BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Kompressor dan Klasifikasinya Kompresor adalah mesin untuk memampatkan udara atau gas. Kompresor udara biasanya menghisap udara dari atmosfer. Namun ada pula yang menghisap udara atau gas yang bertekanan lebih tinggi dari tekanan atmosfer. Dalam hal ini kompresor bekerja sebagai penguat (Booster). Sebaliknya kompresor ada yang menghisap gas yang bertekanan lebih rendah dari pada tekanan atmosfer. Dalam hal ini kompresor disebut Pompa Vakum. Gambar 2.1 Klasifikasi Kompressor Seperti terlihat pada gambar diatas, terdapat tiga jenis dasar kompressor : 1. Kompressor Positive-displacement, 2. Kompressor Dinamis 3. Kompressor Thermal. Pada jenis positive-displacement, sejumlah udara atau gas di-trap dalam ruang kompresi dan volumenya secara mekanik menurun, menyebabkan peningkatan tekanan tertentu dan kemudian dialirkan keluar. Pada kecepatan konstan, aliran udara tetap konstan dengan variasi pada tekanan pengeluaran. Kompresor dinamik memberikan enegi kecepatan untuk aliran udara atau gas yang kontinyu menggunakan impeller yang berputar pada kecepatan yang sangat tinggi. Energi kecepatan berubah menjadi energi tekanan karena pengaruh 5

2 impeller dan volume pengeluaran atau diffusers. Pada kompresor jenis dinamik sentrifugal, bentuk dari sudu-sudu impeller menentukan hubungan antara aliran udara dan tekanan (atau head) yang dibangkitkan. Jenis Kompressor Thermal menggunakan kecepatan tinggi dari gas atau uap jet untuk masuk melalui jalur pemasukan gas (inflowing gas), kemudian mengkorvesikan kecepatan campuran untuk menekan diffuser. Gambar 2.2 Bagan Cakupan Kompresor Keuntungan kompressor jenis Sentrifugal dibandingkan dengan jenis Reciprocating adalah : Biaya pemasangan awal lebih murah Beban pemeliharaan yang lebih rendah Pengoperasian yang berkesinambungan Tidak membutuhkan banyak perhatian operasi Kapasitas volume yang lebih besar perunit luas lahan Adaptasi untuk high-speed low-maintenance-cost drivers 6

3 Keuntungan compressor jenis Reciprocating disbanding dengan jenis compressor Sentrifugal adalah : Effisiensi Kompressor yang lebih tingg dan biaya listrik yang lebih rendah Fleksibilitas yang lebih besar dalam jangkauan kapasitas dan tekanan Kemampuan memberikan tekanan (head) yang lebih tinggi Kemampuan untuk menangani volume yang lebih kecil Tidak sensitif terhadap perubahan komposisi dan kepadatan gas Kompresor Reciprocating Di dalam industri, kompressor reciprocating paling banyak digunakan untuk mengkompresi baik udara maupun refrigrant. Prinsip kerjanya seperti pompa sepeda dengan karakteristik dimana aliran keluar tetap hampir konstan pada kisaran tekanan pengeluaran tertentu. Juga kapasitas kompressor proporsional langsung terhadap kecepatan. Keluarannya seperti denyutan Gambar 2.3 Kompressor Reciprocating Silinder Tunggal 7

4 Sebuah kompressor reciprocating silinder tunggal memiliki bagian-bagian sebagai berikut : Crankshaft berfungsi untuk mengubah gerakan putar dari penggerak utama dalam gerakan reciprocating. Crankshaft bekerja bersama croshead. Connecting rod berfungsi untuk menghubungkan crankshaft dengan crosshead. Crosshead bekerja bersama crankshaft untuk mengubah gerakan berputar menjadi gerakan reciprocating. Distance piece adalah jarak yang ditempatkan di antara penggerak utama dan kompressor. Distance piece ini berperan sebagai Housing untuk penghubung antara penggerak utama dan compressor. Piston rod berfungsi sebagai penghubung antara crosshead dan piston. Piston bekerja di dalam cylinder untuk melakukan kompresi gas. Piston rings sebagai seal/perapat antara piston dan dinding cylinder agar tidak terjadi kebocoran ketika kompresi. Cylinder adalahh ruang dimana proses kompresi gas terjadi. Suction valve memungkinkan gas untuk memasuki silinder kompresor. Discharge valve memungkinkan gas untuk meninggalkan silinder setelah proses kompresi. Head end clearance pocket dapat dipasang pada ujung kompresor. Head end adalah ujung yang dapat dilewati oleh piston rod. Clearence pocket memungkinkan teknisi untuk dapat memvariasi kapasitas kompresor. Clearance pocket dapat terpasang secara fixed atau bervariasi dan dikendalikan secara manual atau otomatis. Jika kompresor memiliki lebih dari satu silinder, maka setiap bagian komponen ini akan ditemukan pada setiap silinder. 8

5 2.1.2 Kompressor Sentrifugal Gambar 2.4 Kompresor Sentrifugal Kompresor udara sentrifugal merupakan kompresor dinamis, yang tergantung pada transfer energi dari impeller berputar ke udara. Rotor melakukan pekerjaan ini dengan mengubah momen dan tekanan udara. Momen ini dirubah menjadi tekanan tertentu dengan penurunan udara secara perlahan dalam difuser statis. Kompresor udara sentrifugal adalah kompresor yang dirancang bebas minyak pelumas. Gear yang dilumasi minyak pelumas terletak terpisah dari udara dengan pisah yang menggunakan sil pada poros dan ventilisasi atmosferis. Sentrifugal merupakan kompresor yang bekerja kontinyu, dengan sedikit bagian yang bergerak lebih sesuai digunakan pada volume yang besar dimana dibutuhkan bebas minyak pada udaranya. Kompresor udara sentrifugal menggunakan pendingin air dan dapat berbentuk paket, khususnya paket yang termasuk after-cooler dan semua control. Kompresor ini dikenal berbeda karakteristiknya jika dibandingkan dengan mesin pada rasio kompresi menghasilkan perubahan besar pada hasil kompresi dan 9

