SUPERKONDUKTOR 1. Sejarah Superkonduktor 2. Teori Superkonduktor 2.1. Pengertian Superkonduktor

dokumen-dokumen yang mirip
BAB IX SUPERKONDUKTOR

Bahan Listrik. Bahan Superkonduktor

PENERAPAN SUPERKONDUKTOR DALAM TEKNOLOGI TRANSPORTASI KERETA MAGLEV (MAGNETIC LEVITATION) MAKALAH. Oleh FITRIA SEPTIANI NIM

I. PENDAHULUAN. Superkonduktor merupakan suatu bahan dengan konduktivitas tak hingga, karena

MENGENAL SUPERKONDUKTOR Oleh : Sugata Pikatan

II. TINJAUAN PUSTAKA. hingga suhu 4 K atau -269ºC. Kemudian Onnes pada tahun 1911 mulai

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Aplikasi Superkoduktor yang mencakup:

I. PENDAHULUAN. oleh H.K Onnes pada tahun 1911 dengan mendinginkan merkuri (Hg) menggunakan helium cair pada temperatur 4,2 K (Darminto dkk, 1999).

SINTESIS SUPERKONDUKTOR BPSCCO/Ag MENGGUNAKAN METODE PADATAN

PENDAHULUAN. 1.1 Latar Belakang

KB 2. Teknologi Kereta Api Yang Berkecepatan Tinggi. Aplikasi superkonduktor dalam teknologi kereta Api supercepat adalah memanfaatkan

SINTESIS SUPERKONDUKTOR BPSCCO/Ag MENGGUNAKAN METODE PADATAN

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2

PENGARUH VARIASI PERLAKUAN DOPING Pb PADA Bi DALAM SINTESIS SUPERKONDUKTOR BSCCO TERHADAP EFEK MEISSNER DAN SUHU KRITIS

II. TINJAUAN PUSTAKA. Kamerlingh Onnes, dari Universitas Leiden pada tahun Sebelumnya, pada

II. TINJAUAN PUSTAKA. walaupun tanpa adanya sumber tegangan (Rusdi, 2010). Suatu superkonduktor

II. TINJAUAN PUSTAKA. Sifat superkonduktivitas bahan ditemukan pertama kali oleh Heike Kammerlingh

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

PROSES PEMBUATAN MATERIAL SUPERKONDUKTOR BSCCO DENGAN METODA PADATAN

Heike Kamerlingkh Onnes 1911 mekanikal kuantum efek Meissner

ANALISIS STRUKTUR DAN SIFAT MAGNET BAHAN SUPERKONDUKTOR Eu 2-x Ce x CuO 4+α-δ ELECTRON-DOPED

IV. HASIL DAN PEMBAHASAN

SINTESIS DAN KARAKTERISASI SIFAT LISTRIK SUPERKONDUKTOR Eu 2-x Ce x CuO 4+α-δ (ECCO) UNTUK UNDER-DOPED

Superkonduktor Eu 2-x Ce x CuO 4+α-δ

ILMU BAHAN LISTRIK_edysabara. 1 of 6. Pengantar

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

METODE SOL-GEL RISDIYANI CHASANAH M

Eksperimen Pembentukan Kristal BPSCCO-2223 dengan Metoda Lelehan

III. METODE PENELITIAN. Penelitian ini telah dilaksanakan pada bulan Februari sampai Juni 2013 di

KB 1. Usaha Magnetik Dan Pendinginan Magnetik

Pengetahuan Bahan Listrik

Eksperimen Pembentukan Kristal BPSCCO-2223 dengan Metode Self-Flux

Uji Kekerasan Material dengan Metode Rockwell

Arus Listrik & Rangkaian Arus DC

STUDI PEMAKAIAN SUPERKONDUKTOR PADA GENERATOR ARUS BOLAK- BALIK

Superfluid si cairan ajaib

EFEK HALL. Laboratorium Fisika Material, Departemen Fisika Fakultas Sains dan Teknologi Universitas Airlangga Surabaya

