Content: Prof.Dr.Ir. Masyhur Irsyam, MSE. (ITB - HATTI) 5 November Workshop HATTI Part of this material has ben presented in:

dokumen-dokumen yang mirip
Alternatif Metode Perbaikan Tanah untuk Penanganan Masalah Stabilitas Tanah Lunak pada Areal Reklamasi di Terminal Peti Kemas Semarang

Oleb: HANINDYA KUSUMA ARTATI NTh1:

TESIS. Karya tulis sebagai salah satu syarat Oleh RIDWAN MARPAUNG NIM : Program Studi Rekayasa Geoteknik

ANALISIS PENURUNAN PONDASI GEDUNG DENGAN PEMODELAN ELASTIK-PLASTIK (Studi Kasus: Penurunan Gedung KPP-Samarinda) TESIS MAGISTER


PENGUJIAN SKALA PENUH DAN ANALISIS PERKUATAN CERUCUK MATRAS BAMBU UNTUK TIMBUNAN BADAN JALAN DI ATAS TANAH LUNAK DI LOKASI TAMBAK OSO, SURABAYA

Pemodelan Vertical Drain Dengan Menggunakan Model Elemen Hingga Pada Analisis Konsolidasi Di Bendungan Marangkayu Kalimantan Timur

Andryan Suhendra 1 ; Masyhur Irsyam 2

Nila Sutra ( )

ALTERNATIF METODE UNTUK PENANGANAN MASALAH STABILITAS TANAH LUNAK PADA AREAL REKLAMASI DI TERMINAL PETI KEMAS SEMARANG

BAB IV STUDI KASUS 4.1 UMUM

TUGAS AKHIR. Sebagai Salah Satu Syarat Untuk Menyelesaikan Pendidikan Sarjana di Program Studi Teknik Sipil. Disusun Oleh NIM NIM

DISUSUN OLEH : HENY KURNIA AGUSTINE DOSEN PEMBIMBING : Ir. SUWARNO, M.Eng. MUSTA IN ARIF, ST. MT.

PENGARUH JARAK DAN POLA PRE-FABRICATED VERTICAL DRAIN (PVD) PADA KONSTRUKSI TIMBUNAN REKLAMASI DI PELABUHAN PANASAHAN CAROCOK PAINAN ABSTRAK

NYSSA ANDRIANI CHANDRA Dosen Pembimbing: Trihanyndio Rendy Satrya, ST., MT. Prof. Ir. Noor Endah, MSc., PhD.

PENGARUH KONSISTENSI TANAH LEMPUNG TERHADAP STABILITAS FONDASI MENERUS BERDASARKAN METODE LOAD AND RESISTANCE FACTOR DESIGN ABSTRAK

Pengaruh Perkuatan Sheetpile terhadap Deformasi Area Sekitar Timbunan pada Tanah Lunak Menggunakan Metode Partial Floating Sheetpile (PFS)

II. METODOLOGI Metode yang digunakan dalam Tugas Akhir ini ialah sebagai berikut :

BAB III DATA DAN TINJAUAN DESAIN AWAL

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print D-44

Denny Nugraha NRP : Pembimbing : Ir. Asriwiyanti Desiani, MT. ABSTRAK

Analisis Daya Dukung dan Penurunan Fondasi Rakit dan Tiang Rakit pada Timbunan di Atas Tanah Lunak

PENGEMBANGAN DESIGN CHART SISTEM PONDASI PILED RAFT DI TANAH PASIR DENGAN PEMODELAN 2D AKSISIMETRIK DAN 3D TESIS

Analisis Konsolidasi dengan Menggunakan Metode Preloading dan Vertical Drain pada Areal Reklamasi Proyek Pengembangan Pelabuhan Belawan Tahap II

STUDI PARAMETER PERENCANAAN STONE COLUMN UNTUK PERBAIKAN BEARING CAPACITY DAN SETTLEMENT PADA TANAH LEMPUNG

STUDI LIQUEFACTION DAN GROUND MOTION DI MAUMERE SELAMA GEMPA DESEMBER 1992 (STUDI KASUS) THESIS

JURNAL TEKNIK ITS Vol. 7, No. 1 (2018) ISSN: ( Print)

PERENCANAAN PERBAIKAN TANAH LUNAK MENGGUNAKAN PRELOADING DENGAN KOMBINASI PREFABRICATED VERTICAL DRAIN (PVD)

TESIS MAGISTER. Oleh Giyoko Surahmat

STUDI PENURUNAN DAN STABILITAS TIMBUNAN DI ATAS TANAH LUNAK: KASUS SEMARANG TRIAL EMBANKMENT

Angel Refanie NRP : Pembimbing: Andrias Suhendra Nugraha, S.T., M.T. ABSTRAK

NASKAH PUBLIKASI TEKNIK SIPIL

Kasus Kegagalan Konstruksi Dinding Penahan Tanah Rumah Mewah Di Atas Tanah Lunak

PENGEMBANGAN KURVA t-z PADA TANAH PASIRAN BERDASARKAN HASIL UJI GESER LANGSUNG DENGAN APLIKASI PADA PONDASI BOR BER-INSTRUMEN. Tesis.