6 efisiensinya, Mesin sentrifugal lebih sesuai diterapkan untuk kapasitas besar diatas 12,000 cfm. Beberapa kriteria seleksi untuk berbagai jenis kompresor terlihat pada tabel dibawah ini. Tabel 2.1 Kriteria Seleksi Umum untuk Kompresor (konfederasi Industri India) Tabel 2.2 Perbandingan untuk beberapa jenis kompresor yang penting ( Kantor Pengembangan Energi Berkelanjutan, 2002 ) 10

7 2.2. Proses Kompresi Gas Sebuah proses kompresi gas dapat dirancang baik untuk menjadi adiabatik atau melibatkan perpindahan panas, tergantung pada tujuan yang gas yang akan dikompresi. Jika gas terkompresi diinginkan sebagai bahan bakar pada suatu mesin, kompresi adiabatik mungkin diinginkan untuk mendapatkan kemungkinan energi maksimum dalam gas pada akhir kompresi. Dalam banyak aplikasi, bagaimanapun gas tidak digunakan segera tetapi disimpan dalam tangki untuk digunakan sesuai kebutuhan. Gas dalam tangki kehilangan panas ke lingkungan dan mencapai suhu kamar ketika akhirnya digunakan. Dalam hal ini efek keseluruhan kompresi dan penyimpanan adalah hanya untuk meningkatkan tekanan gas tanpa perubahan suhu. Hal ini dapat menunjukkan bahwa jika gas didinginkan selama kompresi, bukan setelah proses, pekerjaan yang diperlukan akan kurang dari kondisi kompresi adiabatik. Sebuah keuntungan lebih lanjut dari pendinginan adalah pengurangan volume dan berkurangnya kerugian pipa. Untuk alasan ini, karena pendinginan selama kompresi sangat tidak efektif, setelah pendingin sering digunakan untuk mendinginkan gas yang meninggalkan kompresor. Dua kasus ideal tertentu, yaitu reversible adiabatic dan isothermal reversible serta kasus umum proses polytropic reversible ( pv n = konstan ). Ada beberapa pendekatan yang biasa digunakan dalam perhitungan proses kerja kompreso, yaitu : 1. Proses Adiabatic (isentropic), yaitu proses dengan menggunakan asumsi ideal, dimana proses berlangsungnya pada entropi konstan (tidak ada panas yang masuk dan keluar) meskipun pada kenyataannya energi panas tidak bisa dirubah secara keseluruhan menjadi kerja, karena adanya kerugian-kerugian. 2. Proses Politropik, adalah proses kerja aktual yang dihasilkan oleh kompresor itu sendiri. Gambar 2.5 Kurva Compression menunjukkan hubungan antara tekanan dan volume untuk setiap nilai eksponen n. Kerja, W, menampilkan lanjutan dari p 1 ke p 2 pada setiap kurva Polytropic. 11

8 Gambar 2.5 Proses Kompresi Jumlah kerja yang dibutuhkan tergantung pada kurva Polytropic yang telibat dan meningkat sesuai dengan meningkatnya nilai n. Jalur ini membutuhkan sedikitnya jumlah pekerjaan input n = 1, dimana setara dengan kompresi isothermal. Untuk kompresi isentropic, n = k = ratio of specific heat pada tekanan konstan dan pada volume yang konstan Unit Kerja Gas Kompressor Persamaan Gas Ideal Gas ideal adalah gas yang memenuhi persamaan sebagai berikut : PV = nrt Dimana ; P = Pressure absolute V = Volume n = Jumlah partikel pada gas dalam Mol R = Konstanta Gas (10,73 psi.ft 3 ) atau kj/(kmole.k) T = Temperatur absolute lbmol o R 12

9 Sehingga persamaan tersebut dapat diartikan sebagai berikut, P V nrt P V nrt = 1, merupakan Gas ideal 1, bukan termasuk dalam kondisi gas ideal melainkan merupakan kondisi real suatu gas, sehingga untuk mendekati gas ideal perlu dimasukkan faktor deviasi yang disebut dengan Compressibility Factor (Z). Natural gas adalah merupakan gas yang dihasilkan dari alam yang memiliki komposisi gas yang berbeda-beda, dimana natural gasi ini merupakan bagian penting yang akan dioperasikan oleh Gas Kompresor. Pada kenyataannya sangat sulit sekali untuk mengoperasikan natural gas mendekati gas ideal, dikarenakan kondisi temperatur dan tekanan yang bisa berubah akibat faktor cuaca dan sumber gas yang ada. Hal ini mengakibatkan perubahan pada volume atau sebaliknya, sehingga untuk menjaga keakuratan mendekati gas ideal, dalam perhitungan perlu diperhatikan hal-hal sebagai berikut sehingga tidak mempengaruhi performance Gas Kompresor Specific Heat Ratio (k) Untuk mengenal yang dimaksud dengan specific heat ratio, terlebih dahulu perlu mengetahui apa yang dimaksud dengan specific head. Specific head dari suatu zat adalah jumlah panas yang dibutuhkan untuk menaikkan temperatur satu unit masa. Bila dinyatakan dengan satu BTU specific heat berarti jumlah panas yang dibutuhkan untuk menaikan temperatur satu derajat Farenheit dari satu pound (lb) massa gas. Nilai specific heat bervariasi tergantung pada apakah pressure atau volume yang dijaga tetap konstan sementara gas dipanaskan. Kalau gas yang dipanaskan dalam suatu wadah yang dapat mengembang dan pressure konstan, maka volume akan bertambah seiring dengan kenaikan temperatur, maka ini disebut sebagai spesific heat pada saat pressure konstan (C p ), dan jika volume yang konstan sedangkan pressure naik seiring dengan meningkatnya temperatur disebut specific heat pada volume konstan (C p ). Specific heat ratio (K) adalah perbandingan antara specific heat pada posisi pressure konstan (C p ) dengan specific heat pada volume konstan (C v ) 13

