1. Model Prediksi Ini Menggunakan Tools RapidMiner
|
|
|
- Dewi Hermanto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 1. Model Prediksi Ini Menggunakan Tools RapidMiner RapidMiner memiliki keunggulan tersendiri, RapidMiner merupakan aplikasi data mining berbasis sistem open-source dunia yang terkemuka dan ternama. Tersedia sebagai aplikasi yang berdiri sendiri untuk analisis data dan sebagai data mining. Solusi yang diusung antara lain Integrasi data, analisis ETL, analisis data dan pelaporan dalam satu suite tunggal. Memiliki antarmuka pengguna grafis yang intuitif untuk desain analisis proses, serta fleksibel terdapat banyak transformasi data, pemodelan data, dan metode visualisasi data. 2. Model Prediksi Elektabilitas Caleg a. Modeling Decision Tree Decision tree adalah model prediksi yang digambarkan dengan struktur pohon atau struktur berhirarki. Konsep dari decision tree adalah membantu user dalam mengubah data menjadi pohon keputusan dan syarat-syarat keputusan agar lebih mudah dipahami dan dipetakan.
2 Deskripsi : Jika calon memiliki suara sah lebih dari maka akan terpilih menjadi anggota legislatif. Jika kurang dari 3082 akan dipertimbangkan dalam dua klasifikasi yaitu jumlah suara >2418 dan 2418 jika suara sah caleg 2418 akan dibagi lagi ke dalam kelompok suara sah caleg jika memiliki maka caleg tidak akan terpilih jika jumlah suara > dan terdapat >1468 suara maka tidak akan terpilih dan jika 1468 maka akan terpilih menjadi anggota legislatif Dalam jumlah suara sebanyak >2418 terbagi menjadi dua klasifikasi yaitu apabila suara yang dimiliki >2935 maka caleg tidak akan terpilih. Dan jika 2935 akan ditentukan oleh suara sah partai dan daerah pemilihan untuk menentukan terpilih atau tidaknya menjadi anggota legislatif Jika memiliki suara sah partai berjumlah maka tidak akan terpilih menjadi anggota legislative. Jika memiliki suara sah partai >16443 maka akan ditentukan dari daerah pemilihannya. Jika daerah pemilih memiliki suara maka caleg tersebut akan terpilih menjadi legislatif Kemudian jika memiliki suara daerah pemilihan >1.500 akan ditentukan dari suara sah partai. Jika suara sah partai >83822 maka tidak akan terpilih menjadi anggota legislatif. Dan jika suara sah partai akan ditinjau kembali dari suara sah caleg. Jika suara sah caleg > maka ia akan terpilih menjadi anggota legislatif, dan jika maka tidak akan terpilih.
3 b. Modeling Naïve Bayes Naive Bayes merupakan suatu klasifikasi berpeluang sederhana berdasarkan teorema Bayes dengan asumsi antar variabel penjelas saling bebas (independen).
4 c. Modeling K-nn K-Neares Neighbour (K-NN) adalah sebuah metde klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Berdasarkan pernyataan tersebut dapat diartikan bahwa dari data yang dianalisis terdapat 425 data dengan 10 dimensi (atribut) untuk menentukan target ya dan tidak.
5 3. Evaluasi dan Akurasi Decision Tree (C4.5) Native Bayers (NB) K-Nearest Neighbor(K-NN) Akurasi % % % Minus 4.45 % 4.25 % 2.21 % AUC Kesimpulan : Berdasarkan tabel diatas, Model Decision Tree memiliki akurasi tertinggi dengan nilai sebesar % diikuti K-nn dengan nilai % dan pada urutan terakhir Naïve Bayes dengan akurasi paling rendah sebsar %. Dari hasil tersebut dapat ditarik kesimpulan bahwa modeling yang paling baik digunakan untuk dataset tersebut yaitu Decision Tree model, karena memiliki akurasi prediksi paling besar dengan nilai presentase sebesar % diantara ketiga model, dapat diartikan analisis yang dihasilkan dari Model Decision Tree memiliki kemungkinan menjadi kenyataan paling besar dan tepat.
