BAB II PROPAGASI GELOMBANG RADIO. sistem komunikasi dengan kabel [2]. Gelombang radio adalah radiasi energi

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II PROPAGASI GELOMBANG RADIO. sistem komunikasi dengan kabel [2]. Gelombang radio adalah radiasi energi"

Transkripsi

1 BAB II PROPAGASI GELOMBANG RADIO 2.1 Pendahuluan Pengggunaan gelombang radio sebagai pembawa sinyal komunikasi multimedia didasarkan pada fleksibilitas sistem komunikasi radio dibandingkan sistem komunikasi dengan kabel [2]. Gelombang radio adalah radiasi energi (radiasi elektromagnetik) yang berpropagasi pada kecepatan cahaya (186 mil atau meter/detik) [3]. Gelombang ini merambat atau berpropagasi melalui udara dari antena pemancar ke antena penerima yang jaraknya bisa mencapai beberapa kilometer, bahkan ratusan sampai ribuan kilometer. Gelombang radio tersebut terdiri dari garis-garis gaya listrik (E) dan garis-garis gaya magnet (H). Susunan dari garis-garis gaya listrik dan garis-garis gaya magnet yang terdapat dalam gelombang radio disebut Transverse Electromagnetics (TEM), dan susunan garis gaya tersebut adalah [4] : 1. Garis gaya listrik (E) tegak lurus garis gaya magnet (H) 2. Garis gaya listrik (E) tegak lurus arah rambatan 3. Kumpulan garis-garis gaya yang terbanyak merupakan harga kuat medan maksimum. Gambaran dari suatu gelombang elektromagnetik bidang XYZ dapat dilihat pada Gambar

2 Gambar 2.1 Gelombang elektromagnetik Dari Gambar 2.1 dapat diketahui bahwa gelombang radio selalu mempunyai : 1. Kuat medan listrik (E) dan kuat medan magnet (H) 2. Arah rambatan 3. Panjang gelombang 4. Polarisasi Polarisasi gelombang radio adalah arah dari garis gaya listrik (E). Macam macam polarisasi gelombang radio adalah: 1. Polarisasi linier yaitu: bila arah garis gaya listriknya merupakan garis lurus. Polarisasi ini terbagi menjadi dua: a. Polarisasi linier vertikal, yaitu bila arah garis gaya listriknya tegak lurus terhadap permukaan bumi/tanah. b. Polarisasi linier horizontal, yaitu bila arah garis gaya listriknya sejajar terhadap permukaan tanah/bumi. 7

3 Gambar 2.2 Polarisasi gelombang radio 2. Polarisasi non linier yaitu bila arah garis gaya listriknya melingkar. Polarisasi ini terbagi menjadi dua : a. Polarisasi non linier positif, yaitu bla arah garis gaya listriknya melingkar searah jarum jam. b. Polarisasi non linier negatif, yaitu bila arah garis gaya listriknya melingkar berlawanan arah jarum jam 2.2 Spektrum Gelombang Elektromagnetik Spektrum gelombang elektromagnetik dapat dikelompokkan berdasarkan rentang frekuensi dan panjang gelombang. Tabel 1.1 menunjukkan pengelompokan pita frekuensi yang umum digunakan berdasarkan rentang frekuensi dan panjang gelombang [5]. 8

4 Tabel 1.1 Pita-pita frekuensi Pita Rentang frekuensi Panjang gelombang ELF (Extremely low frequency) Hz km VF (voice frequency) Hz km VLF (very low frequency) 3 30 KHz km LF (low frequency) KHz 10 1 km MF (medium frequency) KHz m HF (high frequency) 3 30 MHz m VHF (very high frequency) MHz 10 1 m UHF (ultra high frequency) MHz cm SHF (super high frequency) 3 30 GHz 10 1 cm EHF (extremely high frequency) GHz 10 1 mm Inframerah 300 GHz 400 THz 1 mm 770 nm Lebar pita frekuensi yang digunakan untuk gelombang mikro dan milimeter adalah dari 500 MHz 300 GHz. Namun yang telah diberikan nama secara internasional adalah pada rentang 500 MHz 40 GHz seperti yang ditunjukkan pada Tabel 1.2 [6]. 9

5 Tabel 1.2 Pita frekuensi gelombang mikro Frekuensi Penamaan pita gelombang mikro Old New MHz VHF C 1 2 GHz L D 2-3 GHz S E 3 4 GHz S F 4 6 GHz C G 6 8 GHz C H 8 10 GHz X I GHz X J GHz Ku J GHz K J Ghz K K GHz Ka K Hubungan antara panjang gelombang dan frekuensi dinyatakan sebagai berikut [4]: λ = c/f (2.1) dimana : λ = panjang gelombang (m) f = Frekuensi (Hz) c = Kecepatan gelombang radio di udara (m/detik) = 3x

6 2.3 Mekanisme Dasar Perambatan Gelombang Elektromagnetik Ada beberapa mekanisme dasar perambatan gelombang elektromagnetik yang dikenal antara lain refleksi, scattering, refraksi, dan difraksi Refleksi (Pemantulan) Refleksi terjadi ketika gelombang elektromagnetik mengenai obyek yang memiliki dimensi lebih besar dibandingkan dengan panjang gelombang sinyal dari pemancar gelombang seperti yang ditunjukkan pada Gambar 2.3. Refleksi terjadi pada permukaan bumi, bangunan, tembok, dan penghalang yang lain. Ketika gelombang radio mengenai bahan dielektrik sempurna, sebagian dari energinya ditransmisikan ke medium kedua, dan sebagian lagi dipantulkan kembali ke medium pertama sehingga tidak ada kehilangan energi karena penyerapan. Jika medium kedua adalah konduktor yang sempurna, maka semua energinya terpantul kembali ke medium pertama tanpa kehilangan energi. Gambar 2.3 Refleksi (pemantulan) Gelombang Elektromagnetik [7] 11

7 2.3.2 Scattering (Hamburan/Penyebaran) Scattering terjadi ketika medium dimana gelombang merambat mengandung obyek yang lebih kecil dibandingkan dengan panjang sinyal gelombang tersebut dan jumlah obyek perunit volume sangat besar. Gelombang tersebar dihasilkan dari permukaan kasar, benda kecil, atau obyek seperti tiang lampu dan pohon seperti yang ditunjukkan pada Gambar 2.4. Gambar 2.4 Scattering (hamburan) Gelombang Elektromagnetik [7] Refraksi (Pembiasan) Refraksi digambarkan sebagai pembelokan gelombang radio yang melewati medium yang memiliki kepadatan yang berbeda. Dalam ruang hampa udara, gelombang elektromagnetik merambat pada kecepatan sekitar km/detik. Ini adalah nilai konstan c, yang umum disebut dengan kecepatan cahaya tetapi sebenarnya merujuk kepada kecepatan cahaya dalam ruang hampa. Dalam udara, air, gelas, dan media transparan, gelombang elektromagnetik merambat pada kecepatan yang lebih rendah dari c. Ketika suatu gelombang elektromagnetik merambat dari satu medium ke medium lain dengan kepadatan berbeda maka kecepatannya akan berubah. 12

8 Akibatnya adalah pembelokan arah gelombang pada batas kedua medium tersebut. Jika merambat dari medium yang kurang padat ke medium yang lebih padat, maka gelombang akan membelok ke arah medium yang lebih padat seperti yang ditunjukkan pada Gambar 2.5. Gambar 2.5 Refraksi (Pembiasan) [7] Difraksi (Lenturan) Difraksi terjadi ketika garis edar radio antara pengirim dan penerima dihambat oleh permukaan yang tajam atau dengan kata lain kasar seperti yang ditunjukkan pada Gambar 2.6. Pada frekuensi tinggi, difraksi tergantung pada ukuran objek yang menghambat, amplitudo, fase, dan polarisasi dari gelombang pada titik difraksi. Gambar 2.6 Difraksi (Lenturan) [7] 13

9 2.4 Sistem Komunikasi Gelombang Milimeter Pendahuluan Sistem komunikasi gelombang milimeter dapat diterapkan untuk jaringan transmisi (backbone atau backhaul) berupa lintasan point-point antara dua node dalam sebuah jaringan, misal antara dua BTS, atau untuk jaringan akses nirkabel bagi pelanggan ke suatu layanan pita lebar, seperti akses internet. Gambar 2.7 memberikan ilustrasi implementasi jaringan akses nirkabel milimeter untuk terminal pelanggan yang terpasang di gedung perkantoran, pusat perbelanjaan, maupun perumahan. Antena BTS tidak selalu memerlukan menara, tetapi dapat juga dipasang pada dinding luar atau atap gedung bertingkat. Gambar 2.7 Ilustrasi jaringan akses nirkabel pita lebar [2] 14