10 Sebuah Proses adiabatik adalah proses yang terjadi tanpa pertukaran panas dari sistem dengan lingkungannya. Persamaan 1-1 yang berlaku untuk semua gas ideal dapat digunakan untuk menghitung nilai k (isentropic exponent), Dengan penataan ulang dan subsitusi kita memperoleh : Untuk menghitung nilai k untuk gas kita hanya perlu mengetahui constant pressure molar heat capacity (MC p ) untuk gas. Gambar 2.6 memberikan nilai berat molekul dan heat capacity pada keadaan gas ideal untuk berbagai gas. Tabel 2.3 Physical Constant for Pure Components 14

11 Tabel 2.4 Molar Heat Capacity MC p (kondisi gas ideal), kj/kmole. º C Tabel 2.5 Contoh perhitungan nilai k 15

12 Temperatur (T) Pada proses gas, temperatur diukur pada sisi suction dan discharge dari kompresor gas, suction temperatur dinyatakan dengan T s dan T d untuk discharge temperatur. Temperatur digunakan untuk menghitung energi yang diberikan oleh Gas Compressor (Head), Power yang dibutuhkan, dan Gas Flow. Dalam perhitungan satuan temperatur gas yang digunakan adalah absolut temperatur yaitu derajat Rankine ( o R ) Pressure (P) Gas pressure diukur pada sisi Suction pressure dan discharge pressure dari Gas Compressor. Suction pressure dinyatakan dengan P s dan discharge pressure dinyatakan dengan P d. Gas pressure digunakan untuk menghitung enerji yang diberikan oleh Gas Compresor, power yang dibutuhkan, dan gas flow. Gas pressure juga dinyatakan dalam absolute pressure (gauge pressure ditambah atmospheric pressure) dalam satuan Psia. Tabel 2.6 Tekanan atmosfir berdasarkan perbedaan ketinggian 16

13 Specific Gravity (SG) Specific Grafity adalah suatu ukuran dari beratnya suatu gas, yang dinyatakan sebagai ratio antara berat molekul gas dan berat molekul udara (28,964). Specific Grafity juga digunakan untuk menghitung enerji yang diberikan kepada gas oleh kompressor, power yang dibutuhkan, dan gas flow. Untuk campuran gas alam, SG dapay dihitung dengan mangalikan Mol Fraction dari komponen gas dengan berat molekulnya sendiri, kemudian jumlahkan total berat molekul gas campuran tersebut, selanjutnya bagi dengan berat molekul dari udara yaitu 28,964. SG suatu gas alam akan berubah sehubungan dengan berubahnya komposisi dari gas alam tersebut. SG tidak akan dipengaruhi oleh perubahan Temperatur dan tekanan, dan akan tetap selama proses kompresi berlangsung Compressibility Factor (Z) Hukum-hukum gas ideal adalah cocok untuk perhitungan hubungan antara pressure, volume, dan temperatur. Yaitu dimana kondisi gas pada pressure dan temperatur yang berada di atmosfir atau pada tekanan atmosfir. Namun pada kenyataannya ada perbedaan nilai volume antara perhitungan real gas (gas sesungguhnya) dengan perhitungan gas ideal. Untuk mengoreksi perbedaan antara volume real gas dan volume gas ideal pada hukum-hukum gas ideal, maka Compressibility Faktor digunakan untuk menghitung pressure, volume, dan temperatur pada kondisi gas yang sesungguhnya. Untuk mencari Compressibility Factor dapat menggunakan kurva Compressibility Curve for Natural Gas. 17

14 Ratio Kompresi (R) Ratio Kompresi (compression ratio) merupakan perbandingan antara tekanan discharge dan tekanan suction dari kompressor. Untuk single-stages compressor hanya mempunyai 1 nilai R, sedangkan untuk two-stages compressor memiliki nilai R, R 1 dan R 2. R = P d /P s, R 1 = P i /P s, R 2 = P d /P i R R 1 R 2 P s P d P i = total compression ratio dari kompressor = compression ration dari tahapan pertama = compression ratio dari tahapan kedua = suction pressure = discharge pressure = tekanan interstage, - tekanan diantara tahapan pertama dan kedua dari kompressor Tahap Kompressor (stages) Pemilihan jumlah yang tepat dari tahap kompresi sebagian besar didasarkan pada rasio kompresi (R), discharge temperatur dan siklus dari piston juga bisa dipertimbangkan ketika menentukan junlah tahap untuk digunakan. Berikut adalah untuk memilih jumlah tahapan yang tepat dari tahap kompressor. Tabel 2.7 Pemilihan jumlah tahapan kompresi berdasarkan ratio kompresi R value # stages 1 3 Single-stages 3 5 Normally single-stages, occasionall two-stages 5 7 Normallt two-stages, occasionally single-stages 7 10 Two-stages Usually two-stages, occasionally three-stages 15 + Three Stages 18

15 Efisiensi Volumetrik (VE%) Effisiensi volumetric adalah perbandingan rasio jumlah gas yang dikompresikan dengan ukuran fisik volume silinder kompresor. Untuk tujuan estimasi dapat digunakan persamaan berikut : Single-stage compressors VE% = 93 R 8(R 1/k 1) Two-stage compressors VE% = 89 R 7.8(R 1/k 1) Dimana R Compression ratio (P d /P s ) k Gas specific heat ratio Maximum Inlet Flow (ICFM) Maximum Inlet Flow adalah kapasitas Natural Gas yang mampu diterima oleh Gas Compressor sehingga compressor tidak terbebani baik overload maupun surging karena kekurangan gas umpan. Untuk mengetahui nilai Maximum Inlet Flow persamaan yang digunakan adalah : ICFM = SCFM (P std / P s ) (T s /T std ) Dimana ; ICFM = Capacity (Inlet Cubic feet per minute) SCFM = Standard Cubic Feet per Minute 1 MMSCFD = SCFM T s P s P std = Temperatur absolute pada suction (ºR) = Pressure absolute pada suction (psia) = Standard barometric pressure (psia) T std = Standard temperature 520 ºR 19

