Graf untuk soal nomor 7
|
|
|
- Suryadi Chandra
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Institut Teknologi Bandung T.tangan: Solusi Kuis ke-4 IF2120 Matematika Diskrit (3 SKS) Graf, Pohon, dan Kompleksitas Algoritma Dosen: Rinaldi Munir, Harlili Senin, 2 Desember 2016 Waktu: 90 menit Graf untuk soal nomor 1 Graf untuk soal nomor 8 Graf untuk soal nomor 7 1. Carilah pohon merentang minimum dari graf soal nomor 1 dan tentukan bobot nya! Berikut adalah tabel langkah pembentukan pohon :
2 Langkah ke - Sisi Bobot Pohon rentang 1 (b,d) 1 b 2 (d,e) 4 d 3 (e,g) 2 4 (g,a) 3 5 (g,j) 8
3 6 (j,i) 4 7 (i,f) 5 8 (f,c) 3
4 9 (j,l) 6 10 (f,h) 7
5 11 (j,k) 11 Total bobot = Terdapat suatu pesan (string) yang disimpan di komputer : AKU KAMU MAKAN IKAN. Setiap karakter (termasuk spasi) secara default berukuran 1 byte (8 bit). Namun pesan tersebut dapat dimampatkan dengan algoritma Huffman sehingga ukurannya di memory menjadi lebih kecil. a. Hitunglah frekuensi kemunculan setiap karakter (termasuk spasi), lalu gambarkan pohon Huffmannya. b. Tentukan kode Huffman untuk setiap karakter dan hitung ukuran bit yang dihasilkan jika pesan diubah menjadi kode Huffman (hitung ukuran bitnya saja). c. Apa yang akan terjadi jika pemampatan dengan algoritma Huffman dilakukan pada sebuah string yang terdiri dari semua jenis karakter yang mungkin (terdapat 256 jenis karakter, 1 byte per karakter) dan jumlah kemunculan setiap jenis karakter adalah sama? Bagaimana ukuran bit string setelah dan sebelum pemampatan? a. I=1, M=2, N=2, U=2, Sp=3, K=4, A=5 b. Kode huffman
6 A 00 K 10 Sp 010 N 110 U 111 I 0110 M 0111 AKU KAMU MAKAN IKAN Ukuran bit = ( )+ 3 + ( ) ( ) ( ) = = 51 c. Tidak terjadi pemampatan, ukuran string setelah dan sebelum pemampatan adalah sama besar. 3. Diberikan 4 buah koin yang identik antara satu dengan yang lainnya, namun ternyata satu di antaranya adalah koin yang palsu. Koin yang palsu memiliki berat yang berbeda dengan koin yang asli, namun tidak diketahui apakah koin palsu tersebut lebih berat / lebih ringan daripada yang asli. Untuk menentukan mana yang palsu, diberikan sebuah timbangan, namun hanya dapat digunakan sebanyak 3 kali penimbangan. Dengan menggunakan decision tree, tentukan semua kemungkinan koin yang palsu berdasarkan penimbangan, dan apakah koin palsu tersebut lebih berat / lebih ringan dari yang asli. 4. Diketahui fungsi kompleksitas beberapa algoritma : (i) (ii) (iii) Hitunglah notasi O (big-oh) dari hasil operasi berikut : a.