10 Jaringan akses gelombang milimeter juga dapat diimplementasikan di dalam gedung untuk menyediakan akses intranet dan internet pita lebar bagi pengguna layanan multimedia. Bagi suatu jaringan akses nirkabel yang beroperasi pada gelombang milimeter, biasanya dalam rentang GHz, kendala dan tantangan terbesar muncul dari karakteristik propagasi gelombang. Redaman lintasan yang besar, rugi-rugi pantulan dan difraksi yang tinggi, serta efek penghaburan oleh hujan merupakan faktor-faktor kendala alami yang perlu diatasi Propagasi Gelombang Milimeter Karena frekuensinya relatif sangat tinggi, yaitu dalam rentang GHz, ekivalen dengan panjang gelombang dalam rentang cm, maka beberapa mekanisme propagasi gelombang milimeter radio menjadi dominan. Panjang gelombang yang relatif kecil menyebabkan hampir semua benda memberikan pengaruh signifikan. Mulai dari dinding tembok, kerangka logam, jalinan kawat kasa, dedaunan basah, sampai titik hujan, semuanya menyebabkan pemantulan, penghamburan, ataupun difraksi gelombang. Oleh sebab itu, agar suatu gelombang milimeter dapat merambat tanpa adanya perubahan arah atau kerapatan daya selain yang disebabkan oleh proses radiasi gelombang ke segala arah, maka elipsoida zona Fresnel pertama dengan antena pemancar dan antena penerima sebagai kedua fokusnya tidak boleh ditempati oleh obyek-obyek seperti gedung, tiang, pohon, dan sebagainya. Jari-jari zona Fresnel pertama F 1, yaitu jarak tegak lurus antara garis penghubung kedua antena dengan permukaan elipsoida zona Fresnel pertama, 15

11 dapat dihitung dengan persamaan umum untuk jari-jari Fresnel [4] : (2.2) dimana : F 1 = radius daerah Fresnel pertama (m) f = frekuensi kerja (GHz) d 1 = jarak antara Tx dengan halangan (km) d 2 = jarak antara Rx dengan halangan (km) d = d 1 + d 2 = jarak antara Tx dan Rx (km) Untuk daerah Fresnel pertama di tengah lintasan d = d 1 + d 2, dan d 1 = d 2 =1/2 d, sehingga: (2.3) Di daerah yang dekat dengan antena, misal d 1 dari antena : (2.4) Gambar 2.8 Pemetaan daerah-daerah Fresnel Sedangkan untuk radius daerah Fresnel kedua, daerah Fresnel ketiga, dan seterusnya seperti ditunjukkan pada Gambar 2.7, dinyatakan dengan rumusan 16

12 berikut: (2.5) Atau secara singkat dinyatakan: (2.6) dimana F 1 = radius daerah Fresnel pertama (m) n = 1,2,3,.. Jika zona Fresnel pertama terbebas dari obyek pengganggu, maka lintasan radio antara pemancar dan penerima dapat dianggap sebagai lintasan line of sight atau LOS. Namun, apabila sebuah obyek terdapat di dalam zona Fresnel pertama, maka gelombang radio akan mulai mengalami efek difraksi. Jika obyek menghalangi separuh penampang zona Fresnel pertama maka hanya separuh intensitas medan elektromagnetik yang sampai pada penerima sehingga hanya seperempat daya gelombang yang terdeteksi oleh penerima dibandingkan kondisi ruang bebas [2]. Efek penurunan daya ini akan semakin signifikan ketika seluruh zona Fresnel pertama mulai tertutup oleh obyek, bahkan lebih parah lagi ketika jari-jari penampang obyek penghalang jauh lebih besar dibandingkan jari-jari zona fresnel pertama. Besarnya redaman yang terjadi akibat difraksi dapat diperkirakan dengan mengasumsikan bawa obyek penghalang berbentuk seperti layar. Difraksi yang terjadi dapat digambarkan seperti pembelokan gelombang radio pada titik-titik di sepanjang tepi layar, dalam literatur sering disebut sebagai knife-edge diffraction 17

13 (KED). Jadi, pada sistem komunikasi gelombang milimeter, kondis LOS adalah syarat mutlak [2]. Untuk sistem nirkabel gelombang milimeter yang bekerja di luar gedung, hujan juga memberikan masalah tersendiri dan merupakan salah satu tantangan terbesar bagi implementasi di daerah tropis dengan curah hujan yang sangat besar. Efek peredaman hujan terhadap gelombang radio mulai pada frekuensi di atas 10 GHz, ekivalen dengan panjang gelombang kurang dari 3 cm. Untuk gelombang radio dengan panjang gelombang dalam rentang tersebut, efek penghamburan oleh titik-titik hujan yang berdiameter maksimum sekitar 6 mm mulai terasa. Redaman hujan yang disebabkan oleh hamburan titik-titik hujan yang jatuh tersebar dalam ruang berbentuk kubus berukuran 1 m 3 biasa dinyatakan dalam bentuk redaman spesifik γ atau Y yaitu redaman dalam db per satuan jarak dalam km. Dengan demikian redaman hujan total sepanjang suatu lintasan radio dapat dihitung sebagai berikut [2]: A= db (2.7) dengan l menyatakan posisi dalam kilometer sepanjang lintasan yang menghubungkan antena pemancar dan penerima, sedangkan L menyatakan panjang lintasan dalam km. Berdasarkan penjabaran di atas, redaman total dalam db yang terjadi sepanjang suatu lintasan radio secara umum dapat dituliskan sebagai berikut [2]: L tot = L fs + L dif + A db (2.8) Sedangkan daya yang diterima dalam skala decibel (dbm atau dbw) adalah [1]: P R = P T + G T + G R L tot dbm (2.9) 18

14 Formulasi yang lengkap untuk persamaan (2.9) harus melibatkan pula rugi-rugi transmisi, konektor, ketidaktepatan arah antena dan sebagainya. 2.5 Intensitas Hujan dan Redaman Hujan Pendahuluan Redaman pada sistem komunikasi yang menggunakan gelombang radio pada frekuensi gelombang mikro dan milimeter redaman merupakan efek yang paling berpengaruh pada sistem komunikasi yang mana dengan semakin tinggi frekuensi yang digunakan maka redaman yang ditimbulkan semakin besar. Redaman tersebut dapat berasal dari rugi-rugi free space dan zat-zat yang terdapat pada atmosfer seperti oksigen, uap air, awan kabut, salju, dan hujan yang dapat menurunkan performansi sistem komunikasi [8] Intensitas Hujan Hujan merupakan fenomena yang menjadi bagian dari siklus air yang berlangsung secara alamiah. Sebagai akibat dari penguapan air di permukaan bumi, uap yang terkumpul bersama-sama pada ketinggian tertentu akan mengalamai kondensasi dan jatuh kembali ke permukaan bumi sebagai hujan. Berdasarkan proses terjadinya hujan, terdapat beberapa kategori penting dari hujan. Masing-masing memiliki karakteristik intensitas, ruang, dan waktu yang berbeda yang berpengaruh terhadap kinerja sistem komunikasi gelombang milimeter. Jenis-jenis hujan tersebut adalah: 1. Hujan stratiform, yaitu hujan yang berawal dari lapisan-lapisan bentangan awan stratus yang terbentuk dengan terangkatnya uap air atau kabut dari 19

15 permukaan. Hujan stratiform ditandai oleh hujan merata dengan rentang waktu dan ruang yang luas dengan intensitas hujan rendah sampai sedang, dapat berlangsung sangat lama pada daerah yang luas. 2. Hujan konvektif diawali oleh awan konvektif atau cumulus yang umumnya memiliki dimensi vertikal yang besar dengan batas horizontal yang jelas, terjadi karena naiknya udara hangat sampai pada ketinggian udara yang cukup dingin sehingga terjadi kondensasi melalui proses konveksi. Jika awan cumulus mencapai ketinggian titik beku air, maka hujan lokal dengan rentang waktu dan ruang yang sempit, namun memiliki intensitas yang relatif tinggi. Hujan stratiform dapat terjadi bersamaan dengan hujan pada wilayah yang bersambungan. 3. Hujan orografis adalah hujan yang terjadi di daerah pegunungan yang perlu dibedakan dari dua jenis hujan lainnya karena proses kejadiannya yang berbeda. Angin membawa uap air dari dataran rendah naik ke atas gunung sehingga terjadi proses pendinginan adiabatik, kondensasi, dan akhirnya hujan. Berbagai besaran yang mengkuantifikasi fenomena hujan sangat terkait dengan distribusi ukuran titik hujan. Jika diasumsikan bahwa buir titik hujan berbentuk bola sempurna, maka volume bola titik hujan dapat dinyatakan oleh diameternya. Distribusi diameter titik hujan (DSD atau drop size distribution) menyatakan jumlah titik-titik hujan yang memiliki diameter (mm) di dalam suatu rentang tertentu per m 3 volume ruang yang diamati, sehingga seringkali dinyatakan dalam satuan butir/m 3 mm. 20