DESAIN PONDASI TAHAN GEMPA dan LIQUEFACTION untuk NEW HOTEL AMBACANG dengan SANSPRO

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) D-140

PERMODELAN TIMBUNAN PADA TANAH LUNAK DENGAN MENGGUNAKAN PROGRAM PLAXIS. Rosmiyati A. Bella *) ABSTRACT

BAB I PENDAHULUAN. daerah laut seluas kira-kira 1400 ha (kirakira

ANALISIS DAYA DUKUNG TIANG PANCANG DENGAN METODE ELEMEN HINGGA DAN SOFTWARE L-PILE

STUDI PENGARUH TEBAL TANAH LUNAK DAN GEOMETRI TIMBUNAN TERHADAP STABILITAS TIMBUNAN

KINERJA LABORATORIUM LAPIS PONDASI DAN PONDASI BAWAH DENGAN PASIR LAUT SEBAGAI MATERIAL PENGGANTI SEBAGIAN AGREGAT HALUSNYA TESIS MAGISTER

ANALISIS POTENSI LIKUIFAKSI DI PT. PLN (PERSERO) UIP KIT SULMAPA PLTU 2 SULAWESI UTARA 2 X 25 MW POWER PLAN

ANALISIS DESAIN TANGGUL UNTUK KEPERLUAN REKLAMASI DI PANTAI UTARA JAKARTA

TESIS MAGISTER OLEH : RM. RUSTAMAJI NIM

PERENCANAAN PERBAIKAN TANAH METODE PRELOADING DENGAN KOMBINASI PEMASANGAN PVD PADA PROYEK REKLAMASI PANTAI ANCOL TIMUR JAKARTA UTARA

Reka Racana Jurusan Teknik Sipil Itenas No. 1 Vol. 4 Jurnal Online Institut Teknologi Nasional Maret 2018

ANALISA POTENSI LIKUIFAKSI BERDASARKAN DATA PENGUJIAN SONDIR (STUDI KASUS GOR HAJI AGUS SALIM DAN LAPAI, PADANG) ABSTRAK

ANALISIS POTENSI LIKUIFAKSI PADA SEKTOR RUNWAY DAN TAXIWAY BANDAR UDARA MEDAN BARU ABSTRAK

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI

Ir. Endang Kasiati, DEA

BAB IV ANALISIS DAN PEMBAHASAN. sangat tinggi, di mana susunan tanah yang ada di permukaan bumi ini merupakan

PENGARUH PERUBAHAN PARAMETER "A" SKEMPTON PADA KELAKUAN KONSOLIDASI TANAH LUNAK AKIBAT BEBAN TIMBUNAN

PENGARUH GRADASI TERHADAP NILAI CBR MATERIAL CRUSHED LIMESTONE ABSTRAK

LEMBAR PENGESAHAN NASKAH PUBLIKASI TEKNIK SIPIL. Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik FANNY IKA SARASWATI

PENGARUH ELEKTROKINETIK TERHADAP DAYA DUKUNG PONDASI TIANG DI LEMPUNG MARINA

SIMULASI NUMERIK DEFORMASI EMBANKMENT JALAN PADA TANAH LUNAK DENGAN PERKUATAN HYBRID PILE KAYU GALAM - PVD

Perencanaan Sistem Perbaikan Tanah Dasar Untuk Area Pembangunan Dan Jalan Pada Proyek Onshore Receiving Facilities Komplek Maspion - Gresik

PENGARUH UKURAN BUTIR TERHADAP NILAI CBR MATERIAL CRUSHED LIMESTONE ABSTRAK

PENGARUH DIMENSI, KEDALAMAN, DAN RASIO KELANGSINGAN TERHADAP KAPASITAS DUKUNG LATERAL DAN DEFLEKSI PADA TIANG PANCANG SPUN PILE ABSTRAK

PENGARUH BENTUK, KEDALAMAN, DAN RASIO KELANGSINGAN TERHADAP KAPASITAS BEBAN LATERAL TIANG PANCANG BETON ABSTRAK

PENDAHULUAN

PENGARUH PENGURANGAN DIAMETER MOLD STANDARD PROCTOR TERHADAP PARAMETER KOMPAKSI CRUSHED LIMESTONE ABSTRAK

ANALISIS PERUBAHAN TEKANAN AIR PORI PADA TANAH LUNAK DI BAWAH PILED - GEOGRID SUPPORTED EMBANKMENT. Oleh: Adhe Noor Patria.

Analisis Konsolidasi dengan PVD untuk Kondisi Axisymmetric dan Beberapa Metode Ekuivalensi Plane Strain Menggunakan Metode Elemen Hingga

PROFIL PERMUKAAN TANAH KERAS KOTA SURAKARTA SEBAGAI INFORMASI PRADESAIN PONDASI

Pada gambar IV-1, melihatkan hubungan klasifikasi tanah dengan daya dukung tanah (nilai CBR) pada umumnya.