16 Piston Displacement (PD) Sebuah kompresor torak dengan diameter silinder D (m), langkah torak S (m), dan putaran N (rpm). Dengan ukuran seperti ini kompresor akan memampatkan volume gas sebesar V s = (π/4) D 2 x S (m 3 ) untuk setiap langkah kompresi yang dikerjakan dalam setiap putaran poros engkol. Jumlah volume gas yang dimampatkan permenit disebut perpindahan torak. Jadi jika poros kompresor mempunyai putaran N (rpm) maka : Perpindahan torak = V s x N = (π/4) D 2 x S x N (m 3 /min) Gambar. 2.6 Diagram P-V dari kompresor Rumus diatas berlaku hanya untuk kompresor kerja tunggal. Untuk kompresor kerja ganda, pemampatan gas terjadi bukan hanya pada watu torak bergerak kekiri, tetapi juga pada saat torak bergerak ke kanan, karena ruang sebelah kanan torak juga berlaku sebagai kompresor. Untuk kompresor yang bekerja ganda berlaku rumus : Perpindahan torak = (π/4) D 2 SN + (π/4)(d 2 d 2 ) SN (m 3 /min) = (π/4)(2d 2 d 2 )SN, (m 3 /min) Terlihat dari gambar 2.6 pada saat torak bergerak mencapai titik mati atas, antara sisi atas torak dan kepala silinder masih ada volume sisa yang besarnya = V c. Volume ini idealnya harus sama dengan nol agar gas dapat didorong 20

17 seluruhnya keluar silinder tanpa sisa. Namun dalam praktek harus ada sisa (clearence) diatas torak agar tidak membentur kepala silinder Perhitungan Brake Horse Power Untuk reciprocating kompresor, perhtungan kebutuhan daya dapat dilakukan dengan menggunakan persamaan berikut : Single-stages BHP = ( k / k 1 ) (P s ) (PD) (R (k 1)/k 1 ) Two-stages BHP = ( 2k / k 1 ) (P s ) (PD) (R (k 1)/2k 1 ) BHP = Kebutuhan brake horse power, kw k = Specific heat ratio of the gas P s PD = Suction Pressure (Psia) = Piston Displacement (CFM) R = Compression Ratio (P d /P s ) Total daya untuk kompresor adalah jumlah daya yang diperlukan untuk masing-masing stage yang digunakan. Untuk multistage kompresor, penyisihan dibuat untuk masing-masing stage tersebut Jenis Penggerak Gas Kompressor Kompressor merupakan mesin yang membutuhkan penggerak dari luar,. Penggerak yang dipakai umumnya adalah motor listrik atau motor bakar. Motor listrik mempunyai keunggulan yaitu tidak berisik, tidak menimbulkan polusi, murah, dan operasi ataupun pemeliharaannya mudah. Jenis kompressor sentrifugal biasanya menggunakan penggerak listrik, dikarenakan kompressor sentrifugal lebih stabil penggunaan beban dan lebih effisien. Untuk kompressor jenis reciprocating, umumnya menggunakan penggerak motor bakar (diesel engine/gas engine/gas turbin), dimana pemilihan jenis motor bakar tergantung dari situasi dan kondisi di lapangan. 21

BAB III PEMBAHASAN MULAI

BAB III PEMBAHASAN MULAI BAB III PEMBAHASAN 3.1. Diagram Alir Pemilihan Kompresor MULAI DESIGN BASIS Discharge Pressure Temperatur Flow Head Komposisi Gas INPUT DATA PEMILIHAN JENIS KOMPRESOR ANALISA PERHITUNGAN RUMUS EMPIRIS

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Kompresor Kompresor merupakan mesin fluida yang menambahkan energi ke fluida kompresibel yang berfungsi untuk menaikkan tekanan. Kompresor biasanya bekerja dengan perbedaan

Lebih terperinci

KOMPRESOR. Perancangan Alat Proses. Abdul Wahid Surhim 2015

KOMPRESOR. Perancangan Alat Proses. Abdul Wahid Surhim 2015 KOMPRESOR Perancangan Alat Proses Abdul Wahid Surhim 205 Rujukan Campbell, J. M. 992. Gas Conditioning and Processing: Equipment Modules, Volume 2. Hanlon, Paul C. 200. Compressor Handbook. McGraw- Hill

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang bertekanan lebih rendah dari tekanan atmosfir. Dalam hal ini disebut pompa

BAB II TINJAUAN PUSTAKA. yang bertekanan lebih rendah dari tekanan atmosfir. Dalam hal ini disebut pompa BAB II TINJAUAN PUSTAKA 2.1. Pengertian Kompresor Kompresor adalah mesin untuk memampatkan udara atau gas. Kompresor udara biasanya mengisap udara dari atsmosfir. Namun ada pula yang mengisap udara atau

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger Pengertian Turbocharger Turbocharger merupakan sebuah peralatan, untuk menambah jumlah udara yang masuk kedalam slinder dengan memanfaatkan energi gas buang. Turbocharger merupakan perlatan untuk mengubah

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous Pendahuluan PLTG adalah pembangkit listrik yang menggunakan tenaga yang dihasilkan oleh hasil pembakaran bahan bakar dan udara bertekanan tinggi.