ELEKTRONIKA. Bab 2. Semikonduktor

PENGARUH KONSENTRASI DOPING CE TERHADAP SIFAT LISTIK MATERIAL EU 2-X CE X CUO 4+Α-Δ PADA DAERAH UNDER-DOPED

PENGARUH KONDISI ANNEALING TERHADAP PARAMETER KISI KRISTAL BAHAN SUPERKONDUKTOR OPTIMUM DOPED DOPING ELEKTRON Eu 2-x Ce x CuO 4+α-δ

3 Metodologi Penelitian

Materi 18 Listrik dan Magnet 2: Hambatan dan Arus Listrik. Tim Dosen Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1995

BAB II DASAR THERMOELECTRIC GENERATOR

MAKALAH PITA ENERGI. Di susun oleh, Pradita Ajeng Wiguna ( ) Rombel 1. Untuk Memenuhi Tugas Mata Kuliah Fisika dan Teknologi Semikonduktor

KARAKTERISASI SUPERKONDUKTOR YBa 2 Cu 3 O 7-x DAN ANALISIS POLA DIFRAKSI SINAR-X MENGGUNAKAN CELREF

PENGARUH PERUBAHAN SUHU SINTERING PADA SINTESIS SUPERKONDUKTOR Pb 2 Ba 2 Ca 2 Cu 3 O 9

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

Arus Listrik dan Resistansi

Efek Atmosfer Udara dan Oksigen Terhadap Struktur Kristal dan Kristalografi Material Superkonduktor (Bi0,40Pb0,45)Sr2(Ca0,40Y0,70)Cu2Oz

Gerak Gaya Listrik (GGL) Electromotive Force (EMF)

ABSTRAK. Kata Kunci: Superkonduktor Bi2Sr2(Ca1,5Nd0,25Gd0,25)Cu3Oz, wet-mixing, nanopartikel, sintering, ferromagnetik, XRD, TEM, VSM.

DASAR PENGUKURAN LISTRIK

RINGKASAN MATERI TEGANGAN DAN TAHANAN LISTRIK

Mengukur Kuat Arus dan Beda Potensial Listrik Konsep Arus Listrik dan Beda Potensial Listrik

Fisika Umum (MA 301) To T p o ik h ari r i ni: Ke K listrikan

BENDA WUJUD, SIFAT DAN KEGUNAANNYA

Pengaruh Temperatur Leleh Terhadap Rapat Arus Kritis Pada Kristal Superkonduktor Bi-2223 Dengan Menggunakan Metode Self-Fluks SKRIPSI

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

TUGAS XIII LISTRIK DAN MAGNET

NANOKRISTALISASI SUPERKONDUKTOR (Bi,Pb) 2 Sr 2 CaCu 2 O 8+δ DENGAN METODE PENCAMPURAN BASAH DENGAN VARIASI SUHU DAN WAKTU KALSINASI DAN SINTER

STRUKTUR BAHAN Y 1-X Pr X Ba 2 Cu 3 O 7-δ KERAMIK SUPERKONDUKTOR HASIL SINTESIS DENGAN REAKSI PADATAN SKRIPSI

LAPORAN PRAKTIKUM FISIKA DASAR II RESISTIVITAS. Oleh: Dina Puji Lestari PROGRAM STUDI PENDIDIKAN FISIKA

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

LISTRIK STATIS. Listrik statis adalah energi yang dikandung oleh benda yang bermuatan listrik.

Penentuan Energi Eksitasi Elektron dan Panjang Gelombang Foton Menggunakan Percobaan Franck-Hertz

NANOKRISTALISASI SUPERKONDUKTOR (Bi,Pb) 2 Sr 2 CaCu 2 O 8+δ DENGAN METODE PENCAMPURAN BASAH

Teori Kinetik Gas Teori Kinetik Gas Sifat makroskopis Sifat mikroskopis Pengertian Gas Ideal Persamaan Umum Gas Ideal

Gambar 1.1 Alat uji konduktivitas listrik

D. 80,28 cm² E. 80,80cm²

OPTIMASI KOMPOSISI MOLAR AWAL OFF-STOIKHIOMETRI PADA SINTESIS SUPERKONDUKTOR SISTEM Bi-2223

LATIHAN UJIAN NASIONAL

Fisika Umum (MA 301) Topik hari ini (minggu 9) Kelistrikan

02 03 : CACAT KRISTAL LOGAM

SINTESIS DAN KARAKTERISASI UNDER-DOPED SUPERKONDUKTOR DOPING ELEKTRON Eu 2-x Ce x CuO 4+α-δ

SIMAK UI Fisika

PERANCANGAN DAN REALISASI SISTEM PENGENDALIAN MEDAN MAGNET UNTUK MEMBUKTIKAN KEHADIRAN EFEK KUANTISASI FLUKSOID SUPERKONDUKTOR TUGAS AKHIR

