BAB II TINJAUAN PUSTAKA
|
|
|
- Sudirman Sudjarwadi
- 8 tahun lalu
- Tontonan:
Transkripsi
1 II.1 BAB II TINJAUAN PUSTAKA 2.1 Travelling Salesman Problem (TSP) Permasalahan tentang Traveling Salesman Problem dikemukakan pada tahun 1800 oleh matematikawan Irlandia William Rowan Hamilton dan matematikawan Inggris Thomas Penyngton. Gambar dibawah ini adalah foto dari permainan Icosian Hamilton yang membutuhkan pemain untuk menyelesaikan perjalanan dari 20 titik menggunakan hanya jalur jalur tertentu. Gambar II.1 Foto permainan Icosian Hamilton (Amin, Rahma Aulia. Dkk, 2006) Bentuk umum dari TSP pertama dipelajari oleh para matematikawan mulai tahun 1930.Diawali oleh Karl Menger di Viena dan Harvard.Setelah itu permasalahan TSP dipublikasikan oleh Hassler Whitney dan Merrill Flood di Princeton.Selanjutnya dengan permasalahan ini, TSP dibuat menjadi permasalahan yang terkenal dan popular untuk dipakai sebagai model produksi, transportasi dan komunikasi. TSP dikenal sebagai suatu permasalah optimasi yang bersifat klasik dan NonDeterministic Polynomial-time Complete (NPC), dimana tidak ada penyelesaian yang paling optimal selain mencoba seluruh kemungkinan penyelesaian yang ada. Permasalahan ini melibatkan seorang traveling salesman II.1
2 II.2 yang harus melakukan kunjungan sekali pada semua kota dalam sebuah lintasan sebelum dia kembali ke titik awal, sehingga perjalanannya dikatakan sempurna. Definisi dari Traveling Saleman Problem yaitu diberikan n buah kota dan Cij yang merupakan jarak antara kota i dan kota j, seseorang ingin membuat suatu lintasan tertutup dengan mengunjungi setiap kota satu kali. Tujuannya adalah memilih lintasan tertutup yang total jaraknya paling minimum diantara pilihan dari semua kemungkinan lintasan (Amin, Rahma Aulia. Dkk, 2006) Convex Hull Convex Hull berperan penting dalam proses Travelling Salesman Problem tour (Vickers & Lee, 2003). Convex Hull merupakan persoalan klasik dalam geometri komputasional.definisi dari convex hull adalah poligon yang disusun dari subset titik sedemikian sehingga tidak ada titik dari himpunan awal yang berada di luar poligon tersebut (semua titik berada di batas luar atau di dalam area yang dilingkupi oleh poligon tersebut). Suatu poligon dikatakan konveks jika digambarkan garis yang menghubungkan antar titik maka tidak ada garis yang memotong garis yang menjadi batas luar polygon. Gambar II.2 Convex Hull (Aryan, Peb Ruswono, 2009)
3 II.3 Petunjuk untuk menyelesaikan persoalan ini adalah persamaan garis pada bidang. Persamaan garis pada bidang memisahkan bidang menjadi dua bagian yaitu area di sebelah kanan bidang (relatif terhadap orientasi garis). Sebagai contoh garis berorientasi adalah sumbu koordinat. Misalkan saja sumbu vertikal (ordinat, arah orientasi ke atas), seluruh titik di sebelah kanan garis ini memiliki nilai komponen koordinat horizontal (X) yang positif sedangkan seluruh titik di sebelah kiri garis memiliki nilai komponen koordinat horizontal negatif. Petunjuk di atas dimanfaatkan dengan membuat definisi bahwa garis yang dibentuk oleh titik-titik poligon jika diasumsikan memiliki orientasi yang sama, maka setiap titik berada di sebelah kanan seluruh garis batas tersebut. Definisi ini kemudian dimanfaatkan untuk menentukan aksi awal yaitu memilih titik yang berada paling luar pertama. Mencari titik pertama cukup mudah yaitu cukup memilih titik yang memiliki nilai komponen koordinat (horizontal atau vertikal) yang ekstrim (minimum atau maksimum). Titik-titik convex hull lainnya ditentukan berdasarkan titik pertama tadi. Berikut adalah algoritma sederhana konsep convex hull. Algoritma 2.1 Convex Hull 1. memilih titik pertama 2. memilih titik berikutnya berdasarkan definisi : jika dibuat garis dengan titik sebelumnya maka seluruh titik lainnya tidak ada yang berada disebelah kiri jika titik tersebut sesuai maka dimasukan dalam daftar titik luar Algoritma tersebut menggunakan pendekatan exhaustive (bruteforce).kompleksitas algoritma tersebut mendekati O(n 2 ). Algoritma tersebut dapat dioptimasi dengan membuat agar kumpulan titik-titik tersebut terurut secara lexicografis (urutkan dulu berdasarkan koordinat sumbu-x lalu untuk koordinat pada sumbu-x yang sama urutkan berdasarkan koordinat pada sumbu-y). Sifat keterurutan ini kemudian dimanfaatkan sehingga pada setiap fase tiap titik hanya dikunjungi satu kali (kompleksitas linier).adapun fase-fase yang perlu dilalui