16 Setelah melalui tahap pembentukan titik hujan, ukuran titik-titik hujan yang jatuh ditentukan oleh proses menyatunya titik-titik hujan menjadi titik hujan tunggal yang berukuran lebih besar, serta pecahnya titik hujan berukuran besar yang tidak stabil menjadi titik-titik hujan yang berukuran lebih kecil. Butir titik hujan mulai tidak stabil dan akan pecah menjadi butir-butir yang lebih kecil ketika diameternya mencapai sekitar 6 mm [9]. Beberapa besaran penting yang mengkuantifikasi sebuah peristiwa hujan di antaranya adalah intensitas hujan atau curah hujan, kandungan air, faktor reflektifitas radar, dan redaman gelombang radio. Dua besaran yang sering dibahas secara umum adalah intensitas hujan dan redaman gelombang radio. Intensitas hujan atau curah hujan menyatakan ketinggian air yang terkumpul akibat hujan per satuan waktu, biasanya dinyatakan dalam mm/jam. Dengan asumsi bahwa titik titik hujan tersebar dalam ruang secara seragam, besarnya curah hujan tidak tergantung kepada luas permukaan datar untuk menampung air hujan. Intensitas hujan R (mm/jam) pada suau titik lokasi pada suatu saat tertentu dapat diperoleh dari DSD yang terukur di tempat dan waktu tersebut dengan persamaan berikut [2]: R = 6 x 10-4 π v(d) ( ) (2.13) dengan v(d) menyatakan kecepatan jatuh titik hujan dengan diameter ekivalen sebesar D mm [2]: 28D 2 D mm 4.5D mm < D 0.5 mm v(d) = mm < D 1.0 mm (2.14) D mm < D 3.6 mm 21

17 Variasi curah hujan terjadi pada beberapa dimensi. Pertama, pada sebuah peristiwa hujan, curah hujan berubah terhadap waktu dalam orde menit atau jam. Demikian pula frekuensi terjadinya hujan beserta tingkat intensitas hujan bergantung kepada musim. Kedua, curah hujan juga bervariasi dlam ruang, baik vertikal maupun horizontal. Secara horizontal, terdapat variasi skala kecil, menengah, dan besar. Variasi skala kecil terjadi dalam radius beberapa kilometer, terlihat terutama pada hujan konvektif yang lebat, bersifat lokal, dan berlangsung relatif singkat. Sedangkan jenis hujan stratiform cenderung memiliki curah hujan yang relatif kecil dengan jangka waktu yang lama. Variasi skala kecil ini dimanfaatkan untuk menerapka teknik diversity untuk mengatasi efek peredaman hujan yang dapat merusak kualitas sinyal. Variasi skala menengah terjadi pada kawasan yang berorde beberapa puluh atau ratus kilometer, di mana korelasi kejadian hujan antar dua wilayah cukup kecil. Variasi skala menengah biasanya dimanfaatkan untuk menerapkan teknik site diversity pada sistem komunikasi satelit pita Ka dan Ku. Sedangkan variasi skala besar terjadi secara global akibat perbedaan iklim. Sebagai contoh, wilayah Indonesia yang beriklim tropis maritime cenderung beriklim basah yang ditandai oleh seringnya terjadi hujan lebat, sangat berbeda dengan daerah subtropis dan sekitar kutub yang memiliki curah hujan lebih rendah. Sifat daerah tropis maritim dengan curah hujan tinggi inilah yang mendasari perlunya dirancang metode khusus untuk menjaga kinerja sistem komunikasi nirkabel gelombang milimeter. 22

18 2.5.3 Redaman Hujan Peredaman gelombang radio oleh hujan atau sering disebut redaman hujan, adalah besarnya rasio daya yang sampai di penerima pada kondisi cuaca cerah dan pada kondisi hujan. Redaman hujan dalam desibel yang terjadi pada lintasan sepanjang 1 km, dengan asumsi intensitas hujan yang seragam sepanjang lintasan tersebut, disebut sebagai redaman spesifik. Redaman spesifik Y (db/km) merupakan nilai yang berlaku pada suatu titik lokasi tertentu pada suatu waktu tertentu pula dan dapat dikaitkan dengan DSD pada titik tersebut sebagai berikut [2]: Y V/H = ( ) Im [ ( )] ( ) dd (2.15) dengan λ menyatakan panjang gelombang dalam meter, f V/H (D) menyatakan forward scattering amplitude dalam satuan meter untuk butir titik hujan dengan diameter ekivalen D mm, Im [.] menyatakan bagian imajiner dari argumen, sedangkan subskrip V atau H menyakan polarisasi gelombang radio. Karakterisitik statistik curah hujan pada suatu wilayah tertentu tergambar dari fungsi distribusi kumulati (CDF atau cumulative distribution function) atau komplemennya (CCDF atau complementary cumulative distribution function). Fungsi distribusi tersebut biasanya diperoleh dari hasil pengukuran selama beberapa tahun. Dari kurva CCDF yang dinyatakan dalam grafik semilogaritmik dapat diperoleh estimasi persentil ke p, R p, yang didefinisikan sebagai berikut [2]: Pr (R > Rp) = p % (2.16) Persentil untuk nilai-nilai p tertentu biasa dipakai dalam estimasi persentil redaman hujan untuk desain sistem komunikasi. 23

19 Pada sistem komunikasi dengan menggunakan gelombang radio dengan frekuensi di atas 10 GHz redaman yang disebabkan oleh partikel-partikel di udara sangat berpengaruh adalah redaman yang disebabkan oleh hujan dan salju. Untuk daerah tropis yang mempunyai curah hujan tinggi maka redaman yang sangat berpengaruh adalah redaman disebabkan oleh hujan atau disebut dengan redaman hujan. Pada sistem transmisi pada kondisi hujan, antena transmitter akan memancarkan elektromagnetik yang bertabrakan dengan titik hujan sehingga akan terjadi beberapa fenomena seperti redaman, depolarisasi gelombang dan scattering. Fenomena tersebut mempunyai efek yang dapat menurunkan performansi sistem komunikasi atau mengurangi kualitas dari komunikasi. Hal ini disebabkan karena adanya absorbsi dan scattering atau hamburan oleh titik hujan seperti yang ditunjukkan pada Gambar 2.9. Gambar 2.9 Hamburan oleh titik hujan Semakin besar intensitas hujan, semakin banyak pula butir-butir titik hujan yang berpotensi menghamburkan dan menyerap gelombang elektromagnetik pada pita milimeter. Untuk mendesain sistem komunikasi yang lebih reliable atau 24

20 sistem yang tahan terhadap efek redaman hujan maka perlu untuk mengetahui parameter-parameter dari hujan sehingga dapat mengkompensasi redaman hujan. Redaman spesifik adalah redaman yang terjadi pada satu titik pada ruang sepanjang lintasan dengan hubungan antara redaman spesifik Y (db/km) dan curah hujan R (mm/h) sebagai fungsi frekuensi dengan menggunakan persamaan (2.23) berikut [10]: Y((x) = ar b (x), (2.10 dengan : a dan b = parameter yang tergantung pada polarisasi dan frekuensi gelombang radio. Redaman hujan pada lintasan dari suatu lintasan propagasi dengan panjang L (km) dapat dinyatakan [10]: A= ( ), (2.11) dengan: A = redaman hujan (db) R(z) = curah hujan (mm/h) pada suatu titik a dan b = parameter yang tergantung pada polarisasi dan frekuensi gelombang radio Nilai parameter a dan b ditunjukkan pada Tabel 1.3 [11]. 25

21 Tabel 1.3 Parameter k dan α terhadap frekuensi dan polarisasi Frequency (GHz) k H k V α H α V Sistem Komunikasi Yang Menggunakan Kanal Gelombang Milimeter Local Multipoint Distribution Service (LMDS) Local Multipoint Distribution Service (LMDS) adalah sistem komunikasi Wireless broadband point-to-multipoint communication yang beroperasi pada frekuensi sekitar 28 GHz sampai 31 GHz (tetapi di Eropa bisa mencapai 40 GHz) yang dapat membawa informasi video, suara dan data dengan pemanfaatan lebar pita frekuensi sekitar 1 GHz [12]. Untuk penggunaan frekuensi LMDS tergantung standar pada tiap negara. Sistem LMDS menggunakan sistem seluler untuk arsitektur jaringannya dengan sisi penerimanya tetap, tidak bergerak seperti pada 26

22 system mobile communication. Untuk bandwidth LMDS dialokasikan untuk mengirimkan layanan broadband dengan konfigurasi point-to-point atau point-tomultipoint yang digunakan untuk pelanggan perumahan maupun komersial [11]. Penggunaan frekuensi yang relatif sangat tinggi yaitu pada pita gelombang milimeter kondisi line of sight (LOS) harus dipenuhi sehingga pada sistem komunikasi LMDS sel yang terlingkupi pada umumnya berjarak sekitar 1 5 km. Jarak tempuhnya yang terbatas ini pada umumnya disebabkan karakteristik propagasi sinyal pada frekuensi tinggi mengalami banyak redaman, akibatnya sangat rentan terhadap kondisi lingkungan, terutama akibat hujan. Besarnya alokasi spektrum yang digunakan memampukan sistem LMDS untuk mendukung layanan-layanan broadband. Jenis layanan yang disediakan oleh sistem LMDS antara lain [13] : 1. Layanan Data Berkecepatan Tinggi. a. Peer to peer (Symetric) services b. Client/server (asymetric) services Jaringan bisa terbentuk sendiri atau umum. Kecepatan data downstream biasanya 15 Mbps sampai 55 Mbps, sedangkan kecepatan upstream dari 64 Kbps sampai 44 Mbps. 2. Layanan suara atau telepon. Kecepatan dari layanan telepon adalah pada ISDN, E1, dan E3. 4. Layanan video. 5. Video on demand. 6. Interaktif video, seperti video conference. 27

