BAB II TRANSMISI FIBER OPTIK DENGAN TEKNOLOGI WDM

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TRANSMISI FIBER OPTIK DENGAN TEKNOLOGI WDM"

Transkripsi

1 BAB II TRANSMISI FIBER OPTIK DENGAN TEKNOLOGI WDM 2.1 Umum Sistem komunikasi serat optik adalah sistem telekomunikasi yang menghubungkan antar sentral atau kerah terminal pelanggan dengan menggunakan serat optik sebagai media transmisinya. Serat optik memiliki ukuran kecil, ringan namun berkemampuan tinggi unutk menyalurkan informasi dalam jumlah besar, dengan kerugian relatif kecil. Serat optik terbuat dari bahan dielektrik berbentuk seperti kaca (glass). Di dalam serat inilah energi cahaya yang dibangkitkan oleh sumber cahaya disalurkan (ditransmisikan) sehingga dapat diterima di ujung unit penerima (receiver). 2.2 Struktur Serat Optik Struktur Serat Optik pada umumnya terdiri dari 3 bagian yaitu: Gambar 2.1 Struktur Serat Optik 4

2 1. Bagian yang paling utama dinamakan bagian inti (core), dimana gelombang cahaya yang dikirimkan akan merambat dan mempunyai indeks bias lebih besar dari lapisan kedua. Terbuat dari kaca (glass) yang berdiameter antara 2 ~125 mm, dalam hal ini tergantung dari jenis serat optiknya. 2. Bagian yang kedua dinamakan lapisan selimut (Cladding), dimana bagian ini mengelilingi bagian inti dan mempunyai indeks bias lebih kecil dibandingkan dengan bagian inti. Terbuat dari kaca yang berdiameter antara 5 ~ 250 mm, juga tergantung dari jenis serat optiknya. 3. Bagian yang ketiga dinamakan lapisan jaket (Coating), dimana bagian ini merupakan pelindung lapisan inti dan selimut yang terbuat dari bahan plastik yang elastic. 2.3 Jenis Serat Optik Menurut jenisnya, kabel serat optik dibedakan menjadi 3 macam : 1. Single Mode Pada single mode fiber, terlihat pada gambar bahwa index bias akan berubah dengan segera pada batas antara core dan cladding (step index). Bahannya terbuat dari silica glass baik untuk cladding maupun corenya. Diameter core jauh lebih kecil 10 mm) dibandingkan dengan diameter cladding, konstruksi demikian dibuat untuk mengurangi rugi-rugi transmisi akibat adanya fading. Single mode fiber sangat baik digunakan untuk menyalurkan informasi jarak jauh karena di samping rugi-rugi transmisi yang kecil juga mempunyai band frkuensi yang lebar. Misalnya untuk 5

3 ukuran 10/125 mm, pada panjang gelombang cahaya 1300 nm, redaman maksimumnya 0,4 0,5 db/km dan lebar band frekwensi minimum untuk 1 km sebesar 10 GHz.. Perambatan cahaya dalam single mode fiber adalah sebagai berikut: Gambar 2.2 Struktur Perambatan Cahaya Single Mode 2. Multimode Step Index Serat optik ini pada dasarnya mempunyai diameter core yang besar ( um) dibandingkan dengan diameter cladding ( um). Sama halnya dengan single mode fiber, pada serat optik ini terjadi perubahan index bias dengan segera (step index) pada batas antara core dan cladding. Diameter core yang besar ( um) digunakan untuk menaikkan effisiensi coupling pada sumber cahaya yang tidak koheren seperti LED. Karakteristik penampilan serat optik ini sangat bergantung pada macam material/bahan yang digunakan. Berdasarkan hasil penelitian, penambahan prosentase bahan silica pada serat optik ini akan meningkatkan penampilan (performance). Tetapi jenis serat optik ini tidak populer karena meskipun kadar silicanya ditingkatkan, rugi-rugi dispersi sewaktu transmit tetap besar, sehingga hanya baik digunakan untuk menyalurkan 6

4 data/informasi dengan kecepatan rendah dan jarak relatif dekat. Perambatan gelombang pada multimode step index fiber sebagai berikut : Gambar 2.3 Struktur Perambatan Cahaya Multimode Step Index 3. Multimode Graded index Multimode graded index dibuat dengan menggunakan bahan multi component glass atau dapat juga dengan silica glass baik untuk core maupun claddingnya. Pada serat optik tipe ini, indeks bias berubah secara perlahan-lahan (graded index multimode). Indeks bias inti berubah mengecil perlahan mulai dari pusat core sampai batas antara core dengan cladding. Makin mengecilnya indeks bias ini menyebabkan kecepatan rambat cahaya akan semakin tinggi dan akan berakibat dispersi waktu antara berbagai mode cahaya yang merambat akan berkurang dan pada akhirnya semua mode cahaya akan tiba pada waktu yang bersamaan di penerima (ujung serat optik). Diameter core jenis serat optik ini lebih kecil dibandingkan dengan diameter core jenis serat optik Multimode Step Index, yaitu um untuk core dan um untuk claddingnya. Biaya pembuatan jenis serat optik ini sangat tinggi bila dibandingkan dengan jenis Single mode. Rugi-rugi transmisi minimum adalah sebesar 0,70 db/km pada panjang gelombang 1,18 um dan lebar band frekwensi 150 7

5 MHz sampai dengan 2 GHz. Oleh karenanya jenis serat optik ini sangat ideal untuk menyalurkan informasi pada jarak menengah dengan menggunakan sumber cahaya LED maupun LASER, di samping juga penyambungannya yang relatif mudah. Perambatan gelombang cahaya pada jenis serat optik ini sebagai berikut : Gambar 2.4 Struktur Perambatan Cahaya Multimode Graded Index 2.4 Perambatan Cahaya di Dalam Serat Optik Cahaya dapat merambat dalam core karena core memiliki indeks bias yang lebih besar dari indeks bias cladding. Gambar 2.15 menunjukkan bagaimana cahaya dapat merambat dalam serat optik sabagai berikut : Gambar 2.5 Prinsip Perambatan Gelombang Pada Serat Optik Seperti dapat dilihat pada gambar 2.5 di atas, cahaya diinjeksikan ke dalam serat optik. Jika cahaya yang diinjeksikan menabrak perbatasan core dan cladding dengan sudut yang lebih besar dari sudut kritis, maka cahaya tersebut akan dipantulkan kembali 8

6 ke dalam core. Karena sudut datang selalu sama dengan sudut pantul, maka cahaya akan terus dipantulkan sepanjang core.ini sangar erat hubungannya dengan Hukum Snellius tentang Pembiasan Hukum ini bercerita tentang gejala semua gelombang yang menjalar melalui medium yang kerapatannya berbeda,tetapi lebih sering digunakan pada gelombang cahaya. Hukum Snellius menyatakan bahwa : 1. Sinar (gelombang) datang, sinar(gelombang) bias dan garis normal berpotongan pada satu titik pada sebuah bidang datar. 2. Sinar datang yang berasal dari medium renggang memasuki medium rapat akan dibiaskan mendekati garis normal 2.5 Susut Daya Pada Serat Optik Susut daya adalah kehilangan daya selama cahaya merambat dari satu ujung ke ujung lainnya. Serat optik memiliki susut daya transmisi yang kecil dan bandwidth yang lebih besar dibandingkan kabel tembaga, sehingga sistem komunikasi kabel yang selama ini didominasi oleh kabel tembaga mulai dialihkan pada pengembangan komunikasi serat optik. Pembuatan serat optik terus dikembangkan sehingga kerugian transmisi cahaya dalam serat optik yang semula 20 db/km pada tahun 1970, dapat ditekan hingga saat ini telah diperoleh serat optik dengan redaman transmisi kira-kira 0,2 db/km.ini sangat erat Secara garis besar susut daya yang terjadi karena beberapa faktor intrinsik dan ekxtrinsik, yaitu: A. Faktor Intrinsik 9

7 1. Absorption (penyerapan), peristiwa ini terjadi akibat ketidak murnian bahan fiber optik yang digunakan. Bila cahaya menabrak sebuah partikel dari unsur yang tidak murni maka sebagian dari cahaya tersebut akan terserap. 2. Scattering (penghamburan) terjadi akibat adanya berkas cahaya yang merambat dalam materi dipancarkan/dihamburkan ke segala arah dikarenakan struktur materi yang tidak murni. Biasanya scattering ini terjadi pada lokasilokasi tertentu saja di dalam bahan, dan ukuran daerah yang terkena pengaruh perubahan efek terpencarnya cahaya sangat kecil, yaitu kurang dari satu panjang gelombang cahaya. 3. Microbending (pembengkokan pada saat pembuatan serat optik). Pada umumnya timbul di dalam proses manufaktur. Penyebab yang biasa dijumpai adalah perbedaan laju pemuaian (dan penyusutan) antara serat optik dan lapisan-lapisan pelindung luarnya (jaket). Ketika kabel serat optik menjadi terlalu dingin, lapisan jaket maupun bagian inti/mantel akan mengalami penyusutan dan memendek sehingga dapat bergeser dari posisi relatifnya semula dan menimbulkan lekukan-lekukan yang disebut microbend'[ B. Faktor Ekstrinsik 1. Frasnel Reflection terjadi karena ada celah udara sehingga cahaya harus melewati dua interface yang memantulkan sebagian karena perubahan index bias dari inti ke udara dan inti lagi. 2. Mode Copling terjadi karena adanya sambungan antara sumber/detektor optik dengan serat optik. 3. Macrobending, lekukan tajam pada sebuah kabel serat optik dapat menyebabkan timbulnya rugi daya yang cukup serius, dan lebih jauh lagi 10