Lebih terperinci

BAB II DASAR TEORI. kata lain kompresor adalah penghasil udara mampat. Karena proses. dengan tekanan udara lingkungan. Dalam keseharian, kita sering

BAB II DASAR TEORI. kata lain kompresor adalah penghasil udara mampat. Karena proses. dengan tekanan udara lingkungan. Dalam keseharian, kita sering BAB II DASAR TEORI 2.1 Pengertian Kompresor Kompresor adalah alat pemampat atau pengkompresi udara dengan kata lain kompresor adalah penghasil udara mampat. Karena proses pemampatan, udara mempunyai tekanan

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

POMPA TORAK. Oleh : Sidiq Adhi Darmawan. 1. Positif Displacement Pump ( Pompa Perpindahan Positif ) Gambar 1. Pompa Torak ( Reciprocating Pump )

POMPA TORAK. Oleh : Sidiq Adhi Darmawan. 1. Positif Displacement Pump ( Pompa Perpindahan Positif ) Gambar 1. Pompa Torak ( Reciprocating Pump ) POMPA TORAK Oleh : Sidiq Adhi Darmawan A. PENDAHULUAN Pompa adalah peralatan mekanik yang digunakan untuk memindahkan fluida incompressible ( tak mampu mampat ) dengan prinsip membangkitkan beda tekanan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1. Klasifikasi Kompresor Secara garis besar kompresor dapat diklasifikasikan menjadi dua bagian, yaitu Positive Displacement compressor, dan Dynamic compressor, (Turbo), Positive

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Dasar-dasar Pompa Sentrifugal Pada industri minyak bumi, sebagian besar pompa yang digunakan ialah pompa bertipe sentrifugal. Gaya sentrifugal ialah sebuah gaya yang timbul akibat

Lebih terperinci

JENIS-JENIS POMPA DAN KOMPRESOR

JENIS-JENIS POMPA DAN KOMPRESOR JENIS-JENIS POMPA DAN KOMPRESOR KOMPRESOR Sebelum membahas mengenai jenis-jenis kompresor yang ada, lebih baiknya kita pahami dahulu apa itu kompressor dan bagaimana cara kerjanya. Kompressor merupakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1.PENGHEMATAN ENERGI LISTRIK Kondisi saat ini didunia industri mengalami kemajuan pesat dengan meningkatnya pertumbuhan pengunaan energi di sektor Industri yang merupakan konsumen

Lebih terperinci

BAB II DASAR TEORI. kompresi udara. Udara yang dikompresi sering disebut udara tekan atau udara

BAB II DASAR TEORI. kompresi udara. Udara yang dikompresi sering disebut udara tekan atau udara BAB II DASAR TEORI 2.1. Pengertian Kompresi Kompresi adalah pemampatan gas sehingga tekanannya lebih tinggi dari tekanan semula. Proses ini dipakai dalam banyak cabang bidang teknik. Istilah kompresi umumnya

Lebih terperinci

DOSEN PEMBIMBING : Prof.Dr.Ir. I Made Arya Djoni,M.Sc.

DOSEN PEMBIMBING : Prof.Dr.Ir. I Made Arya Djoni,M.Sc. DOSEN PEMBIMBING : ProfDrIr I Made Arya Djoni,MSc Tugas Akhir Teknik Mesin FTI-ITS SUABAYA 200 BAB I PENDAHULUAN LATA BELAKANG PEUMUSAN MASALAH TUJUAN BATASAN MASALAH MANFAAT SISTEMATIKA PENULISAN LATA

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

POMPA. yusronsugiarto.lecture.ub.ac.id

POMPA. yusronsugiarto.lecture.ub.ac.id POMPA yusronsugiarto.lecture.ub.ac.id PENGERTIAN KARAKTERISTIK SISTIM PEMOMPAAN JENIS-JENIS POMPA PENGKAJIAN POMPA Apa yang dimaksud dengan pompa dan sistem pemompaan? http://www.scribd.com/doc/58730505/pompadan-kompressor

Lebih terperinci

BAB II LANDASAN TEORI. yang terdapat pada Centrifugal Gas Compressor. dibantu oleh mesin pengerak lain atau penggerak utama (prime mover).

BAB II LANDASAN TEORI. yang terdapat pada Centrifugal Gas Compressor. dibantu oleh mesin pengerak lain atau penggerak utama (prime mover). BAB II LANDASAN TEORI Centrifugal Gas Compressor adalah suatu peralatan yang mengubah energy kecepatan menjadi energy tekanan melelui beberapa komponen peralatan yang terdapat pada Centrifugal Gas Compressor.

Lebih terperinci

BAB II TINJAUAN LITERATUR

BAB II TINJAUAN LITERATUR BAB II TINJAUAN LITERATUR Motor bakar merupakan motor penggerak yang banyak digunakan untuk menggerakan kendaraan-kendaraan bermotor di jalan raya. Motor bakar adalah suatu mesin yang mengubah energi panas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON. Panjang langkah (L) : 59 mm = 5,9 cm. Jumlah silinder (z) : 1 buah

BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON. Panjang langkah (L) : 59 mm = 5,9 cm. Jumlah silinder (z) : 1 buah BAB IV ANALISA DAN PERHITUNGAN PENINGKATAN PERFORMA MESIN YAMAHA CRYPTON 4.1 Analisa Peningkatan Performa Dalam perhitungan perlu diperhatikan hal-hal yang berkaitan dengan kamampuan mesin, yang meliputi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian pompa Pompa adalah peralatan mekanis untuk meningkatkan energi tekanan pada cairan yang di pompa. Pompa mengubah energi mekanis dari mesin penggerak pompa menjadi energi

Lebih terperinci

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas BAB II LANDASAN TEORI 2.1 Motor Bensin Motor bensin adalah suatu motor yang mengunakan bahan bakar bensin. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas yang kemudian

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

Gambar 1. Motor Bensin 4 langkah

Gambar 1. Motor Bensin 4 langkah PENGERTIAN SIKLUS OTTO Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

MODUL II PENGUJIAN KOMPRESOR TORAK

MODUL II PENGUJIAN KOMPRESOR TORAK MODUL II PENGUJIAN KOMPRESOR TORAK BAB I PENDAHULUAN 1.1 Latar Belakang Kompresor adalah suatu peralatan teknik yang penting untuk dipelajari karena kompresor merupakan salah satu peralatan yang banyak

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. SEJARAH MOTOR DIESEL Pada tahun 1893 Dr. Rudolf Diesel memulai karier mengadakan eksperimen sebuah motor percobaan. Setelah banyak mengalami kegagalan dan kesukaran, mak akhirnya