6 Untuk melakukan validasi terhadap Tree yang dihasilkan, digunakan nilai dari area dibawah kurva ROC (AUC/Area Under Curve ). Menurut Gorunescu (2011), hasil perhitungan yang divisualisasikan dengan kurva ROC (Receiver Operating Characteristic) atau AUC (Area Under Curve). ROC memiliki tingkat nilai diagnosa yaitu : a. Akurasi bernilai = excellent classification b. Akurasi bernilai = good classification c. Akurasi bernilai = fair classification d. Akurasi bernilai = poor classification e. Akurasi bernilai = failure Berdasarkan tabel tersebut juga dipresentasikan bahwa dengan menggunakan Decision Tree, AUC/ Area Under Currve yang dihasilkan lebih besar yaitu 0.91 > 0.90 masuk dalam kategori excellent classification, sedangkan untuk Native Bayers masuk dalam kategori good classification, dan K-nearest ada pada kategori failure. Dapat disimpulkan bahwasannya dengan dataset pemilu apabila ingin melakukan pengklasifikasian data dengan hasil yang paling akurat dan baik maka disarankan untuk menggunakan model Decision Tree
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1. Metode Pengumpulan Data Data yang digunakan pada penelitian ini merupakan data sentimen dari pengguna aplikasi android yang memberikan komentarnya pada fasilitas user review
PENERAPAN ALGORITMA KLASIFIKASI C4.5 UNTUK DIAGNOSIS PENYAKIT KANKER PAYUDARA
PENERAPAN ALGORITMA KLASIFIKASI C4.5 UNTUK DIAGNOSIS PENYAKIT KANKER PAYUDARA Laily Hermawanti Program Studi Teknik Informatika Fakultas Teknik Universitas Sultan Fatah (UNISFAT) Jl. Diponegoro No. 1B
KLASIFIKASI NASABAH ASURANSI JIWA MENGGUNAKAN ALGORITMA NAIVE BAYES BERBASIS BACKWARD ELIMINATION
KLASIFIKASI NASABAH ASURANSI JIWA MENGGUNAKAN ALGORITMA NAIVE BAYES BERBASIS BACKWARD ELIMINATION Betrisandi [email protected] Universitas Ichsan Gorontalo Abstrak Pendapatan untuk perusahaan asuransi
PREDIKSI NILAI PROYEK AKHIR MAHASISWA MENGGUNAKAN ALGORITMA KLASIFIKASI DATA MINING
Seminar Nasional Sistem Informasi Indonesia, 2-4 Nopember 2015 PREDIKSI NILAI PROYEK AKHIR MAHASISWA MENGGUNAKAN ALGORITMA KLASIFIKASI DATA MINING Paramita Mayadewi 1), Ely Rosely 2) 1,2 D3 Manajemen Informatika,
KAJIAN PERANCANGAN RULE KENAIKAN JABATAN PADA PT. ABC
KAJIAN PERANCANGAN RULE KENAIKAN JABATAN PADA PT. ABC Harry Dhika Fakultas Teknik, Matematika dan IPA Universitas Indraprasta PGRI Email: [email protected] ABSTRAK Penelitian ini membahas tentang cara
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1.1 Data Mining Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstrasi dan mengidentifikasi informasi
DIAGNOSA PREDIKSI PENYAKIT JANTUNG DENGAN MODEL ALGORITMA NAÏVE BAYES DAN ALGORITMA C4.5
Konferensi Nasional Ilmu Sosial & Teknologi (KNiST) Maret 2017, pp. 7~12 7 DIAGNOSA PREDIKSI PENYAKIT JANTUNG DENGAN MODEL ALGORITMA NAÏVE BAYES DAN ALGORITMA C4.5 Tri Retnasari 1, Eva Rahmawati 2 1 STMIK
PENERAPAN ALGORITMA NAÏVE BAYES UNTUK DETEKSI BAKTERI E-COLI
PENERAPAN ALGORITMA NAÏVE BAYES UNTUK DETEKSI BAKTERI E-COLI Laily Hermawanti Program Studi Teknik informatika Fakultas Teknik Universitas Sultan Fatah (UNISFAT) Jl. Diponegoro 1B Jogoloyo Demak Telpon
PREDIKSI NILAI PROYEK AKHIR MAHASISWA MENGGUNAKAN ALGORITMA KLASIFIKASI DATA MINING
Seminar Nasional Sistem Informasi Indonesia, 2-3 November 2015 PREDIKSI NILAI PROYEK AKHIR MAHASISWA MENGGUNAKAN ALGORITMA KLASIFIKASI DATA MINING Paramita Mayadewi 1), Ely Rosely 2) 1,2 D3 Manajemen Informatika,
BAB IV HASIL DAN PEMBAHASAN
33 BAB IV HASIL DAN PEMBAHASAN 4.1 Pengolahan Data Data yang dipergunakan dalam tugas akhir ini merupakan data karyawan PT Perkbunan Nusantara IX Kebun Blimbing pada tahun 2015. Jumlah data yang digunakan
IMPLEMENTASI BUSINESS INTELLIGENCE UNTUK MENENTUKAN MAHASISWA PENERIMA BEASISWA