8 kemungkinan terjadinya kerusakan mekanis (pecahnya serat optik). Rugi daya yang ditimbulkan dengan melengkungkan sepotong pendek serat optik boleh jadi lebih besar dari rugi daya total yang timbul pada seluruh kabel serat optik sepanjang 1 km yang dipasang secara normal 2.6 Repeater dan Penguat Optik Karena media transmisi kabel optik selalu memiliki redaman meskipun kecil, maka saat tertentu dimana gelombang-gelombang informasi yang ditransmisikan sudah melemah mendekati ambang batasnya, maka diperlukan sebuah perangkat penguat ulang untuk menghasilkan besaran penguatan yang sama seperti keluaran terminal, perangkat ini disebut repeater. Di dalam sebuah repeater terdapat amplifier sebagai penguatnya. Pada umumnya, repeater untuk sinyal digital dimana terjadi reshaping dan retiming disebut sebagai regenerator. Pada saat ini ada dua jenis repeater yang digunakan, yaitu: 1. Digital repeater/opto-electronic repeater Repeater digital adalah penguatan ulang di tingkat elektrik. Cara penguatannya adalah dengan mengubah cahaya menjadi elektrik kemudian dikuatkan dan pada tahap akhir diubah kembali dari sinyal elektrik menjadi sinyal cahaya dan kemudian siap ditransmisikan kembali ke serat optik. Untuk sinyal WDM diperlukan pemasangan repeater setiap 20 km, maka cara ini dianggap cukup mahal dan tidak praktis. 2. Optikal amplifier 11

9 Penguat optik adalah penguatan ulang di tingkat cahaya. Cara penguatannya adalah dengan menstimulasi gelombang cahaya yang lemah tadi dengan gelombang cahaya baru yang lebih kuat dari pompa cahaya. Setelah gelombang cahaya cukup kuat seperti keluaran terminal, maka gelombang cahaya siap diumpankan kembali ke serat optik. Repeater hanya menguatkan sinyal cahaya yang datang, sehingga noise yang datang juga ikut terkuatkan. Oleh karena itu, untuk jarak yang cukup jauh diperlukan optikal regenerator untuk mengatasi pelemahan sinyal. Berbagai macam penguat optik yang sering digunakan saat ini, antara lain: a. Erbium-Doped Fiber Amplifier (EDFA) EDFA merupakan suatu serat optik yang intinya (core) dikotori oleh atom erbium sehingga dapat memberikan penguatan terhadap sinyal yang melewatinya. Erbium itu sendiri merupakan elemen dari golongan lantanida (lanthanides group) yang mana elemenelemennya cocok sebagai bahan aktif dalam laser solid-state dikarenakan struktur elektronnya. Ion-ion dari elemen ini memiliki kemampuan menyerap foton dengan panjang gelombang yang tinggi. EDFA memiliki 2 panjang gelombang pumping, 980 nm dan 1480 nm. Band 980 nm memiliki penyerapan yang lebih tinggi dan digunakan untuk standar noise yang rendah. Penyerapan ini relatif melebar sehingga dibutuhkan sumber laser dengan penjang gelombang yang lebih stabil. Band pada 1480 nm lebih rendah tetapi lebih lebar, penyerapan terpusat sehingga cocok digunakan untuk High Power Amplifier (HPA). Penguat saat ini umumnya 12

10 menggunakan kombinasi antara keduanya, Seperti ambar 2.6 di bawah ini. Gambar 2.6 Blok Diagram EDFA b. Semiconductor Optikal Amplifier SOA adalah penguat yang menggunakan bahan semikonduktor untuk melakukan penguatan. Penguat ini memiliki struktur yang hampir sama dengan Fabry-Perot Laser Diodes tapi dengan elemen anti-pantul di ujung terminal. Terakhir, penguat ini telah dilengkapi pula coating anti-pantul dan panjang gelombang yang dimiringkan sehingga dapat mengurangi pantulan kurang dari 0.001%. Dampak mengurangi loss pada optik ini lebih baik daripada menguatkan sinyal itu sendiri. SOA mempunyai bentuk yang kecil sehingga dapat di integrasikan dengan laser semikonduktor, modulator, dan sebagainya, namun lebih mahal dan tidak dapat dibandingkan dengan EDFA. SOA memiliki noise yang tinggi, penguatan lebih rendah, ketergantungan polarisasi, dan panjang gelombang yang tidak linear. 13

11 c. Raman Amplifier Tidak seperti EDFA dan SOA, penguatan didapat dengan interaksi nonlinear antara sinyal dan cahaya pump dalam kabel serat optik sehingga dapat mereduksi panjang kabel yang dibutuhkan. Ada dua tipe Raman Amplifier: distributed dan lumped. Penguat Raman distributed menggunakan panjang gelombang sinyal dan cahaya pump yang dimultipleks, sedangkan pada penguat lumped masingmasing panjang gelombang dedicated sehingga dibutuhkan serat optik yang lebih pendek. Gambar 2.7 Raman Amplifier Cahaya pump dan sinyal dapat digabungkan ke dalam saluran serat optik dengan arah yang sama (co-directional), arah yang berlawanan atau keduanya. Namun dengan arah yang berlawanan (contra-directional) mempunyai kemampuan lebih baik untuk mereduksi noise yang terjadi. Keuntungan dari raman adalah kemampuan untuk membagi penguatan dalam saluran serat optik, dengan cara meningkatkan panjang span antar penguat dan 14

12 dikembalikan kondisi semula. Penguatan bandwidth pada ramandikenali dengan penggunaan panjang gelombang pump sehingga penguatan dapat dilakukan lebih lebar dan berbeda d. Optikal Parametric Amplifier OPA sebagai penguat sinyal impulse lemah dalam media nonlinear noncentrosymmetric. Yang membedakan dengan penguat sebelumnya adalah penguat ini memiliki frekuensi yang dapat diatur dengan sangat cepat solid-state laser dengan menggunakan interaksi noncollinear. OPA mempunyai kemampuan untuk menguatkan bandwith yang sangat-sangat lebar. 2.7 Komunikasi Serat Optik Serat Optik adalah sebuah teknologi dimana sinyal informasi dikonversi dari sinyal elektrik menjadi sinyal optik, kemudian ditransmisikan melalui serat kaca yang tipis, dan dikonversi kembali menjadi sinyal elektrik. Suatu sistem transmisi serat optik pada dasarnya terdiri dari transmitter, kabel serat optik, dan receiver seperti yang dapat dilihat pada gambar 2.6 berikut: Sinyal Optikal Transmitter Serat Optik Optikal Receiver Sinyal Gambar 2.8 Sistem Komunikasi Serat Optik 1. Transmitter menerima informasi dalam bentuk pulsa elektrik dari kabel tembaga, kemudian menerjemahkannya menjadi pulsa cahaya yang bersesuaian. Untuk membangkitkan pulsa cahaya tersebut dapat digunakan LED (Light Emitting Diode) atau LD (Laser Diode). 15

13 2. Serat optik berfungsi untuk merambatkan sinyal optik dari transmitter ke receiver. 3. Receiver menerima siyal optik, kemudian mengkonversikannya kembali menjadi sinyal elektrik aslinya. Jenis detector cahaya yang dapat digunakan antara lain PIN-type photodiode atau avalanche-type photodiode. Satuan panjang gelombang cahaya ini dinyatakan dalam satuan nanometer, dengan pembagian seperti berikut : Tabel 2.1 Pembagian band frekuensi terhadap panjang gelombang Band Description Wavelength Range O band Original 1260 to 1360 nm E band Extended 1360 to 1460 nm S band short wavelengths 1460 to 1530 nm C band conventional ("erbium window") 1530 to 1565 nm L band long wavelengths 1565 to 1625 nm U band ultralong wavelengths 1625 to 1675 nm 2.8 Keuntungan dan Kerugian Serat Optik A. Keuntungan Serat Optik 1. Mempunyai lebar pita frekuensi (bandwidth yang lebar). Frekuensi pembawa optik bekerja pada daerah frekuensi yang tinggi yaitu sekitar 10^13 Hz sampai dengan 10^16 Hz, sehingga informasi yang dibawa akan menjadi banyak. 16

14 2. Redaman sangat rendah dibandingkan dengan kabel yang terbuat dari tembaga, terutama pada frekuensi yang mempunyai panjang gelombang sekitar 1300 nm yaitu 0,2 db/km. 3. Kebal terhadap gangguan gelombang elektromagnet. Fiber optik terbuat dari kaca atau plastik yang merupakan isolator, berarti bebas dari interferensi medan magnet, frekuensi radio dan gangguan listrik. 4. Dapat menyalurkan informasi digital dengan kecepatan tinggi. Kemampuan fiber optik dalam menyalurkan sinyal frekuensi tinggi, sangat cocok untuk pengiriman sinyal digital pada sistem multipleks digital dengan kecepatan beberapa Mbit/s hingga Gbit/s. 5. Ukuran dan berat fiber optik kecil dan ringan. Diameter inti fiber optik berukuruan micro sehingga pemakaian ruangan lebih ekonomis. 6. Tidak mengalirkan arus listrik. Terbuat dari kaca atau plastik sehingga tidak dapat dialiri arus listrik (terhindar dari terjadinya hubungan pendek). 7. Sistem dapat diandalkan (20 30 tahun) dan mudah pemeliharaannya. B. Kerugian Serat Optik 1. Konstruksi fiber optik lemah sehingga dalam pemakaiannya diperlukan lapisan penguat sebagai proteksi. 2. Karakteristik transmisi dapat berubah bila terjadi tekanan dari luar yang berlebihan 3. Tidak dapat dialiri arus listrik, sehingga tidak dapat memberikan catuan pada pemasangan repeater. 17