Lebih terperinci

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA TUGAS AKHIR PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA Disusun : JOKO BROTO WALUYO NIM : D.200.92.0069 NIRM : 04.6.106.03030.50130 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahkan fluida dari satu tempat ketempat lainnya, melalui suatu media aluran pipa dengan cara menambahkan energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1. Pengertian Blower Pengertian Blower adalah mesin atau alat yang digunakan untuk menaikkan atau memperbesar tekanan udara atau gas yang akan dialirkan dalam suatu ruangan tertentu

Lebih terperinci

15 BAB III TINJAUAN PUSTAKA 3.1 Pengertian Pompa Pompa adalah mesin fluida yang berfungsi untuk memindahkan fluida cair dari suatu tempat ke tempat lain dengan cara memberikan energi mekanik pada pompa

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika

Materi. Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Penggerak Mula Materi Motor Bakar Turbin Uap Turbin Gas Generator Uap/Gas Siklus Termodinamika Motor Bakar (Combustion Engine) Alat yang mengubah energi kimia yang ada pada bahan bakar menjadi energi mekanis

Lebih terperinci

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan BAB II DASAR TEORI 2.1. DASAR TEORI POMPA 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat lain yang diinginkan. Pompa beroperasi dengan membuat

Lebih terperinci

Ilham Budi Santoso Moderator KBK Rotating.

Ilham Budi Santoso Moderator KBK Rotating. Ilham Budi Santoso Moderator KBK Rotating Santoso_ilham@yahoo.com Ilhambudi.santoso@se1.bp.com Definisi Pompa : peralatan yang digunakan untuk memindahkan cairan dengan cara menaikkan tingkat energi cairan.

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang B. Tujuan

BAB I PENDAHULUAN A. Latar Belakang B. Tujuan BAB I PENDAHULUAN A. Latar Belakang Dalam kehidupan modern seperti sekarang ini kompressor mempunyai penggunaan yang sangat luas di segala bidang kegiatan seperti industri, pertanian, rumah tangga dan

Lebih terperinci

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas BAB II LANDASAN TEORI 2.1 Motor Bensin Motor bensin adalah suatu motor yang mengunakan bahan bakar bensin. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas yang kemudian

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Latar Belakang Pengkondisian udaraa pada kendaraan mengatur mengenai kelembaban, pemanasan dan pendinginan udara dalam ruangan. Pengkondisian ini bertujuan bukan saja sebagai penyejuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Bakar Motor bakar adalah suatu tenaga atau bagian kendaran yang mengubah energi termal menjadi energi mekanis. Energi itu sendiri diperoleh dari proses pembakaran. Pada

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN

BAB III PERENCANAAN DAN PERHITUNGAN BAB III PERENCANAAN DAN PERHITUNGAN 3.1. Pengertian Perencanaan dan perhitungan diperlukan untuk mengetahui kinerja dari suatu mesin (Toyota Corolla 3K). apakah kemapuan kerja dari mesin tersebut masih

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

FLUID MACHINES LABORATORY MECHANICAL ENGINEERING BRAWIJAYA UNIVERSITY JL. MAYJEN HARYONO 167 MALANG TELP/FAX :

FLUID MACHINES LABORATORY MECHANICAL ENGINEERING BRAWIJAYA UNIVERSITY JL. MAYJEN HARYONO 167 MALANG TELP/FAX : FLUID MACHINES LABORATORY MECHANICAL ENGINEERING BRAWIJAYA UNIVERSITY JL. MAYJEN HARYONO 167 MALANG TELP/FAX : 0341-554291 PETUNJUK PENGUJIAN POMPA SENTRIFUGAL PENGUJIAN POMPA SENTRIFUGAL TUNGGAL, SERI,

Lebih terperinci

BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN

BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN BAB III DESKRIPSI ALAT UJI DAN PROSEDUR PENGUJIAN 3.1. Rancangan Alat Uji Pada penelitian ini alat uji dirancang sendiri berdasarkan dasar teori dan pengalaman dari penulis. Alat uji ini dirancang sebagai

Lebih terperinci

BAB II LANDASAN TEORI. stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu

BAB II LANDASAN TEORI. stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu BAB II LANDASAN TEORI 2.1 Kendali suhu Pembatasan suhu sebenarnya adalah pada turbin inlet yang terdapat pada first stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu pengapian

Lebih terperinci

LOGO POMPA CENTRIF TR UGAL

LOGO POMPA CENTRIF TR UGAL LOGO POMPA CENTRIFUGAL Dr. Sukamta, S.T., M.T. Pengertian Pompa Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Klasifikasi

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Motor Bensin Motor bensin adalah suatu motor yang menggunakan bahan bakar bensin. Sebelum bahan bakar ini masuk ke dalam ruang silinder terlebih dahulu terjadi percampuran bahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Blower Blower adalah mesin atau alat yang digunakan untuk menaikkan atau memperbesar tekanan udara atau gas yang akan dialirkan dalam suatu ruangan tertentu juga sebagai

Lebih terperinci

TURBOCHARGER BEBERAPA CARA UNTUK MENAMBAH TENAGA

TURBOCHARGER BEBERAPA CARA UNTUK MENAMBAH TENAGA TURBOCHARGER URAIAN Dalam merancang suatu mesin, harus diperhatikan keseimbangan antara besarnya tenaga dengan ukuran berat mesin, salah satu caranya adalah melengkapi mesin dengan turbocharger yang memungkinkan

Lebih terperinci

FINONDANG JANUARIZKA L SIKLUS OTTO

FINONDANG JANUARIZKA L SIKLUS OTTO FINONDANG JANUARIZKA L 125060700111051 SIKLUS OTTO Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel)

Lebih terperinci

BAB XVII PENGISIAN TEKAN

BAB XVII PENGISIAN TEKAN BAB XVII PENGISIAN TEKAN Pengisian adalah pemasukan udara kedalam silinder motor. Udara tersebut diperlukan untuk proses kompresi sekali gas untuk proses pembakaran bahan bakar. 1. Pada dasarnya pengisian