23 7. Broadcast video, yang dapat disediakan dalam bentuk analog (PAL) maupun digital (MPEG). Pada Gambar 2.9 ditunjukkan layanan-layanan yang disediakan oleh LMDS. Gambar 2.10 Arsitektur Sistem LMDS [12] Untuk membangun sebuah sistem LMDS perlu diperhatikan beberapa parameter. Parameter ini dapat digunakan sebagai acuan dalam pembangunan sistem yang nyata. Adapun parameter tersebut adalah seperti prediksi pelanggan, link budget berupa redaman, kualitas transmisi, daya pancar, level sinyal terima, EIRP dan site planning [13]. Pada perhitungan link budget LMDS rugi-rugi lintasan (redaman) tidak hanya disebabkan oleh rugi-rugi ruang bebas melainkan telah dipengaruhi oleh redaman hujan dan penyerapan oleh gas seperti yang ditunjukkan pada persamaan (2.12) [13]. Hal ini disebabkan karena pada penggunaan frekuensi di atas 10 GHz terjadi efek scattering dan absorbtion yang disebabkan oleh partikel hujan sehingga dapat menurunkan kualitas komunikasi. 28

24 P T = C/N - G T - G R L TX + L RX + L FS + L hujan + NF +10 log BW + FM (2.12) P T = Daya pancar L TX = Redaman saluran pada pemancar L RX = Redaman saluran pada penerima L FS = Redaman lintasan (redaman ruang bebas) L hujan = Redaman hujan G T = Gain pada pemancar G R = Gain pada penerima C/N = Nilai perbandingan antara sinyal yang diterima dengan noise yang diterima. FM = Fading Margin Komunikasi Point to Point LTE Long Term Evolution (LTE) adalah sebuah nama yang diberikan kepada suatu proyek dalam The Third Generation Partnership Project (3GPP) untuk mengembangkan standar komunikasi bergerak Universal Mobile Telecommunication System (UMTS) dalam mengatasi kebutuhan mendatang. Menurut standar, LTE memberikan kecepatan uplink hingga 50 megabit per detik (Mbps) dan kecepatan downlink hingga 100 Mbps [14]. Perhitungan link budget LTE ada beberapa jenis antara lain link budget uplink, link budget downlink dan link budget point to point. Perhitungan link budget yang telah memperhitungkan nilai redaman hujan sepanjang link dan arah link adalah link budget point to point. 29

25 Pada teknologi LTE yang dimaksud dengan komunikasi point to point adalah komunikasi antara dua enode-b. Parameter yang digunakan pada komunikasi point to point ini adalah sebagai berikut [14] : 1. Lokasi enodeb 2. Frekuensi kerja yaitu : 8GHz, 13GHz, 15GHz dan 22GHz 3. Jarak antar enode-b 4. Penguatan Antena (db) 5. EIRP 6. Rugi rugi lintasan 7. Free Space Loss (db) 8. Redaman Hujan (db) 9. Receive Signal Level RSL (dbm) 10. Fresnel Zone Adapun parameter masukan dan keluaran perhitungan link budget pada komunikasi point to point LTE dapat dilihat pada Lampiran D. 30

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik BAB II GELOMBANG ELEKTROMAGNETIK 2.1 Umum elektromagnetik adalah gelombang yang dapat merambat walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik seperti yang diilustrasikan pada

Lebih terperinci

Radio dan Medan Elektromagnetik

Radio dan Medan Elektromagnetik Radio dan Medan Elektromagnetik Gelombang Elektromagnetik Gelombang Elektromagnetik adalah gelombang yang dapat merambat, Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 PERENCANAAN LINK MICROWAVE Tujuan utama dari perencanaan link microwave adalah untuk memastikan bahwa jaringan microwave dapat beroperasi dengan kinerja yang tinggi pada segala

Lebih terperinci

DASAR TEKNIK TELEKOMUNIKASI

DASAR TEKNIK TELEKOMUNIKASI DTG1E3 DASAR TEKNIK TELEKOMUNIKASI Klasifikasi Sistem Telekomunikasi By : Dwi Andi Nurmantris Dimana Kita? Dimana Kita? BLOK SISTEM TELEKOMUNIKASI Message Input Sinyal Input Sinyal Kirim Message Output

Lebih terperinci

BAB II TEORI DASAR. Propagasi gelombang adalah suatu proses perambatan gelombang. elektromagnetik dengan media ruang hampa. Antenna pemancar memang

BAB II TEORI DASAR. Propagasi gelombang adalah suatu proses perambatan gelombang. elektromagnetik dengan media ruang hampa. Antenna pemancar memang BAB II TEORI DASAR 2.1. PROPAGASI GELOMBANG Propagasi gelombang adalah suatu proses perambatan gelombang elektromagnetik dengan media ruang hampa. Antenna pemancar memang didesain untuk memancarkan sinyal

Lebih terperinci

BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT

BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT 4.1 Komunikasi Radio Komunikasi radio merupakan hubungan komunikasi yang mempergunakan media udara dan menggunakan gelombang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pendahuluan Pengertian sistem jaringan komunikasi Radio Gelombang Mikro yang paling sederhana adalah saling berkomunikasinya antara titik A dan titik B dengan menggunakan perangkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Komunikasi Point to Point Komunikasi point to point (titik ke titik ) adalah suatu sistem komunikasi antara dua perangkat untuk membentuk sebuah jaringan. Sehingga dalam

Lebih terperinci

BAB I PENDAHULUAN. broadband seperti high speed internet, digital video, audio broadcasting dan

BAB I PENDAHULUAN. broadband seperti high speed internet, digital video, audio broadcasting dan BAB I PENDAHULUAN 1.1 Latar Belakang Jaringan teknologi komunikasi saat ini mengalami perkembangan yang sangat pesat di berbagai belahan dunia. Perkembangan teknologi layanan broadband seperti high speed

Lebih terperinci

LINK BUDGET. Ref : Freeman FAKULTAS TEKNIK ELEKTRO

LINK BUDGET. Ref : Freeman FAKULTAS TEKNIK ELEKTRO LINK BUDGET Ref : Freeman 1 LINK BUDGET Yang mempengaruhi perhitungan Link Budget adalah Frekuensi operasi (operating frequency) Spektrum yang dialokasikan Keandalan (link reliability) Komponen-komponen

Lebih terperinci

Materi II TEORI DASAR ANTENNA

Materi II TEORI DASAR ANTENNA Materi II TEORI DASAR ANTENNA 2.1 Radiasi Gelombang Elektromagnetik Antena (antenna atau areal) adalah perangkat yang berfungsi untuk memindahkan energi gelombang elektromagnetik dari media kabel ke udara

Lebih terperinci

PERHITUNGAN PATHLOSS TEKNOLOGI 4G

PERHITUNGAN PATHLOSS TEKNOLOGI 4G PERHITUNGAN PATHLOSS TEKNOLOGI 4G Maria Ulfah 1*, Nurwahidah Jamal 2 1,2 Jurusan Teknik Elektronika, Politeknik Negeri Balikpapan * e-mail : maria.ulfah@poltekba.ac.id Abstract Wave propagation through

Lebih terperinci

BAB II TEORI DASAR ANTENA DAN PROPAGASI GELOMBANG RADIO

BAB II TEORI DASAR ANTENA DAN PROPAGASI GELOMBANG RADIO BAB II TEORI DASAR ANTENA DAN PROPAGASI GELOMBANG RADIO 2.1 Umum Salah satu teknologi pengamatan vertikal atmosfer dari permukaan adalah peluncuran balon sonde atau radiosonde. Radiosonde adalah sebuah

Lebih terperinci

Sistem Transmisi Telekomunikasi. Kuliah 6 Jalur Gelombang Mikro

Sistem Transmisi Telekomunikasi. Kuliah 6 Jalur Gelombang Mikro TKE 8329W Sistem Transmisi Telekomunikasi Kuliah 6 Jalur Gelombang Mikro Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas

Lebih terperinci

Telekomunikasi Radio. Syah Alam, M.T Teknik Elektro STTI Jakarta

Telekomunikasi Radio. Syah Alam, M.T Teknik Elektro STTI Jakarta Telekomunikasi Radio Syah Alam, M.T Teknik Elektro STTI Jakarta Telekomunikasi Radio Merupakan suatu bentuk komunikasi modern yang memanfaatkan gelombang radio sebagai sarana untuk membawa suatu pesan