4 II.4 terdiri dari dua fase yaitu batas bagian atas (upper boundary) dan batas bagian bawah (lower boundary) (Aryan, Peb Ruswono, 2009) Metode Heuristik Permasalahan penentuan rute biasanya merupakan permasalahan dimana penyelesaian dengan metode exact seringkali akan memakan waktu yang cukup lama untuk menyelesaikannya. Karena sebab inilah banyak para ahli yang merancang penyelesaian suatu problem dengan menggunakan merode heuristik.metode Heuristik adalah teknik yang dirancang untuk memecahkan masalah yang mengabaikan apakah solusi dapat dibuktikan benar, tapi yang biasanya menghasilkan solusi yang baik atau memecahkan masalah yang lebih sederhana yang mengandung atau memotong dengan pemecahan masalah yang lebih kompleks.metode Heuristik ini bertujuan untuk mendapatkan performa komputasi atau penyederhanaan konseptual, berpotensi pada biaya keakuratan atau presisi.metode heuristik ada dua jenis yakni metode heuristik sederhana dan metaheuristik. Metode heuristik contohnya adalah cheapest insertion, Priciest Insertion, Nearest insertion, Farthest Insertion, Nearest addition dan Clarke and Wright Saving Method. Pada penelitian ini hanya menggunakan metode cheapest insertion. Cheapest insertion adalah metode heuristik yang banyak digunakan untuk mencari jarak minimal antara dua titik dengan cara menyisipkan titik baru diantara kedua titik yang sudah ada sehingga terbentuk sudut atau jarak baru Berikut ini adalah tata urutan algoritma Cheapest Insertion : 1. Penelusuran dimulai dari sebuah titik pertama yang dihubungkan dengan sebuah titik terakhir. 2. Dibuat sebuah hubungan subtour antara 2 titik tersebut. Yang dimaksud subtour adalah perjalanan dari titik pertama dan berakhir di titik pertama, misal (1,3) (3,2) (2,1) seperti yang tergambar dalam gambar berikut ini :
5 II.5 Gambar II.3 Subtour (Kusrini, 2007) 3. Ganti salah satu arah hubungan (arc) dari dua kota dengan kombinasi dua arc,yaituarc (i,j) dengan arc (i,k) dan arc (k,j), dengan k diambil dari titik yang belum termasuk subtour dan dengan tambahan jarak terkecil. Jarak diperoleh dari penghitungan sebagai berikut : C ik +C kj - C ij C ik adalah jarak dari titik i ke titik k C kj adalah jarak dari titik k ke titik j C ij adalah jarak dari titik i ke titik k 4. Ulangi langkah 3 sampai semua titik masuk dalam subtour (Kusrini, 2007). 2.2 Hirarki Klastering Teknik hirarki klastering agglomerative bekerja dengan sederetan dari penggabungan yang berurutan atau sederetan dari pembagian yang berurutan dan berawal dari objek-objek individual. Jadi pada awalnya banyaknya klaster sama dengan banyaknya objek. Objek-objek yang paling mirip dikelompokkan, dan kelompok-kelompok awal ini digabungkan sesuai dengan kemiripannya.sewaktu kemiripan berkurang, semua subkelompok digabungkan menjadi satu klaster tunggal.hasil-hasil dari clustering dapat disajikan secara grafik dalam bentuk dendrogram atau diagram pohon.cabang-cabang dalam pohon menyajikan klaster dan bergabung pada node yang posisinya sepanjang sumbu jarak (similaritas) menyatakan tingkat di mana penggabungan terjadi.
6 II.6 Gambar II.4AGNES Dendogram (Hartini, Entin) Langkah-langkah dalam algoritma clustering hirarki agglomerative untuk mengelompokkan N objek (item/variabel): 1. Mulai dengan N cluster, setiap cluster mengandung entiti tunggal dan sebuah matriks simetrik dari jarak (similarities) D = {d ik } dengan tipe NxN. 2. Cari matriks jarak untuk pasangan cluster yang terdekat (paling mirip). Misalkan jarak antara cluster U dan V yang paling mirip adalah duv. 3. Gabungkan cluster U dan V. Label cluster yang baru dibentuk dengan (UV). Update entries pada matrik jarak dengan cara : a. Hapus baris dan kolom yang bersesuaian dengan cluster U dan V b. Tambahkan baris dan kolom yang memberikan jarak-jarak antara cluster (UV) dan cluster-cluster yang tersisa. 4. Ulangi langkah 2 dan 3 sebanyak (N-1) kali. (Semua objek akan berada dalam cluster tunggal setelah algoritma berahir). Catat identitas dari cluster yang digabungkan dan tingkat-tingkat (jarak atau similaritas) di mana penggabungan terjadi (Hartini, Entin).
7 II Metode Complete Linkage Complete linkage memberikan kepastian bahwa semua item-item dalam satu cluster berada dalam jarak paling jauh (similaritas terkecil) satu sama lain. Algoritma aglomerative pada umumnya dimulai dengan menentukan entri (elemen matriks) dalam D = {d ik } dan menggabungkan objek-objek yang bersesuaian misalnya U dan V untuk mendapatkan cluster (UV). Untuk langkah (3) dari algoritma di atas jarak-jarak antara cluster (UV) dan cluster W yang lain dihitung dengan d maks. {d d } (UV )W = UW, VW Persamaan II.1 Complete Linkage (Hartini, Entin). Di sini besaran-besaran duw dan dvw berturut-turut adalah jarak antara tetangga terdekat cluster-cluster U dan W dan juga cluster-cluster V dan W (Hartini, Entin) Metode Average Linkage Average linkage memperlakukan jarak antara dua cluster sebagai jarak ratarata antara semua pasangan item-item di mana satu anggota dari pasangan tersebut kepunyaan tiap cluster. Mulai dengan mencari matriks jarak D = {d ik } untuk memperoleh objek-objek paling dekat ( paling mirip) misalnya U dan i. Objek objek ini digabungkan untuk membentuk cluster (UV). Untuk langkah (3) dari algoritma di atas jarak-jarak antara (UV) dan cluster W yang lain ditentukan oleh Persamaan II.2 Average Linkage (Hartini, Entin). di mana d ik adalah jarak antara objek i dalam cluster (UV) dan objek k dalam cluster W, dan N uv dan N w berturut-turut adalah banyaknya item-item dalam cluster (UV) dan W(Hartini, Entin).
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Traveling Salesmen Problem (TSP) Travelling Salesman Problem (TSP) merupakan sebuah permasalahan optimasi yang dapat diterapkan pada berbagai kegiatan seperti routing. Masalah
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Clustering Analysis Clustering analysis merupakan metode pengelompokkan setiap objek ke dalam satu atau lebih dari satu kelompok,sehingga tiap objek yang berada dalam satu kelompok
BAB II II.1 LANDASAN TEORI
II.1 BAB II LANDASAN TEORI 2.1 Traveling Salesmen Problem TSP atau Travelling Salesmen Problem adalah salah satu masalah distribusi yang cukup lama dibahas dalam kajian optimasi. Masalahnya adalah bagaimana
BAB II LANDASAN TEORI. Kotler (1999) adalah serangkaian organisasi yang saling tergantung dan terlibat
BAB II LANDASAN TEORI 2.1 Distribusi Distribusi adalah salah satu aspek pemasaran. Pengertian distribusi menurut Kotler (1999) adalah serangkaian organisasi yang saling tergantung dan terlibat dalam proses
METODE TRAVELING SALESMAN UNTUK MENENTUKAN LINTASAN TERPENDEK PADA DAERAH-DAERAH YANG TERIDENTIFIKASI BAHAYA
METODE TRAVELING SALESMAN UNTUK MENENTUKAN LINTASAN TERPENDEK PADA DAERAH-DAERAH YANG TERIDENTIFIKASI BAHAYA Nama Mahasiswa : Aisyah Lestari NRP : 1206 100 016 Jurusan : Matematika Dosen Pembimbing : Subchan,
BAB 2 LANDASAN TEORI. Definisi Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini:
10 BAB 2 LANDASAN TEORI 2.1.Konsep Dasar Graf Definisi 2.1.1 Graf G didefinisikan sebagai pasangan himpunan (V, E), yang dalam hal ini: V = himpunan tidak kosong dari simpul-simpul (vertices atau node)
STUDI PERBANDINGAN ALGORITMA CHEAPEST INSERTION HEURISTIC DAN ANT COLONY SYSTEM DALAM PEMECAHAN TRAVELLING SALESMAN PROBLEM
Seminar Nasional Aplikasi Teknologi Informasi (SNATI ) ISSN: `1907-5022 Yogyakarta, 19 Juni STUDI PERBANDINGAN ALGORITMA CHEAPEST INSERTION HEURISTIC DAN ANT COLONY SYSTEM DALAM PEMECAHAN TRAVELLING SALESMAN
PENYELESAIAN TRAVELLING SALESMAN PROBLEM MENGGUNAKAN METODE SIMPLE HILL CLIMBING
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 0, No. (2015), hal 17 180. PENYELESAIAN TRAVELLING SALESMAN PROBLEM MENGGUNAKAN METODE SIMPLE HILL CLIMBING Kristina Karunianti Nana, Bayu Prihandono,
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Traveling Salesman Problem (TSP) adalah permasalahan dimana seorang salesman harus mengunjungi semua kota yang ada dan kota tersebut hanya boleh dikunjungi tepat satu
KATA PENGANTAR. Jurnal Ilmiah Teknik Industri dan Informasi -- 1
Jurnal Ilmiah Teknik Industri dan Informasi -- 1 KATA PENGANTAR Puji syukur Alhamdulillah, kami sampaikan ke hadirat Allah YME, karena terealisasinya Tekinfo, Jurnal Ilmiah Teknik Industri dan Informasi
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik Filman Ferdian - 13507091 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha
BAB II KAJIAN TEORI 2.1 Kajian Penelitian Sebelumnya
5 BAB II KAJIAN TEORI 2.1 Kajian Penelitian Sebelumnya Traveling salesman problem (TSP) merupakan salah satu permasalahan yang telah sering diangkat dalam berbagai studi kasus dengan penerapan berbagai
Pertemuan 14 HIERARCHICAL CLUSTERING METHODS
Pertemuan 14 HIERARCHICAL CLUSTERING METHODS berdasar gambar berdasar warna A A A A Q Q Q Q K K K K J J J J 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 A K Q J (a). Individual
Penerapan Algoritma Branch and Bound pada Perancangan Jalur Bandros
Penerapan Algoritma Branch and Bound pada Perancangan Jalur Bandros Irene Edria Devina / 13515038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.Ganesha
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH
Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 17 24. PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN METODE TABU SEARCH Fatmawati, Bayu Prihandono, Evi Noviani INTISARI
ALGORITMA FLEURYUNTUK MENYELESAIKAN PERMASALAHAN TSP (Traveling Salesman Problem)
Jurnal Ilmiah d omputare Volume 8 disi Januari 2018 LGORITM LURYUNTUK MNYLSIKN PRMSLHN TSP (Traveling Salesman Problem) Iin Karmila Putri [email protected] Universitas okroaminoto Palopo Jl. Latamacelling
PERBANDINGAN ALGORITMA GREEDY, ALGORITMA CHEAPEST INSERTION HEURISTICS DAN DYNAMIC PROGRAMMING DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM
PERBANDINGAN ALGORITMA GREEDY, ALGORITMA CHEAPEST INSERTION HEURISTICS DAN DYNAMIC PROGRAMMING DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM Gea Aristi Program Studi Manajemen Informatika AMIK BSI Tasikmalaya
Penentuan Rute Belanja dengan TSP dan Algoritma Greedy
Penentuan Rute Belanja dengan TSP dan Algoritma Greedy Megariza 13507076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG
1 BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Graf merupakan salah satu cabang ilmu matematika yang dapat digunakan dalam membantu persoalan diberbagai bidang seperti masalah komunikasi, transportasi, distribusi,
LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf
Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex
PENYELESAIAN ASYMMETRIC TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA HUNGARIAN DAN ALGORITMA CHEAPEST INSERTION HEURISTIC.
PENYELESAIAN ASYMMETRIC TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA HUNGARIAN DAN ALGORITMA CHEAPEST INSERTION HEURISTIC Caturiyati Staf Pengaar Jurusan Pendidikan Matematika FMIPA UNY E-mail: [email protected]
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori graf 2.1.1 Defenisi graf Graf G adalah pasangan {,} dengan adalah himpunan terhingga yang tidak kosong dari objek-objek yang disebut titik (vertex) dan adalah himpunan pasangan
Matematika dan Statistika
ISSN 1411-6669 MAJALAH ILMIAH Matematika dan Statistika DITERBITKAN OLEH: JURUSAN MATEMATIKA FMIPA UNIVERSITAS JEMBER Majalah Ilmiah Matematika dan Statistika APLIKASI ALGORITMA SEMUT DAN ALGORITMA CHEAPEST
IMPLEMENTASI HIERARCHICAL CLUSTERING DAN BRANCH AND BOUND PADA SIMULASI PENDISTRIBUSIAN PAKET POS
IMPLEMENTASI HIERARCHICAL CLUSTERING DAN BRANCH AND BOUND PADA SIMULASI PENDISTRIBUSIAN PAKET POS SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.) Pada Program
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab II dalam penelitian ini terdiri atas vehicle routing problem, teori lintasan dan sirkuit, metode saving matriks, matriks jarak, matriks penghematan, dan penentuan urutan konsumen.
ALGORITMA OPTIMASI UNTUK PENYELESAIAN TRAVELLING SALESMAN PROBLEM (Optimization Algorithm for Solving Travelling Salesman Problem)
ALGORITMA OPTIMASI UNTUK PENYELESAIAN TRAVELLING SALESMAN PROBLEM (Optimization Algorithm for Solving Travelling Salesman Problem) Dian Tri Wiyanti Program Studi Teknik Informatika, Jurusan Teknologi Informasi
METODE TRAVELING SALESMAN UNTUK MENENTUKAN LINTASAN TERPENDEK PADA DAERAH-DAERAH YANG TERIDENTIFIKASI BAHAYA
METODE TRAVELING SALESMAN UNTUK MENENTUKAN LINTASAN TERPENDEK PADA DAERAH-DAERAH YANG TERIDENTIFIKASI BAHAYA Oleh : Aisyah Lestari 1206 100 016 Dosen Pembimbing: Subchan, Ph.D 19710513 199702 1 001 JURUSAN
BAB III ALGORITMA BRANCH AND BOUND. Algoritma Branch and Bound merupakan metode pencarian di dalam ruang
BAB III ALGORITMA BRANCH AND BOUND Algoritma Branch and Bound merupakan metode pencarian di dalam ruang solusi secara sistematis. Ruang solusi diorganisasikan ke dalam pohon ruang status. Pohon ruang status
BAB 2 LANDASAN TEORI
8 BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar dan beberapa definisi yang akan digunakan sebagai landasan berpikir dalam melakukan penelitian ini sehingga mempermudah penulis untuk
METODE PROGRAM DINAMIS PADA PENYELESAIAN TRAVELING SALESMAN PROBLEM
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 329 336. METODE PROGRAM DINAMIS PADA PENYELESAIAN TRAVELING SALESMAN PROBLEM Hermianus Yunus, Helmi, Shantika Martha INTISARI
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
9 BAB 1 PENDAHULUAN 1.1 Latar Belakang Travelling Salesman Problem (TSP) merupakan salah satu permasalahan yang penting dalam dunia matematika dan informatika. TSP dapat diilustrasikan sebagai perjalanan
Penerapan Algoritma Branch and Bound dalam Pemacahan Travelling Salesman Problem (TSP) dalam Graf Lengkap
Penerapan Algoritma Branch and Bound dalam Pemacahan Travelling Salesman Problem (TSP) dalam Graf Lengkap Irfan Ariq Teknik Informatika Institut Teknologi Bandung Bandung, Indonesia [email protected]
BAB I PENDAHULUAN. Alat transportasi merupakan salah satu faktor yang mendukung berjalannya
BAB I PENDAHULUAN A. Latar Belakang Masalah Alat transportasi merupakan salah satu faktor yang mendukung berjalannya kegiatan atau aktivitas manusia dalam kehidupan sehari-hari. Salah satu kegiatan manusia
PERANCANGAN DAN SIMULASI PENCARIAN JALUR TERAMAN PADA PERUTEAN KENDARAN
PERANCANGAN DAN SIMULASI PENCARIAN JALUR TERAMAN PADA PERUTEAN KENDARAN SUHARDIMAN USMAN NRP : 1204 100 027 Dosen Pembimbing : Subchan, Ph.D 1 PENDAHULUAN Latar Belakang Penentuan rute kendaraan merupakan
TARGET BERORIENTASI METODE CABANG DAN BATAS UNTUK OPTIMISASI GLOBAL
TARGET BERORIENTASI METODE CABANG DAN BATAS UNTUK OPTIMISASI GLOBAL Mochamad Suyudi 1, Sisilia Sylviani 2 1,2 Departmen Matematika FMIPA Universitas Padjadjaran [email protected] Abstrak: Fokus utama
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari lintasan sederhana terpanjang maksimum dalam suatu graph yang diberikan. Lintasan terpanjang
DSS untuk Menganalisis ph Kesuburan Tanah Menggunakan Metode Single Linkage
61 DSS untuk Menganalisis ph Kesuburan Tanah Menggunakan Metode Single Linkage Abdi Pandu Kusuma, Rini Nur Hasanah, dan Harry Soekotjo Dachlan Abstrak - ph tanah merupakan ukuran jumlah ion hidrogen dalam
PENGENALAN OBJEK PADA CITRA DIGITAL MENGGUNAKAN ALGORITMA HIERARCHICAL ALGOMERATIVE CLUSSTERING
PENGENALAN OBJEK PADA CITRA DIGITAL MENGGUNAKAN ALGORITMA HIERARCHICAL ALGOMERATIVE CLUSSTERING UmmulKhair, M.Kom 1, Rahmadsyah, M.Kom 2, Aja Abdurajak 3 Program StudiTeknikInformatikaSTT-Harapan Medan
TUGAS AKHIR PERENCANAAN SISTEM DITRIBUSI HASIL PRODUKSI BUKU PADA PT. BINA PUTRA MANDIRI
TUGAS AKHIR PERENCANAAN SISTEM DITRIBUSI HASIL PRODUKSI BUKU PADA PT. BINA PUTRA MANDIRI Diajukan Sebagai Syarat Memperoleh Gelar Sarjana Teknik Jurusan Teknik Industri Fakultas Teknik Universitas Muhammadiyah
METODE PENCARIAN DAN PELACAKAN
METODE PENCARIAN DAN PELACAKAN SISTEM INTELEGENSIA Pertemuan 4 Diema Hernyka S, M.Kom Materi Bahasan Metode Pencarian & Pelacakan 1. Pencarian buta (blind search) a. Pencarian melebar pertama (Breadth
Design and Analysis of Algorithm
Design and Analysis of Algorithm Week 7: Brute Force Algorithm Part 2: Exhaustive Search Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry
BAB 2 OPTIMISASI KOMBINATORIAL
BAB 2 OPTIMISASI KOMBINATORIAL Optimisasi kombinatorial merupakan suatu cara yang digunakan untuk mencari semua kemungkinan nilai real dari suatu fungsi objektif. Proses pencarian dapat dilakukan dengan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Vehicle Routing Problem (VRP) merupakan salah satu permasalahan yang terdapat pada bidang Riset Operasional. Dalam kehidupan nyata, VRP memainkan peranan penting dalam
BAB II LANDASAN TEORI
BAB 2 LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Distribusi Distribusi (distribution) termasuk terminologi dalam ilmu ekonomi dan dalam kalangan perindustrian. Menurut Frank H. Woodward (2002) dijelaskan
APLIKASI TRAVELLING SALESMAN PROBLEM DENGAN METODE ARTIFICIAL BEE COLONY
APLIKASI TRAVELLING SALESMAN PROBLEM DENGAN METODE ARTIFICIAL BEE COLONY Andri 1, Suyandi 2, WinWin 3 STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 [email protected] 1, [email protected]
Design and Analysis of Algorithms CNH2G3- Week 7 Brute Force Algorithm Part 2: Exhaustive Search
Design and Analysis of Algorithms CNH2G3- Week 7 Brute Force Algorithm Part 2: Exhaustive Search Dr. Putu Harry Gunawan (PHN) Daftar Isi 1 Pendahuluan..................................... 1 2 Traveling
II TINJAUAN PUSTAKA 2.1 Graf Definisi 1 (Graf, Graf Berarah dan Graf Takberarah) 2.2 Linear Programming
4 II TINJAUAN PUSTAKA Untuk memahami permasalahan yang berhubungan dengan penentuan rute optimal kendaraan dalam mendistribusikan barang serta menentukan solusinya maka diperlukan beberapa konsep teori
Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek
Analisis Beberapa Algoritma dalam Menyelesaikan Pencarian Jalan Terpendek Hugo Toni Seputro Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Jl. Ganesha 10 Bandung Jawa Barat Indonesia
Penyelesaian Traveling Salesperson Problem dengan Menggunakan Algoritma Semut
Penyelesaian Traveling Salesperson Problem dengan Menggunakan Algoritma Semut Irfan Afif (13507099) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung,
LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA. Modul II CLUSTERING
LABORATORIUM DATA MINING JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA Modul II CLUSTERING TUJUA PRAKTIKUM 1. Mahasiswa mempunyai pengetahuan dan kemampuan dasar dalam
PENENTUAN RUTE PATROLI SEKURITI OPTIMAL DENGAN MENGGUNAKAN METODE NEAREST NEIGHBOUR DAN INSERTION (STUDI KASUS: SOUTH PROCESSING UNIT PT.
Vol. 13 No. 1 (2017) Hal. 1-9 p-issn 1858-3075 e-issn 2527-6131 PENENTUAN RUTE PATROLI SEKURITI OPTIMAL DENGAN MENGGUNAKAN METODE NEAREST NEIGHBOUR DAN INSERTION (STUDI KASUS: SOUTH PROCESSING UNIT PT.
PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM
PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM Nico Saputro dan Suryandi Wijaya Jurusan Ilmu Komputer Universitas Katolik Parahyangan [email protected]
BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Kereta api merupakan salah satu angkutan darat yang banyak diminati masyarakat, hal ini dikarenakan biaya yang relatif murah dan waktu tempuh yang
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA CHEAPEST INSERTION HEURISTICS DAN BASIS DATA
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA CHEAPEST INSERTION HEURISTICS DAN BASIS DATA Kusrini 1, Jazi Eko Istiyanto 2 1 Staf Pegajar STMIK AMIKOM Yogyakarta, Jl. Ringroad Utara Condong
Pemanfaatan Algoritma Hybrid Ant Colony Optimization dalam Menyelesaikan Permasalahan Capacitated Minimum Spanning Tree. Tamam Asrori ( )
Pemanfaatan Algoritma Hybrid Ant Colony Optimization dalam Menyelesaikan Permasalahan Capacitated Minimum Spanning Tree Tamam Asrori (5104 100 146) Pendahuluan Latar Belakang Tujuan Dan Manfaat Rumusan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Graph 2.1.1 Definisi Graph Menurut Dasgupta dkk (2008), graph merupakan himpunan tak kosong titik-titik yang disebut vertex (juga disebut dengan node) dan himpunan garis-garis
JURNAL IT STMIK HANDAYANI
Nurilmiyanti Wardhani Teknik Informatika, STMIK Handayani Makassar [email protected] Abstrak Algoritma semut atau Ant Colony Optimization merupakan sebuah algoritma yang berasal dari alam. Algoritma
BAB 3 METODOLOGI PENELITIAN
BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Metodologi penelitian berperan untuk membantu agar masalah dapat diselesaikan secara lebih terarah dan sistematis. Dalam metodologi penelitian, akan diuraikan
BAB III PEMBAHASAN. survei yang dilakukan BPS pada 31 Oktober Langkah selanjutnya yang
BAB III PEMBAHASAN Data yang digunakan dalam skripsi ini merupakan data sekunder yang diperoleh dari buku saku Ikhtisar Data Pendidikan Tahun 2016/2017. Data tersebut dapat dilihat pada Lampiran 1. Data
MINIMASI BIAYA PENDISTRIBUSIAN PUPUK DENGAN METODE TRAVELLING SALESMAN PROBLEM (TSP) STUDI KASUS PT. BUNGA TANI LAMONGAN
MINIMSI IY PNISTRIUSIN PUPUK NGN MTO TRVLLING SLSMN PROLM (TSP) STUI KSUS PT. UNG TNI LMONGN Oleh Ni Luh Mahariani, Rusindiyanto, udi Santoso Prodi Teknik Industri FTI-UPN Veteran Jatim mail : [email protected]
Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB
Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB Mohamad Ray Rizaldy - 13505073 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI Pendistribusian merupakan hal yang penting dalam kegiatan bisnis, terutama untuk perusahaan distribusi atau distributor. Keterlambatan distribusi akan menurunkan
Algoritma Brute Force (lanjutan)
Algoritma Brute Force (lanjutan) Contoh-contoh lain 1. Pencocokan String (String Matching) Persoalan: Diberikan a. teks (text), yaitu (long) string yang panjangnya n karakter b. pattern, yaitu string dengan
3. Graph Euler dan Graph Hamilton
3. Graph Euler dan Graph Hamilton Oleh : Ade Nurhopipah Pokok Bahasan : 1. Masalah Exploring dan Travelling 2. Graph Euler 3. Graph Hamilton Sumber : Aldous, Joan M.,Wilson, Robin J. 2004. Graph and Applications.
BAB III K-MEDIANS CLUSTERING
BAB III 3.1 ANALISIS KLASTER Analisis klaster merupakan salah satu teknik multivariat metode interdependensi (saling ketergantungan). Metode interdependensi berfungsi untuk memberikan makna terhadap seperangkat
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA CHEAPEST INSERTION HEURISTICS DAN BASIS DATA. Abstract
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA CHEAPEST INSERTION HEURISTICS DAN BASIS DATA Kusrini 1, Jazi Eko Istiyanto 2 Abstract There are plenty well-known algorithms for solving Travelling
Penerapan Algoritma Branch and Bound untuk Optimasi Rute Penempelan Poster di Papan Mading ITB
Penerapan Algoritma Branch and Bound untuk Optimasi Rute Penempelan Poster di Papan Mading ITB Zain Fathoni 00 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
BAB II KAJIAN TEORI. linier, varian dan simpangan baku, standarisasi data, koefisien korelasi, matriks
BAB II KAJIAN TEORI Pada bab II akan dibahas tentang materi-materi dasar yang digunakan untuk mendukung pembahasan pada bab selanjutnya, yaitu matriks, kombinasi linier, varian dan simpangan baku, standarisasi
PENERAPAN ALGORITMA BRANCH AND BOUND DALAM MENENTUKAN RUTE TERPENDEK UNTUK PERJALANAN ANTARKOTA DI JAWA BARAT
PENERAPAN ALGORITMA BRANCH AND BOUND DALAM MENENTUKAN RUTE TERPENDEK UNTUK PERJALANAN ANTARKOTA DI JAWA BARAT M. Pasca Nugraha Sekolah Teknik Elektro dan Informatika Program Studi Teknik Informatika Institut
MINIMASI BIAYA DISTRIBUSI DENGAN MENGGUNAKAN METODE TRAVELING SALESMAN PROBLEM (TSP)
MINIMASI BIAYA DISTRIBUSI DENGAN MENGGUNAKAN METODE TRAVELING SALESMAN PROBLEM (TSP) Astria Yumalia Pascasarjana Magister Ilmu Komputer, STMIK Nusa Mandiri, Jakarta Jl. Kramat Raya No. 18, 10440 E-mail:
PENYELESAIAN TRAVELLING SALESMAN PROBLEM DENGAN ALGORITMA BRANCH AND BOUND
PENYEESAIAN TRAVEING SAESMAN PROBEM DENGAN AGORITMA BRANCH AND BOND Yogo Dwi Prasetyo Pendidikan Matematika, niversitas Asahan e-mail: [email protected] Abstract The shortest route search by
BAB 2 LANDASAN TEORI 2.1 Sistem dan Model Pengertian sistem Pengertian model
BAB 2 LANDASAN TEORI 2.1 Sistem dan Model 2.1.1 Pengertian sistem Pengertian sistem dapat diketahui dari definisi yang diambil dari beberapa pendapat pengarang antara lain : Menurut Romney (2003, p2) sistem
PANDUAN APLIKASI TSP-VRP
PANDUAN APLIKASI TSP-VRP oleh Dra. Sapti Wahyuningsih, M.Si Darmawan Satyananda, S.T, M.T JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN IPA UNIVERSITAS NEGERI MALANG 2016 0 Pengantar Aplikasi ini dikembangkan
ANALISA ALGORITMA GENETIKA DALAM TRAVELLING SALESMAN PROBLEM SIMETRI. Lindawati Syam M.P.Siallagan 1 S.Novani 2
ANALISA ALGORITMA GENETIKA DALAM TRAVELLING SALESMAN PROBLEM SIMETRI Lindawati Syam M.P.Siallagan 1 S.Novani 2 Jurusan Teknik Informatika, FT, Jl. Dipati Ukur Bandung ABSTRAK Masalah Travelling Salesman
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Dalam menyelesaikan persoalan, biasanya diperlukan dasar yang dapat menuntun ke arah pemecahan. Dasar yang digunakan umumnya adalah penjelasan umum mengenai pengertian permasalahan,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul
BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang
BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear
BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi
BAB II KAJIAN PUSTAKA Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi graf, permasalahan optimasi, model matematika dari objek wisata di Yogyakarta, dan algoritma genetika
Journal of Informatics and Technology, Vol 1, No 1, Tahun 2012, p
PENENTUAN JALUR TERPENDEK PADA PELAYANAN AGEN TRAVEL KHUSUS PENGANTARAN WILAYAH SEMARANG BERBASIS SIG DENGAN ALGORITMA BRANCH AND BOUND Windi Rayina Rosa, Drs. Suhartono, M.Kom, Helmie Arif Wibawa, S.Si,
BAB III METODE PELACAKAN/PENCARIAN
BAB III METODE PELACAKAN/PENCARIAN Hal penting dalam menentukan keberhasilan sistem cerdas adalah kesuksesan dalam pencarian. Pencarian = suatu proses mencari solusi dari suatu permasalahan melalui sekumpulan,
PENYELESAIAN TRAVELING SALESMAN PROBLEM (TSP) MENGGUNAKAN ALGORITMA RECURSIVE BEST FIRST SEARCH (RBFS)
PENYELESAIAN TRAVELING SALESMAN PROBLEM (TSP) MENGGUNAKAN ALGORITMA RECURSIVE BEST FIRST SEARCH (RBFS) Hari Santoso 146060300111019 [email protected] Prodi Sistem Komunikasi dan Infromatika Teknik Elektro
Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum
Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum Gerard Edwin Theodorus - 13507079 Jurusan Teknik Informatika ITB, Bandung, email: [email protected] Abstract Makalah ini
PENGARUH NILAI PARAMETER TERHADAP SOLUSI HEURISTIK PADA MODEL VTPTW
INFOMATEK Volume 19 Nomor 1 Juni 2017 PENGARUH NILAI PARAMETER TERHADAP SOLUSI HEURISTIK PADA MODEL VTPTW Tjutju T. Dimyati Program Studi Teknik Industri Fakultas Teknik Universitas Pasundan Abstrak: Penentuan
1.4. Batasan Masalah Batasan-batasan masalah dalam pembuatan tugas akhir ini adalah sebagai berikut :
BAB 1 PENDAHULUAN 1.1. Pengantar Perkembangan jaman yang diiringi dengan kemajuan teknologi sekarang ini menyebabkan perubahan hampir di segala bidang. Salah satu aspeknya ialah teknologi komputerisasi
BAB I PENDAHULUAN. Sebuah perusahaan melakukan proses produksi untuk menghasilkan
BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Sebuah perusahaan melakukan proses produksi untuk menghasilkan produk yang siap jual. Setelah menghasilkan produk yang siap jual, maka proses selanjutnya
Oleh : Arief Yudissanta ( ) Pembimbing : Prof. Susanti Linuwih Mstat.PHD
TUGAS AKHIR Oleh : Arief Yudissanta (1307 030 019) Pembimbing : Prof. Susanti Linuwih Mstat.PHD PENGELOMPOKAN SEKOLAH DASAR BERDASARKAN RATA-RATA NILAI UJIAN AKHIR SEKOLAH BERSTANDAR NASIONAL DI SETIAP
Algoritma Brute Force(lanjutan) Lecture 6 CS3024
Algoritma Brute Force(lanjutan) Lecture 6 CS3024 String Matching Persoalan: Diberikan a. teks (text), yaitu (long) stringyang panjangnya n karakter b. pattern, yaitu string dengan panjang m karakter (m
BAB 1 PENDAHULUAN Latar Belakang
1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Persoalan rute terpendek merupakan suatu jaringan pengarahan rute perjalanan di mana seseorang pengarah jalan ingin menentukan rute terpendek antara dua kota berdasarkan
Penggunaan Metode Branch And Bound With Search Tree
Penggunaan Metode Branch And Bound With Search Tree Untuk Menyelesaikan Persoalan Pedagang Keliling Pada Graf Lengkap Sebagai Pengganti Metode Exhaustive Enumeration Alfan Farizki Wicaksono - NIM : 13506067
BAB II DISTRIBUSI FREKUENSI
BAB II DISTRIBUSI FREKUENSI 1. Pengertian Distribusi Frekuensi 1. Merupakan penyusunan data ke dalam kelas-kelas tertentu di mana setiap indiividu/item hanya termasuk ke dalam salah satu kelas tertentu.
BAB I PENDAHULUAN 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang berada di wilayah rawan bencana. Dalam dekade terakhir sudah cukup banyak bencana yang melanda negeri ini. Gempa bumi, gunung meletus,
Algoritma Brute Force (Bagian 2) Oleh: Rinaldi Munir Bahan Kuliah IF2251 Strategi Algoritmik
Algoritma Brute Force (Bagian 2) Oleh: Rinaldi Munir Bahan Kuliah IF2251 Strategi Algoritmik 1 Contoh-contoh lain 1. Pencocokan String (String Matching) Persoalan: Diberikan a. teks (text), yaitu (long)
Course Note Graph Hamilton
Course Note Graph Hamilton Pada catatan sebelumnya telah dijelaskan tentang definisi graph Hamilton. Suatu graph terhubung adalah graph Hamilton jika graph tersebut memuat sikel yang mencakup semua titik
Penerapan Algoritma A-star (A*) Untuk Menyelesaikan Masalah Maze
Penerapan Algoritma A-star (A*) Untuk Menyelesaikan Masalah Maze Hapsari Tilawah - 13509027 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Informasi Geografis (SIG) Sistem Informasi Geografis atau Geographic Information System (GIS) merupakan suatu sistem informasi yang berbasis komputer, dirancang untuk bekerja
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Graf G didefenisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G = (V,E), yang dalam hal ini V adalah himpunan tidak kosong dari simpul-simpul