Lebih terperinci

BAB VI Aliran udara dan gas buang II. Pembilasan

BAB VI Aliran udara dan gas buang II. Pembilasan BAB VI I. Aliran udara dan gas buang Udara masuk kedalam silinder dapat dijelaskan sbb : a. Untuk musim - musim kecil dan jenis 4 takt, udara masuk kedalam silinder hanya oleh perantaraan toraknya sendiri

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Kompressor Kompressor adalah mesin untuk memampatkan udara atau gas, biasanya mengisap udara dari atmosfir. Sularso, hal : 167 2.2 Macam-macam Kompressor Ada beberapa

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

PENGARUH VARIASI PENYETELAN CELAH KATUP MASUK TERHADAP EFISIENSI VOLUMETRIK RATA - RATA PADA MOTOR DIESEL ISUZU PANTHER C 223 T

PENGARUH VARIASI PENYETELAN CELAH KATUP MASUK TERHADAP EFISIENSI VOLUMETRIK RATA - RATA PADA MOTOR DIESEL ISUZU PANTHER C 223 T PENGARUH VARIASI PENYETELAN CELAH KATUP MASUK TERHADAP EFISIENSI VOLUMETRIK RATA - RATA PADA MOTOR DIESEL ISUZU PANTHER C 223 T Sarif Sampurno Alumni Jurusan Teknik Mesin, FT, Universitas Negeri Semarang

Lebih terperinci

EFEK PENGGUNAAN SUPERCHARGER TERHADAP UNJUK KERJA DAN KONSTRUKSI PADA SEBUAH MESIN DIESEL

EFEK PENGGUNAAN SUPERCHARGER TERHADAP UNJUK KERJA DAN KONSTRUKSI PADA SEBUAH MESIN DIESEL EFEK PENGGUNAAN SUPERCHARGER TERHADAP UNJUK KERJA DAN KONSTRUKSI PADA SEBUAH MESIN DIESEL Abstrak Salah satu cara peningkatan unjuk kerja mesin diesel dapat dilakukan dengan memperbaiki sistim pemasukan

Lebih terperinci

PERANCANGAN KOMPRESSOR SENTRIFUGAL PADA TURBOCHARGER UNTUK MENAIKAN DAYA MESIN BENSIN 1500cc SEBESAR 25%

PERANCANGAN KOMPRESSOR SENTRIFUGAL PADA TURBOCHARGER UNTUK MENAIKAN DAYA MESIN BENSIN 1500cc SEBESAR 25% PERANCANGAN KOMPRESSOR SENTRIFUGAL PADA TURBOCHARGER UNTUK MENAIKAN DAYA MESIN BENSIN 1500cc SEBESAR 25% DOSEN PEMBIMBING Prof.Dr.Ir. I MADE ARYA DJONI, MSc LATAR BELAKANG Material piston Memaksimalkan

Lebih terperinci

Penggunaan sistem Pneumatik antara lain sebagai berikut :

Penggunaan sistem Pneumatik antara lain sebagai berikut : SISTEM PNEUMATIK SISTEM PNEUMATIK Pneumatik berasal dari bahasa Yunani yang berarti udara atau angin. Semua sistem yang menggunakan tenaga yang disimpan dalam bentuk udara yang dimampatkan untuk menghasilkan

Lebih terperinci

Mesin Penggerak Kapal PROGRAM STUDI TEKNIK PERKAPALAN FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO

Mesin Penggerak Kapal PROGRAM STUDI TEKNIK PERKAPALAN FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO Mesin Penggerak Kapal PROGRAM STUDI TEKNIK PERKAPALAN FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO Sistem Penggerak Kapal Mesin Penggerak Utama 1. Mesin Uap Torak (Steam Reciprocating Engine) 2. Turbin Uap (Steam

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Penyimpanan Energi Termal Es merupakan dasar dari sistem penyimpanan energi termal di mana telah menarik banyak perhatian selama beberapa dekade terakhir. Alasan terutama dari penggunaan

Lebih terperinci

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin :

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin : BOILER FEED PUMP A. PENGERTIAN BOILER FEED PUMP Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM).

Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

BAB 5 DASAR POMPA. pompa

BAB 5 DASAR POMPA. pompa BAB 5 DASAR POMPA Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Zat cair tersebut contohnya adalah air, oli atau minyak pelumas,

Lebih terperinci

BAB 3 PROSES-PROSES THERMODINAMIKA

BAB 3 PROSES-PROSES THERMODINAMIKA BAB 3 PROSES-PROSES THERMODINAMIKA 3-. Pengaruh Panas Pada Volume Ketika kecepatan molekul atau derajat pemisahan molekul meningkat oleh penambahan panas, rata-rata jarak antara molekul yang meningkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Motor Bensin Motor adalah gabungan dari alat-alat yang bergerak (dinamis) yang bila bekerja dapat menimbulkan tenaga/energi. Sedangkan pengertian motor bakar

Lebih terperinci

POMPA SENTRIFUGAL. Oleh Kelompok 2

POMPA SENTRIFUGAL. Oleh Kelompok 2 POMPA SENTRIFUGAL Oleh Kelompok 2 M. Salman A. (0810830064) Mariatul Kiptiyah (0810830066) Olyvia Febriyandini (0810830072) R. Rina Dwi S. (0810830075) Suwardi (0810830080) Yayah Soraya (0810830082) Yudha

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. 1. Motor Bakar Diesel Motor bakar diesel adalah motor bakar yang berbeda dengan motor bensin, proses penyalaanya bukan dengan nyala api listrik melainkan penyalaan bahan bakar

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

TUGAS AKHIR ANALISIS KOMPRESI PADA KOMPRESOR TORAK SINGLE ACTION

TUGAS AKHIR ANALISIS KOMPRESI PADA KOMPRESOR TORAK SINGLE ACTION TUGAS AKHIR ANALISIS KOMPRESI PADA KOMPRESOR TORAK SINGLE ACTION Diajukan Untuk Persyaratan Kurikulum Sarjana Strata I (S-I) Teknik Mesin Oleh : NAMA : CHANDRA AFRIA NIM : 2010250014 FAKULTAS TEKNIK JURUSAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pompa Pompa adalah alat untuk memindahkan fluida dari tempat satu ketempat lainnya yang bekerja atas dasar mengkonversikan energi mekanik menjadi energi kinetik.