LAPORAN PRAKTIKUM FISIKA DASAR II HUKUM OHM

Bab III Metodologi Penelitian

LATIHAN UAS 2012 LISTRIK STATIS

Antiremed Kelas 12 Fisika

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya.

BAB 1 PERKEMBANGAN TEORI ATOM

Fisika Ujian Akhir Nasional Tahun 2003

Modul - 4 SEMIKONDUKTOR

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

Experiment indonesian (Indonesia) Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin)

Bab IV. Hasil dan Pembahasan

D. 85 N E. 100 N. Kunci : E Penyelesaian : Kita jabarkan ketiga Vektor ke sumbu X dan dan sumbu Y, lihat gambar di bawah ini :

Asisten: (Heldi Alfiadi/ ) Tanggal Praktikum: ( ) Kata Kunci : Efek Hall, Potensial Hall, Gaya Lorentz

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996

Jurnal ILMU DASAR, Vol. 8 No. 1, 2007 : xnd x )Cu 3 O 10+δ ) M. Sumadiyasa Staf Pengajar Jurusan Fisika FMIPA Universitas Udayana Bali

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK =================================================

Mata Pelajaran : FISIKA

PRISMA FISIKA, Vol. I, No. 2 (2013), Hal ISSN :

Keramik. Ikatan atom pada keramik. Sifat-sifat bahan keramik 04/10/2016. Lukhi mulia s

Transkripsi:

SUPERKONDUKTOR 1. Sejarah Superkonduktor Superkonduktor pertama kali ditemukan oleh seorang fisikawan Belanda, Heike Kamerlingh Onnes, dari Universitas Leiden pada tahun 1911. Pada tanggal 10 Juli 1908, Onnes berhasil mencairkan helium dengan cara mendinginkan hingga 4 K atau 269oC. Kemudian pada tahun 1911, Onnes mulai mempelajari sifat-sifat listrik dari logam pada suhu yang sangat dingin. Pada waktu itu telah diketahui bahwa hambatan suatu logam akan turun ketika didinginkan dibawah suhu ruang, akan tetapi belum ada yang dapat mengetahui berapa batas bawah hambatan yang dicapai ketika temperatur logam mendekati 0 K atau nol mutlak. Beberapa ilmuwan pada waktu itu seperti William Kelvin memperkirakan bahwa elektron yang mengalir dalam konduktor akan berhenti ketika suhu mencapai nol mutlak. Dilain pihak, ilmuwan yang lain termasuk Onnes memperkirakan bahwa hambatan akan menghilang pada keadaan tersebut. Untuk mengetahui yang sebenarnya terjadi, Onnes kemudian mengalirkan arus pada kawat merkuri yang sangat murni dan kemudian mengukur hambatannya sambil menurunkan suhunya. Pada suhu 4,2 K, Onnes mendapatkan hambatannya tiba-tiba menjadi hilang. Arus mengalir melalui kawat merkuri terus-menerus. Dengan tidak adanya hambatan, maka arus dapat mengalir tanpa kehilangan energi. Percobaan Onnes dengan mengalirkan arus pada suatu kumparan superkonduktor dalam suatu rangkaian tertutup dan kemudian mencabut sumber arusnya lalu mengukur arusnya satu tahun kemudian ternyata arus masih tetap mengalir. Fenomena ini kemudian oleh Onnes diberi nama superkondutivitas. Atas penemuannya itu, Onnes dianugerahi Nobel Fisika pada tahun 1913. 2. Teori Superkonduktor 2.1. Pengertian Superkonduktor Superkonduktor merupakan bahan material yang memiliki hambatan listrik bernilai nol pada suhu yang sangat rendah. Artinya 1