15 2.9 Pola Encoding a. Nonreturn to Zero-Level (NRZ-L) Adalah kode-kode yang sering digunakan Untuk membangkitkan atau mengartikan data digital melalui terminal atau perangkat-perangkat lain Dua tegangan yang berbeda untuk 2 digit biner Tegangan konstan selama interval bit Tidak ada transisi yaitu tidak kembali ke level voltase nol Ketika voltase dapat digunakan Untuk menampilkan biner 0 dan voltase positif konstan Untuk menampilkan nilai biner 1 b. Nonreturn to Zero Inverted (NRZI) Mempertahankan pulsa voltase konstan Untuk durasi waktu bit Data2 itu sendiri ditandai saat kehadiran atau ketidakhadiran transisi pada permulaan waktu bit Adanya transisi (dari rendah ke tinggi atau tinggi ke rendah) pada permulaan waktu bit menunjukkan biner 1 Untuk bit waktu tsb Tidak ada transisi yang menunjukkan biner 0 Adalah contoh encoding differential, yakni informasi yang ditransmisikan lebih ditujukan pada pengertian susunan simbol-simbol data yang berurutan dibandingkan dengan elemen-elemen sinyal itu sendiri 18

16 Gambar 2.9 NRZL dan NRZI 2.10 Wavelength Division Multiplexing WDM adalah salah satu teknologi multipleksing dalam komunikasi serat optik yang bekerja dengan membawa sinyal informasi yang berbeda pada satu serat optik dengan menggunakan panjang gelombang (warna) cahaya laser yang berbeda. Dengan ini dapat meningkatkan kapasitas dan memungkinkan komunikasi dua arah pada satu serat optik. Istilah wavelength division multiplexing biasanya diterapkan ke 'optikal carrier' (yang digambarkan berdasarkan panjang gelombangnya), sedangkan frequency division multiplexing biasanya digunakan pada 'radio carrier' (yang digambarkan berdasarkan frekuensinya). Namun, karena panjang-gelombang dan frekuensi proporsional secara inverse, dan karena radio dan cahaya adalah bentuk dari radiasi elektromagnetik, kedua istilah ini serupa. Gambar 2.10 Skema WDM Sebuah sistem WDM menggunakan multiplexer di pemancar sinyal untuk bergabung dengan bersama-sama, dan demultiplexer pada penerima untuk membagi mereka terpisah. Dengan tepat jenis serat adalah mungkin untuk memiliki perangkat 19

17 yang melakukan keduanya secara bersamaan, dan dapat berfungsi sebagai multiplexer menambahkan drop optik. Perangkat penyaringan optik digunakan secara konvensional telah menjadi etalons, stabil solid-state tunggal frekuensi interferometer Fabry- Perot dalam bentuk film tipis berlapis kaca optik. Konsep ini pertama kali diterbitkan pada 1970, dan tahun 1978 sistem WDM sedang diwujudkan dalam laboratorium. Para WDM pertama sistem di kombinasikan hanya dua sinyal. Sistem modern dapat menangani hingga 160 sinyal dan dengan demikian dapat memperluas dasar 10 Gb/s sistem atas sepasang serat tunggal untuk lebih dari 1,6 Tbit/s. Sistem WDM yang populer dengan perusahaan telekomunikasi karena mereka memungkinkan mereka untuk memperluas kapasitas jaringan tanpa meletakkan lebih banyak serat. Dengan menggunakan WDM dan amplifier optik, mereka dapat mengakomodasi beberapa generasi pengembangan teknologi di bidang infrastruktur optik mereka tanpa harus merombak jaringan backbone.kapasitas link yang diberikan dapat diperluas hanya dengan upgrade ke multiplexer dan demultiplexers di kedua ujungnya. Sebagian besar sistem WDM beroperasi pada single-mode kabel serat optik, yang memiliki diameter inti dari 9 pm. Bentuk-bentuk tertentu dari WDM juga dapat digunakan dalam multi-mode kabel serat (juga dikenal sebagai tempat kabel) yang memiliki diameter inti dari 50 atau 62,5 pm. Beberapa komponen yang mendukung sistem WDM adalah: a. Multiplexer Merupakan alat yang digunakan untuk menggabungkan beberapa panjang gelombang yang berbeda sehingga dapat melewati sebuah fiber optik. 20

18 Gambar 2.11 Multiplexer b. Demultiplexer Merupakan alat yang memisahkan kanal-kanal yang telah dimultipleksi sehingga dapat melalui fiber-fiber yang berbeda di sisi penerima. Gambar 2.12 Demultiplexer c. Add/drop Multiplexer Multiplexer/demultiplexer yang dapat meng-add atau menge-drop satu atau lebih panjang gelombang pada titik tertentu di dalam hubungan WDM, sedangkan panjang gelombang yang lain tidak berubah. Gambar 2.13 Add/Drop multiplexer d. Optikal Amplifier Merupakan alat yang dapat memperkuat sinyal optik yang masuk tanpa perlu diubah terlebih dahulu ke bentuk elektrik. Gambar 2.14 Optikal Amplifier 21

19 2.11 CWDM (Coarse Wavelength Division Multiplexing) Teknologi WDM memiliki prinsip kerja untuk mengirimkan informasi dari suatu tempat ke tempat yang lain. Namun, dalam teknologi ini pada suatu kabel atau serat optik dapat dilakukan pengiriman secara bersamaan dengan banyak informasi melalui kanal yang berbeda. Setiap kanal ini dibedakan dengan menggunakan prinsip perbedaan panjang gelombang (wavelength) yang dikirimkan oleh sumber informasi. Sinyal informasi yang dikirimkan awalnya diubah menjadi panjang gelombang yang sesuai dengan panjang gelombang yang tersedia pada kabel serat optik kemudian dimultipleksikan pada satu fiber. Coarse Wavelength Division Multiplexing (CWDM) merupakan suatu teknik transmisi yang yang memanfaatkan cahaya dengan panjang gelombang yang berbedabeda sebagai kanal-kanal informasi, sehingga setelah dilakukan proses multiplexing seluruh panjang gelombang tersebut dapat ditransmisikan melalui sebuah serat optik serta meningkatkan channel spacing (parameter jarak antar kanal) dan area operasi band frekuensi yang lebih ringkas sehingga didapat desain tranceiver yang lebih effisien. Seperti gambar 2.1 untuk menyediakan 8 kanal dalam satu serat optik, CWDM menggunakan dua panjang gelombang. Satu serat opti sebagai main dan satu lagi sebagai backup. Gambar 2.15 CWDM 8 Kanal 22

20 Gambar 2.16 Fiber Attunuasi pada CWDM Untuk menyediakan 8 kanal dalam satu serat optik, CWDM menggunakan dua panjang gelombang sekaligus yaitu 1310 nm (O-Band) dan 1550 nm (C-Band).Seperti yang ditunjukkan pada gambar 3.3. CWDM memiliki beberapa kelebihan, yaitu: 1. Teknologinya lebih mudah 2. Konsumsi daya lebih rendah 3. Dapat menggunakan kabel SMF dan MMF 4. Dapat menggunakan daya LED maupun Laser 5. Payload per kanal lebih besar 6. Filter panjang gelombang yang digunakan lebih kecil dan murah Walaupun begitu, CWDM juga memiliki beberapa kekurangan, seperti: 1. Kapasitas yang lebih kecil daripada DWDM 2. Jarak transmisi yang lebih rendah 3. Fungsi OAM belum tersedia Channel spacing CWDM Sesuai standar ITU, untuk lebar kanal pada CWDM adalah fix 20 nm yang lebih toleran terhadap dispersi dan menggunakan panjang gelombang antara 1290 nm sampai 23

21 1610 nm. Contoh CWDM sistem adalah pada standar layer 1 pada Ethernet-LX4 yang berkapasitas 10 Gbps; menggunakan empat panjang gelombang disekitar 1310 nm, masing-masing membawa Gbps data. Dengan menggunakan penguat EDFA, sinyal CWDM dapat dikuatkan hingga jarak 60 km dengan kapasitas 2.5 Gbps, sehingga lebih cocok digunakan untuk metropolitan area. Gambar 2.17 Channel spacing CWDM Dengan channel spacing yang tetap 20 nm, teknologi CWDM akan memiliki keterbatasan dalam hal jumlah panjang gelombang yang dapat dikonsumsi jika mengoptimalkan band frekuensi yang sama. Oleh karena itu dalam perkembangannya untuk mendapatkan jumlah panjang gelombang yang lebih banyak, CWDM akan mengoptimalkan band frekuensi 1290nm s/d 1610nm. Jika diperhatikan gambar berikut, jelas terlihat bahwa CWDM akan mengoptimalkan referensi gelombang 1310 nm dan band 1510 nm, seperti gambar 2.18 berikut ini: Gambar 2.18 Wavelenght Terhadap Attenuasi 24

22 Dengan band frekuensi yang lebih lebar, walaupun channel spacing juga lebih lebar, diharapkan CWDM memiliki jumlah panjang gelombang yang kurang lebih bersaing dengan DWDM. Impact lain dari kemampuan CWDM ini adalah, karena mengoptimalkan dua band frekuensi CWDM dapat diimplementasikan untuk jenis fiber eksisting, seperti G.652 dan G.653 disamping fiber G Prinsip CWDM Prinsip kerja dasar dari CDWM adalah sama dengan prinsip kerja umum teknologi DWDM yaitu mentransmisikan kombinasi sejumlah panjang gelombang yang berbeda dengan menggunakan perangkat multiplex panjang gelombang optik dalam satu fiber. Pada sisi penerima terjadi proses kebalikannya dimana panjang gelombang tersebut dikembalikan ke signal asalnya. Perbedaan yang paling mendasar antara CWDM dan DWDM terletak pada channel spacing (parameter jarak antar kanal) dan area operasi panjang gelombangnya (band frekuensi). CWDM memanfaatkan channel spacing 20 nm yang lebih memberi ruang kepada sistem untuk toleran terhadap dispersi. Hal ini berkaitan langsung dengan teknologi perangkat multiplex (terutama laser dan filter) yang akan diimplementasikan dalam sistem, dimana untuk channel spacing yang semakin presisi (DWDM = 0,2 nm s/d 1,2 nm) Laser dan filter yang digunakan akan semakin mahal. Prinsip di balik WDM adalah bahwa warna yang berbeda dari tindakan ringan terpisah dari satu sama lain. Jika mereka digabungkan ke serat tunggal, maka mereka dapat dipisahkan kemudian dengan demux optik. Coarse Wavelength Division Multiplexing ( CWDM ) muncul karena kebutuhan untuk menggabungkan lebih dari dua saluran optik. CWDM biasanya memiliki sebanyak 16 saluran, dipisahkan oleh jarak 20 nm dengan passband 12 nm. Laser yang dapat 25