Lebih terperinci

ANALISIS LINK BUDGET PADA PEMBANGUNAN BTS ROOFTOP CEMARA IV SISTEM TELEKOMUNIKASI SELULER BERBASIS GSM

ANALISIS LINK BUDGET PADA PEMBANGUNAN BTS ROOFTOP CEMARA IV SISTEM TELEKOMUNIKASI SELULER BERBASIS GSM ANALISIS LINK BUDGET PADA PEMBANGUNAN BTS ROOFTOP CEMARA IV SISTEM TELEKOMUNIKASI SELULER BERBASIS GSM Kevin Kristian Pinem, Naemah Mubarakah Konsentrasi Teknik Telekomunikasi, Departement Teknik Elektro

Lebih terperinci

TEKNOLOGI WiMAX untuk Komunikasi Digital Nirkabel Bidang

TEKNOLOGI WiMAX untuk Komunikasi Digital Nirkabel Bidang TEKNOLOGI WiMAX untuk Komunikasi Digital Nirkabel Bidang Lebar Oleh : Thomas Sri Widodo Edisi Pertama Cetakan Pertama, 2008 Hak Cipta 2008 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak

Lebih terperinci

BAB I PENDAHULUAN. ke lokasi B data bisa dikirim dan diterima melalui media wireless, atau dari suatu

BAB I PENDAHULUAN. ke lokasi B data bisa dikirim dan diterima melalui media wireless, atau dari suatu 1 BAB I PENDAHULUAN 1.1 Latar Belakang Transmisi merupakan suatu pergerakan informasi melalui sebuah media jaringan telekomunikasi. Transmisi memperhatikan pembuatan saluran yang dipakai untuk mengirim

Lebih terperinci

BAB III PERENCANAAN MINILINK ERICSSON

BAB III PERENCANAAN MINILINK ERICSSON BAB III PERENCANAAN MINILINK ERICSSON Tujuan utama dari perancangan Minilink Ericsson ini khususnya pada BTS Micro Cell adalah merencanakan jaringan Microwave untuk mengaktifkan BTS BTS Micro baru agar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terkait Harefa (2011) dengan penelitiannya tentang Perbandingan Model Propagasi untuk Komunikasi Bergerak. Dalam penelitian ini menjelaskan bahwa pemodelan propagasi

Lebih terperinci

TEKNIK TELEKOMUNIKASI DASAR. Kuliah 9 Komunikasi Radio

TEKNIK TELEKOMUNIKASI DASAR. Kuliah 9 Komunikasi Radio TKE 2102 TEKNIK TELEKOMUNIKASI DASAR Kuliah 9 Komunikasi Radio Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 2009 B A

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK FREKUENSI TINGGI DAN GELOMBANG MIKRO

LAPORAN PRAKTIKUM TEKNIK FREKUENSI TINGGI DAN GELOMBANG MIKRO LAPORAN PRAKTIKUM TEKNIK FREKUENSI TINGGI DAN GELOMBANG MIKRO No Percobaan : 01 Judul Percobaan Nama Praktikan : Perambatan Gelombang Mikro : Arien Maharani NIM : TEKNIK TELEKOMUNIKASI D3 JURUSAN TEKNIK

Lebih terperinci

ATMOSPHERIC EFFECTS ON PROPAGATION

ATMOSPHERIC EFFECTS ON PROPAGATION ATMOSPHERIC EFFECTS ON PROPAGATION Introduction Jika pancaran radio di propagasikan di ruang bebas yang tidak terdapat Atmosphere maka pancaran akan berupa garis lurus. Gas Atmosphere akan menyerap dan

Lebih terperinci

Perencanaan Transmisi. Pengajar Muhammad Febrianto

Perencanaan Transmisi. Pengajar Muhammad Febrianto Perencanaan Transmisi Pengajar Muhammad Febrianto Agenda : PATH LOSS (attenuation & propagation model) FADING NOISE & INTERFERENCE G Tx REDAMAN PROPAGASI (komunikasi point to point) SKEMA DASAR PENGARUH

Lebih terperinci

BAB II TEORI DASAR. tracking untuk mengarahkan antena. Sistem tracking adalah suatu sistem yang

BAB II TEORI DASAR. tracking untuk mengarahkan antena. Sistem tracking adalah suatu sistem yang BAB II TEORI DASAR 2.1 Umum Kualitas suatu sistem komunikasi sangat ditentukan oleh kuat sinyal yang diterima. Salah satu cara agar sinyal dapat diterima secara maksimal adalah dengan mengarahkan antena

Lebih terperinci

ANALISA INTERFERENSI CO-CHANNEL PADA SISTEM KOMUNIKASI LMDS

ANALISA INTERFERENSI CO-CHANNEL PADA SISTEM KOMUNIKASI LMDS ANALISA INTERFERENSI CO-CHANNEL PADA SISTEM KOMUNIKASI LMDS Sevy Nur Fauziah, Haniah Mahmudah, Ari Wijayanti Jurusan Teknik Telekomunkasi - Politeknik Elektronika Negeri Surabaya Institut Teknologi Sepuluh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Dasar Komunikasi Radio.1.1 Frekuensi Frekuensi adalah jumlah siklus per detik dari sebuah arus bolak balik. Satuan frekuensi adalah Hertz disingkat Hz. Satu (1) Hz adalah frekuensi

Lebih terperinci

ELECTROMAGNETIC WAVE AND ITS CHARACTERISTICS

ELECTROMAGNETIC WAVE AND ITS CHARACTERISTICS WIRELESS COMMUNICATION Oleh: Eko Marpanaji INTRODUCTION Seperti dijelaskan pada Chapter 1, bahwa komunikasi tanpa kabel menjadi pilihan utama dalam membangun sistem komunikasi dimasa datang. Ada beberapa

Lebih terperinci

PERHITUNGAN REDAMAN HUJAN PADA KANAL GELOMBANG MILIMETER UNTUK DAERAH MEDAN

PERHITUNGAN REDAMAN HUJAN PADA KANAL GELOMBANG MILIMETER UNTUK DAERAH MEDAN PERHITUNGAN REDAMAN HUJAN PADA KANAL GELOMBANG MILIMETER UNTUK DAERAH MEDAN Candra V. Tambunan (1), Naemah Mubarakah (2) Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terdahulu Pada penelitian terdahulu, rangkaian receiver dan transmitter dibuat dengan prinsip kerjanya menggunakan pantulan gelombang. Penggunaannya, rangkaian transmitter

Lebih terperinci

BAB III PROPAGASI GELOMBANG RADIO GSM. Saluran transmisi antara pemancar ( Transmitter / Tx ) dan penerima

BAB III PROPAGASI GELOMBANG RADIO GSM. Saluran transmisi antara pemancar ( Transmitter / Tx ) dan penerima BAB III PROPAGASI GELOMBANG RADIO GSM Saluran transmisi antara pemancar ( Transmitter / Tx ) dan penerima (Receiver / Rx ) pada komunikasi radio bergerak adalah merupakan line of sight dan dalam beberapa

Lebih terperinci

TEORI MAXWELL Maxwell Maxwell Tahun 1864

TEORI MAXWELL Maxwell Maxwell Tahun 1864 TEORI MAXWELL TEORI MAXWELL Maxwell adalah salah seorang ilmuwan fisika yang berjasa dalam kemajuan ilmu pengetahuan serta teknologi yang berhubungan dengan gelombang. Maxwell berhasil mempersatukan penemuanpenumuan

Lebih terperinci

BAB II PEMODELAN PROPAGASI. Kondisi komunikasi seluler sulit diprediksi, karena bergerak dari satu sel

BAB II PEMODELAN PROPAGASI. Kondisi komunikasi seluler sulit diprediksi, karena bergerak dari satu sel BAB II PEMODELAN PROPAGASI 2.1 Umum Kondisi komunikasi seluler sulit diprediksi, karena bergerak dari satu sel ke sel yang lain. Secara umum terdapat 3 komponen propagasi yang menggambarkan kondisi dari

Lebih terperinci

PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT

PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT Message Input Sinyal Input Sinyal Kirim Message Output TI Transducer Input Message Signal Transducer Output TO Sinyal Output Tx Transmitter

Lebih terperinci

MEDIA TRANSMISI. Sumber: Bab 4 Data & Computer Communications William Stallings. Program Studi Teknik Telekomunikasi Sekolah Tinggi Teknologi Telkom

MEDIA TRANSMISI. Sumber: Bab 4 Data & Computer Communications William Stallings. Program Studi Teknik Telekomunikasi Sekolah Tinggi Teknologi Telkom Jaringan Komputer I 1 MEDIA TRANSMISI Sumber: Bab 4 Data & Computer Communications William Stallings Program Studi Teknik Telekomunikasi Sekolah Tinggi Teknologi Telkom Spektrum Elektromagnetik Jaringan

Lebih terperinci

Bab 7. Penutup Kesimpulan

Bab 7. Penutup Kesimpulan 121 Bab 7. Penutup Disertasi ini termotivasi oleh keinginan untuk mengimplementasikan sistem komunikasi nirkabel pita lebar gelombang milimeter di daerah tropis, khususnya Surabaya, Indonesia. Sistem komunikasi

Lebih terperinci

BAB II SALURAN TRANSMISI

BAB II SALURAN TRANSMISI BAB II SALURAN TRANSMISI 2.1 Umum Penyampaian informasi dari suatu sumber informasi kepada penerima informasi dapat terlaksana bila ada suatu sistem atau media penyampaian di antara keduanya. Jika jarak

Lebih terperinci

Kata Kunci : Radio Link, Pathloss, Received Signal Level (RSL)

Kata Kunci : Radio Link, Pathloss, Received Signal Level (RSL) Makalah Seminar Kerja Praktek ANALISIS KEKUATAN DAYA RECEIVE SIGNAL LEVEL(RSL) MENGGUNAKAN PIRANTI SAGEM LINK TERMINAL DI PT PERTAMINA EP REGION JAWA Oleh : Hanief Tegar Pambudhi L2F006045 Jurusan Teknik

Lebih terperinci

Transmisi Signal Wireless. Pertemuan IV

Transmisi Signal Wireless. Pertemuan IV Transmisi Signal Wireless Pertemuan IV 1. Panjang Gelombang (Wavelength) Adalah jarak antar 1 ujung puncak gelombang dengan puncak lainnya secara horizontal. Gelombang adalah sinyal sinus. Sinyal ini awalnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi telekomunikasi berkembang dengan sangat pesat yang disebabkan oleh kebutuhan pelanggan akan layanan komunikasi dan informasi yang meningkat dari waktu ke

Lebih terperinci

PROPAGASI UMUM PEMBAGIAN BAND FREKUENSI RADIO

PROPAGASI UMUM PEMBAGIAN BAND FREKUENSI RADIO PROPAGASI UMUM Apabila kita berbicara tentang propagasi maka kita menyentuh pengetahuan yang berhubungan dengan pancaran gelombang radio. Seperti kita ketahui bahwa apabila kita transmit, pesawat kita

Lebih terperinci

Kinerja Sistem Komunikasi Satelit Ka-Band Menggunakan Site Diversity di Daerah Tropis

Kinerja Sistem Komunikasi Satelit Ka-Band Menggunakan Site Diversity di Daerah Tropis Kinerja Sistem Komunikasi Satelit Ka-Band Menggunakan Site Diversity di Daerah Tropis A-84 Krisnatianto Tanjung, Gamantyo Hendrantoro, dan Achmad Mauludiyanto Jurusan Teknik Elektro, Fakultas Teknologi

Lebih terperinci

Propagasi gelombang radio atau gelombang elektromagnetik dipengaruhi oleh banyak faktor dalam bentuk yang sangat kompleks kondisi yang sangat

Propagasi gelombang radio atau gelombang elektromagnetik dipengaruhi oleh banyak faktor dalam bentuk yang sangat kompleks kondisi yang sangat Propagasi gelombang radio atau gelombang elektromagnetik dipengaruhi oleh banyak faktor dalam bentuk yang sangat kompleks kondisi yang sangat bergantung pada keadaan cuaca dan fenomena luar angkasa yang

Lebih terperinci

BAB III PRINSIP DASAR MODEL PROPAGASI

BAB III PRINSIP DASAR MODEL PROPAGASI BAB III PRINSIP DASAR MODEL PROPAGASI 3.1 Pengertian Propagasi Seperti kita ketahui, bahwa dalam pentransmisian sinyal informasi dari satu tempat ke tempat lain dapat dilakukan melalui beberapa media,

Lebih terperinci

KEGIATAN BELAJAR 2. FREKUENSI GELOMBANG RADIO PADA APLIKASI SISTEM TELEKOMUNIKASI

KEGIATAN BELAJAR 2. FREKUENSI GELOMBANG RADIO PADA APLIKASI SISTEM TELEKOMUNIKASI KEGIATAN BELAJAR. FREKUENSI GELOMBANG RADIO PADA APLIKASI SISTEM TELEKOMUNIKASI A. Pendahuluan Kegiatan belajar ini akan mengajak peserta untuk menganalisis frekuensi gelombang radio pada aplikasi sistem

Lebih terperinci

BAB IV ANALISA DATA DAN PEMBAHASAN

BAB IV ANALISA DATA DAN PEMBAHASAN BAB IV ANALISA DATA DAN PEMBAHASAN Pada tahap ini akan dibahas tahap dan parameter perencanaan frekuensi dan hasil analisa pada frekuensi mana yang layak diimplemantasikan di wilayah Jakarta. 4.1 Parameter

Lebih terperinci

PENGGUNAAN ADAPTIVE CODED MODULATION DAN SELECTION COMBINING UNTUK MITIGASI PENGARUH REDAMAN HUJAN DAN INTERFERENSI PADA SISTEM LMDS

PENGGUNAAN ADAPTIVE CODED MODULATION DAN SELECTION COMBINING UNTUK MITIGASI PENGARUH REDAMAN HUJAN DAN INTERFERENSI PADA SISTEM LMDS PENGGUNAAN ADAPTIVE CODED MODULATION DAN SELECTION COMBINING UNTUK MITIGASI PENGARUH REDAMAN HUJAN DAN INTERFERENSI PADA SISTEM LMDS OLEH: Shinta Romadhona 2208203201 PEMBIMBING: Prof.DR.Ir.Gamantyo Hendrantoro,

Lebih terperinci

BAB III PENGUMPULAN DAN PENGOLAHAN DATA

BAB III PENGUMPULAN DAN PENGOLAHAN DATA PENGUMPULAN DAN PENGOLAHAN DATA 18 BAB III PENGUMPULAN DAN PENGOLAHAN DATA 3.1 Konsep Perencanaan Sistem Seluler Implementasi suatu jaringan telekomunikasi di suatu wilayah disamping berhadapan dengan

Lebih terperinci

SIMULASI LINK BUDGET PADA KOMUNIKASI SELULAR DI DAERAH URBAN DENGAN METODE WALFISCH IKEGAMI

SIMULASI LINK BUDGET PADA KOMUNIKASI SELULAR DI DAERAH URBAN DENGAN METODE WALFISCH IKEGAMI SIMULASI LINK BUDGET PADA KOMUNIKASI SELULAR DI DAERAH URBAN DENGAN METODE WALFISCH IKEGAMI Zulkha Sarjudin, Imam Santoso, Ajub A. Zahra Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro

Lebih terperinci

PROPAGASI. REFF : Freeman FAKULTAS TEKNIK ELEKTRO

PROPAGASI. REFF : Freeman FAKULTAS TEKNIK ELEKTRO POPAGASI EFF : Freeman FAKULAS EKNIK ELEKO 1 edaman uang Bebas Daya diterima antenna dgn luas permukaan efektif A terletak pada permukaan bola : P P. A 4d 2 Sumber titik radiator isotropis A terletak di

Lebih terperinci

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Sifat gelombang elektromagnetik Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Pantulan (Refleksi) Pemantulan gelombang terjadi ketika gelombang

Lebih terperinci

Dasar- dasar Penyiaran

Dasar- dasar Penyiaran Modul ke: Fakultas FIKOM Dasar- dasar Penyiaran AMPLITUDO MODULATON FREQUENCY MODULATON SHORT WAVE (SW) CARA KERJA PEMANCAR RADIO Drs.H.Syafei Sikumbang,M.IKom Program Studi BROAD CASTING Judul Sub Bahasan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Pengertian Judul

BAB I PENDAHULUAN. 1.1 Pengertian Judul BAB I PENDAHULUAN 1.1 Pengertian Judul Dalam proyek akhir ini penulis merancang penempatan BTS untuk sistem LMDS untuk mencangkup seluruh kota Denpasar hanya secara teknis tanpa tinjauan ekonomi dengan

Lebih terperinci

Konsep Propagasi Gelombang EM dan Link Budget

Konsep Propagasi Gelombang EM dan Link Budget TTG3D3 Antena Modul#7 Antena dan Propagasi Konsep Propagasi Gelombang EM dan Link Budget Oleh : driansyah, ST, MT 1 Outline Pendahuluan Model Sistem Komunikasi & Channel Modeling Karakteristik Dan Fenomena

Lebih terperinci

Sinyal analog. Amplitudo : ukuran tinggi rendah tegangan Frekuensi : jumlah gelombang dalam 1 detik Phase : besar sudut dari sinyal analog

Sinyal analog. Amplitudo : ukuran tinggi rendah tegangan Frekuensi : jumlah gelombang dalam 1 detik Phase : besar sudut dari sinyal analog PHYSICAL LAYER Lapisan Fisik Fungsi : untuk mentransmisikan sinyal data (analog dan digital) Pada Lapisan Transmitter : menerapkan fungsi elektris, mekanis, dan prosedur untuk membangun, memelihara, dan

Lebih terperinci

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) LEMBARAN SOAL Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

Program Studi S1 - Teknik Telekomunikasi Jurusan Teknik Elektro Institut Teknologi Telkom BANDUNG, 2012

Program Studi S1 - Teknik Telekomunikasi Jurusan Teknik Elektro Institut Teknologi Telkom BANDUNG, 2012 PENGENALAN TEKNIK TELEKOMUNIKASI Modul : 06 Media Transmisi Program Studi S1 - Teknik Telekomunikasi Jurusan Teknik Elektro Institut Teknologi Telkom BANDUNG, 2012 1 2 3 Konfigurasi Sistem Transmisi Sistem

Lebih terperinci

PEMANCAR&PENERIMA RADIO

PEMANCAR&PENERIMA RADIO PEMANCAR&PENERIMA RADIO Gelombang elektromagnetik gelombang yang dapat membawa pesan berupa sinyal gambar dan suara yang memiliki sifat, dapat mengarungi udara dengan kecepatan sangat tinggi sehingga gelombang

Lebih terperinci

BAB II PROPAGASI GELOMBANG MENENGAH

BAB II PROPAGASI GELOMBANG MENENGAH BAB II PROPAGASI GELOMBANG MENENGAH. GELOMBANG MENENGAH Berdasarkan spektrum frekuensi radio, pita frekuensi menengah adalah gelombang dengan rentang frekuensi yang terletak antara 300 khz sampai 3 MHz

Lebih terperinci

I. PENDAHULUAN TNI AU. LATAR BELAKANG Perkembangan Teknologi Komunikasi. Wireless : bandwidth lebih lebar. Kebutuhan Sarana Komunikasi VHF UHF SBM

I. PENDAHULUAN TNI AU. LATAR BELAKANG Perkembangan Teknologi Komunikasi. Wireless : bandwidth lebih lebar. Kebutuhan Sarana Komunikasi VHF UHF SBM Desain Perencanaan Radio Link untuk Komunikasi Data Radar S a t u a n R a d a r 2 4 2 T W R d e n g a n K o m a n d o S e k t o r P e r t a h a n a n U d a r a N a s i o n a l I V B i a k R a d i o L i

Lebih terperinci

BAB II DASAR TEORI. cara menitipkan -nya pada suatu gelombang pembawa (carrier). Proses ini

BAB II DASAR TEORI. cara menitipkan -nya pada suatu gelombang pembawa (carrier). Proses ini 5 BAB II DASAR TEORI 2. 1 Konsep Dasar Radio Radio merupakan teknologi komunikasi yang melakukan pengiriman sinyal melalui modulasi gelombang elektromagnetik. Informasi dikirim dengan cara menitipkan -nya

Lebih terperinci

BAB II KANAL WIRELESS DAN DIVERSITAS

BAB II KANAL WIRELESS DAN DIVERSITAS BAB II KANAL WIRELESS DAN DIVERSITAS.1 Karakteristik Kanal Nirkabel Perambatan sinyal pada kanal yang dipakai dalam komunikasi terjadi di atmosfer dan dekat dengan permukaan tanah, sehingga model perambatan

Lebih terperinci

PENGUKURAN DAN PEMODELAN KONSTANTA DIELEKTRIK AIR HUJAN PADA FREKUENSI GELOMBANG MIKRO

PENGUKURAN DAN PEMODELAN KONSTANTA DIELEKTRIK AIR HUJAN PADA FREKUENSI GELOMBANG MIKRO PENGUKURAN DAN PEMODELAN KONSTANTA DIELEKTRIK AIR HUJAN PADA FREKUENSI GELOMBANG MIKRO Fify Triana 2209105005 Pembimbing : Eko Setijadi, ST, MT, Ph.D Ir. M. Aries Purnomo 1 Latar Belakang Komunikasi Frekuensi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Tabel 5. Hasil Perhitungan Link Budget

IV. HASIL DAN PEMBAHASAN. Tabel 5. Hasil Perhitungan Link Budget IV. HASIL DAN PEMBAHASAN A. Hasil Perancangan dan Analisa 1. Perancangan Ideal Tabel 5. Hasil Perhitungan Link Budget FSL (db) 101,687 Absorption Loss (db) 0,006 Total Loss 101,693 Tx Power (dbm) 28 Received

Lebih terperinci

BAB II LANDASAN TEORI. objek yang terdeteksi. Pada mulanya radar digunakan sebagai salah satu alat

BAB II LANDASAN TEORI. objek yang terdeteksi. Pada mulanya radar digunakan sebagai salah satu alat BAB II LANDASAN TEORI 2.1 Radio Detecting and Ranging (Radar) Radio Detecting and Ranging (Radar) merupakan suatu perangkat yang digunakan untuk menentukan posisi objek, arah pergerakannya maupun bentuk

Lebih terperinci

Pertemuan 9 SISTEM ANTENA. DAHLAN ABDULLAH

Pertemuan 9 SISTEM ANTENA. DAHLAN ABDULLAH Pertemuan 9 SISTEM ANTENA DAHLAN ABDULLAH dahlan.unimal@gmail.com http://www.dahlan.web.id PENDAHULUAN Dalam sejarah komunikasi, perkembangan teknik informasi tanpa menggunakan kabel ditetapkan dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENELITIAN TERDAHULU Sebelumnya penelitian ini di kembangkan oleh mustofa, dkk. (2010). Penelitian terdahulu dilakukan untuk mencoba membuat alat komunikasi bawah air dengan

Lebih terperinci

KOMUNIKASI DATA ST014 Komunikasi data nirkabel dan topologi jaringan

KOMUNIKASI DATA ST014 Komunikasi data nirkabel dan topologi jaringan KOMUNIKASI DATA ST014 Komunikasi data nirkabel dan topologi jaringan S1 Teknik Informatika DOSEN PENGAMPU : Ferry Wahyu Wibowo, S.Si., M.Cs Joko Dwi Santoso, M.Kom Naskan, S.Kom Rico Agung F., S.Kom Rikie

Lebih terperinci

Dasar Sistem Transmisi

Dasar Sistem Transmisi Dasar Sistem Transmisi Dasar Sistem Transmisi Sistem transmisi merupakan usaha untuk mengirimkan suatu bentuk informasi dari suatu tempat yang merupakan sumber ke tempat lain yang menjadi tujuan. Pada

Lebih terperinci

BAB II DASAR TEORI. atau gedung. Dengan performa dan keamanan yang dapat diandalkan,

BAB II DASAR TEORI. atau gedung. Dengan performa dan keamanan yang dapat diandalkan, BAB II DASAR TEORI 2.1 Umum Jaringan wireless LAN sangat efektif digunakan di dalam sebuah kawasan atau gedung. Dengan performa dan keamanan yang dapat diandalkan, pengembangan jaringan wireless LAN menjadi

Lebih terperinci

PENGUKURAN MEDAN ELEKTROMAGNETIK BEBAS PADA AREA URBAN DAN RURAL

PENGUKURAN MEDAN ELEKTROMAGNETIK BEBAS PADA AREA URBAN DAN RURAL PENGUKURAN MEDAN ELEKTROMAGNETIK BEBAS PADA AREA URBAN DAN RURAL MANA HILUL IRFAN 2207100051 Dosen Pembimbing : Eko Setijadi, ST., MT., Ph.D Dr. Ir. Wirawan, DEA Latar Belakang 2 Green Telecommunication

Lebih terperinci

Media Transmisi Jaringan

Media Transmisi Jaringan Media Transmisi Jaringan Medium Transmisi pada Telekomunikasi Medium transmisi digunakan untuk mengirimkan informasi, baik voice maupun data dari pengirim ke penerima atau dari TX ke RX. Pada dasarnya

Lebih terperinci

BAB III SISTEM JARINGAN TRANSMISI RADIO GELOMBANG MIKRO PADA KOMUNIKASI SELULER

BAB III SISTEM JARINGAN TRANSMISI RADIO GELOMBANG MIKRO PADA KOMUNIKASI SELULER BAB III SISTEM JARINGAN TRANSMISI RADIO GELOMBANG MIKRO PADA KOMUNIKASI SELULER 3.1 Struktur Jaringan Transmisi pada Seluler 3.1.1 Base Station Subsystem (BSS) Base Station Subsystem (BSS) terdiri dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terkait Berdasarkan topik kajian yang akan dilakukan, ada beberapa penelitian terkait dengan dalam penelitian ini diantaranya : 1. Sofyan Harefa (2011) Analisis perbandingan

Lebih terperinci

BAB II TEORI DASAR ANTENA. Dilihat dari latar belakang telekomunikasi berupa komunikasi wireless,

BAB II TEORI DASAR ANTENA. Dilihat dari latar belakang telekomunikasi berupa komunikasi wireless, BAB II TEORI DASAR ANTENA 2.1 Umum Dilihat dari latar belakang telekomunikasi berupa komunikasi wireless, antena radio pertama dibuat oleh Heinrich Hertz yang tujuannya untuk membuktikan keberadaan gelombang