PERHITUNGAN KESTABILAN LUBANG BUKAAN PADA TEROWONGAN HEADRACE PLTA SINGKARAK MENGGUNAKAN ANALISIS BALIK TESIS MAGISTER

Pondasi Dalam (Deep Foundation)

ABSTRAK. Kata kunci : pondasi, daya dukung, Florida Pier.

PENAMBAHAN LAPISAN PASIR PADAT SEBAGAI SOLUSI MASALAH PENURUNAN FONDASI DI ATAS LAPISAN LEMPUNG LUNAK : SUATU STUDI MODEL

ANALISIS STABILITAS KONSTRUKSI SHEET PILE AKIBAT PEKERJAAN GALIAN DENGAN METODE ELEMEN HINGGA. (Studi Kasus : Normalisasi Kali Item Jakarta)

TUGAS AKHIR. Karya tulis sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Institut Teknologi Bandung. Oleh:

PENGARUH ELEKTROKINETIK TERHADAP DAYA DUKUNG PONDASI TIANG DI LEMPUNG MARINA

ANALISIS POTENSI LIKUIFAKSI PADA PROYEK WIRE HOUSE BELAWAN

Direct Shear Test (Uji Geser Langsung) Reza P. Munirwan, ST, M.Sc

DRAFT - ROADMAP PENELITIAN KOMUNITAS BIDANG ILMU GEOTEKNIK TAHUN

ANALISIS ANGKA KEAMANAN (SF) LERENG SUNGAI CIGEMBOL KARAWANG DENGAN PERKUATAN PILE DAN SHEET PILE SKRIPSI

Penggunaan Bambu Untuk Mengatasi Sliding Pada Reklamasi Di Tanah Lunak. Helmy Darjanto

BAB 3 METODOLOGI PENELITIAN. yang berdasarkan pada metode baji (wedge method), dan kalkulasi dari program

Daya Dukung Pondasi Tiang

ANALISIS PERKUATAN TANAH DENGAN METODE SAND COMPACTION PILE PADA TANAH RAWA (STUDI KASUS: JALAN TOL MANADO BITUNG SULUT)

ANALISIS KESTABILAN LERENG DENGAN ATAU TANPA PERKUATAN GEOTEXTILE DENGAN PERANGKAT LUNAK PLAXIS ABSTRAK

ANALISIS PENURUNAN TANAH DASAR PROYEK SEMARANG PUMPING STATION AND RETARDING POND BERDASAR EMPIRIS DAN NUMERIS

TINJAUAN KEEFEKTIFAN SISTEM GEOSINTETIK DIANGKUR SEBAGAI METODA PERKUATAN LERENG MELALUI UJI LAPANGAN DAN UJI MODEL LABORATORIUM TESIS MAGISTER

DINDING PENAHAN TANAH

EVALUASI GRADASI MATERIAL CRUSHED LIMESTONE WELL GRADED SAAT PRA KOMPAKSI DAN PASCA KOMPAKSI ABSTRAK

ANALISIS TEGANGAN-REGANGAN- WAKTU PADA KO NSOLIDASI BIOT DENGAN MENGGUNAKAN PEMODELAN TANAH " DRUCKER-PRAGER "

ANALISIS PONDASI JEMBATAN DENGAN PERMODELAN METODA ELEMEN HINGGA DAN BEDA HINGGA

KONFERENSI REGIONAL TEKNIK JALAN KE-10 Preservasi Jaringan Jalan dan Perluasannya Mendukung Pengembangan Wilayah Surabaya, November 2008

DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R.

STUDI EKSPERIMENTAL ELEMEN INTERFACE MODEL NON LINIER UNTUK ANALISIS INTERAKSI TANAH-STRUKTUR TESIS. Oleh : AHMAD RIFA ' I

Pengaruh Floating Stone Column Dalam Perbaikan Tanah Pada Tanah Lempung Lunak Menggunakan Metode Elemen Hingga

ANALISIS VARIASI JARAK ANTAR TIANG PANCANG TERHADAP EFISIENSI DAN PENURUNAN PADA KELOMPOK TIANG ABSTRAK

METODE KERJA PRECAST PAKET 1 - PEKERJAAN PONDASI DALAM (INNER-BORE SYSTEM) PEMBANGUNAN GEDUNG PKSC - BORROMEUS

STUDI PENURUNAN TANAH ORGANIK MENGGUNAKAN METODE SAND DRAIN PADA KONDISI DOUBLE DRAIN DENGAN PEMODELAN AXISYMMETRIC Oleh WAHYU SUSILO N

Daya Dukung (Bearing Capacity)

BAB 3 Bab 3 METODOLOGI PENELITIAN

ANALISIS POTENSI LIKUIFAKSI PADA PEMBANGUNAN JEMBATAN SEI BATANG SERANGAN - LANGKAT ABSTRAK

STABILISASI TANAH DASAR ( SUBGRADE ) DENGAN MENGGUNAKAN PASIR UNTUK MENAIKKAN NILAI CBR DAN MENURUNKAN SWELLING

PERHITUNGAN KESTABILAN DENGAN ANALISIS BALIK PADA RUMAH PEMBANGKIT BAWAH TANAH PROYEK PLTA SINGKARAK SUMATERA BARAT TESIS MAGISTER

Transkripsi:

BAMBOO PILE-MATTRESS SYSTEM AS AN ALTERNATIVE OF SOFT GROUND IMPROVEMENT FOR COASTAL EMBANKMENT IN INDONESIA Masyhur Irsyam* *President - Indonesian Society for Geotechnical Engineering *Member - Indonesian Academy of Sciences *Chair - Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2017 On behalf of: The Indonesian Society for Geotechnical Engineering (HATTI) Acknowledgement: The Organizing Committee Part of this material has ben presented in: Content: 1. Ground Improvement Methods for Recent Major Infrastructure Projects in Indonesia 2. Previous Experiences Using the Bamboo Pile-Mattress System 3. Utilization of Bamboo Pile-Mattress System for Soil Improvement: a. For Railway Embankment b. For Container Yard 4. Modelling of Load Transfer Mechanism in Bamboo Pile-Mattress System 5. Conclusions Workshop HATTI 2018 1

TRANS SUMATERA TOLL ROAD 2015 Geotechnical and Hydrological Condition Soil Surface Condition Swampy area, with about 1.5m to 2m depth of water (STA 0+000 to STA 17+000) Flooding (5 years return period), the water level increase about 1m from initial elevation Total area ofsubmerged zone until STA 18+000 Soil Stratification Profiling Technical Requirement for Improvement of Soft Soils for Toll Road Construction (Department of Public Works 2002 and 2013) Inderalaya Palembang Fill Height : 1m 6m Surcgarge load during preloading > 1.2q final Consolidation > 90% q final Settlement < 20 mm/year < 100 mm Subgrade level: q all 110 kpa from Plate Loading Test (1m x 1m) Safety Factor againts Slope Stability SF> 1.5 Workshop HATTI 2018 2

SELECTED SOLUTION Comparison: Soil Preloading and Vacuum Preloading Soil Preloading ROW Surcharge Vacuum Preloading ROW Surcharge Pavement Sand Blanket Berm Berm Soft Clay Vertical Drain Soft Clay Vertical Drain Masse et al, 2001 Geotekindo, 2015 VACUUM PRELOADING Negative pressure from vacuum will generates negative pore water pressure, increase effective stress in the soils, and results in accelerating consolidation process Much smaller amount of fill material that is needed There is no slope instability problem because the soil is in isotropic consolidation condition Shorter time for construction Chu Jian, Guo Wei, Yan Shuwang, 2015 Wide ROW High soil surcharge Need thick horizontal drain Lower Stability Greater Lateral Movement Longer Construction Time Narrow ROW Lower or no soil surcharge Relatively thin horizontal drain Better Control of Stability Lesser Lateral Movement Shorter Construction Time CONSTRUCTION OF VACUUM PRELOADING 1. Geotextile 2. Sand Filling CONSTRUCTION OF VACUUM PRELOADING 5. Geo Membrane Installation 6. Instrumentation 3. PVD Installation 4. PHD Installation 7. Vacuum Process 8. Backfilling during vacuum Workshop HATTI 2018 3

CPT TEST : ZONE 1 Map of Earthquake Sources for Indonesia 2017 Subduction Megathrust Pavement surface TYPICAL SOIL PROFILE Long Section Runway Ground water surface Earthquake Hazard: - Tsunami - Ground Shaking - Liquefaction Pavement surface Long Section Pararel Taxiway Ground water surface Kedalaman 0 3 m = Very Loose to Loose SAND 3 7 m = Loose to Medium SAND > 7 m = Dense to V Dense SAND Workshop HATTI 2018 4

PAVEMENT FOR AIR SIDE AREA Liquefaction Susceptibility Historical Criteria Design Criteria: Safety Factor for Liquefaction >1.30 based on NCEER method with PGA 0.4g. Settlement < 10cm in future 10 years Post Improvement requirements: Dynamic Compaction for Counter Measure of Liquefaction Palu Relationship between limiting epicentral distance of sites at which liquefaction has been observed and moment magnitude for shallow earthquakes (Ambrassey, 1988) Necessary Conditions: 1. Potentially liquefiable soil (soil type, condition) 2. Saturation 3. Undrained loading: -Earthquake -Blasting -Pile driving -Trains, etc 1. Sands (and Silty Sands and Clayey Sands), if fine content < 15% 2. Silt: Low Plasticity (PI < 15%) Higher Plasticity 3. Clays: -Fraction finer than 0.005 mm < 15% -Liquid limit, LL < 35% -Natural water content > 0.9 LL Liquefaction Susceptibility Compositional criteria Workshop HATTI 2018 5

Percent finer by weight Percent finer by weigth (%) Sieve no: 270 200 100 60 40 20 10 4 3/4" 100 100 100 80 Most likely to be liquefied 90 80 90 80 70 70 60 D 50 range per JRA 60 50 60 50 40 40 30 Tsuchida (1970) boundaries for: Potentially liquefiable soils Most liquefiable soils 40 30 20 Likely to be liquefied 0 0.001 0.01 0.1 1 10 100 Particle Size (mm) Gradation Range for Potentially Liquefiable Sand (Hatanaka et al., 1997) 20 Palu soils: 20 Jl. Kenduri (Balaroa) 10 Soccer Field Jl. Lasoso 10 Residential Jl. Kedondong Noodle Factory Jl. Kedondong 0 0 0.001 0.01 0.1 1 10 100 Grain size (mm) S A N D C L A Y S I L T G R A V E L C O A R S E F I N E M E D I U M Cyclic Stress Ratio, (CSR 7.5 ) or Cyclic Resistance Ratio (CRR 7.5 ) 1 atm CSR= t sn Percepatan gempa Muka air tanah Kedalaman yg ditinjau Magnitude gempa Kandungan butir halus Liquefied Non-Liquefied Corrected SPT Blow Counts, (N 1 ) 60 or (N 1 ) 60CS Correction Due to Fine Content (Seed et al., 1985 and Youd et al., 2001) N-SPT Workshop HATTI 2018 6

Depth (m) TRIAL TEST OF OF DYNAMIC COMPACTION Drop height: 15 m to 17 m Hammer weight: 15, 17, dan 23 Ton Pelaksanaan dilakukan dengan menentukan konfigurasi jumlah pukulan yang harus dilakukan melalui tahapan percobaan. Dari proses tersebut, jumlah pukulan jika diperlukan dapat dibagi menjadi beberapa tahap pemukulan dan fase ironing. Zona Zona Zona Zona Zona Zona DC Phase Fase Fase 11 THE PROCESS DC Phase Fase Fase 22 (if necessary) W H VC Ironing Fase Fase 3 Result of Dynamic Compaction Hasil Uji CPT Zona B - 6 Pukulan Hasil Uji SPT N-SPT 0 10 20 30 40 50 60 0 New Yogyakarta International Airport Rapid Impulse Compaction for Land Site Area, 2018 1 after 2 3 4 Kriteria Desain before 5 before Pre-SPT Post-SPT specification 6 after 7 8 specification Proses Trial (Percobaan) menghasilkan konfigurasi pemukulan sebagai berikut: 1. Berat tamper: 17 Ton 2.Tinggi jatuh: 15 m 3.Jumlah pukulan: 6 pukulan Workshop HATTI 2018 7

Impulse Compaction for Land Site Area New Yogyakarta International Airport 0.50 m CONSTRUCTION OF RUNWAY 3 SOEKARNO HATTA INTERNATIONAL AIRPORT SECTION 1 JAKARTA 2018 TIPIKAL MELINTANG TAXIWAY 27,50 17,50 SHOULDER 60,00 25,00 MAIN LINE 17,50 SHOULDER 27,50 1.50 m C L Saluran-1 Saluran-2 Saluran-3 RUNWAY 2 RUNWAY 3 TAXIWAY ` Kolam retensi TIMBUNAN TIMBUNAN Stone Column Pola Segitiga spasi 1,5m, t = 4,5m & 5m KETERANGAN PVD Pola Segitiga spasi 1m, t = 8 16 m Jalan Perimeter Jalan Inspeksi Saluran Gardu Catu daya listrik P-401 AC-WC, t = 5 cm P-401 AC-BC, t = 5 cm P-304 Cement Treated Base course, CBR >100%, t = 13 cm P-209 Crushed Agregate Subbase, CBR >80%, t = 20 cm Control Fill CBR 6%, t = 165 cm Sand Blanket, t = 60 cm TYPICAL POTONGAN LAPISAN PERKERASAN P-401 AC-WC, t = 5 cm P-401 AC-BC, t = 10 cm P-304 Cement Treated Base course, CBR >100%, t = 30 cm P-209 Crushed Agregate Subbase, CBR >80%, t = 42 cm Control Fill CBR 6%, t = 165 cm Sand Blanket, t = 60 cm Liquefaction Stone Column Consolidation PVD Preloading, t = 228 cm Control Fill CBR 6%, t = 165 cm Sand Blanket, t = 60 cm TYPICAL POTONGAN SOIL IMPROVMENT Stone Column Pola Segitiga spasi 1,5m, t = 4,5m & 5m PVD Pola Segitiga spasi 1m, t = 8 16 m Workshop HATTI 2018 8

2 nd Trial, 11 April 2018 East Connection Taxiway Soekarno Hatta International Airport Jakarta Indonesia 2018 Application of Full Displacement Column f 32 cm for solving Bearing Capacity and Consolidation problems Workshop HATTI 2018 9

WEST CONNECTION TAXIWAY q bahu taxiway=1 ton/m 2 q bahu taxiway=1 ton/m 2 1.280% 1.30% 0.92% DETAIL PROJECT LOCATION LONG SECTION PROFILE OF CONSTRUCTION HEIGHT EAST SIDE TAXIWAY CONNECTION NP1 SECONDARY APRON (Previous Phase 2016 2017) COMPLETED ON PROGRESS Phase 2017 I 2016 Phase 2018 I 2018 H max 8.6 m H max 10.3 m BRIDGE TAHAP 1 TAHAP 2 TERMINAL 1 TERMINAL 3 BRIDGE TERMINAL 2 EAST CONNECTION TAXIWAY (Current Phase 2018) H max 8.7 m Phase COMPLETED I 2016 ON Phase PROGRESS I 2018 2017 2018 TAHAP 1 TAHAP 2 H max 9.4 m WEST SIDE TAXIWAY BRIDGE SEQUENCE OF WORK q badan taxiway=5 ton/m 2 FDC or KGM FDC = Full Displacement Column KGM = Kolom Grout Modular Design Criteria: Minimal Subgrade CBR 6% Settlement post construction < 100mm FS static > 1.5 and FS earthquake > 1.0 Step 1: Positioning of FDC rig Step 2: Lowering the displacement tool into the ground by rotating and pushing. Soil is loosen by the auger starter and the pushed into the surrounding soil by the displacement body Step 3: Installation to required founding depth Step 4: Once the displacement tool reached the required depth, simultaneously it will extract and pump in-situ fill material (mortar) through the hollow rod. The tool is rotated in the same direction during installation phase Workshop HATTI 2018 10

FDC TYPICAL SETUP FDC RIG MIXER TRUCK SUPPLY LINES MORTAR PUMP FDC RIG MIXER TRUCK Konsep Desain Loading Transfer Platform (LTP) F D C F D C Load F D C Compressible Soil Layer F D C Bearing Layer/ Less Compressible Soil Layer 1. PemasanganFDC dan LTP 2. Pembebanan dan distribusi tegangan oleh LTP ke FDC dan tanah sekitarnya 3. Selama proses konsolidasi. Pada saat displacement tanah terjadi lebih besar daripada displacement FDC, sebagian tegangan pada tanah tertransfer pada FDC akibat negative skin friction pada bagian atas FDC 4. Pada saat tercapai kondisi displacement tanah mengecil sehingga kurang dari displacement FDC pada kedalaman tertentu, terjadi transfer tegangan kembali dari FDC ke tanah sekitarnya. Hal ini memobilisir positive skin friction dan tahanan ujung bawah FDC 5. FDC dan tanah sekelilingnya bersama-sama menahanbeban secara komposit PERLUASAN GROUND APRON IMPROVEMENT 5.8 Ha WORK FOR WEST APRON DEVELOPMENT I GUSTI NGURAH RAI AIRPORT, BALI Vibro-Compaction AREA 5.8 Ha Header Pit 2B Header Pit 2A Workshop HATTI 2018 11

Map of Earthquake Sources for Indonesia 2017 Subduction Megathrust RENCANA DESIGN AREA 5.8 Ha RENCANA DESIGN SALURAN EKSISTING RENCANA SALURAN POTONGAN MELINTANG PERKERASAN DESAIN PEMINDAHAN SALURAN EKSISTING Earthquake Hazard: - Liquefaction RENCANA PERKERASAN APRON TANAH EKSISTING (SEBELUM VIBRO FLOATATION) TANAH EKSISTING (SESUDAH VIBRO FLOATATION) VIBRO FLOATATION 10 m DESAIN RENCANA PEKERJAAN BREAKWATER RENCANA PEKERJAAN PERKERASAN APRON BARAT Working Progress Content: 1. Ground Improvement Methods for Recent Infrastructure Projects in Indonesia 2. Previous Experiences Using the Bamboo Pile-Mattress System 3. Utilization of Bamboo Pile-Mattress System for Soil Improvement: a. For Railway Embankment b. For Container Yard 4. Modelling of Load Transfer Mechanism in Bamboo Pile-Mattress System Assembly and testing of Vibro-Flotation Equipment 5. Conclusions 11/2/2018 Presentation for PT Pembangunan Perumahan (Persero) Workshop HATTI 2018 12

Embankment on Soft Soils Low bearing capacity Very soft soil Large and Uneven settlement Limited Height For: - Embankment with limited height - Embankment in submerge area - Embankment with tolerable settlement - Embankment in remote area Very soft soil BAMBOO PILE-MATTRESS SYSTEM Stability of Embankment Without Reinforcement Critical height hc Soft Soil Workshop HATTI 2018 13

0.75 m 2.50 m 1 6.00 m 1.5 1.5 1 4 1 0.75 m 2.50 m 1 1.5 6.00 m 1.5 1 1 4 Stability of Embankment With Geotextile Stability of Embankment With Bamboo Mattress It enforces the failure surface not to pass through middle of the embankment Distribute embankment load more uniformly Reduce differential settlement due to it stiffness Provides buoyancy Stability of Embankment With Bamboo Pile- Mattress Consolidation Settlement Increase resistance due to side friction from bamboo piles However, embankment is still subjected to consolidation settlement!!! Bamboo mattress only Bamboo pile-mattress system Workshop HATTI 2018 14

Coastal Embankment 1995 Durability? 3 m Bamboo is durable as long as it is always saturated Appropriate for embankment in coastal and swampy area where it is always saturated 25 m Very Soft-Soft Clay N-SPT = 0-1 qc = 1-2 kg/cm2 C = 0.65 t/m2 Stiff-Very Stiff Clay N-SPT = 16 C = 9 t/m2 4 m 3 m High Strength Woven Geotextile Workshop HATTI 2018 15

Utilization of Bamboo Mattress for Coastal Embankment at Tambaklorok - Semarang Laboratorium Geoteknik Pusat Penelitian Antar Universitas, PPAU Institut Teknologi Bandung Embankment for Land Reclamation on Very Soft Soil Morokrembangan-Surabaya 1999 Workshop HATTI 2018 16

Armor: Ruble mount W50 = 370 Kg, Ø59-70 cm Filter: W50 = 37 Kg Ø27-33 cm kerikil/sand bags 2% 2% Pasir Matras Bamboo 5 lapis Cerucuk Bamboo Spasi = 1 m, L = 6 m Dermaga dan Breakwater, Muara Angke 2003 C D E F Seabed Quarry run/ kerikil/sand bags Seabed A B Tipikal Potongan Melintang Tipikal Potongan Sekitar Dermaga Armor: Ruble mount W50 = 400 Kg Seabed Quarry run/ 1:1 Seabed Matras Bamboo 5 lapis Cerucuk Bamboo L = 6 m Woven Geotextile Workshop HATTI 2018 17

Prefabricated Segmental Raft Content: 1. Ground Improvement Methods for Recent Infrastructure Projects in Indonesia 2. Previous Experiences Using the Bamboo Pile-Mattress System 3. Utilization of Bamboo Pile-Mattress System for Soil Improvement: a. For Railway Embankment b. For Container Yard 4. Modelling of Load Transfer Mechanism in Bamboo Pile-Mattress System 5. Conclusions Workshop HATTI 2018 18

UTILIZATION OF BAMBOO PILE-MATTRESS SYSTEM FOR RAILWAY EMBANKMENT ON VERY SOFT SOIL CONDITION SEMARANG TAWANG, 2012-2013 Workshop HATTI 2018 19

Cara Meletakkan Bambu Pada Matras Untuk 5 lapis Workshop HATTI 2018 20

Workshop HATTI 2018 21

Workshop HATTI 2018 22

Workshop HATTI 2018 23

Loading Test Cargo Train UTILIZATION OF BAMBOO PILE-MATTRESS SYSTEM FOR CONTAINER YARD ON VERY SOFT SOIL CONDITION JAKARTA PORT TERMINAL, KALIBARU, 2013 New Priok Port Project: Masyhur Irsyam Bangun Sucipto Ketua - Himpunan Ahli Teknik Tanah Indonesia PT. Pembangunan Perumahan Ketua - Pusat Penelitian Mitigasi Bencana ITB Ketua - Tim Revisi Peta Gempa Indonesia Anggota - Tim Penasehat Konstruksi Bangunan DKI Andi Kartawiria PT. Promisco CT 1 SUPPORTI NG AREA CT : Container Terminal PT : Product Terminal Surabaya, 4 Juli 2013 FERIALDY NOERLAN Direktur Teknik PT PELABUHAN INDONESIA II (Persero) Seminar HATTI, Desember 2012 Workshop HATTI 2018 24

Reklamasi: Sebagian besar area yang tersedia untuk reklamasi berada di atas tanah lunak complicated design (matras bambu untuk pondasi revetment); Permasalahan ketersediaan pasir untuk material reklamasi; Owner Konsultan Kontraktor : PT PELABUHAN INDONESIA II (Persero) : direncanakan oleh PT LAPI ITB : PT Pembangunan Perumahan (Penulis terlibat sbg Geotechnical Expert PT PP) FERIALDY NOERLAN Seminar HATTI, Desember 2012 VERY SOFT TO SOFT CLAY MEDIUM TO STIFF CLAY VERY HARD CLAY STIFF TO VERY STIFF CLAY Panjang daerah yang diperkuat dng cerucuk matras bambu > 5.o km Jumlah matras > 360 ribu FERIALDY NOERLAN Seminar HATTI, Desember 2012 Workshop HATTI 2018 25

PT. PP (Persero) Workshop HATTI 2018 26

PT. PP (Persero) PT. PP (Persero) Alat pancang cerucuk cluster bambu dipatenkan oleh PT.PP Alat pancang cerucuk cluster bambu dipatenkan oleh PT. PP PT. PP (Persero) Alat pancang cerucuk cluster bambu dipatenkan oleh PT. PP Workshop HATTI 2018 27

PT. PP (Persero) Workshop HATTI 2018 28

PT. PP (Persero) Workshop HATTI 2018 29

PT. PP (Persero) Semarang Giant Sea Wall and Shoreline Belt Demak Kendal Shoreline Belt Workshop HATTI 2018 30

Semarang-Demak Toll Road and Sea Dyke Semarang-Demak Toll Road and Sea Dyke TITIK AWAL INUNDATION DURING HIGH TIDE SEA DYKE Luas genangan ROB + 4.500 ha (2007), dan akan meningkat terus Penyebab : penurunan muka tanah (land subsidence); abrasi pantai; dan kenaikan muka air laut (SLR). 3,36 m Tetrapod Geomembran Batu Gradasi 60-300 kg, 1 : 5 +4.30 m +7.50m 1.00 1 : 3 1 : 3 +3.50m 1 : 5 124 125 Workshop HATTI 2018 31

Sea Dyke Tahapan : Urug pasir 1 m Pasang cerucuk cluster bamboo L = 10 m, spasi 1.0 m Pasang matras bambu 14 lapis Pasang PVD L = 20 m Timbunan bertahap 1 m (termasuk batu dan tetrapod) dengan waktu konsolidasi 14 hari per tahap hingga elevasi + 5.70 (as). Pada tahap akhir hingga elevasi + 7.20 as, waktu konsolidasi selama 90 hari sebelum pelaksanaan perkerasan fleksibel. Content: 1. Ground Improvement Methods for Recent Infrastructure Projects in Indonesia 2. Previous Experiences Using the Bamboo Pile-Mattress System 3. Utilization of Bamboo Pile-Mattress System for Soil Improvement: a. For Railway Embankment b. For Container Yard 4. Modelling of Load Transfer Mechanism in Bamboo Pile-Mattress System MSL = +0,00 m DWL = +3,36 m Tetrapod Geomembran Batu Gradasi 60-300 kg, 1 : 5 +4.30 m +7.50m 1.00 1 : 3 1 : 3 +3.50m 5. Conclusions Matras Bambu 14 Lapis Crucuk bambu + Pvd How to calculate? Coceptually, it is similar with pile-raft system for high rise buildings 2-Dimention 3-Dimention BAMBOO PILE-MATTRESS SYSTEM Pile-Raff Foundation Firmansyah, 2013 Workshop HATTI 2018 32

FEM Modelling Embankment soil Beam Beam with interface Node-to-Node Spring Very Soft Soil FEM 3D FEM 2D Configuration of bamboo cluster pile Beam Beam dng interface element Very Soft Soil FEM 2D Workshop HATTI 2018 33

Matt and Pile Properties 0.7m Beam Element EI = E x I matras I matras = I bambu + (Ar 2 ) I = 4 ( D D ) o 4 i 64 DWL = +3,36 m MSL = +0,00 m Matras Bambu 14 Lapis Crucuk bambu + Pvd Tetrapod Geomembran Batu Gradasi 60-300 kg, 1 : 5 +4.30 m +7.50m 1.00 1 : 3 1 : 3 +3.50m 1 : 5 1.0m K = Node to Node Spring/ Anchor - Fmax d FEM 2D Verification and Numerical Modeling By Using Instrumented Trial Embankment at Tambak Oso Surabaya Pembuatan Matras bambu Pemancangan Cerucuk Bambu Workshop HATTI 2018 34

Tinggi Timbunan (m) Penurunan (cm) Pemasangan Instrumentasi di lapangan : Pemasangan Instrumentasi di lapangan : Pemasangan Settlemetn Plate Pemasangan Piezometer dan tipe alat baca Grafik Penurunan-Waktu pada Settlement Plate 4 4 3 2 konstruksi 1 0 0 20 40 60 80 100 120 0 10 20 Elastic settlement Elastic settlement = 48 cm Consolidation settlement = 17 cm 30 40 50 Consolidation settlement Elastic settlement Consolidation settlement 60 70 Elastic settlement Consolidation settlement 0 20 40 60 80 100 120 Hari Pengamatan Workshop HATTI 2018 35

Settlement (cm) Embankment Height (m) 4 3 2 1 0 0 20 40 60 80 100 120 140 160 180 200 0 (a) Shading of Deformation Elastic Deformation (b) Arrow of Deformation 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 160 180 200 Day Analytical Method Prediction Finite Element Method Prediction Settlement Plate 1 Settlement Plate 2 Settlement Plate 3 Settlement Plate 4 (a) Shading of Deformation (b) Arrow of Deformation Settlement Plate 5 Settlement Plate 6 Settlement Plate 7 Consolidation Settlement Analisis Stabilitas Timbunan Double Track Tawang, Semarang Workshop HATTI 2018 36

Initial Condition Timbunan Track Baru Track Baru Opersional Peninggian Track Lama Matras saja Peninggian Track Lama Matras + Cerucuk Peninggian Track Lama Matras + Cerucuk Conclusions Content: 1. Ground Improvement Methods for Recent Infrastructure Projects in Indonesia 2. Previous Experiences Using the Bamboo Pile-Mattress System 3. Utilization of Bamboo Pile-Mattress System for Soil Improvement: a. For Railway Embankment b. For Container Yard 4. Modelling of Load Transfer Mechanism in Bamboo Pile-Mattress System 5. Conclusions Recent major infrastructure projects in Indonesia used Vacuum Consolidation, Dynamic Compaction, Rapid Impulse Compaction, Stone Column, and Full Displacement Column etc. Bamboo pile-mattress system is proven to be reliable, and therefore, can be used as ground reinforcement for coastal/ swampy embankment on soft soil layer. Performance of the system can be predicted accurately as long as it is modeled correctly. Consolidation settlement has to be accounted for during the design life. Workshop HATTI 2018 37

Thank You Workshop HATTI 2018 38