23 menjaga panjang gelombang ini tepat sangat mahal. Mereka harus terus dipertahankan pada suhu yang sama, atau panjang gelombang akan melayang, dan saluran akan tumpang tindih Gambar 2.19 Proses Channel Spacing Pada gambar 2.17 untuk mempersempit saluran DWDM dibandingkan dengan saluran CWDM sangat terlihat jelas. Jarak lebih dari 20 kali lebih sempit, untuk menunjukkan adalah bahwa semua saluran optik CWDM dan DWDM berada di pita optik nm. Hal ini disebabkan fakta bahwa Erbium Didoping Fiber Amplifier ( EDFA ) hanya bekerja di pita optik ini. EDFA yang memperkuat sinyal di band 1550 nm secara real time sebagai sinyal melewati serat dalam EDFA. Hal ini berguna karena tidak ada waktu tunda, dan sinyal diperkuat biasanya bersih, dengan sinyal yang baik dengan karakteristik kebisingan ASI (Asyncronous Serial Interface) Asynchronous Serial Interface (ASI) adalah streaming format data yang sering membawa sebuah MPEG Transport Stream (MPEG-TS). Sinyal ASI dapat membawa 26

24 satu atau beberapa SD, HD atau program audio yang telah dikompresi, tidak seperti sinyal video terkompresi SD-SDI (270 Mbit / s) atau HD-SDI (1,485 Gbit / s). Umumnya, sinyal ASI adalah produk akhir dari kompresi video, baik MPEG2 atau MPEG4, siap untuk transmisi ke pemancar atau microwave sistem atau perangkat lainnya. Kadang-kadang juga dikonversi ke serat optik, RF atau SMPTE310 untuk jenis transmisi. Ada dua format transmisi yang umum digunakan oleh antarmuka ASI: format 188 byte dan format 204 byte. 188 Format byte adalah lebih umum transportasi sungai ASI. Ketika Reed-Solomon data koreksi kesalahan opsional termasuk, paket dapat meregang tambahan 16 byte total 204 byte. Gambar 2.20 Prinsip Link Asi berdasarkan medium fiber optik Data yang akan ditransmisikan disajikan dalam bentuk byte-disinkronisasi sebagai MPEG-2 Transport Paket. Kode 8B / 10B berarti menghasilkan satu kata 10- bit untuk setiap 1 byte atau menghasilkan 10-bit untuk setiap 1 byte kemudian dilewatkan melalui konverter paralel-to-serial yang beroperasi pada output bit-rate tetap yaitu 270 Mbit / s. Jika konverter paralel-to-serial meminta masukan kata baru dan sumber data tidak memiliki satu siap, kata sinkronisasi harus dimasukkan. 27

25 Ini kata sync harus diabaikan oleh menerima peralatan. Dalam kasus aplikasi kabel koaksial, sehingga aliran serial bit biasanya dilewatkan ke buffer / driver sirkuit dan kemudian melalui jaringan kopling ke konektor coaxial. Dalam kasus aplikasi serat optik, bitstream seri dilewatkan ke rangkaian driver yang mendorong emitor LED yang digabungkan dengan kabel serat optik melalui konektor mekanis. Menerima data tiba pada kabel koaksial pertama kali digabungkan melalui konektor dan kopling jaringan sirkuit yang pulih jam dan data. Dalam kasus transmisi serat optik, detektor peka cahaya mengkonversi tingkat cahaya ke tingkat listrik yang kemudian diteruskan ke sebuah pemulihan data jam dan sirkuit. Pulih bit data serial dilewatkan ke decoder yang mengubah kata-kata transmisi 10-bit kembali ke 8-bit byte awalnya dikirim. Dalam rangka untuk memulihkan byte alignment, decoder awalnya mencari kata-kata sinkronisasi; kata sinkronisasi adalah 10-bit pola yang unik yang dicegah dari terjadi (dengan encoder 8B / 10B) dengan semua kemungkinan byte input data. Setelah ditemukan, awal kata sinkronisasi menandai batas kata data yang diterima selanjutnya dan menetapkan byte-keselarasan output decoder byte. 28

Fiber Optics (serat optik) Oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber)

Fiber Optics (serat optik) Oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Fiber Optics (serat optik) Oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Bahan fiber optics (serat optik) Serat optik terbuat dari bahan dielektrik berbentuk seperti kaca (glass). Di dalam serat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Sistem Komunikasi Serat Optik Sistem komunikasi optik adalah suatu sistem komunikasi yang media transmisinya menggunakan serat optik. Pada prinsipnya sistem komunikasi serat

Lebih terperinci

BAB II WAVELENGTH DIVISION MULTIPLEXING (WDM) Pada mulanya, teknologi Wavelength Division Multiplexing (WDM), yang

BAB II WAVELENGTH DIVISION MULTIPLEXING (WDM) Pada mulanya, teknologi Wavelength Division Multiplexing (WDM), yang BAB II WAVELENGTH DIVISION MULTIPLEXING (WDM) 2.1 Umum Pada mulanya, teknologi Wavelength Division Multiplexing (WDM), yang merupakan cikal bakal lahirnya Dense Wavelength Division Multiplexing (DWDM),

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK

BAB II SISTEM KOMUNIKASI SERAT OPTIK BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Dasar Sistem Komunikasi Serat Optik Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut,

Lebih terperinci

11/9/2016. Jenis jenis Serat Optik. Secara umum blok diagram transmisi komunikasi fiber optik. 1. Single Mode Fiber Diameter core < Diameter cladding

11/9/2016. Jenis jenis Serat Optik. Secara umum blok diagram transmisi komunikasi fiber optik. 1. Single Mode Fiber Diameter core < Diameter cladding TT 1122 PENGANTAR TEKNIK TELEKOMUNIKASI Information source Electrical Transmit Optical Source Optical Fiber Destination Receiver (demodulator) Optical Detector Secara umum blok diagram transmisi komunikasi

Lebih terperinci

SISTEM KOMUNIKASI SERAT OPTIK

SISTEM KOMUNIKASI SERAT OPTIK SISTEM KOMUNIKASI SERAT OPTIK Submitted by Dadiek Pranindito ST, MT,. SEKOLAH TINGGI TEKNOLOGI TELEMATIKA TELKOM LOGO PURWOKERTO Topik Pembahasan Chapter 1 Overview SKSO Pertemuan Ke -2 SKSO dan Teori

Lebih terperinci

BAB II DASAR TEORI. yang biasanya berbentuk sinyal listrik menjadi sinyal cahaya dan kemudian

BAB II DASAR TEORI. yang biasanya berbentuk sinyal listrik menjadi sinyal cahaya dan kemudian BAB II DASAR TEORI 2.1 Umum Teknologi serat optik merupakan suatu teknologi komunikasi yang sangat bagus pada zaman modern saat ini. Pada teknologi ini terjadi perubahan informasi yang biasanya berbentuk

Lebih terperinci

TUGAS. : Fitrilina, M.T OLEH: NO. INDUK MAHASISWA :

TUGAS. : Fitrilina, M.T OLEH: NO. INDUK MAHASISWA : TUGAS NAMA MATA KULIAH DOSEN : Sistem Komunikasi Serat Optik : Fitrilina, M.T OLEH: NAMA MAHASISWA : Fadilla Zennifa NO. INDUK MAHASISWA : 0910951006 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

MAKALAH SEMINAR KERJA PRAKTEK PENGUKURAN REDAMAN PADA KABEL SERAT OPTIK DENGAN OTDR

MAKALAH SEMINAR KERJA PRAKTEK PENGUKURAN REDAMAN PADA KABEL SERAT OPTIK DENGAN OTDR MAKALAH SEMINAR KERJA PRAKTEK PENGUKURAN REDAMAN PADA KABEL SERAT OPTIK DENGAN OTDR Rini Indah S. 1, Sukiswo,ST, MT. 2 ¹Mahasiswa dan ²Dosen Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK. informasi pada gelombang elektromagnetik yang bertindak sebagai pembawa

BAB II SISTEM KOMUNIKASI SERAT OPTIK. informasi pada gelombang elektromagnetik yang bertindak sebagai pembawa BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Umum Komunikasi dapat diartikan sebagai pengiriman informasi dari satu pihak ke pihak yang lain. Pengiriman informasi ini dilakukan dengan memodulasikan informasi

Lebih terperinci

BAB II SISTEM TRANSIMISI KABEL SERAT OPTIK. telekomunikasi yang cepat maka kemampuan sistem transmisi dengan menggunakan

BAB II SISTEM TRANSIMISI KABEL SERAT OPTIK. telekomunikasi yang cepat maka kemampuan sistem transmisi dengan menggunakan BAB II SISTEM TRANSIMISI KABEL SERAT OPTIK 2.1 Pendahuluan Perkembangan teknologi telekomunikasi memungkinkan penyediaan sarana telekomunikasi dalam biaya relatif rendah, mutu pelayanan tinggi, cepat,

Lebih terperinci

Pengertian Multiplexing

Pengertian Multiplexing Pengertian Multiplexing Multiplexing adalah Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan Multiplexing disebut Multiplexer

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK. Perkembangan teknologi telekomunikasi memungkinkan penyediaan

