BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Audio Audio (suara) adalah fenomena fisik yang dihasilkan oleh getaran suatu benda yang berupa sinyal analog dengan amplitudo yang berubah secara kontinyu terhadap waktu yang disebut frekuensi (Binanto, 2010). Alur gelombang suara sampai ke alat pendengaran dapat dilihat seperti pada Gambar 2.1 Gambar 2.1 Alur Gelombang Suara (Binanto, 2010) Selama bergetar, perbedaan tekanan terjadi di udara sekitarnya. Pola osilasi yang terjadi dinamakan sebagai gelombang. Gelombang mempunyai pola sama yang berulang pada interval tertentu, yang disebut sebagai periode. Contoh suara periodik adalah instrumen musik, nyanyian burung sedangkan contoh suara non periodik adalah batuk, percikan ombak dan lain-lain. Gelombang suara terjadi sebagai variasi tekanan dalam sebuah media, seperti udara. Ia tercipta dari bergetarnya sebuah benda, yang menyebabkan udara sekitarnya ikut bergetar. Udara yang bergetar kemudian diterima oleh telinga, menyebabkan gendang telinga manusia bergetar, kemudian otak menafsirkannya sebagai suara. Gelombang suara berjalan melalui udara, sama seperti gelombang yang terjadi di air. Bahkan, gelombang air lebih mudah untuk dilihat dan dimengerti, hal ini sering digunakan sebagai analogi untuk menggambarkan bagaimana gelombang suara berperilaku. Gelombang suara juga dapat ditampilkan dalam sekitar grafik XY. Hal ini memungkinkan kita untuk membayangkan dan bekerja dengan gelombang dari sudut matematika. Gelombang suara terdiri dari satu lembah dan satu bukit seperti pada Gambar 2.2.

2 6 Gambar 2.2 Gelombang Suara (Binanto, 2010) Gelombang suara pada Gambar 2.2 merupakan suatu grafik gelombang berbentuk dua dimensi, tetapi di dunia nyata gelombang suara berbentuk tiga dimensi. Grafik menunjukkan gelombang bergerak sepanjang jalan dari kiri ke kanan, tapi kenyataannya perjalanan gelombang suara bergerak ke segala arah menjauhi sumber. Kira-kira sama seperti riak air yang terjadi ketika kita menjatuhkan sebuah batu ke dalam kolam. Namun model 2 dimensi ini, cukup dapat menjelaskan tentang bagaimana suara bergerak dari satu tempat ke tempat lain. Bagian-bagian Gelombang Suara Semua gelombang memiliki sifat-sifat tertentu. Ada tiga bagian yang paling penting untuk audio : Panjang gelombang: Jarak antara titik manapun pada gelombang (pada gambar ditunjukkan sebagai titik tertinggi) dan titik setara pada fase berikutnya. Secara harfiah, panjang gelombang adalah jarak yang digambarkan dengan huruf T. Amplitudo: atau kekuatan sinyal gelombang (intensity). Titik tertinggi dari gelombang bila dilihat pada grafik. Amplitudo tinggi biasa disebut sebagai volume yang lebih tinggi, diukur dalam db. Nama perangkat untuk meningkatkan amplitudo disebut amplifier. Frekuensi: frekuensi waktu yang dibutuhkan oleh gelombang bergerak dari satu pase ke pase berikutnya dalam satu detik. Diukur dalam hertz atau cycles per second. Semakin cepat sumber suara bergetar, semakin tinggi frekuensi. Frekuensi yang lebih tinggi ditafsirkan sebagai pitch yang lebih tinggi. Sebagai contoh, ketika kita menyanyi dengan suara bernada tinggi maka akan memaksa pita suara kita bergetar lebih cepat. Hal berikutnya yang perlu diperhatikan adalah apa artinya ketika gelombang mencapai titik tertinggi atau titik rendah. Pada sinyal elektronik, nilai tinggi menunjukkan tegangan positif yang tinggi. Ketika sinyal ini dikonversi menjadi

3 7 gelombang suara, kita dapat membayangkan nilai-nilai tinggi tersebut sebagai daerah yang mewakili peningkatan tekanan udara. Ketika gelombang menyentuh titik tertinggi, hal ini berhubungan dengan molekul udara yang menyebar bersama-sama secara padat. Ketika gelombang menyentuh titik rendah, molekul udara menyebar lebih tipis (renggang). Audio diproduksi oleh sebuah objek yang bergetar, contohnya instrumen musik, ataupun pita suara manusia. Getaran mekanik dari sebuah loud speaker membuat pergerakan udara terdorong dan tertarik dari kondisi stabil, adanya gerakan mendorong dan menarik yang terus menerus dari sebuah speaker membuat tekanan udara berubah yang pada akhirnya menyebabkan terjadinya sebuah gelombang suara. Sebuah gelombang suara dapat dideskripsikan oleh frekuensi dan amplitudo. Frekuensi 1 Hz berarti 1 cycle gelombang lengkap setiap satu detik. Satuan sebuah frekuensi adalah Hertz (Hz). Frekuensi audible (human hearing rang) adalah 20 Hz sampai Hz. Dalam kenyataan praktis sebuah sumber suara selalu diproduksi pada banyak frekuensi secara simultan. Amplitudo sebuah gelombang mengacu pada besarnya perubahan tekanan dan tingkat kerasnya (loudness) gelombang suara. Sebuah sinyal suara diproduksi dan ditransmisikan melalui udara, akhirnya diterima pada telinga manusia. Telinga manusia memiliki gendang pendengaran (eardrum) yang dapat bergetar pada saat menerima gerakan gelombang udara (push and pull). Pengelompokan sound dapat dilakukan berdasarkan acoustic behavior-nya. Berdasarkan acoustic behavior-nya sound dibedakan menjadi dua jenis yaitu direct sound dan indirect sound (ambient). Dikatakan direct sound apabila sumber suara berjalan dari sumber suara langsung menuju ke pendengar dalam aliran garis lurus. Indirect sound bila sumber suara dipantulkan terlebih dahulu pada satu atau lebih permukaan bidang sebelum sampai pada pendengar, karena adanya proses pemantulan sinyal suara pada indirect sound maka ditemukan adanya delay time untuk tiba kepada pendengar. 2.2 Representasi Suara Gelombang suara analog tidak dapat langsung direpresentasikan pada komputer. Komputer mengukur amplitudo pada satuan waktu tertentu untuk menghasilkan sejumlah angka. Tiap satuan pengukuran ini dinamakan sample. Analog to Digital Conversion (ADC) adalah proses mengubah amplitudo gelombang bunyi ke dalam

4 8 waktu interval tertentu (sampling), sehingga menghasilkan representasi digital dari suara. Dalam teknik sampling dikenal istilah sampling rate yaitu beberapa gelombang yang diambil dalam satu detik. Sebagai contoh jika kualitas CD audio dikatakan memiliki frekuensi sebesar Hz, berarti jumlah sampel sebesar per detik. Proses sampling audio analog ke digital dapat dilihat seperti pada Gambar 2.3. Gambar 2.3 Proses sampling audio analog ke digital (Binanto, 2010). Langkah-langkah dalam proses digitasi adalah: 1. Membuang frekuensi tinggi dari source signal. 2. Mengambil sample pada interval waktu tertentu (sampling). 3. Menyimpan amplitudo sampel dan mengubahnya ke dalam bentuk diskrit (kuantisasi). 4. Merubah bentuk menjadi nilai biner. Teknik sampling yang umum pada file audio seperti Nyquist Sampling Rate dimana untuk memperoleh representasi akurat dari suatu sinyal analog secara lossless, amplitudonya harus diambil sample-nya setidaknya pada kecepatan (rate) sama atau lebih besar dari 2 kali lipat komponen frekuensi maksimum yang akan didengar. Misalnya untuk sinyal analog dengan bandwith 15Hz 10kHz sampling rate = 2 x 10KHz = 20 khz (Gunawan, 2005) Struktur data pada file audio Format file wav (waveform audio format) merupakan salah satu format yang digunakan untuk menyimpan suara pada rentang frekuensi 20 Hz sampai 20 khz. Gelombang suara mempunyai data yang kontinyu sehingga gelombang tersebut bila digambarkan akan berupa kurva yang tidak putus-putus, akan tetapi komputer hanya dapat menyimpan data dalam bentuk digital. Struktur data pada file audio berbedabeda tergantung format audio-nya. Struktur file wav dapat dilihat seperti pada Gambar 2.4.