Lebih terperinci

LU N 1.1 PE P N E G N E G R E TI T AN

LU N 1.1 PE P N E G N E G R E TI T AN BAB I PENDAHULUAN 1.1 PENGERTIAN POMPA Pompa adalah peralatan mekanis yang diperlukan untuk mengubah kerja poros menjadi energi fluida (yaitu energi potensial atau energi mekanik). Pada umumnya pompa digunakan

Lebih terperinci

BAB V ANALISA HASIL PERBANDINGAN KOMPRESOR PISTON DENGAN SCREW

BAB V ANALISA HASIL PERBANDINGAN KOMPRESOR PISTON DENGAN SCREW BAB V ANALISA HASIL PERBANDINGAN KOMPRESOR PISTON DENGAN SCREW 5.1.Hasil Perbandingan kapasitas kompresor Hasil perhitungan dengan menggunakan ompressor screw untuk memenuhi kebutuhan produksi,maka kompressor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Landasan Teori Apabila meninjau mesin apa saja, pada umumnya adalah suatu pesawat yang dapat mengubah bentuk energi tertentu menjadi kerja mekanik. Misalnya mesin listrik,

Lebih terperinci

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel A. Karakteristik Motor 2 Langkah dan 4 Langkah 1. Prinsip Kerja Motor 2 Langkah dan 4 Langkah a. Prinsip Kerja Motor

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1 MOTOR DIESEL Motor diesel adalah motor pembakaran dalam (internal combustion engine) yang beroperasi dengan menggunakan minyak gas atau minyak berat sebagai bahan bakar dengan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

BUKU PETUNJUK PRAKTIKUM MESIN-MESIN FLUIDA

BUKU PETUNJUK PRAKTIKUM MESIN-MESIN FLUIDA BUKU PETUNJUK PRAKTIKUM MESIN-MESIN FLUIDA TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA JL. MT Haryono 167 Malang website: fluidlaboratory.ub.ac.id 201/2016 PETUNJUK PENGUJIAN TURBIN AIR FRANCIS

Lebih terperinci

Oleh: Dr.Ir. Ruslan Wirosoedarmo, MS Evi Kurniati, STP., MT

Oleh: Dr.Ir. Ruslan Wirosoedarmo, MS Evi Kurniati, STP., MT Oleh: Dr.Ir. Ruslan Wirosoedarmo, MS Evi Kurniati, STP., MT Email: evi_kurniati@yahoo.com SEJARAH Diawali, kebutuhan untuk membawa air dari satu tempat ke tempat lain tanpa harus susah payah mengangkut.

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, penggunaan pompa sangat luas hampir disegala bidang, seperti industri, pertanian, rumah tangga dan sebagainya. Pompa merupakan alat yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

CARA MENGKAJI PIPING & INSTRUMENTATION DIAGRAM

CARA MENGKAJI PIPING & INSTRUMENTATION DIAGRAM CARA MENGKAJI PIPING & INSTRUMENTATION DIAGRAM Oleh: Cahyo Hardo Priyoasmoro Moderator Milis Migas Indonesia Bidang Keahlian Process Engineering PENDAHULUAN Menurut hemat saya, selama bekerja di operasi

Lebih terperinci

PERAWATAN TURBOCHARGER PADA GENSET MESIN DIESEL 1380 KW. Oleh: Dr. Ir. Heru Mirmanto, MT

PERAWATAN TURBOCHARGER PADA GENSET MESIN DIESEL 1380 KW. Oleh: Dr. Ir. Heru Mirmanto, MT TUGAS AKHIR PERAWATAN TURBOCHARGER PADA GENSET MESIN DIESEL 1380 KW Oleh: Bagus Adi Mulya P 2107 030 002 DOSEN PEMBIMBING: Dr. Ir. Heru Mirmanto, MT PROGRAM DIPLOMA 3 BIDANG KEAHLIAN KONVERSI ENERGI JURUSAN

Lebih terperinci

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI Motor penggerak mula adalah suatu alat yang merubah tenaga primer menjadi tenaga sekunder, yang tidak diwujudkan dalam bentuk aslinya, tetapi diwujudkan dalam

Lebih terperinci

LUBRICATING SYSTEM. Fungsi Pelumas Pada Engine: 1. Sebagai Pelumas ( Lubricant )

LUBRICATING SYSTEM. Fungsi Pelumas Pada Engine: 1. Sebagai Pelumas ( Lubricant ) LUBRICATING SYSTEM Adalah sistim pada engine diesel yang dapat merawat kerja diesel engine agar dapat berumur panjang, dengan memberikan pelumasan pada bagian-bagian engine yang saling bergerak/mengalami

Lebih terperinci

TUGAS KHUSUS POMPA SENTRIFUGAL

TUGAS KHUSUS POMPA SENTRIFUGAL AUFA FAUZAN H. 03111003091 TUGAS KHUSUS POMPA SENTRIFUGAL Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II LANDASAN TEORI. mekanik berupa gerakan translasi piston (connecting rods) menjadi gerak rotasi

BAB II LANDASAN TEORI. mekanik berupa gerakan translasi piston (connecting rods) menjadi gerak rotasi BAB II LANDASAN TEORI 2.1 Pengertian Motor Bakar Motor bakar torak merupakan salah satu mesin pembangkit tenaga yang mengubah energi panas (energi termal) menjadi energi mekanik melalui proses pembakaran

Lebih terperinci

V Reversible Processes

V Reversible Processes Tujuan Instruksional Khusus: V Reersible Processes Mahasiswa mampu 1. menjelaskan tentang proses-proses isothermal, isobaric, isochoric, dan adiabatic. 2. menghitung perubahan energi internal, perubahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci