAN PEMANFAATAN ENERGI

PENDAHULUAN. Latar Belakang

I. PENDAHULUAN. optimal. Salah satu sumberdaya yang ada di Indonesia yaitu sumberdaya energi.

PERANCANGAN DAN PEMBUATAN PEMBANGKIT LISTRIK TENAGA SURYA

VIII. EFISIENSI DAN STRATEGI ENERGI DALAM PEREKONOMIAN INDONESIA

renewable energy and technology solutions

BIOGAS DARI KOTORAN SAPI

12/18/2015 ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN

BAB I PENDAHULUAN. Sumber dari masalah yang dihadapi di dunia sekarang ini adalah mengenai

2 Di samping itu, terdapat pula sejumlah permasalahan yang dihadapi sektor Energi antara lain : 1. penggunaan Energi belum efisien; 2. subsidi Energi

KONSERVASI DAN DIVERSIFIKASI ENERGI DALAM PEMENUHAN KEBUTUHAN ENERGI INDONESIA TAHUN 2040

Peran Bioteknologi Dalam Mendukung Energi Berkelanjutan

Studi Potensi Pemanfaatan Biogas Sebagai Pembangkit Energi Listrik di Dusun Kaliurang Timur, Kelurahan Hargobinangun, Pakem, Sleman, Yogyakarta

Gambar 1.1 Global direct normal solar radiation (Sumber : NASA)

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL

PENGEMBANGAN TRAINER PEMBANGKIT LISTRIK TENAGA SURYA SISTEM ON GRID DENGAN PLN UNTUK MENUNJANG MATAKULIAH PRAKTIKUM PEMBANGKIT TENAGA LISTRIK

MEMASUKI ERA ENERGI BARU TERBARUKAN UNTUK KEDAULATAN ENERGI NASIONAL

Otonomi Energi. Tantangan Indonesia

BAB I PENDAHULUAN Latar Belakang Penelitian Arief Hario Prambudi, 2014

ANALISIS PEMANFAATAN ENERGI PADA PEMBANGKIT TENAGA LISTRIK DI INDONESIA

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. udara yang diakibatkan oleh pembakaran bahan bakar tersebut, sehingga

BAB I PENDAHULUAN. Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan

BAB I PENDAHULUAN. kebijakan dan target untuk mendukung pengembangan dan penyebaran teknologi

DEWAN ENERGI NASIONAL RANCANGAN RENCANA UMUM ENERGI NASIONAL

BAB I PENDAHULUAN. dan energi gas memang sudah dilakukan sejak dahulu. Pemanfaatan energi. berjuta-juta tahun untuk proses pembentukannya.

INSTRUMEN KELEMBAGAAN KONDISI SAAT INI POTENSI DAN PEMANFAATAN SUMBER DAYA ENERGI INDIKASI PENYEBAB BELUM OPTIMALNYA PENGELOLAAN ENERGI

BAB I PENDAHULUAN. meningkat. Peran listrik dalam kehidupan manusia sangatlah penting karena

BAB I PENDAHULUAN. Kebutuhan suatu energi, khususnya energi listrik di Indonesia semakin

PROGRAM PERCEPATAN PENGEMBANGAN PEMBANGKIT LISTRIK TENAGA MIKDOHIDRO DI INDONESIA MELALUI POLA KEMITRAAN

BAB I PENDAHULUAN Latar Belakang

Analisis Kebutuhan dan Penyediaan Energi Di Sektor Industri - OEI 2012

MEDIA ELEKTRIK, Volume 3 Nomor 1, Juni 2008

BAB 1 PENDAHULUAN 1.1. Latar Belakang

PROBLEM OPEN-ENDED OSN PERTAMINA 2014 BIDANG KIMIA

1 PENDAHULUAN Latar Belakang

Ringkasan Eksekutif INDONESIA ENERGY OUTLOOK 2009

Pulau Ikonis Energi Terbarukan sebagai Pulau Percontohan Mandiri Energi Terbarukan di Indonesia

BAB 1 PENDAHULUAN. Teknologi. BPPT. Jakarta. Indonesia. Jakarta. Prosising Workshop Nasional Biodesel dab Bioethanol Di Indonesia.

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI

BAB I PENDAHULUAN. maju dengan pesat. Disisi lain, ketidak tersediaan akan energi listrik

PERENCANAAN URUSAN ENERGI DAN SUMBER DAYA MINERAL

BAB I PENDAHULUAN 1.1 Latar Belakang

V. PENGEMBANGAN ENERGI INDONESIA DAN PELUANG

BAB I PENDAHULUAN. diperbaharui (non renewable ). Jumlah konsumsi bahan bakar fosil baik

PETA REGULASI KONSERVASI ENERGI

BAB I PENDAHULUAN. 1.1 Latar Belakang

Rencana Pengembangan Energi Baru Terbarukan dan Biaya Pokok Penyediaan Tenaga Listrik Dialog Energi Tahun 2017

BAB 1 PENDAHULUAN. Studi kelayakan..., Arde NugrohoKristianto, FE UI, Universitas Indonesia

BAB I PENDAHULUAN. terjamah oleh fasilitas pelayanan energi listrik, dikarenakan terbatasnya pelayanan

BAB I PENDAHULUAN. Minyak bumi merupakan bahan bakar fosil yang bersifat tidak dapat

BAB I PENDAHULUAN. hidup manusia karena hampir semua aktivitas kehidupan manusia sangat tergantung

BAB I PENDAHULUAN. Suatu masalah terbesar yang dihadapi oleh negara-negara di dunia

DIRECTORATE GENERAL OF NEW RENEWABLE AND ENERGY COSERVATION. Presented by DEPUTY DIRECTOR FOR INVESTMENT AND COOPERATION. On OCEAN ENERGY FIELD STUDY

BAB I PENDAHULUAN. Tidak dapat dipungkiri bahwa minyak bumi merupakan salah satu. sumber energi utama di muka bumi salah. Konsumsi masyarakat akan

ANALISIS PELUANG PENGHEMATAN EKONOMI SISTEM FOTOVOLTAIK TERHUBUNG JARINGAN LISTRIK PADA KAWASAN PERUMAHAN DI KOTA PANGKAL PINANG

BAB I PENDAHULUAN 1.1. Latar Belakang

Kekayaan Energi Indonesia dan Pengembangannya Rabu, 28 November 2012

BAB I PENDAHULUAN Latar Belakang Masalah. Di era yang serba modern seperti saat ini, energi merupakan salah satu hal penting

BAB I PENDAHULUAN 1.1 Latar Belakang

I. PENDAHULUAN. Sebenarnya kebijakan pemanfaatan sumber energi terbarukan pada tataran lebih

Harry Rachmadi (12/329784/TK/39050) ` 1 Zulfikar Pangestu (12/333834/TK/40176) Asia/Pasific North America Wesern Europe Other Regions 23% 33% 16% 28%

PERANCANGAN, PEMBUATAN, DAN PENGUJIAN ALAT PEMURNIAN BIOGAS DARI PENGOTOR H2O DENGAN METODE PENGEMBUNAN (KONDENSASI)

BAB I PENDAHULUAN. Jurusan Teknik Kimia Fakultas Teknik -1- Universitas Diponegoro

Pemanfaatan Limbah Sekam Padi Menjadi Briket Sebagai Sumber Energi Alternatif dengan Proses Karbonisasi dan Non-Karbonisasi

Oleh: Maritje Hutapea Direktur Bioenergi. Disampaikan pada : Dialog Kebijakan Mengungkapkan Fakta Kemiskinan Energi di Indonesia

BAB I PENDAHULUAN. hidup. Menurut kamus besar bahasa Indonesia, definisi biomassa adalah jumlah

BAB I PENDAHULUAN. terus menerus akan mengakibatkan menipisnya ketersediaan bahan. konsumsi energi 7 % per tahun. Konsumsi energi Indonesia tersebut

KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL DIREKTORAT JENDERAL ENERGI BARU TERBARUKAN DAN KONSERVASI ENERGI

1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam

KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA

I. PENDAHULUAN. menurun. Penurunan produksi BBM ini akibat bahan bakunya yaitu minyak

KEBIJAKAN DAN STRATEGI PENGELOLAAN ENERGI NASIONAL

Beberapa Pertimbangan dalam Mengembangkan Energi Alternatif

BAB I PENDAHULUAN. Dalam memenuhi kebutuhan listrik nasional, penyediaan tenaga listrik di

BAB III KERANGKA BERPIKIR, KONSEP DAN HIPOTESIS. energi (PLTBm) dengan pengolahan proses pemisahan. Selanjutnya subsistem

PROPOSAL. PEMUSNAHAN SAMPAH - PEMBANGKIT LISTRIK KAPASITAS 20 mw. Waste to Energy Commercial Aplications

BAB I PENDAHULUAN Latar Belakang

BAB I PENGANTAR. A. Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang

KEBIJAKAN PEMANFAATAN PANAS BUMI UNTUK KELISTRIKAN NASIONAL

Transkripsi:

Prosiding Seminar Nasional Teknik Kimia Kejuangan ISSN 1693 4393 Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia Yogyakarta, 22 Februari 2011 Potensi Hidrogen sebagai Bahan Bakar untuk Kelistrikan Nasional Eniya Listiani Dewi Agency of the Assessments and Application of Technology, Center for Materials Technology Jl. M.H. Thamrin 8, BPPT II, Lt.22, Jakarta 10340. Email: eniyalist@webmail.bppt.go.id Abstract Pada makalah ini disampaikan mengenai kebijakan teknologi energi baru terbarukan khususnya energi hidrogen yang nantinya dimungkinkan untuk menggantikan sumber daya minyak bumi dan menjadi basis perekonomian dunia. Dengan adanya segala sumber daya alam di Indonesia, sehingga proses produksi gas hidrogen sangat diperlukan untuk dikaji lebih dalam, bukan hanya untuk industri pupuk, industri polimer, kaca atau minyak goreng yang menggunakan gas tersebut untuk proses dalam industri. Hanya pada PLTU saja penggunaan dalam kelistrikan yaitu sebagai gas pendingin generator. Perihal energi hidrogen sebagai sumber bahan bakar dan kelistrikan telah mulai ditelaah pada makalah ini, seperti pengkajian proses produksi hidrogen melalui penggunaan gas alam (metan) dengan metode reformer inorganik membran, penggunaan metanol dan air dengan metode elektrolisa dan penggunaan limbah biomassa dengan metode fermentasi. Keywords: Fuel Cell, Hydrogen, Biofermentasi, Reformer Pendahuluan Perkembangan energi baru terbarukan (EBT) yang meliputi sumber daya alam untuk energi dan kelistrikan telah disinggung pada beberapa regulasi. Perkembangan pangsa pasar untuk kelistrikan hingga 2009 lalu didominasi oleh minyak bumi, batu bara dan gas, dimana pemakaiannya tiap tahun mencapai kenaikan untuk minyak bumi 0.52%, batu bara 13.70% dan gas 1.81%. Sehingga total kenaikan sumber daya energi tersebut mencapai 16.01% [Forum EBTKE, 2010]. Pengelolaan energi di Indonesia adalah dengan banyaknya subsidi ke masyarakat, dimana kondisi saat ini adalah energi fosil (batubara dan minyak bumi) tersebut disubsidi dengan 91.18T rupiah dari negara ke masyarakat. Sehingga kondisi energi pada saat ini dimana kebutuhan energi belum efisien termasuk untuk industri, rumah tangga, transport dan komersial, kebutuhan energi tersebut dipenuhi dengan energi fosil dengan biaya berapapun dan tetap disubsidi dan energi terbarukan hanya sebagai alternatif (energy suplay side management). Paradigma pengelolaan energi untuk masyarakat ini perlu diubah dengan MU01-1

konsep pemakaian energi alternatif semaksimal mungkin dan energi fosil sebagai penyeimbang kebutuhan energi yang belum mampu ( energy demand side management). Perubahan pengelolaan energi tersebut harus segera dipenetrasikan ke masyarakat melalui berbagai usaha dari kalangan pemerintah, industri baik pendidikan. Sehingga peningkatan permintaan konsumsi listrik yang mencapai 7-9% tersebut dapat selalu dipenuhi. Walaupun pada saat ini telah ada konsep 10 ribu MW class 1 dan class 2 di Indonesia, pembangunan sumber listrik tersebut masih hanya 600 MW pada 2010 lalu dan masih disuplai dari minyak dan batubara [Nara sumber DJLPE]. Peluang EBT sebagai sumber energi masih terbuka luas selaras dengan adanya UU 30/2009 dimana pihak swasta juga dimungkinkan untuk mengelola listrik dan menjualnya ke masyarakat. 1065 EBT 1014 4 % 956 859 873 896 897 % 800 772 Batubara 727 Peningkatan rata-rata % dalam10 tahun terakhir: Gas Bumi 1.Minyak : 0,52 %/tahun 2.Batubara : 13,70 %/tahun 3.Gas : 1,81 %/tahun 4.Total : 16,04 %/tahun % Minyak Bumi 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Gambar 1. Diagram pengembangan pangsa total dalam juta SBM [Forum EBTKE, 2010]. Arahan untuk Pengembangan Energi Baru Terbarukan Regulasi Perundang-undangan yang ada mengenai energi adalah dicantumkan pada UU 10/1997 (nuklir), UU 27/2003 (panas bumi), UU 30/2007 (energi management, prinsip, sumber daya alam dsb), UU 30/2009 (ketenagalistrikan). Dalam UU 30/2007 Chapter 1 tersebut disebutkan bahwa hidrogen merupakan sumber energi baru dengan teknologi baru yang harus dikuasai sebagai basis perekonomian. Bab IV pasal 7 bahwa ketenagalistrikan nasional disusun berdasarkan pada kebijakan energi nasional (KEN). Dalam bahasan Presiden di Tampak Siring, usaha untuk memperkuat Green Economy, dimana katahanan energi harus dioptimalkan. Kebijakan teknologi yang mendukung tujuan di atas adalah: UU Presiden RI Kegiatan Pokok RKP 2009 Pengembangan Teknologi Fuel Cell & Alat Penghemat BBM (Electric Fuel Treatment) Pengembangan Material Baru dan Nano Teknologi Agenda Riset Nasional (ARN) 2010 2014 - Agenda Riset Energi Baru dan Terbarukan: Blue-print Pengelolaan Energi Nasional (PEN) 2005-2025 Arah Kebijakan dan Prioritas Utama Target Capaian Tahun 2009 2.5 KW dan Sasaran Tahun 2025 250 MW Aplikasi fuel cell untuk remote area Pengembangan Teknologi Produksi Hidrogen Pada saat ini gas hidrogen yang ada di Indonesia tersedia dari gas alam yang diproduksi 4 industri gas besar. Harga komersialnya sebagai bahan kimia berkisar dari Rp. 200.000 hingga Rp. 1.700.000 per 6000 L (1 tabung besar) sesuai dengan kadar puritas hidrogennya. Sehingga dapat diperkirakan bahwa operasional fuel cell perkwh adalah Rp. 3300 hingga Rp. 28.300 dengan asumsi bahwa per KWh memerlukan rata-rata 0.8-1 L gas hidrogen. Karena gas hidrogen tersebut masih di perdagangkan sebagai MU01-2

bahan kimia, maka masih terasa mahal. Jika ditetapkan sebagai bahan bakar, maka komersialisasi dapat diperhitungkan secara ekonomis. Melihat kebutuhan energi mix pada tahun 2025 nanti adalah sebesar 250 MW yang berarti demand gas hidrogen diperkirakan mencapai 3.6 juta m 3 /hari yang setara dengan 600 tabung besar per hari. Maka dengan kapasitas industri gas hidrogen yang ada di Indonesia sekarang ini, diperlukan 30 kali lipat jumlah perusahaan yang perlu dikembangkan [Eniya, 2009]. Hidrogen adalah energi sekunder sehingga tetap harus diolah dari sumber energi lain, diantaranya selain gas alam adalah gasifikasi batu bara, elektrolisa air, elektrolisa metanol yang masih relatif mahal, terdapat pula perubahan biogas metan yang masih memerlukan energi panas. Di industri lebih banyak prosesnya menggunakan sumber bahan baku minyak atau batu bara dan gas alam, yang mana masih mempunyai hasil samping yang berbahaya dan merusak lingkungan. Dikarenakan berbagai keuntungan dan kerugian pada saat aplikasi, maka pada kajian masing-masing metode ditelaah lebih lanjut. Hidrogen dari Biomassa Berkaitan dengan pemenuhan energi listrik dan penyebaran energi listrik di Indonesia yang tidak merata, terutama di daerah terpencil yang belum dijangkau oleh PLN, maka dengan memanfaatkan sumber potensi bahan nabati yang ada di masing-masing daerah yang belum tersedia fasilitas listrik melalui teknologi yang akan dikembangkan dalam penelitian ini diharapkan dapat memenuhi kebutuhan tersebut. Beberapa keunggulan dari Bio-H 2 antara lain: dapat diperbarui (renewable energy) dan ramah lingkungan (green energy), hasil samping pembakarannya berupa uap air sehingga tidak menimbulkan efek rumah kaca, hujan asam,dan penipisan lapisan ozon, proses produksi dapat berlangsung pada tekanan dan suhu normal, biaya produksi lebih rendah dibandingkan dengan cara fisik dan kimia, dan dapat memanfaatkan limbah dan sampah organic sebagai substrat fermentasi. Adapun kendala yang dihadapi untuk energi alternatif ini adalah persetujuan publik, penanaman modal yang besar dan harga H 2 saat ini yang masih jauh lebih mahal dibandingkan bahan bakar lainnya. Namun demikian, H 2 dapat diproduksi dengan teknologi yang lebih murah dan mudah, yaitu dengan memanfaatkan organisme bakteri melalui proses fermentasi atau foto produksi, untuk merombak substrat organik (limbah dan nonlimbah) menjadi energi H 2 [Mahyudin (a-b), 2010]. Maka untuk mendapatkan terobosan baru proses produksi gas hidrogen, proses bioteknologi baik itu secara fotosintesis maupun fermentasi adalah pilihan terbaik untuk dapat menghasilkan hydrogen dengan tingkat kemurnian yang tinggi (>99 %) hal ini telah dikembangkan BPPT. MU01-3

menghasilkan listrik menggunakan beban lampu hingga 50 W. Nilai ekonomi dari pengolahan biohidrogen ini hanya mencapai Rp. 90 per L hydrogen. Dengan adanya kajian BPPT mengenai bio-hidrogen tersebut, biaya produksi gas hidrogen bisa menjadi sangat murah. Gambar 2. Reaktor biohidrogen kapasitas 40L volume, Hak Paten P002010000790 [Eniya, 2010]. Produksi gas bio-hidrogen biasanya melibatkan mikroba atau enzim. Sejumlah spesies jasad renik dari berbagai taksa dan tipe fisiologi mampu menghasilkan bio-hidrogen. Ini era paling menarik dalam pengembangan teknologi karena memungkinkan dihasilkan dari bahan-bahan organik yang dapat diperbaharui seperti: limbah bioindustri (limbah biodiesel), limbah pertanian mapun hasil pertanian (onggok, tetes, nira). Gas hydrogen ini dapat dihasilkan oleh beberapa bakteri misalnya Enterobacter aerogenes, Clostridium butyricum, Bacillus pumilus, dll. E. aerogenes yang diisolasi langsung dari limbah biodiesel mampu memanfaatkan berbagai macam substrat, baik itu substrat murni dan sederhana seperti glukosa gliserol, dll maupun senyawa yang lebih kompleks dari limbah misalnya molases, pati singkong, nira aren, shorgum dan limbah biodiesel. Telah diujicobakan biohidrogen yang dihasilkan tersebut pada fuel cell untuk Hidrogen dari Proses Elektrolisa Metode steam reforming dari energi fosil (methane) saat ini dianggap paling ekonomis dan banyak di gunakan secara komersial di industry. Cara lain yang juga dapat digunakan adalah dengan teknik elektrolisa air murni, namun metode ini secara komersial dianggap kurang menguntungkan karena membutuhkan energi listrik yang cukup besar dibandingkan teknik produksi hydrogen untuk menghasilkan sejumlah besar gas yang sama dengan menggunakan teknik steam reforming. Menurut berbagai pakar energi dunia, teknik pembuatan hydrogen dengan cara elektrolisa dapat bersaing secara komersial jika energi listrik yang dihasilkan diperoleh dari pemanfaatan sisa panas dari pembangkit listrik tenaga nuklir atau dari energi terbarukan seperti; hydro, matahari, biomassa, dan lain-lain yang diperoleh dari alam secara cuma-cuma. Kajian air serta air dan metanol yang dielektrolisa untuk menghasilkan gas hidrogen telah dikembangkan pula di BPPT dengan menggunakan metode hibrid untuk menstorage gas dalam bentuk padatan (metal-hydrid) sehinga didapati wadah yang compact dan ringkas dilakukan secara bertahap pada kajian tersebut. Untuk mengelektrolisa air sehingga diproduksi gas hidrogen, digunakan alat elektrolisa air dengan kapastitas 500 ml/min dan fotovoltaik 100 W [Ganesha, 2010]. MU01-4

menampung 2.5 liter campuran air, dan methanol, dan dapat menghasilkan hydrogen sebanyak 500 L/Jam, dengan tekanan dari 1-10 Bar, campuran yang digunakan sebanyak 0.5L/jam. Daya listrik yang diperlukan < 1.2 kw. Unit dari elektrolizer tersebut selanjutnya di gabungkan dengan sistem pembangkit listrik tenaga surya (PLTS) photovoltaic. Gambar 3. Skema elektrolisa air untuk produksi H2 500mL/min. Hidrogen dari Proses Elektrolisa Metanol Pada 2010 lalu BPPT telah mempunyai model solar cell hingga 1 kw untuk mendapatkan gas hidrogen sejumlah 8 L/min melalui elektrolisa metanol air. Metode sejenis yang saat ini banyak dilakukan oleh peneliti-peneliti hidrogen di dunia adalah teknik elektrolisa dengan menggunakan campuran air dan methanol, dengan teknik ini energy listrik yang digunakan lebih sedikit dan tekanan gas hydrogen yang dihasilkan lebih tinggi. Dalam kegiatan ini telah dilakukan pengujian dan analisis terhadap system produksi hydrogen dengan teknik elektrolisa air-methanol, menggunakan catudaya energy surya fotovoltaik. Pada penelitian ini dicoba menggabungkan alat elektrolizer methanol-air yang tersedia, seperti pada skema gambar 1, yaitu tipe GH 500 MEL electrolyser dari Synhub (A), dengan catu daya system energi surya photovoltaic (PLTS) yang energi listriknya di tampung pada suatu kumpulan batere yang total konfigurasinya disusun sehingga didapat system energi listrik DC 24 Volt, 440 Ah (B). Elektrolizer ini mempunyai tangki air yang dapat Gambar 4. Systim PV dan elektroliser. Kesimpulan Hidrogen sebagai bahan bakar sekaligus untuk kelistrikan, sangat diperlukan sebagai alternatif energi. Namun lebih diinginkan lagi sebagai energi baru yang mampu dikembangkan menjadi suatu energi yang mendasari perkembangan perekonomian bangsa. Hidrogen yang merupakan energi bersih sangat mungkin untuk dikembangkan di Indonesia yang mempunyai sumber daya alam berlimpah, demikian kajian mengenai pengembangannya agar lebih ditingkatkan lagi dan mendapat porsi perhatian yang lebih tinggi lagi di negara ini. MU01-5

Ucapan Terima Kasih Penulis berterimakasih pada Kementrian Riset dan Teknologi atas dana Insentif Riset Dasar 2007-2008, Riset Kapasitas Produksi selama 2009-2010, serta BPPT atas finansial DIPA BPPT Pengembangan Teknologi Material untuk Fuel Cell 2009-2010. Daftar Pustaka Forum EBTKE, 2010, Peran penelitian energi baru dan energi baru terbarukan dalam mewujudkan visi/misi EBT 2025, EBTKE-ESDM, 20 September 2010. Eniya L. Dewi, Mahyudin A. Rahman, Agus Hadi Santosa W, 2009, Natural Resources for Electrical Production using Fuel Cell Technology, Proc. The 1st FAPS Polymer Congress, 21D06, pp. 116, Nagoya Japan, 20-23 October 2009. Mahyudin A. Rahman, Eniya L. Dewi, 2009, Biohydrogen for Fuel Cell Applications, Proc. 2nd International Conferences on Fuel Cell and Hydrogen Technology (2nd CFCHT), ISBN 978-602-95555-1-6, H-04-IS, pp. 6-12. Mahyudin A. Rahman, Eniya L. Dewi, 2010, "Enhancement of Hydrogen Gas (H2) by Using Ceramic Membrane to Enterobacter aerogenes ADH-43 Fermentation and Its Simultaneous Utilization for Proton Exchange Membrane Fuel Cell", Proceedings of 8th International Conference on Membrane Science and Technology, B16, pp. 281-286. Eniya L. Dewi, dkk, 2010,, No. Pendaftaran Hak Paten P002010000790. Ganesha Tri Chandrasa, 2010, Penelitian produksi hidrogen menggunakan photovoltaic water electrolyser, Prosiding Seminar Teknik Kimia Unpar, ISBN 978-979-98463-6-3, pp. 259. Ganesha Tri Chandrasa, 2010, Penelitian teknik pembuatan hidrogen dengan elektrolisa larutan air-metanol dan energi surya photovoltaic 1.2 kw, Prosiding Seminar Tjipto Utomo, ISSN 1693-1750, pp C4-1 C4-9. MU01-6