5 9 Gambar 2.4. Struktur File wav (Binanto, 2010) File dengan format wav menggunakan metode pulse code modulation (PCM) untuk menyimpan suara yang bersifat analog menjadi data digital pada komputer. PCM adalah salah satu cara merepresentasikan data analog dalam bentuk digital dimana data sinyal analog tersebut diambil sampelnya pada setiap selang periode tertentu kemudian dijadikan nilai pada sistem digital. Selang waktu yang digunakan untuk mengambil sampel pada sinyal analog tersebut menentukan kualitas suara yang dihasilkan. Semakin banyak sampel sinyal analog yang diambil dalam selang waktu tertentu maka semakin baik pula kualitas suara yang dihasilkan (hasil suara akan mendekati dengan suara aslinya). Data mentah hasil PCM ini kemudian disimpan dalam format file wav. Sebagai contoh file wav memiliki sampel audio seperti pada Gambar 2.5. Gambar 2.5. Contoh struktur file wav dalam bentuk hexa (Sridevi, 2005) Pada struktur file wav Gambar 2.5 terdiri dari: a. Chunk Descriptor yang terdiri dari data:

6 10 b. Fmt subchunk yang terdiri data subchunk1size, audioformat, numchannel, samplerate, byterate,blockalign, data Subchunk, Subchunk2 Size yaitu: 66 6d c. Data sample-sample audio yaitu: e f3 3c 13 3c f9 34 e7 23 a6 3c f2 24 f2 11 ce 1a 0d 2.3 Steganografi Steganografi adalah teknik menyembunyikan atau menyamarkan keberadaan pesan rahasia dalam suatu media penampungnya sehingga orang lain tidak menyadari adanya pesan di dalam media tersebut. Kata steganografi pada awalnya berasal dari kata steganos. Steganos sendiri sebenarnya merupakan kata dari bahasa Yunani. Lebih lengkapnya steganos memiliki arti penyamaran atau penyembunyian dan graphein atau graptos memiliki arti tulisan. Pengertian steganografi yang cukup sering digunakan dalam pembelajaran dengan metodologi sejarah adalah menulis tulisan yang tersembunyi atau terselubung (Prihanto, 2010). Steganografi sudah digunakan sejak dahulu kala sekitar 2500 tahun yang lalu untuk kepentingan politik, militer, diplomatik, serta untuk kepentingan pribadi sebagai alat. Teknik steganografi konvensional berusaha merahasiakan komunikasi dengan cara menyembunyikan pesan ataupun mengkamuflase pesan. Maka sesungguhnya prinsip dasar dalam steganografi lebih dikonsentrasikan pada kerahasian komunikasinya bukan pada datanya (Pakereng, 2010). Seiring perkembangan teknologi terutama teknologi komputasi juga bertambahnya kebutuhan dan keinginan dengan kontinuitas yang tinggi, steganografi merambah juga ke media digital. Ada dua proses utama dalam steganografi digital yaitu penyisipan (embedding/encoding) dan penguraian (extraction/decoding) pesan. Pesan dapat berupa plaintext, chipertext, citra, atau apapun yang dapat ditempelkan ke dalam bit-stream. Embedding merupakan proses menyisipkan pesan ke dalam berkas yang belum dimodifikasi, yang disebut media cover (cover object). Kemudian media cover dan pesan yang ditempelkan membuat media stego (stego object). Extraction adalah proses menguraikan pesan yang tersembunyi dalam media stego. Suatu password khusus (stego key) juga dapat digunakan secara tersembunyi, pada saat penguraian selanjutnya dari pesan. Ringkasnya, steganografi adalah teknik

7 11 menanamkan embedded message pada suatu cover object, dimana hasilnya berupa stego object. Adapun proses steganografi selengkapnya ditunjukkan pada Gambar 2.6. Gambar 2.6. Proses Steganografi (Suryani, 2008) Pihak yang terkait dengan steganografi antara lain embeddor, extractor, dan stegoanalyst (Suryani, 2008). Embeddor adalah orang yang melakukan embedding dengan menggunakan aplikasi steganografi. Extractor adalah orang yang melakukan extract stego image dengan menggunakan aplikasi steganografi. Sedangkan stegoanalyst adalah orang yang melakukan steganalisis. Steganalisis merupakan ilmu dan seni untuk mendeteksi pesan yang tersembunyi dalam steganografi seperti pada Gambar 2.7. Steganografi Teknik Steganografi Linguistik Steganografi Semagrams Open Codes Virtual Semagrams Text Semagrams Jargon Codes Covered Ciphers Gambar 2.7 Taksonomi Steganografi (Suryani, 2008)

8 12 1. Teknik Steganografi (Technical Steganography) Teknik ini menggunakan metode sains untuk menyembunyikan pesan. Contohnya adalah penyembunyian pesan dalam chip mikro. 2. Linguistik Steganografi (Linguistic Steganography) Teknik ini menyembunyikan pesan dalam cara yang tidak lazim. Teknik ini terbagi menjadi dua bagian yaitu Semagrams dan Open Codes. 3. Open Codes Teknik ini menyembunyikan pesan dengan cara yang tidak umum namun tetap tidak mencurigakan. Teknik ini terbagi menjadi dua bagian yaitu Jargon Code dan Covered Ciphers. 4. Covered Ciphers Teknik ini menyembunyikan pesan dalam media pembawa sehingga pesan kemudian dapat diekstrak dari media pembawa tersebut oleh pihak yang mengetahui bagaimana pesan tersembunyi tersebut disembunyikan. Penilaian sebuah algoritma steganografi yang baik dapat dinilai dari beberapa faktor yaitu: 1. Imperceptibility Keberadaan pesan dalam media penampung tidak dapat dideteksi. 2. Fidelity Mutu media penampung setelah ditambahkan pesan rahasia tidak jauh berbeda dengan mutu media penampung sebelum ditambahkan pesan. 3. Recovery Pesan rahasia yang telah disisipkan dalam media penampung harus dapat diungkap kembali. Hal ini merupakan syarat mutlak dalam sebuah algoritma steganografi, karena ada banyak cara penyisipan pesan yang tidak terdeteksi namun sulit dalam pembacaan kembali. 4. Robustness Pesan yang disembunyikan harus tahan terhadap berbagai operasi manipulasi yang dilakukan pada media penampung. Bila pada media penampung dilakukan operasioperasi manipulasi, maka pesan yang disembunyikan seharusnya tidak rusak (tetap valid jika diekstraksi kembali). Karakteristik steganografi yang baik adalah imperceptibility tinggi, fidelity tinggi, recovery maksimum dan robustness tinggi.

9 Teknik Steganografi LSB+1 Least Significant Bit+1 (LSB+1) adalah bagian dari barisan data biner (basis dua) yang mempunyai nilai paling tidak berarti/paling kecil. Letaknya adalah pada bit nomor 2 dari kanan dari barisan 8 bit. Least Significant Bit (LSB) sering kali digunakan untuk kepentingan penyisipan data ke dalam suatu media digital lain, salah satu yang memanfaatkan LSB sebagai metode penyembunyian adalah steganografi audio dengan citra digital. Pada susunan bit di dalam sebuah byte (l byte = 8 bit), ada bit yang paling berarti (most significant bit) atau MSB dan bit yang paling kurang berarti least significant bit atau LSB (Nath, 2012). Susunan bit dapat dilihat seperti pada Gambar MSB LSB+1 LSB Gambar 2.8 Susunan bit pada LSB Nilai desimal dari MSB di atas adalah 181, sedangkan nilai desimal dari LSB adalah 1 dan LSB+1 adalah 0, kemungkinan besarnya dari nilai LSB hanyalah 1 dan 0. Sebelum masuk pada proses penyisipan, maka harus dilakukan terlebih dulu proses konversi dari file wav ke dalam bentuk biner-nya. Untuk melakukan ini diperlukan informasi dari audio wav berupa ukuran sample size dan amplitudo yang digunakan agar proses perubahan LSB nantinya tepat pada bit LSB Media Cover Media cover digunakan pada steganografi sebagai media untuk menampung pesan tersembunyi. Pesan yang disembunyikan tersebut dapat mempunyai hubungan atau bahkan tidak mempunyai hubungan sama sekali dengan media dimana pesan tersebut disisipkan (untuk kasus komunikasi rahasia) atau pesan dapat menyediakan info penting tentang media, seperti informasi autentifikasi, judul, tanggal dan waktu pembuatan, hak cipta, nomor seri kamera digital yang digunakan untuk mengambil gambar, informasi mengenai isi dan akses terhadap citra dan lain sebagainya (Binanto, 2010). Secara teori, semua berkas yang ada dalam komputer dapat digunakan sebagai media dalam steganografi, asalkan berkas tersebut mempunyai bit-bit data redundan

10 14 yang dapat dimodifikasi. Beberapa contoh media cover yang digunakan dalam teknik steganografi antara lain adalah : 1. Teks Dalam algoritma steganografi yang menggunakan teks sebagai media penyisipannya, teks yang telah disisipi pesan rahasia tidak boleh mencurigakan untuk orang yang melihatnya. 2. Suara Format ini sering dipilih karena biasanya berkas dengan format ini berukuran relatif besar. Sehingga dapat menampung pesan rahasia dalam jumlah yang besar pula. 3. Citra Format ini paling sering digunakan, karena format ini merupakan salah satu format berkas yang sering dipertukarkan dalam dunia internet. Alasan lainnya adalah banyaknya tersedia algoritma steganografi untuk media penampung yang berupa citra. 4. Video Format ini merupakan format dengan ukuran berkas yang relatif sangat besar namun jarang digunakan karena ukurannya yang terlalu besar sehingga mengurangi kepraktisannya dan juga kurangnya algoritma yang mendukung format ini. 2.5 Algoritma Kriptografi Data Encrytion Standard (DES) DES merupakan block cipher 16 ronde yang memiliki struktur Feistel dan memiliki masukan/keluaran 64 bit, serta memiliki kunci sepanjang 56 bit. Dengan struktur Feistel, algoritma enkripsi memiliki struktur yang sama dengan yang untuk dekripsi. Perbedaannya hanya terletak pada urutan sub key yang dimasukkan. DES merupakan salah satu algoritma kriptografi cipher block dengan ukuran blok 64 bit dan ukuran kuncinya 56 bit. Algoritma DES dibuat di IBM, dan merupakan modifikasi dari algoritma terdahulu yang bernama Lucifer. Lucifer merupakan algoritma cipher block yang beroperasi pada blok masukan 64 bit dan kuncinya berukuran 28 bit. Pengurangan jumlah bit kunci pada DES dilakukan dengan alasan agar mekanisme algoritma ini bisa diimplementasikan dalam satu chip (Kurniawan, 2004).