BAB II SISTEM KOMUNIKASI SERAT OPTIK. Perkembangan teknologi telekomunikasi memungkinkan penyediaan BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Umum Perkembangan teknologi telekomunikasi memungkinkan penyediaan sarana telekomunikasi dengan biaya relatif rendah, mutu pelayanan tinggi, cepat, aman, dan juga

Lebih terperinci

ANALISA RUGI-RUGI PELENGKUNGAN PADA SERAT OPTIK SINGLE MODE TERHADAP PELEMAHAN INTENSITAS CAHAYA

ANALISA RUGI-RUGI PELENGKUNGAN PADA SERAT OPTIK SINGLE MODE TERHADAP PELEMAHAN INTENSITAS CAHAYA ANALISA RUGI-RUGI PELENGKUNGAN PADA SERAT OPTIK SINGLE MODE TERHADAP PELEMAHAN INTENSITAS CAHAYA Yovi Hamdani, Ir. M. Zulfin, MT Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

DENSE WAVELENGTH DIVISION MULTIPLEXING ( DWDM )

DENSE WAVELENGTH DIVISION MULTIPLEXING ( DWDM ) DENSE WAVELENGTH DIVISION MULTIPLEXING ( DWDM ) Program Studi Teknik Elektro, Fakultas Teknik UKSW Jalan Diponegoro 52-60, Salatiga 50711 Email : andreas_ardian@yahoo.com INTISARI WDM (Wavelength Division

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Trafik Secara umum trafik dapat diartikan sebagai perpindahan informasi dari satu tempat ke tempat lain melalui jaringan telekomunikasi. Besaran dari suatu trafik telekomunikasi

Lebih terperinci

ASSESMENT CLO 3 - RMG PENGENALAN TEKNIK TELEKOMUNIKASI

ASSESMENT CLO 3 - RMG PENGENALAN TEKNIK TELEKOMUNIKASI ASSESMENT CLO 3 - RMG PENGENALAN TEKNIK TELEKOMUNIKASI A. SOAL PILIHAN : 1. Proses untuk mengubah sinyal baseband menjadi sinyal bandpass dinamakan a. Converter b. Modulasi c. Conversi d. Modulator 2.

Lebih terperinci

PEMBAGIAN SERAT OPTIK

PEMBAGIAN SERAT OPTIK FIBER OPTIC CABLE Fiber Optik (Serat optic) adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Cahaya yang

Lebih terperinci

TEKNOLOGI SERAT OPTIK

TEKNOLOGI SERAT OPTIK TEKNOLOGI SERAT OPTIK Staf Pengajar Departemen Teknik Elektro, Fakultas Teknik USU Abstrak: Serat optik merupakan salah satu alternatif media transmisi komunikasi yang cukup handal, karena memiliki keunggulan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Permintaan layanan transmisi data dengan kecepatan tinggi dan kapasitas besar semakin meningkat pada sistem komunikasi serat optik. Kondisi ini semakin didukung lagi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Tugas Akhir ini akan diselesaikan melalui beberapa tahapan yaitu mengidentifikasi masalah, pemodelan sistem, simulasi dan analisa hasil. Pemodelan dan simulasi jaringan di-design

Lebih terperinci

Analisis Penguat EDFA dan SOA pada Sistem Transmisi DWDM dengan Optisystem 14

Analisis Penguat EDFA dan SOA pada Sistem Transmisi DWDM dengan Optisystem 14 Analisis Penguat EDFA dan SOA pada Sistem Transmisi DWDM dengan Optisystem 14 Dewiani Djamaluddin #1, Andani Achmad #2, Fiqri Hidayat *3, Dhanang Bramatyo *4 #1,2 Departemen Teknik Elektro, Universitas

Lebih terperinci

BAB II ISI MAKALAH A. PENGIRIM OPTIK

BAB II ISI MAKALAH A. PENGIRIM OPTIK BAB II ISI MAKALAH A. PENGIRIM OPTIK Pada prinsipnya fiber optik memantulkan dan membiaskan sejumlah cahaya yang merambat di dalamnya. Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan penyusun

Lebih terperinci

Sistem Transmisi Telekomunikasi. Kuliah 8 Pengantar Serat Optik

Sistem Transmisi Telekomunikasi. Kuliah 8 Pengantar Serat Optik TKE 8329W Sistem Transmisi Telekomunikasi Kuliah 8 Pengantar Serat Optik Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas

Lebih terperinci

Endi Dwi Kristianto

Endi Dwi Kristianto Fiber Optik Atas Tanah (Part 1) Endi Dwi Kristianto endidwikristianto@engineer.com http://endidwikristianto.blogspot.com Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi

Lebih terperinci

4. Karakteristik Transmisi pd Fiber Optik

4. Karakteristik Transmisi pd Fiber Optik 4. Karakteristik Transmisi pd Fiber Optik Anhar, MT. 1 Outline : Pengantar Redaman (Attenuation) Penyerapan Material (Absorption) Rugi-rugi hamburan (Scattering Losses) Rugi-rugi pembengkokan Dispersi

Lebih terperinci

Overview Materi. Redaman/atenuasi Absorpsi Scattering. Dispersi Rugi-rugi penyambungan Tipikal karakteristik kabel serat optic

Overview Materi. Redaman/atenuasi Absorpsi Scattering. Dispersi Rugi-rugi penyambungan Tipikal karakteristik kabel serat optic Overview Materi Redaman/atenuasi Absorpsi Scattering Rugi-rugi bending Dispersi Rugi-rugi penyambungan Tipikal karakteristik kabel serat optic Redaman/Atenuasi Redaman mempunyai peranan yang sangat

Lebih terperinci

TUGAS AKHIR OPTIMALISASI FIBER OPTIK UNTUK PENGIRIMAN AUDIO VIDEO DIGITAL DENGAN METODE CWDM PADA STASIUN TELEVISI SCTV

TUGAS AKHIR OPTIMALISASI FIBER OPTIK UNTUK PENGIRIMAN AUDIO VIDEO DIGITAL DENGAN METODE CWDM PADA STASIUN TELEVISI SCTV TUGAS AKHIR OPTIMALISASI FIBER OPTIK UNTUK PENGIRIMAN AUDIO VIDEO DIGITAL DENGAN METODE CWDM PADA STASIUN TELEVISI SCTV Oleh Puput Ari Nugroho NIM 41413110171 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNOLOGI

Lebih terperinci

Faktor Rate data. Bandwidth Ganguan transmisi(transmission impairments) Interferensi Jumlah receiver

Faktor Rate data. Bandwidth Ganguan transmisi(transmission impairments) Interferensi Jumlah receiver Version 1.1.0 Faktor Rate data Bandwidth Ganguan transmisi(transmission impairments) Interferensi Jumlah receiver Kecepatan Transmisi Bit : Binary Digit Dalam transmisi bit merupakan pulsa listrik negatif

Lebih terperinci

Dense Wavelength Division Multiplexing (DWDM) sebagai Solusi Krisis Kapasitas Banwidth pada Transmisi Data

Dense Wavelength Division Multiplexing (DWDM) sebagai Solusi Krisis Kapasitas Banwidth pada Transmisi Data Endah Sudarmilah, DWDM sebagai Solusi Krisis Kapasitas Bandwidth pada Transmisi Data Dense Wavelength Division Multiplexing (DWDM) sebagai Solusi Krisis Kapasitas Banwidth pada Transmisi Data Endah Sudarmilah

Lebih terperinci

BAB III PEMODELAN DAN SIMULASI

BAB III PEMODELAN DAN SIMULASI BAB III PEMODELAN DAN SIMULASI Pada bab ini pembahasan yang akan dijelaskan meliputi simulasi pemodelan jaringan yang di-design menggunakan software optisystem. Langkah ini dilakukan dengan tujuan agar

Lebih terperinci

PERKEMBANGAN JARINGAN KOMPUTER DENGAN MENGGUNAKAN FIBER OPTIK

PERKEMBANGAN JARINGAN KOMPUTER DENGAN MENGGUNAKAN FIBER OPTIK Abstrak Kemajuan teknologi sekarang ini semakin pesat sehingga kebutuhan akan komunikasi data antara dua komputer atau lebih dibutuhkan alat agar dapat terhubung. Komunikasi data itu dapat terhubung dengan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metodologi dari penelitian ini diskemakan dalam bentuk flowchart seperti tampak

BAB III METODOLOGI PENELITIAN. Metodologi dari penelitian ini diskemakan dalam bentuk flowchart seperti tampak BAB III METODOLOGI PENELITIAN di bawah ini: Metodologi dari penelitian ini diskemakan dalam bentuk flowchart seperti tampak START Mengidentifikasi sistem Radio over Fiber Mengidentifikasi sistem Orthogonal

Lebih terperinci

PERANCANGAN DAN ANALISIS JARINGAN FIBER TO THE HOME (FTTH) DENGAN OPTISYSTEM UNTUK PERUMAHAN PERMATA BUAH BATU I BANDUNG

PERANCANGAN DAN ANALISIS JARINGAN FIBER TO THE HOME (FTTH) DENGAN OPTISYSTEM UNTUK PERUMAHAN PERMATA BUAH BATU I BANDUNG PERANCANGAN DAN ANALISIS JARINGAN FIBER TO THE HOME (FTTH) DENGAN OPTISYSTEM UNTUK PERUMAHAN PERMATA BUAH BATU I BANDUNG DESIGN AND ANALYSIS OF FIBER TO THE HOME (FTTH) NETWORK WITH OPTISYSTEM FOR PERMATA

Lebih terperinci

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T Multiplexing Multiplexing adalah suatu teknik mengirimkan lebih dari satu (banyak) informasi melalui satu saluran. Tujuan utamanya adalah untuk menghemat jumlah saluran fisik misalnya kabel, pemancar &

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Komunikasi Data Komunikasi data merupakan transmisi data elektronik melalui sebuah media. Media tersebut dapat berupa kabel tembaga, fiber optik, radio frequency dan microwave

Lebih terperinci

Media Transmisi Jaringan

Media Transmisi Jaringan Media Transmisi Jaringan Medium Transmisi pada Telekomunikasi Medium transmisi digunakan untuk mengirimkan informasi, baik voice maupun data dari pengirim ke penerima atau dari TX ke RX. Pada dasarnya

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN 1 BAB I PENDAHULUAN 1.1 Latar Belakang Kecepatan pengiriman dan bandwidth untuk jarak jauh dalam komunikasi sudah menjadi kebutuhan tersendiri. Masalah ini dapat diatasi dengan sebuah teknologi dengan

Lebih terperinci

BAB III PERANCANGAN MODEL JARINGAN

BAB III PERANCANGAN MODEL JARINGAN BAB III PERANCANGAN MODEL JARINGAN 3.1 Prosedur Kerja Tugas Akhir Gambar berikut memperlihatkan prosedur kerja Tugas Akhir yang berdasarkan pada multi methodological research di bawah ini. Theory Building

Lebih terperinci

± voice bandwidth)

± voice bandwidth) BAB I PENDAHULUAN I. LATAR BELAKANG Kebutuhan user akan mutu, kualitas, dan jenis layanan telekomunikasi yang lebih baik serta perkembangan teknologi yang pesat memberikan dampak terhadap pemilihan media

Lebih terperinci

BAB II SERAT OPTIK. komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari

BAB II SERAT OPTIK. komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari BAB II SERAT OPTIK 2.1 Umum Pada tahun 1880 Alexander Graham Bell menciptakan sebuah sistem komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari yang dipantulkan dari sebuah cermin

Lebih terperinci

BAB III IMPLEMENTASI SINYAL DENGAN CWDM

BAB III IMPLEMENTASI SINYAL DENGAN CWDM BAB III IMPLEMENTASI SINYAL DENGAN CWDM 3.1 Optimalisasi Band Frekuensi Seiring perkembangan jaman dari waktu ke waktu, tidak dapat disangkal bahwa perkembangan teknologi tidak dapat diragukan kembali

Lebih terperinci

BAB II SERAT OPTIK. cepat, jaringan serat optik sebagai media transmisi banyak digunakan dan

BAB II SERAT OPTIK. cepat, jaringan serat optik sebagai media transmisi banyak digunakan dan BAB II SERAT OPTIK 2.1 Umum Dalam sistem perkembangan informasi dan komunikasi yang demikian cepat, jaringan serat optik sebagai media transmisi banyak digunakan dan dipercaya dapat memenuhi kebutuhan

Lebih terperinci

Makalah Seminar Kerja Praktek POWER KALKULASI PERANGKAT DWDM ZTE PADA JARINGAN BACKBONE JAWA LINK PURWOKERTO - YOGYAKARTA

Makalah Seminar Kerja Praktek POWER KALKULASI PERANGKAT DWDM ZTE PADA JARINGAN BACKBONE JAWA LINK PURWOKERTO - YOGYAKARTA Makalah Seminar Kerja Praktek POWER KALKULASI PERANGKAT DWDM ZTE PADA JARINGAN BACKBONE JAWA LINK PURWOKERTO - YOGYAKARTA Widya Ningtiyas (21060111120024), Sukiswo, ST. MT. (196907141997021001) Jurusan

Lebih terperinci

Jaringan Lokal Akses (Jarlok) Eka Setia Nugraha,S.T. M.T Uke Kurniawan Usman,MT

Jaringan Lokal Akses (Jarlok) Eka Setia Nugraha,S.T. M.T Uke Kurniawan Usman,MT Jaringan Lokal Akses (Jarlok) Eka Setia Nugraha,S.T. M.T Uke Kurniawan Usman,MT Saluran / Jaringan Lokal Saluran yang menghubungkan pesawat pelanggan dengan Main Distribution Point disentral telepon. Panjang

Lebih terperinci

Mode Transmisi. Transmisi Data

Mode Transmisi. Transmisi Data Transmisi Data Mode Transmisi Transmisi Data Pengiriman data yang dilakukan oleh dua perangkat (komputer atau non-komputer) atau lebih dengan menggunakan suatu media komunikasi tertentu. Klasifikasi Transmisi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan kecepatan dan bandwidth untuk komunikasi semakin meningkat secara signifikan. Salah satu teknologi yang menjadi solusi adalah sistem transmisi berbasis cahaya

Lebih terperinci

BAB IV SINYAL DAN MODULASI

BAB IV SINYAL DAN MODULASI DIKTAT MATA KULIAH KOMUNIKASI DATA BAB IV SINYAL DAN MODULASI IF Pengertian Sinyal Untuk menyalurkan data dari satu tempat ke tempat yang lain, data akan diubah menjadi sebuah bentuk sinyal. Sinyal adalah

Lebih terperinci

PERANCANGAN DAN ANALISIS JARINGAN FIBER TO THE HOME (FTTH) UNTUK PERUMAHAN PESONA CIWASTRA VILLAGE BANDUNG MENGGUNAKAN SOFTWARE SIMULASI OPTISYSTEM

PERANCANGAN DAN ANALISIS JARINGAN FIBER TO THE HOME (FTTH) UNTUK PERUMAHAN PESONA CIWASTRA VILLAGE BANDUNG MENGGUNAKAN SOFTWARE SIMULASI OPTISYSTEM PERANCANGAN DAN ANALISIS JARINGAN FIBER TO THE HOME (FTTH) UNTUK PERUMAHAN PESONA CIWASTRA VILLAGE BANDUNG MENGGUNAKAN SOFTWARE SIMULASI OPTISYSTEM ANALYSIS IMPLEMENTATION OF FIBER TO THE HOME (FTTH) NETWORK

Lebih terperinci

BAB III TEORI PENUNJANG. Perambatan cahaya dalam suatu medium dengan 3 cara : Berikut adalah gambar perambatan cahaya dalam medium yang ditunjukkan

BAB III TEORI PENUNJANG. Perambatan cahaya dalam suatu medium dengan 3 cara : Berikut adalah gambar perambatan cahaya dalam medium yang ditunjukkan BAB III TEORI PENUNJANG Bab tiga berisi tentang tentang teori penunjang kerja praktek yang telah dikerjakan. 3.1. Propagasi cahaya dalam serat optik Perambatan cahaya dalam suatu medium dengan 3 cara :

Lebih terperinci

Sistem Telekomunikasi

Sistem Telekomunikasi Sistem Telekomunikasi Pertemuan ke,5 Media transmisi Taufal hidayat MT. email :taufal.hidayat@itp.ac.id ; blog : catatansangpendidik.wordpress.com 1 10/12/2015 Skema umum telekomunikasi Informasi encoder

Lebih terperinci

Aplikasi Multiplexer -8-

Aplikasi Multiplexer -8- Sistem Digital Aplikasi Multiplexer -8- Missa Lamsani Hal 1 Multiplexer Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan

Lebih terperinci

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Model Sistem Komunikasi Sinyal listrik digunakan dalam sistem komunikasi karena relatif gampang dikontrol. Sistem komunikasi listrik ini mempekerjakan sinyal listrik untuk membawa

Lebih terperinci

TEKNOLOGI KOMUNIKASI

TEKNOLOGI KOMUNIKASI Modul ke: TEKNOLOGI KOMUNIKASI Media Transmisi Dengan Kabel Fakultas FIKOM Krisnomo Wisnu Trihatman S.Sos M.Si Program Studi Periklanan www.mercubuana.ac.id Kabel Koaksial Kabel koaksial ditemukan oleh

Lebih terperinci

PERANGKAT DWDM ZTE PADA JARINGAN BACKBONE

PERANGKAT DWDM ZTE PADA JARINGAN BACKBONE Makalah Seminar Kerja Praktek POWER KALKULASI PERANGKAT DWDM ZTE PADA JARINGAN BACKBONE RUAS SEMARANG-SOLO Dudik Hermanto (L2F 008 027) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro ABSTRAK

Lebih terperinci

PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT

PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT Message Input Sinyal Input Sinyal Kirim Message Output TI Transducer Input Message Signal Transducer Output TO Sinyal Output Tx Transmitter

Lebih terperinci

Sinyal analog. Amplitudo : ukuran tinggi rendah tegangan Frekuensi : jumlah gelombang dalam 1 detik Phase : besar sudut dari sinyal analog

Sinyal analog. Amplitudo : ukuran tinggi rendah tegangan Frekuensi : jumlah gelombang dalam 1 detik Phase : besar sudut dari sinyal analog PHYSICAL LAYER Lapisan Fisik Fungsi : untuk mentransmisikan sinyal data (analog dan digital) Pada Lapisan Transmitter : menerapkan fungsi elektris, mekanis, dan prosedur untuk membangun, memelihara, dan

Lebih terperinci

BAB II ISI MAKALAH A. PENGIRIMAN OPTIK

BAB II ISI MAKALAH A. PENGIRIMAN OPTIK BAB II ISI MAKALAH A. PENGIRIMAN OPTIK Pada prinsipnya fiber optik memantulkan dan membiaskan sejumlah cahaya yang merambat di dalamnya. Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan

Lebih terperinci

BAB I SENTRAL TELEPON

BAB I SENTRAL TELEPON BAB I SENTRAL TELEPON Tujuan Percobaan : 1. Peserta Praktikum dapat mengenal konsep sentral telepon 2. Mengenal Tegangan On Hook dan Off Hook 3. Mengenal nada tone telepon dalam penyambugan saluran telepon

Lebih terperinci

Oleh : Akbar Sujiwa Pembimbing : Endarko, M.Si., Ph.D

Oleh : Akbar Sujiwa Pembimbing : Endarko, M.Si., Ph.D Oleh : Akbar Sujiwa Pembimbing : Endarko, M.Si., Ph.D Serat optik FTP 320-10 banyak digunakan Bagaimana karakter makrobending losses FTP 320-10 terhadap pembebanan Bagaimana kecepatan respon FTP 320-10

Lebih terperinci

ZTE ZXWM M900 SEBAGAI PERANGKAT DWDM BACKBONE

ZTE ZXWM M900 SEBAGAI PERANGKAT DWDM BACKBONE Makalah Seminar Kerja Praktek ZTE ZXWM M900 SEBAGAI PERANGKAT DWDM BACKBONE Frans Bertua YS (L2F 008 124) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro ABSTRAK Pada 30 tahun belakangan

Lebih terperinci

SISTEM PENJAMAKAN PADA KOMUNIKASI SERAT OPTIK. Meiyanto Eko Sulistyo AMIK KARTIKA YANI Yogyakarta

SISTEM PENJAMAKAN PADA KOMUNIKASI SERAT OPTIK. Meiyanto Eko Sulistyo AMIK KARTIKA YANI Yogyakarta SISTEM PENJAMAKAN PADA KOMUNIKASI SERAT OPTIK Meiyanto Eko Sulistyo AMIK KARTIKA YANI Yogyakarta Abstraksi Sistem komunikasi serat optik terdiri dari pemancar, media transmisi dan penerima. Pada sisi pengirim,

Lebih terperinci

Rijal Fadilah. Transmisi & Modulasi

Rijal Fadilah. Transmisi & Modulasi Rijal Fadilah Transmisi & Modulasi Pendahuluan Sebuah sistem komunikasi merupakan suatu sistem dimana informasi disampaikan dari satu tempat ke tempat lain. Misalnya tempat A yang terletak ditempat yang

Lebih terperinci

Kontingensi Kabel Optik non-homogen Tipe G.652 dan G.655 Abstrak Kata Kunci PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan

Kontingensi Kabel Optik non-homogen Tipe G.652 dan G.655 Abstrak Kata Kunci PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Makalah Seminar Kerja Praktek Kontingensi Kabel Optik non-homogen Tipe G652 dan G655 Oleh : Frans Scifo (L2F008125) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro Abstrak Pada 30 tahun belakangan

Lebih terperinci

SISTEM KOMUNIKASI SERAT OPTIS (SKSO)

SISTEM KOMUNIKASI SERAT OPTIS (SKSO) SISTEM KOMUNIKASI SERAT OPTIS (SKSO) SKSO : tranfer pesan dari tranmitter ke receiver menggunakan pemandu gelombang serat optis sebagai kanal transmisinya. Serat optis : pemandu gelombang dielektrik yang

Lebih terperinci

STMIK AMIKOM YOGYAKARTA. Oleh : Nila Feby Puspitasari

STMIK AMIKOM YOGYAKARTA. Oleh : Nila Feby Puspitasari STMIK AMIKOM YOGYAKARTA Oleh : Nila Feby Puspitasari Data digital, sinyal digital - Merupakan bentuk paling sederhana dari pengkodean digital - Data digital ditetapkan satu level tegangan untuk biner satu

Lebih terperinci

TEKNIK KOMUNIKASI SERAT OPTIK SI STEM KOMUNIKASI O P TIK V S KO NVENSIONAL O LEH : H ASANAH P UTRI

TEKNIK KOMUNIKASI SERAT OPTIK SI STEM KOMUNIKASI O P TIK V S KO NVENSIONAL O LEH : H ASANAH P UTRI TEKNIK KOMUNIKASI SERAT OPTIK SI STEM KOMUNIKASI O P TIK V S KO NVENSIONAL O LEH : H ASANAH P UTRI REFERENSI BUKU 1. Keiser, Gerd; Optical Fiber Communications, Mc Graw-Hill International. 2. Agrawal,

Lebih terperinci

ROMARIA NIM :

ROMARIA NIM : ANALISIS PENGARUH DISPERSI TERHADAP RUGI-RUGI DAYA TRANSMISI PADA SERAT OPTIK SINGLE MODE REKOMENDASI ITU-T SERI G.655 Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana

Lebih terperinci

BAB II DASAR SYSTEM JARINGAN TRANSMISI METRO WDM

BAB II DASAR SYSTEM JARINGAN TRANSMISI METRO WDM BAB II DASAR SYSTEM JARINGAN TRANSMISI METRO WDM 2.1 Dasar Transmisi Serat Optik Pada komunikasi serat optik sinyal yang digunakan dalam bentuk sinyal digital, sedangkan penyaluran sinyal melalui serat

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Informasi terbaru menunjukkan bahwa jaringan multimedia dan highcapacity Wavelength Division Multiplexing (WDM) membutuhkan bandwidth yang tinggi. Serat optik adalah

Lebih terperinci

BAB III CROSSTALK PADA JARINGAN DWDM. (tersaring). Sebagian kecil dari daya optik yang seharusnya berakhir di saluran

BAB III CROSSTALK PADA JARINGAN DWDM. (tersaring). Sebagian kecil dari daya optik yang seharusnya berakhir di saluran BAB III CROSSTALK PADA JARINGAN DWDM 3.1 Umum terjadi pada panjang gelombang yang terpisah dan telah di filter (tersaring). Sebagian kecil dari daya optik yang seharusnya berakhir di saluran tertentu (

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK. banyak digunakan. Bukan hanya sebagai pengganti dari jenis sistem transmisi

BAB II SISTEM KOMUNIKASI SERAT OPTIK. banyak digunakan. Bukan hanya sebagai pengganti dari jenis sistem transmisi BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Umum Dalam sistem komunikasi dewasa ini, komunikasi serat optik semakin banyak digunakan. Bukan hanya sebagai pengganti dari jenis sistem transmisi sebelumnya,

Lebih terperinci

Sistem Transmisi Telekomunikasi Kuliah 1 Pendahuluan

Sistem Transmisi Telekomunikasi Kuliah 1 Pendahuluan TKE 8329W Sistem Transmisi Telekomunikasi Kuliah 1 Pendahuluan Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 2009 1 P

Lebih terperinci

BAB I PENDAHULUAN. pada abad ini. Dengan adanya telekomunikasi, orang bisa saling bertukar

BAB I PENDAHULUAN. pada abad ini. Dengan adanya telekomunikasi, orang bisa saling bertukar BAB I PENDAHULUAN 1.1 Latar Belakang Telekomunikasi adalah salah satu bidang yang memiliki peranan penting pada abad ini. Dengan adanya telekomunikasi, orang bisa saling bertukar informasi satu dengan

Lebih terperinci

ANALISIS KINERJA JARINGAN FTTH (FIBER TO THE HOME) DI JALAN LOTUS PERUMAHAN CEMARA ASRI MEDAN

ANALISIS KINERJA JARINGAN FTTH (FIBER TO THE HOME) DI JALAN LOTUS PERUMAHAN CEMARA ASRI MEDAN ANALISIS KINERJA JARINGAN FTTH (FIBER TO THE HOME) DI JALAN LOTUS PERUMAHAN CEMARA ASRI MEDAN Muhammad Fachri, M. Zulfin Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT

BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT 4.1 Komunikasi Radio Komunikasi radio merupakan hubungan komunikasi yang mempergunakan media udara dan menggunakan gelombang

Lebih terperinci

IMPLEMENTASI JARINGAN OPTIK TRANSPARAN

IMPLEMENTASI JARINGAN OPTIK TRANSPARAN KARYA ILMIAH IMPLEMENTASI JARINGAN OPTIK TRANSPARAN OLEH : NAEMAH MUBARAKAH, ST NIP : 132 306 867 UNIVERSITAS SUMATERA UTARA FAKULTAS TEKNIK 200 7 Implementasi Jaringan Optik Transparan A. Pendahuluan

Lebih terperinci

MULTIPLEXING DE MULTIPLEXING

MULTIPLEXING DE MULTIPLEXING MULTIPLEXING DE MULTIPLEXING Adri Priadana ilkomadri.com MULTIPLEXING DAN DEMULTIPLEXING MULTIPLEXING Adalah teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi.

Lebih terperinci

DASAR TEKNIK TELEKOMUNIKASI

DASAR TEKNIK TELEKOMUNIKASI DTG1E3 DASAR TEKNIK TELEKOMUNIKASI Klasifikasi Sistem Telekomunikasi By : Dwi Andi Nurmantris Dimana Kita? Dimana Kita? BLOK SISTEM TELEKOMUNIKASI Message Input Sinyal Input Sinyal Kirim Message Output

Lebih terperinci

BAB II JARINGAN AKSES TEMBAGA DAN SERAT OPTIK

BAB II JARINGAN AKSES TEMBAGA DAN SERAT OPTIK BAB II JARINGAN AKSES TEMBAGA DAN SERAT OPTIK 2.1 Umum Jaringan lokal akses tembaga kapasitasnya sangat terbatas untuk memberikan layanan multimedia, karena kabel tembaga memiliki keterbatasan bandwidth

Lebih terperinci

Teknologi Jaringan Komunikasi data dan Media Transmisi

Teknologi Jaringan Komunikasi data dan Media Transmisi Teknologi Jaringan Komunikasi data dan Media Transmisi Setelah kita mempelari tentang teori dasar kominukasi data dan telah juga mempelajari tranmisi dan media tranmisi, sekarang kita akan membahas soal

Lebih terperinci

Makalah Seminar Kerja Praktek APLIKASI DWDM PADA SERAT OPTIK DI PT.TELEKOMUNIKASI INDONESIA,Tbk NETWORK REGIONAL SEMARANG

Makalah Seminar Kerja Praktek APLIKASI DWDM PADA SERAT OPTIK DI PT.TELEKOMUNIKASI INDONESIA,Tbk NETWORK REGIONAL SEMARANG Makalah Seminar Kerja Praktek APLIKASI DWDM PADA SERAT OPTIK DI PT.TELEKOMUNIKASI INDONESIA,Tbk NETWORK REGIONAL SEMARANG Jayaningprang Kinantang (L2F009124) 1,Darjat, ST MT.(197206061999031001) 2 Teknik

Lebih terperinci

SISTEM KOMUNIKASI SERAT OPTIK DATA SATELIT

SISTEM KOMUNIKASI SERAT OPTIK DATA SATELIT Berita Dirgantara Vol. 15 No. 2 Desember 2014:58-63 SISTEM KOMUNIKASI SERAT OPTIK DATA SATELIT Muh. Sulaiman 1 Nur Ubay, Suhata Peneliti Pusat Teknologi Satelit, LAPAN 1e-mail: sulaiman_itb@yahoo.com RINGKASAN

Lebih terperinci

MEDIA TRANSMISI. Materi Ke-5 Sistem Telekomunikasi Politeknik Telkom

MEDIA TRANSMISI. Materi Ke-5 Sistem Telekomunikasi Politeknik Telkom MEDIA TRANSMISI Materi Ke-5 Sistem Telekomunikasi Politeknik Telkom OVERVIEW Medium transmisi digunakan untuk mengirimkan informasi, baik voice maupun data dari pengirim ke penerima atau dari TX ke RX.

Lebih terperinci

TRANSMISI. Pertemuan Metode Transmisi Metode transmisi yang dikenal terdiri dari dua macam, yaitu :

TRANSMISI. Pertemuan Metode Transmisi Metode transmisi yang dikenal terdiri dari dua macam, yaitu : TRANSMISI Pertemuan 1 3.1. Metode Transmisi Metode transmisi yang dikenal terdiri dari dua macam, yaitu : 1. Transmisi Serial Data dikirimkan satu bit demi satu bit melalui kanal komunikasi data yang telah

Lebih terperinci

Perangkat Keras jaringan pengkabelan dan konektor. Untuk Kalangan sendiri SMK Muh 6 Donomulyo

Perangkat Keras jaringan pengkabelan dan konektor. Untuk Kalangan sendiri SMK Muh 6 Donomulyo Perangkat Keras jaringan pengkabelan dan konektor Perangkat Keras Jaringan Komputer 1. NIC (Network Interface Card) NIC (Network Interface Card) atau yang biasa disebut LAN card ini adalah sebuah kartu

Lebih terperinci

MULTIPLEXING. Frequency-division Multiplexing (FDM)

MULTIPLEXING. Frequency-division Multiplexing (FDM) MULTIPLEXING Multiplexing merupakan rangkaian yang memiliki banyak input tetapi hanya 1 output dan dengan menggunakan sinyal-sinyal kendali, kita dapat mengatur penyaluran input tertentu kepada outputnya,

Lebih terperinci

KONSEP DAN TERMINOLOGI ==Terminologi==

KONSEP DAN TERMINOLOGI ==Terminologi== TRANSMISI DATA KONSEP DAN TERMINOLOGI ==Terminologi== Direct link digunakan untuk menunjukkan jalur transmisi antara dua perangkat dimana sinyal dirambatkan secara langsung dari transmitter menuju receiver

Lebih terperinci

TUGAS KELOMPOK 4 SOFYAN AGU YESSICA RATTU YULINA JEUJANAN FRIDEAL HORMAN YEFTA SUPIT

TUGAS KELOMPOK 4 SOFYAN AGU YESSICA RATTU YULINA JEUJANAN FRIDEAL HORMAN YEFTA SUPIT SINYAL SYSTEM TUGAS KELOMPOK 4 SOFYAN AGU YESSICA RATTU YULINA JEUJANAN FRIDEAL HORMAN YEFTA SUPIT Pengkodean Data / Data encoding Dalam proses kerjanya komputer mengolah data secara digital, melalui sinyal

Lebih terperinci

Analisis Perbandingan CWDM Dengan Modulasi Eksternal Menggunakan Penguat EDFA dan Tanpa Penguat

Analisis Perbandingan CWDM Dengan Modulasi Eksternal Menggunakan Penguat EDFA dan Tanpa Penguat Analisis Perbandingan CWDM Dengan Modulasi Eksternal Menggunakan Penguat EDFA dan Tanpa Penguat Sri Utami 1, Dodi Zulherman 2, Fauza Khair 3 1,2,3 Fakultas Teknik Telekomunikasi dan Elektro, Institut Teknologi

Lebih terperinci

LABORATORIUM SISTEM TRANSMISI

LABORATORIUM SISTEM TRANSMISI LABORATORIUM SISTEM TRANSMISI NOMOR PERCOBAAN : 01 JUDUL PERCOBAAN : FIBER OPTIK SINYAL ANALOG KELAS / KELOMPOK : TT - 5A / KELOMPOK 4 NAMA PRAKTIKAN : 1. SOCRATES PUTRA NUSANTARA (1315030082) NAMA KELOMPOK

Lebih terperinci

BAB II KONSEP DASAR SERAT OPTIIK DAN DENSE WAVELENGTH DIVISION MULTIPLEXING. Teknologi serat optik adalah suatu teknologi komunikasi yang

BAB II KONSEP DASAR SERAT OPTIIK DAN DENSE WAVELENGTH DIVISION MULTIPLEXING. Teknologi serat optik adalah suatu teknologi komunikasi yang BAB II KONSEP DASAR SERAT OPTIIK DAN DENSE WAVELENGTH DIVISION MULTIPLEXING 2.1 Umum Teknologi serat optik adalah suatu teknologi komunikasi yang menggunakan media cahaya sebagai penyalur informasi. Pada

Lebih terperinci

BAB I PENDAHULUAN. kemajuan sangat cepat. Ini diakibatkan adanya permintaan dan peningkatan

BAB I PENDAHULUAN. kemajuan sangat cepat. Ini diakibatkan adanya permintaan dan peningkatan BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi telekomunikasi sekarang ini mengalami kemajuan sangat cepat. Ini diakibatkan adanya permintaan dan peningkatan kebutuhan akan informasi, yang

Lebih terperinci

TEKNOLOGI DENSE WAVELENGTH DIVISION MULTIPLEXING (DWDM) PADA JARINGAN OPTIK. Yamato & Evyta Wismiana. Abstrak

TEKNOLOGI DENSE WAVELENGTH DIVISION MULTIPLEXING (DWDM) PADA JARINGAN OPTIK. Yamato & Evyta Wismiana. Abstrak TEKNOLOGI DENSE WAVELENGTH DIVISION MULTIPLEXING (DWDM) PADA JARINGAN OPTIK Oleh : Yamato & Evyta Wismiana Abstrak Perkembangan teknologi Dense Wavelength Division Multiplexing ( DWDM ) p a da j ar in

Lebih terperinci

DAN KONSENTRASI SAMPEL

DAN KONSENTRASI SAMPEL PERANCANGAN SENSOR ph MENGGUNAKAN FIBER OPTIK BERDASARKAN VARIASI KETEBALAN REZA ADINDA ZARKASIH NRP. 1107100050 DAN KONSENTRASI SAMPEL DOSEN PEMBIMBING : DRS. HASTO SUNARNO,M.Sc Jurusan Fisika Fakultas

Lebih terperinci

ANALISA RUGI DAYA MAKROBENDING SERAT OPTIK MODA TUNGGAL TERHADAP PENGARUH PEMBEBANAN DENGAN VARIASI JUMLAH DAN DIAMETER LILITAN

ANALISA RUGI DAYA MAKROBENDING SERAT OPTIK MODA TUNGGAL TERHADAP PENGARUH PEMBEBANAN DENGAN VARIASI JUMLAH DAN DIAMETER LILITAN ANALISA RUGI DAYA MAKROBENDING SERAT OPTIK MODA TUNGGAL TERHADAP PENGARUH PEMBEBANAN DENGAN VARIASI JUMLAH DAN DIAMETER LILITAN Henry Prasetyo 1109100060 Pembimbing : Endarko, M.Si., Ph.D Department of

Lebih terperinci

SISTEM TRANSMISI DIGITAL

SISTEM TRANSMISI DIGITAL SISTEM TRANSMISI DIGITAL Ref : Keiser Fakultas Teknik 1 Link Optik Dijital point to point Persyaratan utama sistem link : Jarak transmisi yg diinginkan Laju data atau lebar pita kanal BER USER USER SUMBER

Lebih terperinci

REVOLUSI DUNIA TELEKOMUNIKASI DENGAN SERAT OPTIK. Hasanah Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar

REVOLUSI DUNIA TELEKOMUNIKASI DENGAN SERAT OPTIK. Hasanah Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar Revolusi Dunia Telekomunikasi dengan Serat Optik [Hasanah] REVOLUSI DUNIA TELEKOMUNIKASI DENGAN SERAT OPTIK Hasanah Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar ABSTRAK

Lebih terperinci

JARINGAN KOMPUTER MODEL ANALISIS EL Oleh : Darmansyah Deva Sani of 6 ABSTRAK

JARINGAN KOMPUTER MODEL ANALISIS EL Oleh : Darmansyah Deva Sani of 6 ABSTRAK JARINGAN KOMPUTER MODEL ANALISIS EL - 670 Oleh : Darmansyah Deva Sani 232 98 502 1 of 6 ABSTRAK Sistem komunikasi fiber optik telah berkembang pesat akhir-akhir ini, berupa komunikasi suara, vidio dan

Lebih terperinci

EVALUASI PENERAPAN PENGUAT OPTIK EDFA RAMAN PADA SISTEM KOMUNIKASI FIBER OPTIK

EVALUASI PENERAPAN PENGUAT OPTIK EDFA RAMAN PADA SISTEM KOMUNIKASI FIBER OPTIK EVALUASI PENERAPAN PENGUAT OPTIK EDFA RAMAN PADA SISTEM KOMUNIKASI FIBER OPTIK Baharuddin Staf Pengajar Jurusan Teknik Elektro Fakultas Teknik Unand ABSTRACT The evaluation purpose is to study fiber optic

Lebih terperinci