IMPLEMENTASI BUSINESS INTELLIGENCE UNTUK MENENTUKAN MAHASISWA PENERIMA BEASISWA 1 Ricky Akbar, 2 Widya Wulandari, 3 Zikrya Hasanah, 4 Hesti Gravina, 5 Yudha Restu Alditya, 6 Agum Sadewa 1,2,3,4,5,6 Program
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Penentuan dosen pembimbing tugas akhir masih dilakukan secara manual di Jurusan Teknik Informatika UMM yang hanya mengandalkan pengetahuan personal tentang spesialisasi
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Instrumen Penelitian Pada penelitian ini bahan dan peralatan yang diperlukan sebagai berikut: 3.1.1 Bahan Dalam penelitian ini bahan yang dibutuhkan adalah data siswa kelas
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Dalam era yang semakin berkembang ini, penggunaan data mining semakin banyak dalam berbagai bidang dan menjadi bagian dari perkembangan teknologi informasi
Analisis Hubungan antar Faktor dan Komparasi Algoritma Klasifikasi pada Penentuan Penundaan Penerbangan
Analisis Hubungan antar Faktor dan Komparasi Algoritma Klasifikasi pada Penentuan Penundaan Penerbangan Danny Ibrahim 1*) 1 Program Magister Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian
KOMPARASI ALGORITMA NAÏVE BAYES DAN K- NEAREST NEIGHBOR UNTUK DETEKSI KANKER PAYUDARA
KOMPARASI ALGORITMA NAÏVE BAYES DAN K- NEAREST NEIGHBOR UNTUK DETEKSI KANKER PAYUDARA 3) Rayung Wulan 1), Mei Lestari 2), Ni Wayan Parwati Septiani Program Studi Informatika Universitas Indraprasta PGRI
KLASIFIKASI METODE NAIVE BAYES UNTUK KELANCARAN PEMBAYARAN KREDIT LEASING SEPEDA MOTOR
Technologia Vol 8, No.3, Juli September 2017 146 KLASIFIKASI METODE NAIVE BAYES UNTUK KELANCARAN PEMBAYARAN KREDIT LEASING SEPEDA MOTOR Fakultas Teknologi Informasi Universitas Islam Kalimantan Muhammad
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Penerapan dataaminingadalam mengevaluasi kelayakan pemberian kredit saataini telahabanyakadigunakan. Beberapaapenelitianayang relevanaselama 5 (lima) tahun terakhir
ALGORITMA C4.5 UNTUK PREDIKSI HASIL PEMILIHAN LEGISLATIF DPRD DKI JAKARTA
ALGORITMA C4.5 UNTUK PREDIKSI HASIL PEMILIHAN LEGISLATIF DPRD DKI JAKARTA 1 Evicienna, 2 Hilda Amalia 1,2 Jurusan Komputerisasi Akuntansi AMIK Bina Sarana Informatika Jakarta Jl. Ciledug Raya No. 168 Ulujami,
Jurnal String Vol. 1 No. 1 Tahun 2016 ISSN:
KAJIAN KOMPARASI ALGORITMA C4.5, NAÏVE BAYES DAN NEURAL NETWORK DALAM PEMILIHAN PENERIMA BEASISWA (Studi Kasus pada SMA Muhammadiyah 4 Jakarta ) Ulfa Pauziah Program Studi Teknik Informatika, Universitas
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Dalam tinjauan pustaka dibawah ini terdapat 6 referensi sebagai berikut : - Algoritma Naïve Bayes Classifier
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Dalam tinjauan pustaka dibawah ini terdapat 6 referensi sebagai berikut : Tabel 2.1 Penelitian sebelumnya Parameter Penulis Objek Metode Hasil
BAB II TINJAUAN PUSTAKA. mengenai penelitian terdahulu, tentang prediksi lama masa studi mahasiswa,
BAB II TINJAUAN PUSTAKA 2.1 Terdahulu Dalam penelitian ini, peneliti juga menyertakan beberapa uraian singkat mengenai penelitian terdahulu, tentang prediksi lama masa studi mahasiswa, klasifikasi, metode
Versi Online tersedia di : JURNAL TECH-E (Online)
JURNAL TECH-E - VOL. 1 NO. 1 (2017) Versi Online tersedia di : http://bsti.ubd.ac.id/e-jurnal JURNAL TECH-E 2581-116 (Online) Artikel Perancangan Aplikasi Prediksi Kelulusan Mahasiswa Tepat Waktu Pada
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN Pada proses penelitian ini dilakukan beberapa tahapan mulai dari tahap awal yaitu tahap inisiasi, pengembangan model, dan tahap terakhir pengembangan prototipe. Dalam tahapan inisiasi
BAB II KAJIAN PUSTAKA. pola seperti teknik statistic dan matematika (Larose, 2005).
BAB II KAJIAN PUSTAKA A. Data Minning Data minning adalah suatu proses menemukan hubungan yang berarti, pola dan kecenderungan dengan memeriksa dalam sekumpulan besar data yang tersimpan dalam penyimpanan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Deposito merupakan salah satu tabungan berjangkaayangamodel pengambilannya berdasarkan pada kesepakatan dari pihak bank dengan nasabah deposito [1].Suku bunga
Data Mining Outline BAB I Pendahuluan. Proses Data Mining. Recap
Data Mining Outline BAB I Pendahuluan BAB II Data BAB III Algoritma Klasifikasi BAB IV Algoritma Klastering BAB V Algoritma Asosiasi BAB VI Algoritma Estimasi BAB VII Deteksi Anomali Ricky Maulana Fajri
Metode C45 Untuk Mengklarifikasi Pelanggan Perusahaan Telekomunikasi Seluler
Riau Journal Of Computer Science Vol.2/No.1/2016 : 65-76 65 Metode C45 Untuk Mengklarifikasi Pelanggan Perusahaan Telekomunikasi Seluler Akhmad Zulkifli Program Studi Sistem Informasi, STMIK Hang Tuah
Perbandingan 5 Algoritma Data Mining untuk Klasifikasi Data Peserta Didik
Perbandingan 5 Algoritma Data Mining untuk Klasifikasi Data Peserta Didik Imam Sutoyo AMIK BSI JAKARTA e-mail: [email protected] Abstrak - Klasifikasi peserta didik merupakan kegiatan yang sangat penting
KAJIAN KOMPARASI PENERAPAN ALGORITMA C4.5, NEURAL NETWORK, DAN SVM DENGAN TEKNIK PSO UNTUK PEMILIHAN KARYAWAN TELADAN PT. XYZ
KAJIAN KOMPARASI PENERAPAN ALGORITMA C4.5, NEURAL NETWORK, DAN SVM DENGAN TEKNIK PSO UNTUK PEMILIHAN KARYAWAN TELADAN PT. XYZ Rudi Apriyadi Raharjo Program Studi Teknik Informatika, Universitas Indraprasta
PERBANDINGAN DECISION TREE
84 2015 Jurnal Krea-TIF Vol: 03 No: 02 PERBANDINGAN DECISION TREE PADA ALGORITMA C 4.5 DAN ID3 DALAM PENGKLASIFIKASIAN INDEKS PRESTASI MAHASISWA (Studi Kasus: Fasilkom Universitas Singaperbangsa Karawang)
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pendidikan adalah salah satu aspek terpenting bagi kehidupan manusia, yang dapat mempengaruhi manusia itu sendiri, juga menjadi faktor pendukung dalam setiap sektor
IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI DATA NASABAH BANK DALAM PENAWARAN DEPOSITO BERJANGKA DENGAN MENGGUNAKAN ALGORITMA KLASIFIKASI NAIVE BAYES
IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI DATA NASABAH BANK DALAM PENAWARAN DEPOSITO BERJANGKA DENGAN MENGGUNAKAN ALGORITMA KLASIFIKASI NAIVE BAYES Nama : Muhammad Rizki NPM : 54410806 Jurusan Pembimbing
SISTEM PENDUKUNG KEPUTUSAN BERBASIS DECISION TREE DALAM PEMBERIAN BEASISWA STUDI KASUS: AMIK BSI YOGYAKARTA
SISTEM PENDUKUNG KEPUTUSAN BERBASIS DECISION TREE DALAM PEMBERIAN BEASISWA STUDI KASUS: AMIK BSI YOGYAKARTA Anik Andriani Program Studi Manajemen Informatika, AMIK BSI Jakarta Jl. RS Fatmawati 24, Pondok
Penerapan Data Mining Classification Untuk Prediksi Perilaku Pola Pembelian Terhadap Waktu Transaksi Menggunakan Metode Naïve Bayes
Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Penerapan Data Mining Classification Untuk Prediksi Perilaku Pola Pembelian Terhadap Waktu Transaksi Menggunakan Metode
Klasifikasi Berbasis Algoritma C4.5 untuk Deteksi Kenaikan Case Fatality Rate Demam Berdarah
Klasifikasi Berbasis Algoritma C4.5 untuk Deteksi Kenaikan Case Fatality Rate Demam Berdarah Anik Andriani Manajemen Informatika, AMIK BSI, Yogyakarta, Indonesia [email protected] Abstract Extraordinary
BAB IV HASIL DAN PEMBAHASAN. dan fakor-faktor penyebab masalah tersebut bisa terjadi diantaranya. dimanfaatkan dan dikelola dengan baik.
BAB IV HASIL DAN PEMBAHASAN 4.1. Identifikasi Masalah Dalam menentukan status calon dosen dan dosen tetap terdapat masalahmasalah dan fakor-faktor penyebab masalah tersebut bisa terjadi diantaranya sebagai
ANALISIS PENENTUAN KARYAWAN TERBAIK MENGGUNAKAN METODE ALGORITMA NAIVE BAYES (STUDI KASUS PT. XYZ)
ANALISIS PENENTUAN KARYAWAN TERBAIK MENGGUNAKAN METODE ALGORITMA NAIVE BAYES (STUDI KASUS PT. XYZ) Ulfa Pauziah Tehnik Informatika, Universitas Indraprasta PGRI [email protected] Abstrak. Di dalam
Analisis Kualitas Data dan Klasifikasi Data Pasien Kanker
Analisis Kualitas Data dan Klasifikasi Data Pasien Kanker Ahmad Fathan Hidayatullah, Alan Dwi Prasetyo, Dantik Puspita Sari, Intan Pratiwi Jurusan Teknik Informatika Universitas Islam Indonesia Jl. Kaliurang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dropout Data mining
BAB 1 PENDAHULUAN Bab ini membahas mengenai latar belakang masalah, identifikasi masalah, ruang lingkup tugas akhir, maksud dan tujuan tugas akhir, metode penelitian tugas akhir, dan sistematika penulisan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu pelayanan dalam dunia perbankan adalah pemberian pinjaman kredit kepada nasabah yang memenuhi syarat perbankan. kredit merupakan sumber utama penghasilan
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Studi Sebelum melakukan penelitian penulis terlebih dahulu melakukan tinjauan pustaka dari penelitian lain dan penelitian tentang prediksi penjurusan
PENCARIAM JURUSAN SUBANG DENGAN ALGORITMA C 4.5 DAN DATA MINING STMIK SUBANG Timbo Faritcan Parlaungan Siallagan
PENCARIAM JURUSAN SUBANG DENGAN ALGORITMA C 4.5 DAN DATA MINING STMIK SUBANG Timbo Faritcan Parlaungan Siallagan Program Studi Teknik Informatika, STMIK Subang Jl. Marsinu No. 5 - Subang, Tlp. 0206-417853
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER I. PENDAHULUAN Mahasiswa merupakan salah satu aspek penting dalam evaluasi keberhasilan penyelenggaraan
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Dasar Penelitian Penelitian ini dilakukan berdasarkan rumusan masalah yang telah dijabarkan pada bab sebelumnya yaitu untuk mengklasifikasikan kelayakan kredit calon debitur
IMPLEMENTASI ALGORITMA ID3 UNTUK KLASIFIKASI PERFORMANSI MAHASISWA (STUDI KASUS ST3 TELKOM PURWOKERTO)
IMPLEMENTASI ALGORITMA ID3 UNTUK KLASIFIKASI PERFORMANSI MAHASISWA (STUDI KASUS ST3 TELKOM PURWOKERTO) Andika Elok Amalia 1), Muhammad Zidny Naf an 2) 1), 2) Program Studi Informatika ST3 Telkom Jl D.I.
UKDW. BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Penerimaan mahasiswa baru merupakan proses yang selalu dilakukan setiap tahunnya oleh Universitas Kristen Duta Wacana Yogyakarta (UKDW). Mahasiswa baru merupakan mahasiswa
SELEKSI MOBIL BERDASARKAN FITUR DENGAN KOMPARASI METODE KLASIFIKASI NEURAL NETWORK, SUPPORT VECTOR MACHINE, DAN ALGORITMA C4.5
Jurnal Pilar Nusa Mandiri Vol.XII, No.2 September 2016 153 SELEKSI MOBIL BERDASARKAN FITUR DENGAN KOMPARASI METODE KLASIFIKASI NEURAL NETWORK, SUPPORT VECTOR MACHINE, DAN ALGORITMA C4.5 Esty Purwaningsih
PENERAPAN ALGORITMA C4.5 BERBASIS ADABOOST UNTUK PREDIKSI PENYAKIT JANTUNG
PENERAPAN ALGORITMA C4.5 BERBASIS ADABOOST UNTUK PREDIKSI PENYAKIT JANTUNG Abdul Rohman ) Abstrak Penyakit jantung adalah terjadinya penyumbatan sebagian atau total dari suatu lebih pembuluh darah, akibatnya
Prediksi Kenaikan Rata-Rata Volume Perikanan Tangkap Dengan Teknik Data Mining
117 Prediksi Kenaikan Rata-Rata Volume Perikanan Tangkap Dengan Teknik Data Mining Anik Andriani AMIK BSI Yogyakarta E-Mail: [email protected] Abstrak Peningkatan jumlah permintaan terhadap kebutuhan
KAJIAN ALGORITMA NAÏVE BAYES DALAM PEMILIHAN PENERIMAAN BEASISWA TINGKAT SMA
KAJIAN ALGORITMA NAÏVE BAYES DALAM PEMILIHAN PENERIMAAN BEASISWA TINGKAT SMA Virgana 1), Ulfa Pauziah 2) dan Michael Sonny 3) 1), 2),3) Teknik Informatika Universitas Indraprasta PGRI Jl Nangka No. 58
KOMPARASI 5 METODE ALGORITMA KLASIFIKASI DATA MINING PADA PREDIKSI KEBERHASILAN PEMASARAN PRODUK LAYANAN PERBANKAN
60 KOMPARASI 5 METODE ALGORITMA KLASIFIKASI DATA MINING PADA PREDIKSI KEBERHASILAN PEMASARAN PRODUK LAYANAN PERBANKAN Sari Dewi Manjemen Informatika AMIK BSI Pontianak Akademi Manajemen dan Ilmu Komputer
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Penelitian Terkait Terdapat banyak algoritma dalam teknik klasifikasi dan prediksi dalam data mining. Penelitian terkait yang relevan dengan penelitian ini, telah dibuat berbagai
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI penelitian. Pada bab ini akan dibahas literatur dan landasan teori yang relevan dengan 2.1 Tinjauan Pustaka Kombinasi metode telah dilakukan oleh beberapa peneliti
MODEL ALGORITMA K-NEAREST NEIGHBOR
MODEL ALGORITMA K-NEAREST NEIGHBOR (K-NN) UNTUK PREDIKSI KELULUSAN MAHASISWA Abdul Rohman Dosen Jurusan Elektronika Fakultas Teknik Universitas Pandanaran Semarang Abstrak Dalam sistem pendidikan mahasiswa
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Pesatnya pertumbuhan pasar pada sektor telekomunikasi seluler semakin terlihat dengan banyaknya jumlah pelanggan yang ada pada setiap para penyedia jasa telepon seluler.
Application Determination Of Credit Feasibility in Sharia Cooperative
Konferensi Nasional Ilmu Sosial & Teknologi (KNiST) Maret 2016, pp. 555~560 Application Determination Of Credit Feasibility in Sharia Cooperative 555 Dibjo Marginato AMIK BSI Tangerang Email: [email protected]
BAB 1 PENDAHULUAN 1-1
BAB 1 PENDAHULUAN Bab ini menguraikan penjelasan umum mengenai tugas akhir yang dikerjakan. Penjelasan tersebut meliputi latar belakang masalah, tujuan tugas akhir, lingkup tugas akhir, metodologi yang
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN DENGAN ALGORITMA DECISION TREE
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN DENGAN ALGORITMA DECISION TREE Putri Kurnia Handayani Program Studi Sistem Informasi, Fakultas Teknik, Universitas Muria Kudus Gondangmanis, PO Box
PENERAPAN ALGORITMA C4.5 BERBASIS ADABOOST UNTUK PREDIKSI PENYAKIT JANTUNG
PENERAPAN ALGORITMA C4.5 BERBASIS ADABOOST UNTUK PREDIKSI PENYAKIT JANTUNG Abdul Rohman 1, Vincent Suhartono 2, Catur Supriyanto 3 123 Pasca Sarjana Teknik Informatika Universitas Dian Nuswantoro ABSTRACT
BAB I 1 PENDAHULUAN. atas sekelompok vertebra, invertebrate discs, saraf, otot, medulla, dan sendi
BAB I 1 PENDAHULUAN 1.1 Latar Belakang Tulang punggung merupakan bagian dari tulang belakang yang tersusun atas sekelompok vertebra, invertebrate discs, saraf, otot, medulla, dan sendi (Berthonnaud et
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN BERBASIS DECISION TREE
MODEL KLASIFIKASI KELAYAKAN KREDIT KOPERASI KARYAWAN BERBASIS DECISION TREE Rina Fiati 1, Putri Kurnia Handayani 2 1 Program Studi Teknik Informatika, Fakultas Teknik, Universitas Muria Kudus Gondangmanis,
Klasifikasi Penerimaan Mahasiswa Baru Menggunakan Algortima C4.5 Dan Adaboost (Studi Kasus : STMIK XYZ)
Yoga, Klasifikasi Penerimaan Mahasiswa Baru 1 Klasifikasi Penerimaan Mahasiswa Baru Menggunakan Algortima C4.5 Dan Adaboost (Studi Kasus : STMIK XYZ) Admission Classification Using algorithms C4.5 And
Penerapan Algoritma C4.5 Untuk Penentuan Jurusan Mahasiswa
Penerapan Algoritma C4.5 Untuk Penentuan Jurusan Mahasiswa Liliana Swastina Program Studi Sistem Informasi Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Indonesia Banjarmasin, Indonesia [email protected]
BAB I PENDAHULUAN. 1.1 Latar Belakang Saat ini pendidikan di Indonesia semakin berkembang. Banyaknya
BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini pendidikan di Indonesia semakin berkembang. Banyaknya pembangunan gedung sekolah maupun perguruan tinggi menjadi tanda berkembangnya pendidikan. Jumlah pendaftar
PREDIKSI PENYAKIT DIABETES MENGGUNAKAN NAIVE BAYES DENGAN OPTIMASI PARAMETER MENGGUNAKAN ALGORITMA GENETIKA
Konferensi Nasional Ilmu Sosial & Teknologi (KNiST) Maret 2017, pp. 71~76 71 PREDIKSI PENYAKIT DIABETES MENGGUNAKAN NAIVE BAYES DENGAN OPTIMASI PARAMETER MENGGUNAKAN ALGORITMA GENETIKA Frisma Handayanna
LEARNING. Program Studi Ilmu Komputer FPMIPA UPI RNI IK460(Kecerdasan Buatan)
LEARNING Jiawei Han and Micheline Kamber. 2006. Data Mining Concepts and Techniques. San Fransisco : Elsevier M.Tim Jones. Artificial Intelligence A System Approach. Slide Kuliah Data Mining - Klasifikasi,
CONTOH KASUS DATA MINING
CONTOH KASUS DATA MINING CONTOH KASUS DATA MINING Sebuah rumah sakit ingin ingin menekan biaya perawatan pasien tanpa mengurangi kualitas pelayanan. Salahsatu potensi yang dapat dimanfaatkan pada penerapan
BAB 1 PENDAHULUAN 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Rumah sakit merupakan suatu institusi atau organisasi kesehatan yang melalui tenaga medis profesional memberikan pelayanan kesehatan, asuhan keperawatan, diagnosis
PERBANDINGAN ALGORITMA KLASIFIKASI DATA MINING MODEL C4.5 DAN NAIVE BAYES UNTUK PREDIKSI PENYAKIT DIABETES
50 Jurnal Techno Nusa Mandiri Vol. XIII, No. 1 Maret 2016 PERBANDINGAN ALGORITMA KLASIFIKASI DATA MINING MODEL C4.5 DAN NAIVE BAYES UNTUK PREDIKSI PENYAKIT DIABETES Fatmawati Sistem Informasi STMIK Nusa
PENERAPAN ALGORITMA NAIVE BAYES UNTUK MEMPREDIKSI KEPUTUSAN NASABAH TELEMARKETING DALAM MENAWARKAN DEPOSITO
PENERAPAN ALGORITMA NAIVE BAYES UNTUK MEMPREDIKSI KEPUTUSAN NASABAH TELEMARKETING DALAM MENAWARKAN DEPOSITO Wahyu Nurjaya WK 1, Yusrina Adani 2 Program Studi Sistem Informasi, STMIK LPKIA Bandung Program
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Dalam mencapai tujuan pembangunan ekonomi diperlukan peran serta lembaga keuangan untuk membiayai pembangunan tersebut. Lembaga keuangan memegang peranan penting dalam
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi informasi yang sangat berkembang pesat saat sekarang ini membawa pengaruh dalam segala bidang kehidupan, mulai dari industri, ekonomi, kesehatan dan bidang
Komparasi Akurasi Algoritma C4.5 dan Naïve Bayes untuk Prediksi Pendonor Darah Potensial dengan Dataset RFMTC
Komparasi Akurasi Algoritma C4.5 dan Naïve Bayes untuk Prediksi Pendonor Darah Potensial dengan Dataset RFMTC Wahyu Eko Susanto 1, Candra Agustina 2 1, 2 Program Studi Manajemen Informatika, AMIK BSI Yogyakarta
Penerapan Data Mining Untuk Menampilkan Informasi Pertumbuhan Berat Badan Ideal Balita dengan Menggunakan Metode Naive Bayes Classifier
Penerapan Data Mining Untuk Menampilkan Informasi Pertumbuhan Berat Badan Ideal Balita dengan Menggunakan Metode Naive Bayes Classifier Octia Nuraeni 55410244 Teknik Informatika Pembimbing : Dr. Riza Adrianti
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. yang tepat. Sistem data mining mampu memberikan informasi yang tepat dan
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Sistem data mining akan lebih efektif dan efisiensi dengan komputerisasi yang tepat. Sistem data mining mampu memberikan informasi yang
ABSTRAK. Keywords : Data Mining, Filter, Data Pre-Processing, Association, Classification, Deskriptif, Prediktif, Data Mahasiswa.
ABSTRAK Kemajuan teknologi membuat begitu mudahnya dalam pengolahan suatu informasi. Waktu tidak lagi menjadi hambatan dalam pengolahan data yang sangat banyak. Hal ini didukung pula dengan adanya perkembangan
PENERAPAN ALGORITMA NAIVE BAYES UNTUK KLASIFIKASI PENERIMA BEASISWA PRESTASI
PENERAPAN ALGORITMA NAIVE BAYES UNTUK KLASIFIKASI PENERIMA BEASISWA PRESTASI Mulyadi Abstract - Scholarship is supporting mean for students in college education. With the scholarship students can still
PENENTUAN PENERIMAAN SISWA BARU MENGGUNAKAN DECISION TREE
PENENTUAN PENERIMAAN SISWA BARU MENGGUNAKAN DECISION TREE 1 Fitroh Rizky Muwardah, 2 Ricardus Anggi Pramunendar, M.Cs Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro,
ANALISIS SENTIMEN OPINI PUBLIK BERITA KEBAKARAN HUTAN MELALUI KOMPARASI ALGORITMA SUPPORT VECTOR MACHINE
Jurnal Pilar Nusa Mandiri Volume 13 No.1, Maret 2017 103 ANALISIS SENTIMEN OPINI PUBLIK BERITA KEBAKARAN HUTAN MELALUI KOMPARASI ALGORITMA SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBOR BERBASIS PARTICLE
APLIKASI KLASIFIKASI PEMENUHAN GIZI PADA LANSIA MENGGUNAKAN METODE DECISION TREE ID3
APLIKASI KLASIFIKASI PEMENUHAN GIZI PADA LANSIA MENGGUNAKAN METODE DECISION TREE ID3 SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi Sistem
Komparasi Algoritma Data Mining Untuk Akurasi Penentuan Beasiswa Kurang Mampu IAIN Syekh Nurjati Cirebon
Komparasi Algoritma Data Mining Untuk Akurasi Penentuan Beasiswa Kurang Mampu IAIN Syekh Nurjati Cirebon Arif Maulana Fakultas Ilmu Komputer, Dian Nuswantoro University Email: [email protected]
KLASIFIKASI PADA TEXT MINING
Text dan Web Mining - FTI UKDW - BUDI SUSANTO 1 KLASIFIKASI PADA TEXT MINING Budi Susanto Text dan Web Mining - FTI UKDW - BUDI SUSANTO 2 Tujuan Memahami konsep dasar sistem klasifikasi Memahami beberapa
PENERAPAN ALGORTIMA C4.5 UNTUK PENENTUAN KELAYAKAN KREDIT
Jurnal Techno Nusa Mandiri Vol. XIV, No. 1 Maret 2017 9 PENERAPAN ALGORTIMA C4.5 UNTUK PENENTUAN KELAYAKAN KREDIT Siti Nur Khasanah Sistem Informasi STMIK Nusa Mandiri Jakarta Jl. Damai No 8 Warung Jati
Data Mining II Estimasi
Data Mining II Estimasi Matakuliah Data warehouse Universitas Darma Persada Oleh: Adam AB Data Mining-2012-a@b 1 Tahapan proses datamining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/
BAB 3 METODE PENELITIAN. Bahan dan peralatan yang dibutuhkan dalam penelitian ini antara lain :
BAB 3 METODE PENELITIAN 3.1 Instrumen Penelitian Bahan dan peralatan yang dibutuhkan dalam penelitian ini antara lain : 3.1.1 Bahan Bahan yang digunakan dalam penelitian ini yaitu data siswa kelas SMA
PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan
BAB 1 PERSYARATAN PRODUK Bab ini membahas mengenai hal umum dari produk yang dibuat, meliputi tujuan, ruang lingkup proyek, perspektif produk, fungsi produk dan hal umum yang lainnya. 1.1 Pendahuluan Hal
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Peminatan siswa SMA Negeri 8 Bandung dilakukan di kelas X SMA setelah tahap daftar ulang. Hal tersebut berdasarkan aturan kurikulum 2013 [11]. Peminatan merupakan hal
ii
KLASIFIKASI PENDAFTAR BEASISWA BIDIKMISI UNIVERSITAS SEBELAS MARET MENGGUNAKAN ALGORITMA C4.5 SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Mencapai Gelar Strata Satu Program Studi Informatika Disusun
PENERAPAN METODE KLASIFIKASI DATA MINING UNTUK PREDIKSI KELULUSAN TEPAT WAKTU. Asep Saefulloh 1, Moedjiono 2
Asep, Penerapan Metode Klasifikasi Data 41 PENERAPAN METODE KLASIFIKASI DATA MINING UNTUK PREDIKSI KELULUSAN TEPAT WAKTU Asep Saefulloh 1, Moedjiono 2 1 STMIK Raharja, Jl. Jenderal Sudirman No.40 Cikokol
PENERAPAN TEKNIK DATA MINING UNTUK MENENTUKAN HASIL SELEKSI MASUK SMAN 1 GIBEBER UNTUK SISWA BARU MENGGUNAKAN DECISION TREE
PENERAPAN TEKNIK DATA MINING UNTUK MENENTUKAN HASIL SELEKSI MASUK SMAN 1 GIBEBER UNTUK SISWA BARU MENGGUNAKAN DECISION TREE Castaka Agus Sugianto Program Studi Teknik lnformatika Politeknik TEDC Bandung
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kredit adalah suatu kapabilitas yang memungkinkan seseorang untuk memperoleh uang atau melakukan suatu pinjaman uang dengan syarat adanya perjanjian untuk membayar
BAB 3 METODE PENELITIAN. Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder.
BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data 3.1.1 Sumber Data Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder. 1. Data primer Didapatkan peneliti secara langsung
Apa itu is K-Nearest Neighbor (KNN) Algorithm?
K-Nearest Neighbor Pendahuluan K-Nearest Neighbour atau KNN adalah salah dari algoritma instance based learning atau case-based reasoning. Definisi case based reasoning: KNN digunakan dalam banyak aplikasi
SNIPTEK 2014 ISBN:
KOMPARASI MENGGUNAKAN ALGORITMA C4.5, NEURAL NETWORK DAN NAÏVE BAYES DALAM PREDIKSI UJIAN KOMPENTENSI SMK MAHADHIKA 4 JAKARTA Aswan Supriyadi Sunge STMIK Nusa Mandiri [email protected] Kaman Nainggolan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu tanggung jawab sosial PT. Telkom dalam program kemitraan dengan masyarakat sekitarnya adalah memberikan kredit lunak bagi pelaku Usaha Kecil Menengah (UKM).