7 b. Maka : a. b. 5. Perhatikan potongan kode C berikut : int a = 0, b = 0; for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { a = a + j; } } for (k = 0; k < N; k++) { b = b + k; } Tentukan kompleksitas waktu T(n) dan kompleksitas waktu asimptotik dari algoritma diatas, berikan langkah / penjelasan singkat bagaimana anda bisa menentukan jawaban anda! O(N * N) atau O(N 2 ) Loop pertama adalah loop yang bersifat nested, operasi pada variabel a dilakukan N kali dan diulang sebanyak N kali lagi. ( O(N 2 ) ) Loop kedua pada variabel b merupakan single loop, operasi pada variabel b dilakukan N kali sehingga O(N). O(N 2 ) + O(N) = O(N 2 ) 6. Diberikan waktu proses T(n) untuk menyelesaikan sebuah masalah dengan algoritma tertenru. T(n) O(n) 0.01n + 100n n log n + n n 2n + n n log n l og (log(n)) n log n + n (log n) 2 n 2 log n + n (log n) 2 Ubah ekspresi tersebut menjadi notasi O dan urutkan dari yang tercepat. T(n) O(n) 0.01n + 100n O(n 2 ) 100n log n + n n O(n 3 ) 2n + n n 1.25 O(n 1.25 ) log n log (log(n)) O(log n) n log n + n (log n) 2 O(n (log n) 2 ) n 2 log n + n (log n) 2 O(n 2 log n)
8 Hasil Pengurutan : log n log (log(n)), n log n + n (log n) 2, 2n + n n 1.25, 0.01n + 100n , n 2 log n + n (log n) 2, 100n log n + n n 7. Apakah graf soal nomor 7 merupakan graf planar? Berikan alasannya berdasarkan teorema Kuratowski! Tidak planar karena mengandung upagraf K5. 8. Berdasarkan graf soal nomor 8, tentukan dan berikan penjelasan: a. Apakah graf merupakan graf Euler, Semi Euler, atau bukan keduanya? b. Gambarkan sirkuit/lintasan Euler dan Hamilton dari graf tersebut jika ada! (a) Graf tersebut merupakan graf Semi Euler. Graf ini bukan graf Euler karena terdapat simpul berderajat ganjil (G dan D). Graf ini semi euler karena jumlah simpul berderajat ganjil berjumlah tepat 2. (b) Contoh sirkuit Hamilton: E-C-A-B-F-D-G-E Contoh lintasan Euler: D-E-C-A-B-F-G-D-F-E-G
Soal dan Jawaban Materi Graf, Pohon, dan Kompleksitas Algoritma
Soal dan Jawaban Materi Graf, Pohon, dan Kompleksitas Algoritma POHON 1. Ubahlah graf berikut ini dengan menggunakan algoritma prim agar menjadi pohon merentang minimum dan tentukan bobot nya! 2. Diberikan
Gambar 6. Graf lengkap K n
. Jenis-jenis Graf Tertentu Ada beberapa graf khusus yang sering dijumpai. Beberapa diantaranya adalah sebagai berikut. a. Graf Lengkap (Graf Komplit) Graf lengkap ialah graf sederhana yang setiap titiknya
Pohon. Bahan Kuliah IF2120 Matematika Diskrit. Program Studi Teknik Informatika ITB. Rinaldi M/IF2120 Matdis 1
Pohon Bahan Kuliah IF2120 Matematika Diskrit Program Studi Teknik Informatika ITB Rinaldi M/IF2120 Matdis 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a
Penyandian (Encoding) dan Penguraian Sandi (Decoding) Menggunakan Huffman Coding
Penyandian (Encoding) dan Penguraian Sandi (Decoding) Menggunakan Huffman Coding Nama : Irwan Kurniawan NIM : 135 06 090 1) Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10,
Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana
Kompleksitas Algoritma dari Algoritma Pembentukan pohon Huffman Code Sederhana Muhammad Fiqri Muthohar NIM : 13506084 1) 1) Jurusan Teknik Informatika ITB, Bandung, email: [email protected] Abstrak makalah
Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial
Pemanfaatan Pohon Biner dalam Pencarian Nama Pengguna pada Situs Jejaring Sosial Stephen (35225) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Strategi Permainan Menggambar Tanpa Mengangkat Pena
Strategi Permainan Menggambar Tanpa Mengangkat Pena Benardi Atmadja - 13510078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Penggunaan Pohon Huffman Sebagai Sarana Kompresi Lossless Data
Penggunaan Pohon Huffman Sebagai Sarana Kompresi Lossless Data Aditya Rizkiadi Chernadi - 13506049 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Penerapan Algoritma Prim dan Kruskal Acak dalam Pembuatan Labirin
Penerapan Algoritma Prim dan Kruskal Acak dalam Pembuatan Labirin Jason Jeremy Iman 13514058 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik
Penyelesaian Traveling Salesman Problem dengan Algoritma Heuristik Filman Ferdian - 13507091 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha
Pohon (TREE) Matematika Deskrit. Hasanuddin Sirait, MT 1
Pohon (TREE) Matematika Deskrit By @Ir. Hasanuddin Sirait, MT 1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon
Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Pohon) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon
MATEMATIKA DISKRIT II ( 2 SKS)
MATEMATIKA DISKRIT II ( 2 SKS) Rabu, 18.50 20.20 Ruang Hard Disk PERTEMUAN XI, XII RELASI Dosen Lie Jasa 1 Matematika Diskrit Graf (lanjutan) 2 Lintasan dan Sirkuit Euler Lintasan Euler ialah lintasan
Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian
Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Rita Wijaya/13509098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Aplikasi Teori Graf dalam Permainan Instant Insanity
Aplikasi Teori Graf dalam Permainan Instant Insanity Aurelia 13512099 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
Penerapan Pengkodean Huffman dalam Pemampatan Data
Penerapan Pengkodean Huffman dalam Pemampatan Data Patrick Lumban Tobing NIM 13510013 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
Aplikasi Pohon dan Graf dalam Kaderisasi
Aplikasi Pohon dan Graf dalam Kaderisasi Jonathan - 13512031 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
RENCANA PEMBELAJARAN
ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Matematika Diskrit Semester :2 Kode :
Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM :
Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Institut Teknologi Bandung T.tangan: Solusi Kuis ke-2 IF2120 Matematika Diskrit (3 SKS) Relasi dan Fungsi, Aljabar Boolean,
TUGAS MAKALAH INDIVIDUAL. Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM :
TUGAS MAKALAH INDIVIDUAL Mata Kuliah : Matematika Diskrit / IF2153 Nama : Dwitiyo Abhirama NIM : 13505013 Institut Teknologi Bandung Desember 2006 Penggunaan Struktur Pohon dalam Informatika Dwitiyo Abhirama
Definisi. Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk terhubung)
POHON (TREE) Pohon Definisi Pohon adalah graf tak-berarah, terhubung, dan tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon (ada sikuit) (tdk
Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum
Penerapan Algoritma Greedy untuk Memecahkan Masalah Pohon Merentang Minimum Bramianha Adiwazsha - NIM: 13507106 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKRO TELKOM UNIVERSITY
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKRO TELKOM UNIVERSITY MATA KULIAH KODE RUMPUN MK BOBOT (SKS) SEMESTER DIREVISI Matematika Diskrit FEH2J3 3 sks 3 atau 4 22
IF5110 Teori Komputasi. Teori Kompleksitas. (Bagian 1) Oleh: Rinaldi Munir. Program Studi Magister Informatika STEI-ITB
IF5110 Teori Komputasi Teori Kompleksitas (Bagian 1) Oleh: Rinaldi Munir Program Studi Magister Informatika STEI-ITB 1 Sebuah persoalan dikatakan Solvable, jika terdapat mesin Turing yang dapat menyelesaikannya.
Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa
Aplikasi Pohon Merentang Minimum dalam Rute Jalur Kereta Api di Pulau Jawa Darwin Prasetio ( 001 ) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Teknik Pembangkitan Kode Huffman
Teknik Pembangkitan Kode Huffman Muhammad Riza Putra Program Studi Teknik Informatika ITB, Bandung 012, email: [email protected] Abstrak Makalah ini membahas suatu teknik dalam pembangkitan kode Huffman
Aplikasi Graf dalam Merancang Game Pong
Aplikasi Graf dalam Merancang Game Pong Willy Fitra Hendria/13511086 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 POHON DAN PEWARNAAN GRAF Tujuan Mahasiswa
Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer
Membangun Pohon Merentang Minimum Dari Algoritma Prim dengan Strategi Greedy Doni Arzinal 1 Jursan Teknik Informatika, Institut Teknologi Bandung Labtek V, Jl. Ganesha 10 Bandung 1 [email protected],
BAB 2. LANDASAN TEORI 2.1. Algoritma Huffman Algortima Huffman adalah algoritma yang dikembangkan oleh David A. Huffman pada jurnal yang ditulisnya sebagai prasyarat kelulusannya di MIT. Konsep dasar dari
Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari
Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari Andika Mediputra NIM : 13509057 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
DEFINISI. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon 2
1 POHON DEFINISI Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan
Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu? Logika... 1
Daftar Isi Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu?... iii v xi 1. Logika... 1 1.1 Proposisi... 2 1.2 Mengkombinasikan Proposisi... 4 1.3 Tabel kebenaran... 6 1.4 Disjungsi Eksklusif...
Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku
Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku Mahdan Ahmad Fauzi Al-Hasan - 13510104 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Penerapan Algoritma A* dalam Penentuan Lintasan Terpendek
Penerapan Algoritma A* dalam Penentuan Lintasan Terpendek Johannes Ridho Tumpuan Parlindungan/13510103 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Penyelesaian Five Coins Puzzle dan Penghitungan Worst-case Time dengan Pembuatan Pohon Keputusan
Penyelesaian Five Coins Puzzle dan Penghitungan Worst-case Time dengan Pembuatan Pohon Keputusan Lio Franklyn Kemit (13509053) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut
SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54302/ Matematika Diskrit 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot
Kode Huffman dan Penggunaannya dalam Kompresi SMS
Kode Huffman dan Penggunaannya dalam Kompresi SMS A. Thoriq Abrowi Bastari (13508025) Teknik Informatika Institut Teknologi Bandung email: [email protected] ABSTRAK Dalam makalah ini, akan dibahas
Penerapan Graf Dalam File Sharing Menggunakan BitTorrent
Penerapan Graf Dalam File Sharing Menggunakan BitTorrent Denny Astika Herdioso / 0 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung
Definisi. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon
1 Definisi Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit a b a b a b a b c d c d c d c d e f e f e f e f pohon pohon bukan pohon bukan pohon 2 Hutan (forest) adalah - kumpulan pohon
Aplikasi Graf dalam Rute Pengiriman Barang
Aplikasi Graf dalam Rute Pengiriman Barang Christ Angga Saputra - 09 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 0, Indonesia
Analisa Lalu Lintas dan Keamanan di Kota Bandung dengan Penerapan Teori Graf dan Pohon
Analisa Lalu Lintas dan Keamanan di Kota Bandung dengan Penerapan Teori Graf dan Pohon Ignatius Alriana Haryadi Moel - 13513051 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika
Aplikasi Pohon dan Logika pada Variasi Persoalan Koin Palsu
Aplikasi Pohon dan Logika pada Variasi Persoalan Koin Palsu Akbar Suryowibowo Syam - 13511048 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
PEMAMPATAN DATA DENGAN KODE HUFFMAN (APLIKASI POHON BINER)
PEAPATAN DATA DENGAN KODE HUFFAN (APLIKASI POHON BINER) Winda Winanti (350507) Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 0, Bandung E-mail : [email protected] Abstraksi
Pemodelan Pembagian Kelompok Tugas Besar Strategi Algoritma dengan Masalah Sum of Subset
Pemodelan Pembagian Tugas Besar Strategi Algoritma dengan Masalah Sum of Subset Hayyu Luthfi Hanifah 13512080 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER
METODE POHON BINER HUFFMAN UNTUK KOMPRESI DATA STRING KARAKTER Muqtafi Akhmad (13508059) Teknik Informatika ITB Bandung e-mail: [email protected] ABSTRAK Dalam makalah ini akan dibahas tentang
Penerapan strategi runut-balik dalam penyelesaian permainan puzzle geser
Penerapan strategi runut-balik dalam penyelesaian permainan puzzle geser Dimas Angga 13510046 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM
MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM Pudy Prima (13508047) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika
Algoritma Greedy (lanjutan)
Algoritma Greedy (lanjutan) 5. Penjadwalan Job dengan Tenggat Waktu (Job Schedulling with Deadlines) Persoalan: -Adan buah job yang akan dikerjakan oleh sebuah mesin; -tiapjob diproses oleh mesin selama
Analisis Penerapan Algoritma Kruskal dalam Pembuatan Jaringan Distribusi Listrik
Analisis Penerapan Algoritma Kruskal dalam Pembuatan Jaringan Distribusi Listrik Maureen Linda Caroline (13508049) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
Graf. Bekerjasama dengan. Rinaldi Munir
Graf Bekerjasama dengan Rinaldi Munir Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson problem) Persoalan
Penerapan Teori Graf Pada Algoritma Routing
Penerapan Teori Graf Pada Algoritma Routing Indra Siregar 13508605 Program Studi Teknik Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10, Bandung
Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang
Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang berbeda. Bilangan kromatik dari G adalah jumlah warna
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54302/ Matematika Diskrit Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam seminggu
I. PENDAHULUAN. Gambar 1. Contoh-contoh graf
Quad Tree dan Contoh-Contoh Penerapannya Muhammad Reza Mandala Putra - 13509003 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
Perbandingan Kompresi Data Dengan Algoritma Huffman Statik dan Adaptif
Perbandingan Kompresi Data Dengan Algoritma Huffman Statik dan Adaptif Timotius Triputra Safei (13509017) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
APLIKASI POHON DALAM PENCARIAN CELAH KEAMANAN SUATU JARINGAN
APLIKASI POHON DALAM PENCARIAN CELAH KEAMANAN SUATU JARINGAN Aldo Suwandi NIM : 13509025 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum
Penggunaan Algoritma Greedy dalam Membangun Pohon Merentang Minimum Gerard Edwin Theodorus - 13507079 Jurusan Teknik Informatika ITB, Bandung, email: [email protected] Abstract Makalah ini
ALGORITMA RUTE FUZZY TERPENDEK UNTUK KONEKSI SALURAN TELEPON
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 93 97 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ALGORITMA RUTE FUZZY TERPENDEK UNTUK KONEKSI SALURAN TELEPON NELSA ANDRIANA, NARWEN, BUDI RUDIANTO Program
Tugas Graf. TT4002 Matematika Diskrit
Tugas Graf TT4002 Matematika Diskrit Minggu 1 (7 Nov 2017) 1. Definisi Graf dan Contoh 2. Definisi sisi ganda dan contoh 3. Definisi gelang/kalang/loop dan contoh 4. Jenis-jenis graf : graf sederhana dan
Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf
Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Marvin Jerremy Budiman / 13515076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI 2.1. Kompresi Data Kompresi adalah mengecilkan/ memampatkan ukuran. Kompresi Data adalah teknik untuk mengecilkan data sehingga dapat diperoleh file dengan ukuran yang lebih kecil
Penerapan Travelling Salesman Problem dalam Penentuan Rute Pesawat
Penerapan Travelling Salesman Problem dalam Penentuan Rute Pesawat Aisyah Dzulqaidah 13510005 1 Program Sarjana Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Teori Dasar Graf (Lanjutan)
Teori Dasar Graf (Lanjutan) MATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. Matriks-matriks yang dapat menyajikan
Studi Algoritma Optimasi dalam Graf Berbobot
Studi Algoritma Optimasi dalam Graf Berbobot Vandy Putrandika NIM : 13505001 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail : [email protected]
Pengaplikasian Graf Planar pada Analisis Mesh
Pengaplikasian Graf Planar pada Analisis Mesh Farid Firdaus - 13511091 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
Penerapan TSP pada Penentuan Rute Wahana dalam Taman Rekreasi
Penerapan TSP pada Penentuan Rute Wahana dalam Taman Rekreasi Gisela Supardi 13515009 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
Teori Dasar Graf (Lanjutan)
Teori Dasar Graf (Lanjutan) ATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. atriks-matriks yang dapat menyajikan
SATUAN ACARA PERKULIAHAN MATA KULIAH LOGIKA DAN ALGORITMA (MI/D3) KODE: IT SKS: 3 SKS. Kemampuan Akhir Yang Diharapkan
SATUAN ACARA PERKULIAHAN MATA KULIAH LOGIKA DAN ALGORITMA (MI/D3) KODE: IT013323 SKS: 3 SKS Pertemuan Ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Kean Akhir Yang Diharapkan Strategi
Aplikasi Algoritma Prim dalam Penentuan Pohon Merentang Minimum untuk Jaringan Pipa PDAM Kota Tangerang
Aplikasi Algoritma Prim dalam Penentuan Pohon Merentang Minimum untuk Jaringan Pipa PDAM Kota Tangerang Adam Fadhel Ramadhan/13516054 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika
Aplikasi Pohon Merentan Minimum dalam Menentukan Jalur Sepeda di ITB
Aplikasi Pohon Merentan Minimum dalam Menentukan Jalur Sepeda di ITB Kevin Yudi Utama - 13512010 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Decrease and Conquer
Decrease and Conquer Bahan Kuliah IF2211 Strategi Algoritma Oleh: Rinaldi Munir Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB 1 Decrease and conquer: metode desain algoritma
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Graf adalah salah satu metode yang sering digunakan untuk mencari solusi dari permasalahan diskrit dalam dunia nyata. Dalam kehidupan sehari-hari, graf digunakan untuk
Memanfaatkan Pewarnaan Graf untuk Menentukan Sifat Bipartit Suatu Graf
Memanfaatkan Pewarnaan Graf untuk Menentukan Sifat Bipartit Suatu Graf Gianfranco Fertino Hwandiano - 13515118 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
Menghitung Ketinggian Rata-Rata Pohon Terurut
Menghitung Ketinggian Rata-Rata Pohon Terurut Archie Anugrah - 13508001 Jurusan Teknik Informatika Institut Teknologi Bandung Jalan Ganesha nomor 10, Bandung e-mail: [email protected] ABSTRAK
Penerapan Pohon Biner Huffman Pada Kompresi Citra
Penerapan Pohon Biner Huffman Pada Kompresi Citra Alvin Andhika Zulen (3507037) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha No 0 Bandung,
Algoritma Prim sebagai Maze Generation Algorithm
Algoritma Prim sebagai Maze Generation Algorithm Muhammad Ecky Rabani/13510037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
MateMatika Diskrit Aplikasi TI. Sirait, MT 1
MateMatika Diskrit Aplikasi TI By @Ir.Hasanuddin Sirait, MT 1 Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson
Penerapan Teori Graf dalam Game Bertipe Real Time Strategy (RTS)
Penerapan Teori Graf dalam Game Bertipe Real Time Strategy (RTS) Yudha Okky Pratama/13509005 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
TERAPAN POHON BINER 1
TERAPAN POHON BINER 1 Terapan pohon biner di dalam ilmu komputer sangat banyak, diantaranya : 1. Pohon ekspresi 2. Pohon keputusan 3. Kode Prefiks 4. Kode Huffman 5. Pohon pencarian biner 2 Pohon Ekspresi
Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal
Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal Salman Muhammad Ibadurrahman NIM : 13506106 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha
APLIKASI TEORI PRIM DALAM MENENTUKAN JALUR MUDIK
APLIKASI TEORI PRIM DALAM MENENTUKAN JALUR MUDIK Biyan Satyanegara NIM : 0807 Program Studi Teknik Informatika, Sekolah Teknik Elektro Informatika, Institut Teknologi Bandung Jalan Ganesha 10, Bandung