superkonduktor dapat menghantarkan arus walaupun tanpa adanya sumber tegangan. Karakteristik dari bahan Superkonduktor adalah medan magnet dalam superkonduktor bernilai nol dan mengalami efek meissner. Resistivitas suatu bahan bernilai nol jika dibawah suhu kritisnya. Gambar 1. Grafik hubungan antara resistivitas terhadap Suhu 2.2. Sifat Kelistrikan Superkonduktor Sebelum menjelaskan prinsip superkonduktor, akan lebih baik jika terlebih dahulu menjelaskan bagaimana kerja logam konduktor pada umumnya. Bahan logam tersusun dari kisi-kisi dan basis serta elektron bebas. Ketika medan listrik diberikan pada bahan, elektron akan mendapat percepatan. Medan listrik akan menghamburkan elektron ke segala arah dan menumbuk atom-atom pada kisi. Hal ini menyebabkan adanya hambatan listrik pada logam konduktor. Gambar 2. Keadaan normal Atom Kisi pada logam 2

Pada bahan superkonduktor terjadi juga interaksi antara elektron dengan inti atom. Namun elektron dapat melewati inti tanpa mengalami hambatan dari atom kisi. Efek ini dapat dijelaskan oleh Teori BCS. Ketika elektron melewati kisi, inti yang bermuatan positif menarik elektron yang bermuatan negatif dan mengakibatkan elektron bergetar. Gambar 3. Keadaan Superkonduktor Atom Kisi pada logam Jika ada dua buah elektron yang melewati kisi, elektron kedua akan mendekati elektron pertama karena gaya tarik dari inti atom-atom kisi lebih besar. Gaya ini melebihi gaya tolak-menolak antar elektron sehingga kedua elektron bergerak berpasangan. Pasangan ini disebut Cooper Pairs. Efek ini dapat dijelaskan dengan istilah Phonons. Ketika elektron pertama pada Cooper Pairs melewati inti atom kisi. Elektron yang mendekati inti atom kisi akan bergetar dan memancarkan Phonon. Sedangkan elektron lainnya menyerap Phonon. Pertukaran Phonon ini mengakibatkan gaya tarik menarik antar elektron. Pasangan elektron ini akan melalu kisi tanpa gangguan dengan kata lain tanpa hambatan. 2.3. Sifat Kemagnetan Superkonduktor Sifat lain dari superkonduktor yaitu bersifat diamagnetisme sempurna. Jika sebuah superkonduktor ditempatkan pada medan magnet, maka tidak akan ada medan magnet dalam superkonduktor. Hal ini terjadi karena superkonduktor menghasilkan medan magnet dalam bahan yang berlawanan arah dengan medan magnet luar yang diberikan. Efek 3

yang sama dapat diamati jika medan magnet diberikan pada bahan dalam suhu normal kemudian didinginkan sampai menjadi superkonduktor. Pada suhu kritis, medan magnet akan ditolak. Efek ini dinamakan Efek Meissner. Gambar 4. Diamagnetik Sempurna 2.4. Sifat Quantum Superkonduktor Teori dasar Quantum untuk superkonduktor dirumuskan melalui tulisan Bardeen, Cooper dan Schriefer pada tahun 1957. Teori dinamakan teori BCS. Fungsi gelombang BCS menyusun pasangan partikel dan. Ini adalah bentuk lain dari pasangan partikel yang mungkin dengan Teori BCS. Teori BCS menjelaskan bahwa : a. Interaksi tarik menarik antara elektron dapat menyebabkan keadaan dasar terpisah dengan keadaan tereksitasi oleh energi gap. b. Interaksi antara elektron, elektron dan kisi menyebabkan adanya energi gap yang diamati. Mekanisme interaksi yang tidak langsung ini terjadi ketika satu elektron berinteraksi dengan kisi dan merusaknya. Elektron kedua memanfaatkan keuntungan dari deformasi kisi. Kedua elektron ini beronteraksi melalui deformasi kisi. c. London Penetration Depth merupakan konsekuensi dari Teori BCS. d. Teori BCS memprediksi suhu kritis untuk, yaitu sebesar : 4

2.5. Efek Meissner Ketika superkonduktor ditempatkan di medan magnet luar yang lemah, medan magnet akan menembus superkonduktor pada jarak yang sangat kecil dan dinamakan London Penetration Depth. Pada bahan superkonduktor umumnya London Penetration Depth sekitar 100 nm. Setelah itu medan magnet bernilai nol. Peristiwa ini dinamakan Efek Meissner dan merupakan karakteristik dari superkonduktor. Efek Meissner adalah efek dimana superkonduktor menghasilkan medan magnet. Efek Meissner ini sangat kuat sehingga sebuah magnet dapat melayang karena ditolak oleh superkonduktor. Medan magnet ini juga tidak boleh terlalu besar. Apabila medan magnetnya terlalu besar, maka efek Meissner ini akan hilang dan material akan kehilangan sifat superkonduktivitasnya. Gambar 5. Efek Meissner B Gambar 6. London Penetration Depth 5

2.6. Suhu dan Medan Magnet Kritis Suhu kritis adalah suhu yang membatasi antara sifat konduktor dan superkonduktor. Jika suhu suatu bahan dinaikan, maka getaran electron akan bertambah sehingga banyak Phonons yang dipancarkan. Ketika mencapai suhu kritis tertentu, maka Phonons akan memecahkan Cooper Pairs dan bahan kembali ke keadaan normal. Contoh grafik Hambatan terhadap suhu pada bahan YBa 2 Cu 3 O 7 sebagai berikut, Gambar 7. Grafik Hambatan terhadap Suhu Medan magnet kritis adalah batas kuatnya medan magnet sehingga bahan superkonduktor memiliki medan magnet. Jika medan magnet yang diberikan pada bahan superkonduktor, maka bahan superkonduktor tak akan mengalami efek meissner lagi. 2.7. Tipe tipe Superkonduktor Berdasarkan interaksi dengan medan magnetnya, maka superkonduktor dapat dibagi menjadi dua tipe yaitu Superkonduktor Tipe I dan Superkonduktor Tipe II. 2.7.1. Superkonduktor Tipe I Superkonduktor tipe I menurut teori BCS (Bardeen, Cooper, dan Schrieffer) dijelaskan dengan menggunakan pasangan elektron (yang sering disebut pasangan Cooper). Pasangan elektron bergerak sepanjang terowongan penarik yang dibentuk ion-ion logam yang bermuatan positif. 6

Akibat dari adanya pembentukan pasangan dan tarikan ini arus listrik akan bergerak dengan merata dan superkonduktivitas akan terjadi. Superkonduktor yang berkelakuan seperti ini disebut superkonduktor jenis pertama yang secara fisik ditandai dengan efek Meissner, yakni gejala penolakan medan magnet luar (asalkan kuat medannya tidak terlalu tinggi) oleh superkonduktor. Bila kuat medannya melebihi batas kritis, gejala superkonduktivitasnya akan menghilang. Maka pada superkonduktor tipe I akan terus menerus menolak medan magnet yang diberikan hingga mencapai medan magnet kritis. Kemudian dengan tiba-tiba bahan akan berubah kembali ke keadaan normal. m Superkonduktor Konduktor Biasa 0 B c B a Gambar 8. Grafik Magnetisasi terhadap Medan magnet 2.7.2. Superkonduktor Tipe II Superkonduktor tipe II ini tidak dapat dijelaskan dengan teori BCS karena apabila superkonduktor jenis II ini dijelaskan dengan teori BCS, efek Meissner nya tidak terjadi. Abrisokov berhasil memformulasikan teori baru untuk menjelaskan superkonduktor jenis II ini. Ia mendasarkan teorinya pada kerapatan pasangan elektron yang dinyatakan dalam parameter keteraturan fungsi gelombang. Abrisokov dapat menunjukkan bahwa parameter tersebut dapat mendeskripsikan pusaran (vortices) dan 7

bagaimana medan magnet dapat memenetrasi bahan sepanjang terowongan dalam pusaran-pusaran ini. Lebih lanjut ia pun dengan secara mendetail dapat memprediksikan jumlah pusaran yang tumbuh seiring meningkatnya medan magnet. Teori ini merupakan terobosan dan masih digunakan dalam pengembangan dan analisis superkonduktor dan magnet. Superkonduktor tipe II akan menolak medan magnet yang diberikan. Namun perubahan sifat kemagnetan tidak tiba-tiba tetapi secara bertahap. Pada suhu kritis, maka bahan akan kembali ke keadaan semula. Superkonduktor Tipe II memiliki suhu kritis yang lebih tinggi dari superkonduktor tipe I. m I = Superkonduktor Murni II = Superkonduktor + Logam biasa III = Logam Biasa I II III 0 B c1 B c B c2 B a Gambar 9. Grafik Magnetisasi terhadap Medan magnet 2.8. Kelompok Superkonduktor Berdasarkan nilai suhu kritisnya, superkonduktor dibagi menjadi dua kelompok yaitu : 2.8.1. Superkonduktor bersuhu kritis rendah Superkonduktor jenis ini memiliki suhu kritis lebih kecil dari 23 K. Superkonduktor jenis ini sudah ditinggalkan karena biaya yang mahal untuk mendinginkan bahan. 8

2.8.2. Superkonduktor bersuhu kritis tinggi Superkonduktor jenis ini memiliki suhu kritis lebih besar dari 78 K. Superkonduktor jenis ini merupakan bahan yang sedang dikembangkan sehingga diharapkan memperoleh superkonduktor pada suhu kamar sehingga lebih ekonomis. Contoh Superkonduktor bersuhu kritis tinggi adalah sampel bahan YBa 2 Cu 3 O 7-x. Bahan ini memiliki struktur kristal orthorombic ( = = ) = 90 Gambar 10. Struktur Ortorombik 2.9. Suhu Pemadaman Suhu pemadaman merupakan batas suhu untuk merusak sifat superkonduktor. Artinya pada suhu ini superkonduktor akan rusak 9

Sumbu kristal A 400 800 T Pada grafik diatas dapat kita lihat bahwasanya makin tinggi suhu yang diberikan pada bahan superkonduktor, maka struktur kristal superkonduktor tidak lagi berbentuk ortorombik. Maka dengan adanya perubahan struktur kristal superkonduktor, suatu bahan akan kehilangan sifat superkonduktornya. T C (K) 92 (K) 400 800 T ( 0 C) Grafik diatas menunjukan hubungan antara suhu kritis dengan suhu bahan superkonduktor. Jika suhu yang diberikan pada bahan 10

superkonduktor makin besar, maka suhu kritis bahan akan mendekati nilai nol kelvin. 2.10.Sintesis Superkonduktor a. Sampel YBa 2 Cu 3 O 7 Bahan-bahan yang diperlukan untuk membuat sampel YBa 2 Cu 3 O 7 adalah Y 2 O 3, BaCO 3, CuO. Langkah-langkah sintesis Sampel YBa 2 Cu 3 O 7 diantaranya : 1. Persiapan bahan dengan komposisi awal dengan menggunakan perbandingan molar off-stokiometri. 2. Pencampuran dan penggerusan pertama di dalam mortar agate. Kalsinasi pada suhu 940 0 C selama 24 jam. 3. Pendinginan pada suhu kamar. 4. Sintering pada suhu 940 0 C. 5. Pendinginan dalam tungku. b. Sampel BPSCCO-2223 Bahan-bahan yang diperlukan untuk melakukan sintesis bahan Sampel BPSCCO-2223 adalah Bi2O3, PbO, SrCO3, CuO, CaCO3. Langkah-langkah sintesis Superkonduktor Sampel BPSCCO-2223 terdiri dari : 1. Persiapan bahan dengan komposisi awal dengan menggunakan perbandingan molar off-stokiometri. 2. Pencampuran dan penggerusan pertama di dalam mortar agate. Kalsinasi pada suhu 810 0 C selama 20 jam. 3. Penggerusan kedua. 4. Sintering pada suhu 830 0 C. 5. Pendinginan dalam tungku. Selama proses pembentukan sampel tersebut, sampel akan diujikan dengan yang diarahkan untuk mengendalikan pewaktuan dari proses sintering dengan suhu pilihan adalah 830 0 C. Setelah proses sintering selesai dalam waktu yang berkesesuaian (30 jam, 60 jam, 90 jam), maka akan diadakan beberapa pengujian karakteristik sampel, yaitu: 11