11 15 DES pertama kali dipublikasikan di Federal Register pada 17 Maret Setelah melalui banyak diskusi, akhirnya algortima DES digunakan oleh NBS (National Bureau of Standards) pada 15 Januari Sejak saat itu, DES banyak digunakan pada dunia penyebaran informasi untuk melindungi data agar tidak bisa dibaca oleh orang lain. Namun demikian, DES juga mengundang banyak kontroversi dari para ahli di seluruh dunia. Salah satu kontroversi tersebut adalah S-Box yang digunakan pada DES. S-Box merupakan bagian vital dari DES karena merupakan bagian yang paling sulit dipecahkan. Hal ini disebabkan karena S-Box merupakan satu satunya bagian dari DES yang komputasinya tidak linear. Sementara itu, rancangan dari S-Box sendiri tidak diberitahukan kepada publik. Karena itulah, banyak yang curiga bahwa S-Box dirancang sedemikian rupa sehingga memberikan trapdoor kepada NSA agar NSA bisa membongkar semua ciphertext yang dienkripsi dengan DES kapan saja (Pakereng, 2010). Kontroversi yang kedua adalah jumlah bit pada kunci DES yang dianggap terlalu kecil, hanya 56 bit. Akibatnya DES rawan terhadap serangan brute force. Walaupun terdapat kerawanan tersebut, DES tetap digunakan pada banyak aplikasi seperti pada enkripsi PIN (Personal Identification Numbers) pada mesin ATM (Automatic Teller Machine) dan transaksi perbankan lewat internet. Bahkan, organisasi organisasi pemerintahan di Amerika seperti Department of Energy, Justice Department, dan Federal Reserve System menggunakan DES untuk melindungi penyebaran data mereka (Pakereng, 2010). DES mengenkripsikan 64 bit plainteks menjadi 64 bit cipherteks dengan menggunakan 56 bit kunci internal (internal key) atau upa-kunci (subkey). Kunci internal dibangkitkan dari kunci eksternal (external key) yang panjangnya 64 bit. Blok plainteks dipermutasi dengan matriks permutasi awal (initial permutation atau IP). Hasil permutasi awal kemudian di-enciphering- sebanyak 16 kali (16 putaran). Setiap putaran menggunakan kunci internal yang berbeda. Hasil enciphering kemudian dipermutasi dengan matriks permutasi balikan (invers initial permutation atau IP -1 ) menjadi blok cipherteks. Skema global dari algoritma DES adalah sebagai berikut: 1. Blok plainteks dipermutasi dengan matriks permutasi awal (initial permutation)

12 16 2. Hasil permutasi awal kemudian di enchipering sebanyak 16 putaran. Setiap putaran menggunakan kunci internal yang berbeda. 3. Hasil enchipering kemudian dipermutasi dengan matriks permutasi balikan (invers initial permutation atau IP-1) menjadi blok chiperteks. Skema global dari algoritma DES adalah seperti pada Gambar 2.9. Plainteks IP 16 kali Enciphering IP -1 Cipherteks Gambar 2.9 Skema Global Algoritma DES (Primartha, 2011) Pada proses enkripsi yang pertama dilakukan adalah merubah plainteks dan kunci eksternal ke dalam bentuk biner kemudian melakukan initial permutation (IP) pada bit plainteks menggunakan tabel initial permutation yang ditunjukkan pada Tabel 2.1. Tabel 2.1 Matriks Permutasi Awal Dalam algoritma DES, terdapat kunci eksternal dan kunci internal. Kunci internal dibangkitkan dari kunci eksternal yang diberikan oleh pengguna. Kunci internal dibangkitkan sebelum proses enkripsi ataupun bersamaan dengan proses enkripsi. Kunci eksternal panjangnya adalah 64 bit atau delapan karakter. Karena ada 16 putaran, maka kunci internal panjangnya yang dibutuhkan sebanyak 16 buah, yaitu K 1, K 2,, K 16.

13 17 Kunci eksternal 64 bit, di kompresi menjadi 56 bit menggunakan matrik permutasi kompresi PC-1. Dalam permutasi tiap bit ke delapan dari delapan byte kunci akan diabaikan. Sehingga akan ada pengurangan delapan bit dari 64 bit awal kunci eksternal. Matriks permutasi kompresi PC-1 dapat dilihat pada Tabel 2.2. Tabel 2.2 Matriks Permutasi Kompresi PC Dalam permutasi ini, tiap bit ke delapan (parity bit) dari delapan byte kunci diabaikan. Hasil permutasinya adalah sepanjang 56 bit, sehingga dapat dikatakan panjang kunci DES adalah 56 bit. Selanjutnya, 56 bit ini dibagi menjadi 2 bagian, kiri dan kanan, yang masing-masing panjangnya 28 bit, yang masing-masing disimpan di dalam C 0 dan D 0 : C 0 : berisi bit-bit dari K pada posisi 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36 D 0 : berisi bit-bit dari K pada posisi 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 Selanjutnya, kedua bagian digeser ke kiri (left shift) sepanjang satu atau dua bit bergantung pada tiap putaran. Operasi pergeseran bersifat wrapping atau round-shift. Jumlah pergeseran pada setiap putaran ditunjukkan pada Tabel 2.3. Tabel 2.3 Jumlah pergeseran bit pada setiap putaran Putaran i Jumlah pergeseran bit

14 Misalkan (C i, D i ) menyatakan penggabungan C i dan D i. (C i+1, D i+1 ) diperoleh dengan menggeser C i dan D i satu atau dua bit. Setelah pergeseran bit, (C i, D i ) mengalami permutasi kompresi dengan menggunakan matriks PC-2 seperti pada Tabel 2.4. Tabel 2.4 Matriks Kompresi PC Jadi, setiap kunci internal K i mempunyai panjang 48 bit. Bila jumlah pergeseran bitbit pada Tabel 2.2 dijumlahkan semuanya, maka jumlah seluruhnya sama dengan 28, yang sama dengan jumlah bit pada C i dan D i. Karena itu, setelah putaran ke-16 akan didapatkan kembali C 16 = C 0 dan D 16 = D 0. Proses pembangkitan kunci-kunci internal ditunjukkan pada Gambar Kunci eksternal Permutasi PC-1 C 0 D 0 Left Shift Left Shift C 1 D 1 Left Shift Left Shift Permutasi PC-2 K 1 j j Permutasi PC-2 Left Shift Left Shift K j C 16 D 16 Permutasi PC-2 K 16 Gambar 2.10 Pembangkitan Kunci Internal (Andri, 2009) Proses enciphering terhadap blok plainteks dilakukan setelah permutasi awal dimana setiap blok plainteks mengalami 16 kali putaran enciphering. Setiap putaran enciphering merupakan jaringan Feistel yang secara matematis dinyatakan sebagai:

15 19 L i = R i 1... (2.1) R i = L i 1 f(r i 1, K i )... (2.2) Diagram komputasi fungsi f diperlihatkan pada Gambar bit R i-1 Ekspansi menjadi 48 bit E(R i-1 ) 48 bit 48 bit 48 bit K i E ( R i 1 ) K i A S 1... S 8 Matriks substitusi 32 bit 32 bit B P(B) Gambar 2.11 Rincian komputasi fungsi f (Andri, 2009) E adalah fungsi ekspansi yang memperluas blok R i 1 yang panjangnya 32 bit menjadi blok 48 bit. Fungsi ekspansi direalisasikan dengan matriks permutasi ekspansi seperti pada Tabel 2.5. Tabel 2.5 Matriks Permutasi Ekspansi Selanjutnya, hasil ekspansi, yaitu E(R i 1 ),yang panjangnya 48 bit di-xor-kan dengan K i yang panjangnya 48 bit menghasilkan vektor A yang panjangnya 48-bit: E(R i 1 ) K i = A Vektor A dikelompokkan menjadi 8 kelompok, masing-masing 6 bit, dan menjadi masukan bagi proses substitusi. Proses substitusi dilakukan dengan menggunakan delapan buah kotak-s (S-box), S 1 sampai S 8. Setiap kotak S menerima masukan 6 bit dan menghasilkan keluaran 4 bit. Kelompok 6 bit pertama menggunakan S 1, kelompok 6 bit kedua menggunakan S 2, dan seterusnya. Kedelapan kotak S tersebut adalah:

16 20 S 1 : S 2 : S 3 : S 4 : S 5 : S 6 :

17 21 S 7 : S 8 : Keluaran proses substitusi adalah vektor B yang panjangnya 48 bit. Vektor B menjadi masukan untuk proses permutasi. Tujuan permutasi adalah untuk mengacak hasil proses substitusi kotak S. Permutasi dilakukan dengan menggunakan matriks permutasi P (P-box) seperti pada Tabel 2.6. Tabel 2.6 Matriks Permutasi P (P-Box) Bit-bit P(B) merupakan keluaran dari fungsi f. Akhirnya, bit-bit P(B) di-xor-kan dengan L i 1 untuk mendapatkan R i. R i = L i 1 P(B)...(2.3) Jadi, keluaran dari putaran ke-i adalah (L i, R i ) = (R i 1, L i 1 P(B))...(2.4) Skema sederhana perolehan R i diperlihatkan pada Gambar bit L i-1 f 32 bit R i Gambar 2.12 Skema perolehan R i

18 22 Permutasi terakhir dilakukan setelah 16 kali putaran terhadap gabungan blok kiri dan blok kanan. Proses permutasi menggunakan matriks permutasi awal balikan (inverse initial permutation atau IP -1 ) seperti pada Tabel 2.7. Tabel 2.7 Matriks Permutasi Awal Balikan (inverse initial permutation atau IP -1 ) Proses dekripsi Proses dekripsi terhadap cipherteks merupakan kebalikan dari proses enkripsi. DES menggunakan algoritma yang sama untuk proses enkripsi dan dekripsi. Jika pada proses enkripsi urutan kunci internal yang digunakan adalah K 1, K 2,, K 16, maka pada proses dekripsi urutan kunci yang digunakan adalah K 16, K 15,, K 1. Untuk tiap putaran 16, 15,, 1, keluaran pada setiap putaran deciphering adalah L i = R i 1...(2.5) R i = L i 1 f(r i 1, K i )...(2.6) Yang dalam hal ini, (R 16, L 16 ) adalah blok masukan awal untuk deciphering. Blok (R 16, L 16 ) diperoleh dengan mempermutasikan cipherteks dengan matriks permutasi IP -1. Pra-keluaran dari deciphering adalah (L 0, R 0 ). Dengan permutasi awal IP akan didapatkan kembali blok plainteks semula. Pada proses pembangkitan kunci internal, selama deciphering, K 16 dihasilkan dari (C 16, D 16 ) dengan permutasi PC-2. Tentu saja (C 16, D 16 ) tidak dapat diperoleh langsung pada permulaan deciphering. Tetapi karena (C 16, D 16 ) = (C 0, D 0 ), maka K 16 dapat dihasilkan dari (C 0, D 0 ) tanpa perlu lagi melakukan pergeseran bit. (C 0, D 0 ) yang merupakan bit-bit dari kunci eksternal K yang diberikan pengguna pada waktu dekripsi. Selanjutnya, K 15 dihasilkan dari (C 15, D 15 ) yang mana (C 15, D 15 ) diperoleh dengan menggeser C 16 (yang sama dengan C 0 ) dan D 16 (yang sama dengan C 0 ) satu bit ke kanan. Sisanya, K 14 sampai K 1 dihasilkan dari (C 14, D 14 ) sampai (C 1, D 1 ). Catatlah bahwa (C i 1, D i 1 ) diperoleh dengan menggeser C i dan D i dengan cara yang sama seperti pada Tabel 1, tetapi pergeseran kiri (left shift) diganti menjadi pergeseran kanan (right shift).

19 Penelitian Terdahulu Penelitian yang dilakukan oleh Yuniati et al (2009) menunjukkan bahwa algoritma AES dengan panjang kunci 256 bit dapat menyandikan isi suatu file sehingga dapat mengamankan file tersebut. Ukuran file enkripsi akan bertambah 11 bytes dari file asli karena adanya proses penambahan header yang berisi informasi ekstensi file. Semakin besar ukuran suatu file maka semakin lama pula waktu yang dibutuhkan untuk melakukan proses enkripsi dan proses dekripsi. Penelitian selanjutnya yang dilakukan oleh Zaher (2011) menunjukkan bahwa algoritma Modified Least Significant Bit (MLSB) atau modifikasi dari algoritma LSB digunakan untuk meng-encode sebuah identitas ke dalam citra asli. MLSB menggunakan manipulasi beberapa tingkat bit-bit penyisip sebelum meng-encode pesan tersebut. Modifikasi pesan dengan algoritma MLSB dimana bit-bit pesan yang seharusnya 1 karakter memiliki nilai 8 bit ASCII code akan dimodifikasi menjadi 5 bit. Penelitian yang dilakukan oleh Sembiring (2013) dengan menggunakan Algoritma SHA-512 dan Least Significant Bit pada data citra dengan meng-hashing pesan teks rahasia dengan panjang pesan maksimal 250 karakter, karakter yang telah di-hashing dikonversi menjadi bit, setiap bit karakter tersebut disisipkan ke data citra dengan menggunakan metode least significant bit sehingga menghasilkan watermark yang tersembunyi pada citra tersebut. Penelitian yang dilakukan oleh Fitri (2010) dengan menggunakan algoritma DES dan Least Significant Bit pada file gambar yang berekstensi *.GIF, *.JPEG, *.PNG yang di sisipkan pesan 100 karakter mempunyai performa yang cukup bagus dengan waktu relatif cepat. Berikut ini akan dipaparkan beberapa penelitian terdahulu yang berhubungan dengan penelitian ini. Tabel 2.8. Hasil dan kesimpulan dari berbagai penelitian terdahulu No Penelitian Metode yang digunakan 1 Yuniati et al, 2009 Advanced Encryption Algorithm 256 (AES 256). Keterangan file dekripsi dapat kembali seperti ekstensi file sumber karena saat sistem melakukan proses enkripsi

20 24 2 Zaher, 2011 Least Significant Bit (MLSB). 3 Sembiring, 2013 Algoritma SHA-512 dan Least Significant Bit 4 Fitri, 2010 Algoritma DES dan Least Significant Bit ditambahkan header untuk menyimpan informasi ekstensi file sumber. Sedangkan ukuran file dekripsi akan kembali ke ukuran file asli. Pada algoritma ini karakter dan angka direpresentasikan dalam 5 bit yang kemudian akan disisipkan ke dalam citra asli dengan teknik MLSB. Hasil penelitian menunjukkan bahwa gambar yang telah disisipkan pesan teks memiliki performa yang baik dan pesan teks tersebut tidak bisa dilihat secara visual tetapi bisa dilihat dengan histogram. Kualitas citra yang disisipi teks sebanyak 100 karakter atau sekitar 100 byte masih belum bisa dilihat secara visual. Walaupun tidak bisa dilihat secara visual, perbedaan citra bisa dilihat dengan histogram Perbedaan penelitian terdahulu dengan penelitian ini adalah dalam penelitian ini, keamanan file citra dilakukan dengan menggunakan algoritma kriptografi DES dan penambahan algoritma Least Significant Bit+1 (LSB+1) pada penyisipan file gambar ke dalam file audio wav.

ANALISA PROSES ENKRIPSI DAN DESKRIPSI DENGAN METODE DES

ANALISA PROSES ENKRIPSI DAN DESKRIPSI DENGAN METODE DES INFOKAM Nomor I / Th. VII/ Maret / 11 39.. ANALISA PROSES ENKRIPSI DAN DESKRIPSI DENGAN METODE DES Muhamad Danuri Dosen Jurusan Manajemen Informatika, AMIK JTC Semarang ABSTRAKSI Makalah ini membahas tentang

Lebih terperinci

BAB 2 LANDASAN TEORI. Gambar 2.1 Alur Gelombang Suara (Binanto, 2010)

BAB 2 LANDASAN TEORI. Gambar 2.1 Alur Gelombang Suara (Binanto, 2010) BAB 2 LANDASAN TEORI 2.1 Audio Audio (suara) adalah fenomena fisik yang dihasilkan oleh getaran suatu benda yang berupa sinyal analog dengan amplitudo yang berubah secara kontinyu terhadap waktu yang disebut

Lebih terperinci

Data Encryption Standard (DES)

Data Encryption Standard (DES) Bahan Kuliah ke-12 IF5054 Kriptografi Data Encryption Standard (DES) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 12. Data Encryption Standard (DES)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Steganografi Steganografi adalah seni komunikasi dengan menyembunyikan atau menyamarkan keberadaan pesan rahasia dalam suatu media penampungnya sehingga orang lain tidak menyadari

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN 3.1 Analis Sistem Analisis sistem merupakan uraian dari sebuah sistem kedalam bentuk yang lebih sederhana dengan maksud untuk mengidentifikas dan mengevaluasi permasalahan-permasalahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kriptografi Kriptografi (cryprography) berasal dari bahasa Yunani : cryptos artinya secret (rahasia), sedangkan graphein artinya writing (tulisan). Jadi, kriptografi berarti

Lebih terperinci

Outline. Sejarah DES Enkripsi DES Implementasi Hardware dan Software DES Keamanan DES

Outline. Sejarah DES Enkripsi DES Implementasi Hardware dan Software DES Keamanan DES Aisyatul Karima, 2012 Outline Sejarah DES Enkripsi DES Implementasi Hardware dan Software DES Keamanan DES Sejarah DES Algoritma DES dikembangkan di IBM dibawah kepemimpinan W.L. Tuchman pada tahun 1972.

Lebih terperinci

DATA ENCRYPTION STANDARD (DES) STANDAR ENKRIPSI DATA. Algoritma Kriptografi Modern

DATA ENCRYPTION STANDARD (DES) STANDAR ENKRIPSI DATA. Algoritma Kriptografi Modern DATA ENCRYPTION STANDARD (DES) STANDAR ENKRIPSI DATA Algoritma Kriptografi Modern SEJARAH DES 1960-1971; Proyek Lucifer IBM dipimpin Horst Feistel untuk kriptografi modern. Lucifer dikenal sbg blok kode

Lebih terperinci

Modul Praktikum Keamanan Sistem

Modul Praktikum Keamanan Sistem 2017 Modul Praktikum Keamanan Sistem LABORATORIUM SECURITY SYSTEM Hanya dipergunakan di lingkungan Fakultas Teknik Elektro KK KEAMANAN SISTEM FAKULTAS TEKNIK ELEKTRO UNIVERSITAS TELKOM DAFTAR PENYUSUN

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Steganografi

BAB 2 LANDASAN TEORI. 2.1 Steganografi BAB 2 LANDASAN TEORI 2.1 Steganografi Steganografi, berasal dari bahasa Yunani yaitu stegos yang berarti atap atau tertutup dan graphia yang berarti tulisan, adalah ilmu dan seni menyembunyikan keberadaan

Lebih terperinci

Penerapan Enkripsi Dan Dekripsi File Menggunakan Algoritma Data Encryption Standard (DES) ABSTRAK

Penerapan Enkripsi Dan Dekripsi File Menggunakan Algoritma Data Encryption Standard (DES) ABSTRAK Penerapan Enkripsi Dan Dekripsi File Menggunakan Algoritma Data Encryption Standard (DES) Rifkie Primartha Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Universitas Sriwijaya e-mail: rifkie_p@yahoo.co.id

Lebih terperinci

STUDI, IMPLEMENTASI DAN PERBANDINGAN ALGORITMA KUNCI SIMETRI TRIPLE DATA ENCRYPTION STANDARD DAN TWOFISH

STUDI, IMPLEMENTASI DAN PERBANDINGAN ALGORITMA KUNCI SIMETRI TRIPLE DATA ENCRYPTION STANDARD DAN TWOFISH STUDI, IMPLEMENTASI DAN PERBANDINGAN ALGORITMA KUNCI SIMETRI TRIPLE DATA ENCRYPTION STANDARD DAN TWOFISH Abstraksi Revi Fajar Marta NIM : 3503005 Program Studi Teknik Informatika, Institut Teknologi Bandung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Folder Sebuah directory (folder) adalah seperti ruangan-ruangan (kamar-kamar) pada sebuah komputer yang berfungsi sebagai tempat penyimpanan dari berkas-berkas (file).

Lebih terperinci

Data Encryption Standard (DES)

Data Encryption Standard (DES) Data Encryption Standard (DES) achmat Ariin Teknik Inormatika Sekolah Teknologi Elektro dan Inormatika Institut Teknologi Bandung Jln Cijawura GIrang II / I No I@students.i.itb.ac.id ABSTAK Dalam dunia

Lebih terperinci

BAB III ANALISA DAN DESAIN SISTEM

BAB III ANALISA DAN DESAIN SISTEM BAB III ANALISA DAN DESAIN SISTEM III.1 Analisa Masalah Dalam melakukan pengamanan data SMS kita harus mengerti tentang masalah keamanan dan kerahasiaan data merupakan hal yang sangat penting dalam suatu

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. permasalahan-permasalahan dan kebutuhan-kebutuhan yang diharapkan sehingga dapat

BAB III ANALISIS DAN PERANCANGAN SISTEM. permasalahan-permasalahan dan kebutuhan-kebutuhan yang diharapkan sehingga dapat BAB III ANALISIS DAN PERANCANGAN SISTEM 3.1 Analisis Sistem Analisis sistem ini merupakan penguraian dari suatu sistem yang utuh kedalam bagian-bagian komponennya dengan maksud untuk mengidentifikasi dan

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Kriptografi

BAB 2 LANDASAN TEORI. 2.1 Kriptografi BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yaitu kryptos yang berarti tersembunyi dan graphein yang berarti menulis. Kriptografi adalah bidang ilmu yang mempelajari teknik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Steganografi Kata steganografi berasal dari bahasa yunani yang terdiri dari steganos (tersembunyi) graphen (menulis), sehingga bisa diartikan sebagai tulisan yang tersembunyi.

Lebih terperinci

Studi dan Analisis Keamanan Data Encryption Standard Dengan Menggunakan Teknik Differential Cryptanalysis

Studi dan Analisis Keamanan Data Encryption Standard Dengan Menggunakan Teknik Differential Cryptanalysis Studi dan Analisis Keamanan Data Encryption Standard Dengan Menggunakan Teknik Differential Cryptanalysis Hengky Budiman NIM : 13505122 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl.

Lebih terperinci

Ada 4 mode operasi cipher blok: 1. Electronic Code Book (ECB) 2. Cipher Block Chaining (CBC) 3. Cipher Feedback (CFB) 4. Output Feedback (OFB)

Ada 4 mode operasi cipher blok: 1. Electronic Code Book (ECB) 2. Cipher Block Chaining (CBC) 3. Cipher Feedback (CFB) 4. Output Feedback (OFB) 1 Ada 4 mode operasi cipher blok: 1. Electronic Code Book (ECB) 2. Cipher Block Chaining (CBC) 3. Cipher Feedback (CFB) 4. Output Feedback (OFB) 2 Setiap blok plainteks P i dienkripsi secara individual

Lebih terperinci

Teknologi Multimedia. Suara dan Audio

Teknologi Multimedia. Suara dan Audio Teknologi Multimedia Suara dan Audio SUARA (SOUND) Suara adalah fenomena fisik yang dihasilkan oleh getaran benda getaran suatu benda yang berupa sinyal analog dengan amplitudo yang berubah secara kontinyu

Lebih terperinci

KEAMANAN DATA DENGAN MENGGUNAKAN ALGORITMA RIVEST CODE 4 (RC4) DAN STEGANOGRAFI PADA CITRA DIGITAL

KEAMANAN DATA DENGAN MENGGUNAKAN ALGORITMA RIVEST CODE 4 (RC4) DAN STEGANOGRAFI PADA CITRA DIGITAL INFORMATIKA Mulawarman Februari 2014 Vol. 9 No. 1 ISSN 1858-4853 KEAMANAN DATA DENGAN MENGGUNAKAN ALGORITMA RIVEST CODE 4 (RC4) DAN STEGANOGRAFI PADA CITRA DIGITAL Hendrawati 1), Hamdani 2), Awang Harsa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Keamanan Informasi Dalam era digital, komunikasi melalui jaringan komputer memegang peranan penting. Melalui komunikasi elektronis, seseorang dapat melakukan transaksi atau komunikasi

Lebih terperinci

Implementasi Kriptografi dan Steganografi pada File Audio Menggunakan Metode DES dan Parity Coding

Implementasi Kriptografi dan Steganografi pada File Audio Menggunakan Metode DES dan Parity Coding Implementasi Kriptografi dan Steganografi pada File Audio Menggunakan Metode DES dan Parity Coding Yoga bagus Perkhasa, Wahyu Suadi, Baskoro Adi Pratomo Jurusan Teknik Informatika, Fakultas Teknologi Informasi,

Lebih terperinci

BAB I PENDAHULUAN. Informasi merupakan suatu hal yang sangat penting dalam. kehidupan kita. Seperti dengan adanya teknologi internet semua

BAB I PENDAHULUAN. Informasi merupakan suatu hal yang sangat penting dalam. kehidupan kita. Seperti dengan adanya teknologi internet semua BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Informasi merupakan suatu hal yang sangat penting dalam kehidupan kita. Seperti dengan adanya teknologi internet semua orang memanfaatkannya sebagai media pertukaran

Lebih terperinci

STUDI PERBANDINGAN ALGORITMA SIMETRI BLOWFISH DAN ADVANCED ENCRYPTION STANDARD

STUDI PERBANDINGAN ALGORITMA SIMETRI BLOWFISH DAN ADVANCED ENCRYPTION STANDARD STUDI PERBANDINGAN ALGORITMA SIMETRI BLOWFISH DAN ADVANCED ENCRYPTION STANDARD Mohammad Riftadi NIM : 13505029 Program Studi Informatika, Institut Teknologi Bandung Jl. Ganesha No. 10, Bandung E-mail :

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Steganografi

BAB 2 LANDASAN TEORI. 2.1 Steganografi BAB 2 LANDASAN TEORI 2.1 Steganografi Steganografi adalah seni dan ilmu menulis pesan tersembunyi atau menyembunyikan pesan dengan suatu cara sehingga selain si pengirim dan si penerima, tidak ada seorangpun

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN IV.1. Hasil Dalam bab ini akan dijelaskan dan ditampilkan bagaimana hasil dari rancangan program beserta pembahasan tentang program. Dimana di dalam program ini terdapat tampilan

Lebih terperinci

II Bab II Dasar Teori

II Bab II Dasar Teori II Bab II Dasar Teori II.1 Kriptografi Kriptografi adalah ilmu dan seni untuk menjaga keamanan pesan [SCH96]. Terdapat berbagai macam definisi mengenai kriptografi, namun pada intinya kriptografi adalah

Lebih terperinci

BAB 2 TINJAUAN TEORETIS

BAB 2 TINJAUAN TEORETIS BAB 2 TINJAUAN TEORETIS 2. Citra Digital Menurut kamus Webster, citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda. Citra digital adalah representasi dari citra dua dimensi

Lebih terperinci

Sistem Multimedia. Materi : Audio/Suara

Sistem Multimedia. Materi : Audio/Suara Sistem Multimedia Materi : Audio/Suara Definisi i i Suara Suara (Sound) fenomena fisik yang dihasilkan oleh getaran benda getaran suatu benda yang berupa sinyal analog dengan amplitudo yang berubah b secara

Lebih terperinci

1.1 LATAR BELAKANG I-1

1.1 LATAR BELAKANG I-1 BAB I PENDAHULUAN Bab ini berisi bagian pendahuluan, yang mencakup latar belakang, rumusan dan batasan masalah, tujuan, metologi, serta sistematika pembahasan dari Tugas Akhir ini. 1.1 LATAR BELAKANG Dewasa

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Berkat perkembangan teknologi yang begitu pesat memungkinkan manusia dapat berkomunikasi dan saling bertukar informasi/data secara jarak jauh. Antar kota antar wilayah

Lebih terperinci

PENGAMANAN DATA TEKS DENGAN KOMBINASI CIPHER BLOCK CHANING DAN LSB-1

PENGAMANAN DATA TEKS DENGAN KOMBINASI CIPHER BLOCK CHANING DAN LSB-1 PENGAMANAN DATA TEKS DENGAN KOMBINASI CIPHER BLOCK CHANING DAN LSB-1 Taronisokhi Zebua STMIK Budi Darma, Medan Email : taronizeb@gmail.com Abstrak Pengamanan data teks merupakan salah satu kegiatan yang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Jaringan komputer dan internet telah mengalami perkembangan pesat. Teknologi ini mampu menghubungkan hampir semua komputer yang ada di dunia, sehingga kita bisa saling

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi informasi semakin memudahkan penggunanya dalam berkomunikasi melalui bermacam-macam media. Komunikasi yang melibatkan pengiriman dan penerimaan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. (Cryptography is the art and science of keeping messages secure) Crypto berarti secret

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam

BAB 1 PENDAHULUAN. 1.1 Latar Belakang. Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring perkembangan teknologi, berbagai macam dokumen kini tidak lagi dalam bentuknya yang konvensional di atas kertas. Dokumen-dokumen kini sudah disimpan sebagai

Lebih terperinci

KOMBINASI ALGORITMA TRIPLE DES DAN ALGORITMA AES DALAM PENGAMANAN FILE

KOMBINASI ALGORITMA TRIPLE DES DAN ALGORITMA AES DALAM PENGAMANAN FILE KOMBINASI ALGORITMA TRIPLE DES DAN ALGORITMA AES DALAM PENGAMANAN FILE Christnatalis 1), Opim Salim Sitompul 2), Tulus 3) 1) Program Studi Teknik Informatika, Fasilkom-TI USU 2) Program Studi Teknologi

Lebih terperinci

Implementasi Steganografi Pesan Text Ke Dalam File Sound (.Wav) Dengan Modifikasi Jarak Byte Pada Algoritma Least Significant Bit (Lsb)

Implementasi Steganografi Pesan Text Ke Dalam File Sound (.Wav) Dengan Modifikasi Jarak Byte Pada Algoritma Least Significant Bit (Lsb) JURNAL DUNIA TEKNOLOGI INFORMASI Vol. 1, No. 1, (2012) 50-55 50 Implementasi Steganografi Pesan Text Ke Dalam File Sound (.Wav) Dengan Modifikasi Jarak Byte Pada Algoritma Least Significant Bit (Lsb) 1

Lebih terperinci

BAB I PENDAHULUAN 1.1. LATAR BELAKANG

BAB I PENDAHULUAN 1.1. LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1. LATAR BELAKANG Perkembangan kemajuan teknologi informasi saat ini, semakin memudahkan para pelaku kejahatan komputer (cyber crime), atau yang sering disebut dengan istilah cracker,

Lebih terperinci

Algoritma Kriptografi Modern (Bagian 2)

Algoritma Kriptografi Modern (Bagian 2) Algoritma Kriptografi Modern (Bagian 2) 1 Mode Operasi Cipher Blok Mode operasi: berkaitan dengan cara blok dioperasikan Ada 4 mode operasi cipher blok: 1. Electronic Code Book (ECB) 2. Cipher Block Chaining

Lebih terperinci

Implementasi Algoritma DES Menggunakan MATLAB

Implementasi Algoritma DES Menggunakan MATLAB Prosiding Matematika ISSN: 2460-6464 Implementasi Algoritma DES Menggunakan MATLAB The implementations of DES Algorithms Using MATLAB 1 Andi Priatmoko, 2 Erwin Harahap 1,2 Prodi Matematika, Fakultas Matematika

Lebih terperinci

Studi dan Analisis Teknik-Teknik Steganografi Dalam Media Audio

Studi dan Analisis Teknik-Teknik Steganografi Dalam Media Audio Studi dan Analisis Teknik-Teknik Steganografi Dalam Media Audio Pudy Prima - 13508047 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA Rachmansyah Budi Setiawan NIM : 13507014 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

Grafik yang menampilkan informasi mengenai penyebaran nilai intensitas pixel-pixel pada sebuah citra digital.

Grafik yang menampilkan informasi mengenai penyebaran nilai intensitas pixel-pixel pada sebuah citra digital. PSNR Histogram Nilai perbandingan antara intensitas maksimum dari intensitas citra terhadap error citra. Grafik yang menampilkan informasi mengenai penyebaran nilai intensitas pixel-pixel pada sebuah citra

Lebih terperinci

ANALISA ALGORITMA BLOCK CIPHER DALAM PENYANDIAN DES DAN PENGEMBANGANNYA

ANALISA ALGORITMA BLOCK CIPHER DALAM PENYANDIAN DES DAN PENGEMBANGANNYA ANALISA ALGORITMA BLOCK CIPHER DALAM PENYANDIAN DES DAN PENGEMBANGANNYA Stefanus Astrianto N NIM : 13504107 Sekolah Tinggi Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis III.1.1 Analisis Masalah Seiring dengan perkembangan teknologi, keamanan dalam berteknologi merupakan hal yang sangat penting. Salah satu cara mengamankan

Lebih terperinci

Berikut adalah istilah-istilah yang digunakan dalam bidang kriptografi(arjana, et al. 2012):

Berikut adalah istilah-istilah yang digunakan dalam bidang kriptografi(arjana, et al. 2012): BAB 2 TINJAUAN PUSTAKA Bab 2 akan membahas landasan teori yang bersifat ilmiah untuk mendukung penulisan penelitian ini. Teori-teori yang dibahas mengenai steganografi, kriptografi, algoritma Least Significant

Lebih terperinci

PENERAPAN STEGANOGRAFI PADA SEBUAH CITRA

PENERAPAN STEGANOGRAFI PADA SEBUAH CITRA PENERAPAN STEGANOGRAFI PADA SEBUAH CITRA Burhanuddin Damanik Program Studi Sistem Informasi Universitas Sari Mutiara Indonesia damanikus@yahoo.com ABSTRAK Steganografi adalah teknik penyembunyian data

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN 1. Perkembangan dari teknologi informasi dan komunikasi semakin merambah pada berbagai sisi kehidupan. Kemajuan informasi banyak sekali memberikan keuntungan dalam

Lebih terperinci

IMPLEMENTASI STEGANOGRAFI DENGAN METODE PENGGABUNGAN BYTE MENGGUNAKAN VISUAL BASIC NET 2008

IMPLEMENTASI STEGANOGRAFI DENGAN METODE PENGGABUNGAN BYTE MENGGUNAKAN VISUAL BASIC NET 2008 IMPLEMENTASI STEGANOGRAFI DENGAN METODE PENGGABUNGAN BYTE MENGGUNAKAN VISUAL BASIC NET 2008 Suroso 1, Mustar Aman 2 Jurusan Sistem Informasi, STMIMInsan Pembangunan Jl. Raya Serang Km.10 Bitung Tangerang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Steganografi Steganografi adalah sebuah seni menyembunyikan pesan rahasia dengan tujuan agar keberadaan pesan rahasia tersebut tidak diketahui oleh orang yang tidak berkepentingan.

Lebih terperinci

STEGANOGRAFI DENGAN METODE PENGGANTIAN LEAST SIGNIFICANT BIT (LSB)

STEGANOGRAFI DENGAN METODE PENGGANTIAN LEAST SIGNIFICANT BIT (LSB) J. Pilar Sains 6 (2) 2007 Jurusan Pendidikan MIPA FKIP Universitas Riau ISSN 1412-5595 STEGANOGRAFI DENGAN METODE PENGGANTIAN LEAST SIGNIFICANT BIT (LSB) Astried Jurusan Matematika FMIPA UNRI Kampus Bina

Lebih terperinci

ALGORITMA LEAST SIGNIFICANT BIT UNTUK ANALISIS STEGANOGRAFI

ALGORITMA LEAST SIGNIFICANT BIT UNTUK ANALISIS STEGANOGRAFI ALGORITMA LEAST SIGNIFICANT BIT UNTUK ANALISIS STEGANOGRAFI Indra Yatini 1, F. Wiwiek Nurwiyati 2 Teknik Informatika, STMIK AKAKOM Jln. Raya Janti No 143 Yogyakarta 1 indrayatini@akakom.ac.id, 2 wiwiek@akakom.ac.id,

Lebih terperinci

IMPLEMENTASI STEGANOGRAFI PADA BERKAS AUDIO WAV UNTUK PENYISIPAN PESAN GAMBAR MENGGUNAKAN METODE LOW BIT CODING

IMPLEMENTASI STEGANOGRAFI PADA BERKAS AUDIO WAV UNTUK PENYISIPAN PESAN GAMBAR MENGGUNAKAN METODE LOW BIT CODING Expert ISSN 2088-5555 Jurnal Manajemen Sistem Informasi Dan Teknologi Volume 05, Nomor 01, Juni 2015 Judul PEMANFAATAN ANIMASI DUA DIMENSI UNTUK PEMBELAJARAN BAHASA JEPANG TINGKAT DASAR IMPLEMENTASI STEGANOGRAFI

Lebih terperinci

KOMBINASI ALGORITMA DES DAN ALGORITMA RSA PADA SISTEM LISTRIK PRABAYAR

KOMBINASI ALGORITMA DES DAN ALGORITMA RSA PADA SISTEM LISTRIK PRABAYAR KOMBINASI ALGORITMA DES DAN ALGORITMA RSA PADA SISTEM LISTRIK PRABAYAR ISBN: 978-602-71798-1-3 Yulia Kusmiati 1), Alfensi Faruk 2), Novi Rustiana Dewi 3) Fakultas MIPA, Universitas Sriwijaya; 1 email:

Lebih terperinci

APLIKASI KRIPTOGRAFI UNTUK PERTUKARAN PESAN MENGGUNAKAN TEKNIK STEGANOGRAFI DAN ALGORITMA AES

APLIKASI KRIPTOGRAFI UNTUK PERTUKARAN PESAN MENGGUNAKAN TEKNIK STEGANOGRAFI DAN ALGORITMA AES APLIKASI KRIPTOGRAFI UNTUK PERTUKARAN PESAN MENGGUNAKAN TEKNIK STEGANOGRAFI DAN ALGORITMA AES Kunjung Wahyudi 1), Parasian DP. Silitonga 2) Jurusan T. Informatika Fakultas Teknologi Informasi Institut

Lebih terperinci

BAB 1 PENDAHULUAN. kebutuhan bagi sebagian besar manusia. Pertukaran data dan informasi semakin

BAB 1 PENDAHULUAN. kebutuhan bagi sebagian besar manusia. Pertukaran data dan informasi semakin BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi komputer saat ini sangatlah pesat dan menjadi kebutuhan bagi sebagian besar manusia. Pertukaran data dan informasi semakin mudah dan

Lebih terperinci

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI PADA MEDIA GAMBAR DENGAN MENGGUNAKAN METODE DES DAN REGION-EMBED DATA DENSITY.

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI PADA MEDIA GAMBAR DENGAN MENGGUNAKAN METODE DES DAN REGION-EMBED DATA DENSITY. Abstraksi IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI PADA MEDIA GAMBAR DENGAN MENGGUNAKAN METODE DES DAN REGION-EMBED DATA DENSITY. Rizqi Firmansyah - Wahyu Suadi, S.Kom., M.M., M.Kom. Jurusan Teknik Informatika,

Lebih terperinci

PENGAMANAN PESAN TEKS MENGGUNAKAN TEKNIK STEGANOGRAFI SPREAD SPECTRUM BERBASIS ANDROID

PENGAMANAN PESAN TEKS MENGGUNAKAN TEKNIK STEGANOGRAFI SPREAD SPECTRUM BERBASIS ANDROID e-issn: 2527-337X PENGAMANAN PESAN TEKS MENGGUNAKAN TEKNIK STEGANOGRAFI SPREAD SPECTRUM BERBASIS ANDROID Achmad Noercholis, Yohanes Nugraha Teknik Informatika STMIK Asia Malang ABSTRAKSI Keamanan dalam

Lebih terperinci

ABSTRACT Because the evolution of information technology and telecommunications, the attention for security level will be important. One is security l

ABSTRACT Because the evolution of information technology and telecommunications, the attention for security level will be important. One is security l IMPLEMENTASI STEGANOGRAFI PADA BERKAS AUDIO WAV UNTUK PENYISIPAN PESAN GAMBAR MENGGUNAKAN METODE LOW BIT CODING 1 Hendrikus Zebua 2 Setia Wirawan 1 Jurusan Teknik Informatika Universitas Gunadarma zb_hendrik@student.gunadarma.ac.id

Lebih terperinci

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA

PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA PENGGUNAAN KRIPTOGRAFI DAN STEGANOGRAFI BERDASARKAN KEBUTUHAN DAN KARAKTERISTIK KEDUANYA Rachmansyah Budi Setiawan NIM : 13507014 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 File Audio Digital Digital audio / digitized sound (Audio digital) merupakan jenis file audio yang berasal dari hasil perekaman atau hasil sintesis dari komputer. Audio digital

Lebih terperinci

BAB II. Tinjauan Pustaka dan Dasar Teori. studi komparasi ini diantaranya penelitian yang dilakukan oleh Verdi Yasin, Dian

BAB II. Tinjauan Pustaka dan Dasar Teori. studi komparasi ini diantaranya penelitian yang dilakukan oleh Verdi Yasin, Dian BAB II Tinjauan Pustaka dan Dasar Teori 2.1 Tinjauan Pustaka Tinjauan pustaka yang digunakan sebagai bahan acuan untuk melakukan studi komparasi ini diantaranya penelitian yang dilakukan oleh Verdi Yasin,

Lebih terperinci

STUDI ALGORITMA CIPHER BLOK KUNCI SIMETRI BLOWFISH CIPHER

STUDI ALGORITMA CIPHER BLOK KUNCI SIMETRI BLOWFISH CIPHER STUDI ALGORITMA CIPHER BLOK KUNCI SIMETRI BLOWFISH CIPHER Yoseph Suryadharma NIM. 13504037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesha

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem keamanan pengiriman data (komunikasi data yang aman) dipasang untuk mencegah pencurian, kerusakan, dan penyalahgunaan data yang terkirim melalui jaringan

Lebih terperinci

Penerapan Metode End Of File Pada Steganografi Citra Gambar dengan Memanfaatkan Algoritma Affine Cipher sebagai Keamanan Pesan

Penerapan Metode End Of File Pada Steganografi Citra Gambar dengan Memanfaatkan Algoritma Affine Cipher sebagai Keamanan Pesan Penerapan Metode End Of File Pada Steganografi Citra Gambar dengan Memanfaatkan Algoritma Affine Cipher sebagai Keamanan Pesan 1) Achmad Fauzi STMIK KAPUTAMA, Jl. Veteran No. 4A-9A, Binjai, Sumatera Utara

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar belakang

BAB 1 PENDAHULUAN 1.1. Latar belakang BAB 1 PENDAHULUAN 1.1. Latar belakang Menurut kamus besar Bahasa Indonesia (1991), keamanan adalah bebas dari bahaya dengan demikian keamanan adalah suatu kondisi yang sangat sulit dicapai, dan dapat kita

Lebih terperinci

PENYEMBUNYIAN PESAN TEKS PADA FILE WAV DENGAN METODE LEAST SIGNIFICANT BIT BERBASIS ANDROID

PENYEMBUNYIAN PESAN TEKS PADA FILE WAV DENGAN METODE LEAST SIGNIFICANT BIT BERBASIS ANDROID PENYEMBUNYIAN PESAN TEKS PADA FILE WAV DENGAN METODE LEAST SIGNIFICANT BIT BERBASIS ANDROID Faisal Reza Akbar, Eneng Tita Tosida¹ dan Sufiatul Maryana² Program Studi Ilmu Komputer, Fakultas Matematika

Lebih terperinci

KOMBINASI KRIPTOGRAFI DENGAN HILLCIPHER DAN STEGANOGRAFI DENGAN LSB UNTUK KEAMANAN DATA TEKS

KOMBINASI KRIPTOGRAFI DENGAN HILLCIPHER DAN STEGANOGRAFI DENGAN LSB UNTUK KEAMANAN DATA TEKS KOMBINASI KRIPTOGRAFI DENGAN HILLIPHER DAN STEGANOGRAFI DENGAN LSB UNTUK KEAMANAN DATA TEKS Esti Suryani ), Titin Sri Martini 2) Program Studi Teknik Informatika Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

Data Hiding Steganograph Pada File Image Menggunakan Metode Least Significant Bit

Data Hiding Steganograph Pada File Image Menggunakan Metode Least Significant Bit Data Hiding Steganograph Pada File Image Menggunakan Metode Least Significant Bit Dwi Kurnia Basuki, S. Si. M. Kom. 1, Isbat Uzzin Nadhori, S. Kom. 1 Ahmad Mansur Maulana 2 1 Dosen Pembimbing Jurusan Teknik

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis III.1.1 Analisis Masalah Secara umum data dikategorikan menjadi dua, yaitu data yang bersifat rahasia dan data yang bersifat tidak rahasia. Data yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 32 BAB II LANDASAN TEORI Bab ini menjelaskan teori dan konsep yang menjadi landasan materi dari sistem yang akan dibuat. Beberapa teori dan konsep yang akan dibahas seperti konsep dasar kriptografi, konsep

Lebih terperinci

BAB I PENDAHULUAN. mengirim pesan secara tersembunyi agar tidak ada pihak lain yang mengetahui.

BAB I PENDAHULUAN. mengirim pesan secara tersembunyi agar tidak ada pihak lain yang mengetahui. 1 BAB I PENDAHULUAN 1.1 Latar Belakang Seringkali seseorang yang hendak mengirim pesan kepada orang lain, tidak ingin isi pesan tersebut diketahui oleh orang lain. Biasanya isi pesan tersebut bersifat

Lebih terperinci

IMPLEMENTASI STEGANOGRAFI MENGGUNAKAN METODE LEAST SIGNIFICANT BIT (LSB) DALAM PENGAMANAN DATA PADA FILE AUDIO MP3

IMPLEMENTASI STEGANOGRAFI MENGGUNAKAN METODE LEAST SIGNIFICANT BIT (LSB) DALAM PENGAMANAN DATA PADA FILE AUDIO MP3 IMPLEMENTASI STEGANOGRAFI MENGGUNAKAN METODE LEAST SIGNIFICANT BIT (LSB) DALAM PENGAMANAN DATA PADA FILE AUDIO MP3 Ricky Maulana Mahgribi 1) dan Lucky Tri Oktoviana 2) e-mail: Rick_nino17@yahoo.co.id Universitas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Steganografi Steganografi merupakan seni komunikasi rahasia dengan menyembunyikan pesan pada objek yang tampaknya tidak berbahaya. Keberadaan pesan steganografi adalah rahasia.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari cara-cara mengamankan informasi rahasia dari suatu tempat ke tempat lain [4]. Caranya adalah dengan menyandikan informasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pesan di dalam media tersebut. Kata steganografi (steganography) berasal

BAB II TINJAUAN PUSTAKA. pesan di dalam media tersebut. Kata steganografi (steganography) berasal BAB II TINJAUAN PUSTAKA A. STEGANOGRAFI 1. Pengertian Steganografi Steganografi adalah seni menyembunyikan pesan di dalam media digital sedemikian rupa sehingga orang lain tidak menyadari ada sesuatu pesan

Lebih terperinci

STUDI MENGENAI JARINGAN FEISTEL TAK SEIMBANG DAN CONTOH IMPLEMENTASINYA PADA SKIPJACK CIPHER

STUDI MENGENAI JARINGAN FEISTEL TAK SEIMBANG DAN CONTOH IMPLEMENTASINYA PADA SKIPJACK CIPHER STUDI MENGENAI JARINGAN FEISTEL TAK SEIMBANG DAN CONTOH IMPLEMENTASINYA PADA SKIPJACK CIPHER Stevie Giovanni NIM : 13506054 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10,

Lebih terperinci

SUARA DAN AUDIO SUARA (SOUND)

SUARA DAN AUDIO SUARA (SOUND) SUARA DAN AUDIO 1 SUARA (SOUND) SUARA DAN AUDIO Suara adalah fenomena fisik yang dihasilkan oleh getaran benda. getaran suatu benda yang berupa sinyal analog dengan amplitudo yang berubah secara kontinyu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sebagai makhluk sosial, komunikasi merupakan hal yang paling penting bagi manusia. Komunikasi dapat diartikan sebagai berbagi pikiran, informasi dan intelijen. Segala

Lebih terperinci

TRIPLE STEGANOGRAPHY

TRIPLE STEGANOGRAPHY TRIPLE STEGANOGRAPHY Abraham G A P E S / 13509040 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 13509040@std.stei.itb.ac.id

Lebih terperinci

Bab I Pendahuluan 1 BAB I PENDAHULUAN

Bab I Pendahuluan 1 BAB I PENDAHULUAN Bab I Pendahuluan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pesatnya perkembangan teknologi multimedia, jaringan komputer, jaringan Internet menimbulkan peningkatan kemudahan pengiriman informasi yang berupa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Penelitian yang telah dilakukan berpedoman dari hasil penelitian-penelitian

BAB II TINJAUAN PUSTAKA. Penelitian yang telah dilakukan berpedoman dari hasil penelitian-penelitian BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Penelitian yang telah dilakukan berpedoman dari hasil penelitian-penelitian terdahulu yang pernah dilakukan sebelumnya sebagai bahan perbandingan atau kajian.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika adalah salah satu ilmu yang paling banyak digunakan di seluruh dunia karena ilmu matematika sangatlah luas sebagai alat penting di berbagai bidang, termasuk

Lebih terperinci

Aplikasi Steganografi Menggunakan LSB (Least Significant Bit) dan Enkripsi Triple Des Menggunakan Bahasa Pemrograman C#

Aplikasi Steganografi Menggunakan LSB (Least Significant Bit) dan Enkripsi Triple Des Menggunakan Bahasa Pemrograman C# Aplikasi Steganografi Menggunakan LSB (Least Significant Bit) dan Enkripsi Triple Des Menggunakan Bahasa Pemrograman C# Teguh Budi Harjo 1, Marly Kapriati 2, Dwi Andrian Susanto 3 1,2,3 Program Studi Pascasarjana,

Lebih terperinci

ENKRIPSI DAN DEKRIPSI DATA DENGAN ALGORITMA 3 DES (TRIPLE DATA ENCRYPTION STANDARD)

ENKRIPSI DAN DEKRIPSI DATA DENGAN ALGORITMA 3 DES (TRIPLE DATA ENCRYPTION STANDARD) ENKRIPSI DAN DEKRIPSI DATA DENGAN ALGORITMA 3 DES (TRIPLE DATA ENCRYPTION STANDARD) Drs. Akik Hidayat, M.Kom Jurusan Matematika FMIPA Universitas Padjadjaran Jl. Raya Bandung-Sumedang km 21 Jatinangor

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Keamanan dan kerahasiaan dokumen merupakan salah satu aspek yang sangat penting dalam sistem informasi. Data dan informasi menjadi suatu hal yang tidak dapat dipisahkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Kriptografi merupakan seni dan ilmu untuk menulis rahasia The Art of Secreet Writing. Tujuan dari kriptografi adalah mengolah informasi dengan algoritma tertentu supaya

Lebih terperinci

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom

DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi. Gentisya Tri Mardiani, S.Kom.,M.Kom DASAR-DASAR KEAMANAN SISTEM INFORMASI Kriptografi, Steganografi Gentisya Tri Mardiani, S.Kom.,M.Kom KRIPTOGRAFI Kriptografi (cryptography) merupakan ilmu dan seni untuk menjaga pesan agar aman. Para pelaku

Lebih terperinci

PERANGKAT APLIKASI KEAMANAN DATA TEXT MENGGUNAKAN ELECTRONIC CODEBOOK DENGAN ALGORITMA DES

PERANGKAT APLIKASI KEAMANAN DATA TEXT MENGGUNAKAN ELECTRONIC CODEBOOK DENGAN ALGORITMA DES PERANGKAT APLIKASI KEAMANAN DATA TEXT MENGGUNAKAN ELECTRONIC CODEBOOK DENGAN ALGORITMA DES (1011544) Mahasiswa Program Studi Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Sp. Limun

Lebih terperinci

Pengamanan Data Teks dengan Kriptografi dan Steganografi Wawan Laksito YS 5)

Pengamanan Data Teks dengan Kriptografi dan Steganografi Wawan Laksito YS 5) ISSN : 1693 1173 Pengamanan Data Teks dengan Kriptografi dan Steganografi Wawan Laksito YS 5) Abstrak Keamanan data teks ini sangatlah penting untuk menghindari manipulasi data yang tidak diinginkan seperti

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Masalah dalam sisitem ini adalah bagaimana agar sistem ini dapat membantu pengguna sistem untuk melakukan pengamanan data (data security). Dalam

Lebih terperinci

ANALISIS KEAMANAN PESAN MENGGUNAKAN TEKNIK STEGANOGRAFI MODIFIED ENHANCED LSB DAN FOUR NEIGHBORS DENGAN TEKNIK KRIPTOGRAFI CHAINING HILL CIPHER

ANALISIS KEAMANAN PESAN MENGGUNAKAN TEKNIK STEGANOGRAFI MODIFIED ENHANCED LSB DAN FOUR NEIGHBORS DENGAN TEKNIK KRIPTOGRAFI CHAINING HILL CIPHER ANALISIS KEAMANAN PESAN MENGGUNAKAN TEKNIK STEGANOGRAFI MODIFIED ENHANCED LSB DAN FOUR NEIGHBORS DENGAN TEKNIK KRIPTOGRAFI CHAINING HILL CIPHER Agung Suryahadiningrat Kusumanegara 1), Bambang Hidayat 2),

Lebih terperinci

Jurnal Coding, Sistem Komputer Untan Volume 04, No.2 (2016), hal ISSN : X

Jurnal Coding, Sistem Komputer Untan Volume 04, No.2 (2016), hal ISSN : X APLIKASI ENKRIPSI DAN DEKRIPSI UNTUK KEAMANAN DOKUMEN MENGGUNAKAN TRIPLE DES DENGAN MEMANFAATKAN USB FLASH DRIVE [1] Joko Susanto, [2] Ilhamsyah, [3] Tedy Rismawan [1] [3] Jurusan Sistem Komputer, Fakultas

Lebih terperinci

Menjabarkan format audio digital

Menjabarkan format audio digital Menjabarkan format audio digital Mata Diklat : KKM 12 Kelas/Semester : XI Multimedia / II Standart Kompetensi : Menggabungkan audio ke dalam sajian multimedia SUARA DAN AUDIO Suara adalah fenomena fisik

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan teknologi informasi (TI) saat ini memberikan kemudahan

BAB I PENDAHULUAN. Perkembangan teknologi informasi (TI) saat ini memberikan kemudahan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teknologi informasi (TI) saat ini memberikan kemudahan manusia untuk melakukan aktivitasnya. Termasuk kirim mengirim informasi dalam bentuk file

Lebih terperinci

EKSPLORASI STEGANOGRAFI : KAKAS DAN METODE

EKSPLORASI STEGANOGRAFI : KAKAS DAN METODE EKSPLORASI STEGANOGRAFI : KAKAS DAN METODE Meliza T.M.Silalahi Program Studi Teknik Informatika Institut Teknologi Bandung Ganesha 10, Bandung if16116@students.if.itb.ac.id ABSTRAK Steganografi merupakan

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisa Masalah Proses Analisa sistem merupakan langkah kedua pada pengembangan sistem. Analisa sistem dilakukan untuk memahami informasi-informasi yang didapat

Lebih terperinci