Graph. Politeknik Elektronika Negeri Surabaya
Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar
APLIKASI GRAF DALAM BISNIS TRAVEL BANDUNG-BOGOR
APLIKASI GRAF DALAM BISNIS TRAVEL BANDUNG-BOGOR Achmad Giovani NIM : 13508073 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jl. Ganeca 10 Bandung e-mail:
TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada
II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf
Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2
Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2 Michael - 13514108 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut
Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf
Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan
Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi
Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Ryan Yonata (13513074) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
UNIVERSITAS GUNADARMA
UNIVERSITAS GUNADARMA SK No. 92 / Dikti / Kep /1996 Fakultas Ilmu Komputer, Teknologi Industri, Ekonomi,Teknik Sipil & Perencanaan, Psikologi, Sastra Program Diploma (D3) Manajemen Informatika, Teknik
Algoritma Huffman dan Kompresi Data
Algoritma Huffman dan Kompresi Data David Soendoro ~ NIM 13507086 Jurusan Teknik Informatika ITB, Bandung, email: [email protected] Abstract Algoritma Huffman merupakan salah satu algoritma
JURNAL IT STMIK HANDAYANI
VOLUME 5, DESEMBER 04 Sitti Zuhriyah Sistem Komputer, STMIK Handayani Makassar [email protected] Abstrak Di dalam dunia komputer, semua informasi, baik berupa tulisan, gambar ataupun suara semuanya
Pohon Biner Sebagai Struktur Data Heap dan Aplikasinya
Pohon Biner Sebagai Struktur Data Heap dan Aplikasinya Muhammad Adinata/13509022 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
Algoritma Greedy (Bagian 2) IF2251 Strategi Algoritmik Oleh: Rinaldi Munir
Algoritma Greedy (Bagian 2) IF2251 Strategi Algoritmik Oleh: Rinaldi Munir 1 5. Penjadwalan Job dengan Tenggat Waktu (Job Schedulling with Deadlines) Persoalan: - Ada n buah job yang akan dikerjakan oleh
Implementasi Struktur Data Rope menggunakan Binary Tree dan Aplikasinya dalam Pengolahan Teks Sangat Panjang
Implementasi Struktur Data Rope menggunakan Binary Tree dan Aplikasinya dalam Pengolahan Teks Sangat Panjang Edwin Rachman (NIM 0) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika
MATEMATIKA MATEMATIK A DISKRIT : : MAT-3615/ 3 : : VI
Nama Kode /SKS Program Studi Semester : : MAT-3615/ 3 sks : Pendidikan : VI (Enam) Oleh : Nego Linuhung, M.Pd Nurain Suryadinata, M.Pd Penyajian materi dalam mata kuliah ini tidak hanya berpusat pada dosen,
Perancangan Sistem Transportasi Kota Bandung dengan Menerapkan Konsep Sirkuit Hamilton dan Graf Berbobot
Perancangan Sistem Transportasi Kota Bandung dengan Menerapkan Konsep Sirkuit Hamilton dan Graf Berbobot Rakhmatullah Yoga Sutrisna (13512053) Program Studi Teknik Informatika Sekolah Teknik Elektro dan
I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA-31 Dosen Pengasuh : Ir. Bahder Djohan, MSc
I. LAMPIRAN TUGAS. Mata kuliah : Matematika Diskrit Program Studi : Sistem Informasi PA- Dosen Pengasuh : Ir. Bahder Djohan, MSc Tugas ke Pertemuan TIK Soal-soal Tugas. Mendefinisikan Proposisi Membedakan
Implementasi Graf dalam Penentuan Rute Terpendek pada Moving Object
Implementasi Graf dalam Penentuan Rute Terpendek pada Moving Object Firdaus Ibnu Romadhon/13510079 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Penggunaan Metode Branch And Bound With Search Tree
Penggunaan Metode Branch And Bound With Search Tree Untuk Menyelesaikan Persoalan Pedagang Keliling Pada Graf Lengkap Sebagai Pengganti Metode Exhaustive Enumeration Alfan Farizki Wicaksono - NIM : 13506067
Penerapan Pewarnaan Graf pada Permainan Real- Time Strategy
Penerapan Pewarnaan Graf pada Permainan Real- Time Strategy Kurniandha Sukma Yunastrian / 13516106 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