1. Uji Efek Meissner 2. Uji X-ray Diffraction 3. Pengukuran Suhu Kritis (Tc) 4. Pengukuran Fraksi Volume (FV) 3. Perkembangan Superkonduktor Perkembangan peningkatan suhu kritis Tc pada superkonduktor ditunjukkan dalam grafik dibawah ini. Gambar 11. Grafik Suhu Kritis terhadap tahun penemuan Dari grafik diatas dapat dilihat bahwa terjadi peningkatan dalam suhu kritis superkonduktor. Pada awalnya suhu kritis superkonduktor itu sangat rendah yaitu kurang dari 4,2 K untuk logam raksa, tetapi pada perkrmbangan selanjutnya suhu kritis dari superkonduktor itu meningkat secara perlahan lahan hingga mencapai suhu kritis tertinggi pada suhu 138 K untuk HgBaCaCuO. Penemuan yang berkaitan dengan superkonduktor terzjadi pada tahun 1933. Walter Meissner dan Robert Ochsenfeld menemukan bahwa suatu superkonduktor akan menolak medan magnet. Sebagaimana diketahui, apabila suatu konduktor digerakkan dalam medan magnet, suatu arus induksi akan mengalir dalam konduktor tersebut. Akan tetapi, dalam superkonduktor arus yang dihasilkan tepat berlawanan dengan medan tersebut sehingga medan 12

tersebut tidak dapat menembus material superkonduktor tersebut. Hal ini akan menyebabkan magnet tersebut ditolak. Fenomena ini dikenal dengan istilah Diamagnetisme dan efek ini kemudian dinamakan Efek Meissner. Selanjutnya ditemukan juga superkonduktor-superkonduktor lainnya. Selain merkuri, ternyata beberapa unsur-unsur lainnya juga menunjukkan sifat superkonduktor dengan harga Tc yang berbeda. Sebagai contoh, karbon bersifat superkonduktor dengan Tc 15 K. Hal yang ironis adalah logam emas, tembaga dan perak yang merupakan logam konduktor terbaik bukanlah superkonduktor. Pada tahun 1986 Alex Müller and Georg Bednorz, peneliti di Laboratorium Riset IBM di Rüschlikon, Switzerland berhasil membuat suatu keramik yang terdiri dari unsur Lanthanum, Barium, Tembaga, dan Oksigen yang bersifat superkonduktor pada suhu tertinggi pada waktu itu, 30 K. Penemuan ini menjadi spektakuler karena keramik selama ini dikenal sebagai isolator. Keramik tidak menghantarkan listrik sama sekali pada suhu ruang. Penemuan ini membuat keduanya diberi penghargaan hadiah Nobel setahun kemudian. Pada bulan Februari 1987, ditemukan suatu keramik yang bersifat superkonduktor pada suhu 90 K. Penemuan ini menjadi penting karena dengan demikian dapat digunakan nitrogen cair sebagai pendinginnya. Karena suhunya cukup tinggi dibandingkan dengan material superkonduktor yang lain, maka material-material tersebut diberi nama superkonduktor suhu tinggi. Suhu tertinggi suatu bahan menjadi superkonduktor saat ini adalah 138 K, yaitu untuk suatu bahan yang memiliki rumus Hg0.8Tl0. 2Ba2Ca2Cu3O8.33. Bahan Tc (K) Ditemukan Raksa Hg (α ) 4,2 1911 Timbal Pb 7,2 1913 Niobium nitrida 16,0 1960-an Niobium-3-timah 18,1 1960-an 13

Al 0,8 Ge 0,2 Nb 3 20,7 1960-an Niobium germanium 23,2 1973 Lanthanum barium tembaga oksida 28 1985 Yttrium barium tembaga oksida (1-2-3 93 1987 atau YBCO) Thalium barium kalsium tembaga oksida 125 1987 4. Aplikasi Superkonduktor Aplikasi Superkonduktor dalam kehidupan diantaranya : a. Kabel Listrik. Dengan menggunakan bahan superkonduktor, maka energi listrik tidak akan mengalami disipasi karena hambatan pada bahan superkonduktor bernilai nol. Maka penggunaan energi listrik akan semakin hemat. b. Alat Transportasi Penggunaan superkonduktor dalam bidang transportasi adalah Kereta Listrik super cepat yang dikenal dengan sebutan Magnetik Levitation (MAGLEV). 14