Lebih terperinci

BAB II JARINGAN MICROWAVE

BAB II JARINGAN MICROWAVE BAB II JARINGAN MICROWAVE 2.1. Transmisi Radio Microwave Minilink berfungsi sebagai perangkat untuk menghubungkan BSC (Base Station Controller) ke BTS (Base Transceiver Station) ataupun menghubungkan BTS

Lebih terperinci

2. TINJAUAN PUSTAKA. dapat dievaluasi, sistem ini menggunakan sistem komunikasi (Carden, et al,

2. TINJAUAN PUSTAKA. dapat dievaluasi, sistem ini menggunakan sistem komunikasi (Carden, et al, 4 2. TINJAUAN PUSTAKA 2.1 Telemetri Radio Telemetri merupakan sistem untuk pengumpulan data yang dilakukan disuatu tempat terpencil atau sukar dan mengerjakannya sehingga data tersebut dapat dievaluasi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Tools untuk membantu proses perancangan dan simulasi link radio microwave bukanlah suatu hal yang baru. Saat ini telah tersedia beberapa

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

PROPAGASI. Oleh : Sunarto YB0USJ

PROPAGASI. Oleh : Sunarto YB0USJ PROPAGASI Oleh : Sunarto YB0USJ UMUM Apabila kita berbicara tentang propagasi maka kita menyentuh pengetahuan yang berhubungan dengan pancaran gelombang radio. Seperti kita ketahui bahwa apabila kita transmit,

Lebih terperinci

2.1. KONSEP PENGUATAN DAYA (LOSS DAN DECIBELL)

2.1. KONSEP PENGUATAN DAYA (LOSS DAN DECIBELL) 2.1. KONSEP PENGUATAN DAYA (LOSS DAN DECIBELL) BAB II PEMBAHASAN 2.1. KONSEP PENGUATAN DAYA (LOSS DAN DECIBELL) a. Macam-macam daya Ada berbagai macam jenis daya berdasarkan penggunaannya, salah satunya

Lebih terperinci

Analisa Perencanaan Power Link Budget untuk Radio Microwave Point to Point Frekuensi 7 GHz (Studi Kasus : Semarang)

Analisa Perencanaan Power Link Budget untuk Radio Microwave Point to Point Frekuensi 7 GHz (Studi Kasus : Semarang) Analisa Perencanaan Power Link Budget untuk Radio Microwave Point to Point Frekuensi 7 GHz (Studi Kasus : Semarang) Subuh Pramono Jurusan Teknik Elektro, Politeknik Negeri Semarang E-mail : subuhpramono@gmail.com

Lebih terperinci

BAB II DASAR TEORI. Gelombang didefinisikan sebagai getaran atau gangguan yang merambat.

BAB II DASAR TEORI. Gelombang didefinisikan sebagai getaran atau gangguan yang merambat. BAB II DASAR TEORI 2.1 Gelombang Elektromagnetik Gelombang didefinisikan sebagai getaran atau gangguan yang merambat. Elektromagnetik adalah gejala listrik yang diakibatkan oleh gerak mekanik magnet. Magnet

Lebih terperinci

TEKNIK DIVERSITAS. Sistem Transmisi

TEKNIK DIVERSITAS. Sistem Transmisi TEKNIK DIVERSITAS Sistem Transmisi MENGAPA PERLU DIPASANG SISTEM DIVERSITAS PARAMETER YANG MEMPENGARUHI : AVAILABILITY Merupakan salah satu ukuran kehandalan suatu Sistem Komunikasi radio, yaitu kemampuan

Lebih terperinci

Spektrum elektromagnetik. Frekuensi radio

Spektrum elektromagnetik. Frekuensi radio Spektrum elektromagnetik Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per

Lebih terperinci

SISTEM LMDS, LAYANAN BROADBAND WIRELESS PADA FREKUENSI GHz.

SISTEM LMDS, LAYANAN BROADBAND WIRELESS PADA FREKUENSI GHz. Seminar Nasional Aplikasi Teknologi Informasi 006 (SNATI 006) ISSN: 1907-50 Yogyakarta, 17 Juni 006 SISTEM LMDS, LAYANAN BROADBAND WIRELESS PADA FREKUENSI 8 31 GHz. Uke Kurniawan Usman Jurusan Teknik Elektro,

Lebih terperinci

BESAR DAN UKURAN KINERJA TELEKOMUNIKASI

BESAR DAN UKURAN KINERJA TELEKOMUNIKASI BESAR DAN UKURAN KINERJA TELEKOMUNIKASI Disusun oleh : 1. Ahmad Iqbal (15101004) Tahun angkatan 2015 2. Ajun Wicaksono (15101005) Tahun angkatan 2015 3. Andika Eka Purnama (15101006) Tahun angkatan 2015

Lebih terperinci

Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal

Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal dua macam sumber informasi, yaitu ide-ide yang bersumber dari

Lebih terperinci

KOMUNIKASI DATA Data, Sinyal & Media Transmisi. Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng

KOMUNIKASI DATA Data, Sinyal & Media Transmisi. Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng KOMUNIKASI DATA Data, Sinyal & Media Transmisi Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng Data 10110111 sinyal Untuk dapat ditransmisikan, data harus ditransformasikan ke dalam bentuk gelombang elektromagnetik

Lebih terperinci

DASAR TELEKOMUNIKASI. Kholistianingsih, S.T., M.Eng

DASAR TELEKOMUNIKASI. Kholistianingsih, S.T., M.Eng DASAR TELEKOMUNIKASI Kholistianingsih, S.T., M.Eng KONTRAK PEMBELAJARAN UAS : 35% UTS : 35% TUGAS : 20% KEHADIRAN : 10% KEHADIRAN 0 SEMUA KOMPONEN HARUS ADA jika ada satu komponen yang kosong NILAI = E

Lebih terperinci

BAB II KOMUNIKASI SELULER INDOOR. dalam gedung untuk mendukung sistem luar gedung (makrosel dan mikrosel

BAB II KOMUNIKASI SELULER INDOOR. dalam gedung untuk mendukung sistem luar gedung (makrosel dan mikrosel BAB II KOMUNIKASI SELULER INDOOR 2.1 Umum Komunikasi jaringan indoor merupakan suatu sistem yang diterapkan dalam gedung untuk mendukung sistem luar gedung (makrosel dan mikrosel outdoor) dalam memenuhi

Lebih terperinci

GELOMBANG ELEKTROMAGNETIKA

GELOMBANG ELEKTROMAGNETIKA GELOMBANG ELEKTROMAGNETIKA Apa itu Gelombang? Gelombang adalah getaran yang merambat Apakah dalam perambatannya perlu medium/zat perantara? Tidak harus! Berdasarkan ada/tidak adanya medium : 1. Gelombang

Lebih terperinci

Bab I Pendahuluan 1 BAB I PENDAHULUAN

Bab I Pendahuluan 1 BAB I PENDAHULUAN Bab I Pendahuluan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Path loss propagasi suatu daerah sangat penting dalam membuat perencanaan suatu jaringan wireless, termasuk diantaranya adalah jaringan broadcasting.

Lebih terperinci

BAB IV ANALISA PERFORMANSI BWA

BAB IV ANALISA PERFORMANSI BWA BAB IV ANALISA PERFORMANSI BWA 4.1 Parameter Komponen Performansi BWA Berikut adalah gambaran konfigurasi link BWA : Gambar 4.1. Konfigurasi Line of Sight BWA Berdasarkan gambar 4.1. di atas terdapat hubungan

Lebih terperinci

KARAKTERISASI KANAL PROPAGASI VHF BERGERAK DI ATAS PERMUKAAN LAUT

KARAKTERISASI KANAL PROPAGASI VHF BERGERAK DI ATAS PERMUKAAN LAUT KARAKTERISASI KANAL PROPAGASI VHF BERGERAK DI ATAS PERMUKAAN LAUT Putri Kusuma Ningtyas 2206100144 1) 1) Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-6011

Lebih terperinci

ANALISIS KINERJA JARINGAN FTTH (FIBER TO THE HOME) DI JALAN LOTUS PERUMAHAN CEMARA ASRI MEDAN

ANALISIS KINERJA JARINGAN FTTH (FIBER TO THE HOME) DI JALAN LOTUS PERUMAHAN CEMARA ASRI MEDAN ANALISIS KINERJA JARINGAN FTTH (FIBER TO THE HOME) DI JALAN LOTUS PERUMAHAN CEMARA ASRI MEDAN Muhammad Fachri, M. Zulfin Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

Spektrum Frekuensi Extremely Low Frequency (ELF) Super Low Frequency (SLF) Very Low Frequency (VLF)

Spektrum Frekuensi Extremely Low Frequency (ELF) Super Low Frequency (SLF) Very Low Frequency (VLF) Spektrum Frekuensi Spektrum frekuensi dari sinyal waktu-domain merupakan representasi dari sinyal dalam domain frekuensi. Spektrum frekuensi yang dapat dihasilkan melalui transformasi Fourier dari sinyal,

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Alat dan Bahan Perangkat keras dan perangkat lunak yang digunakan dalam penelitian ini antara lain: 1. Dua unit komputer 2. Path Profile 3. Kalkulator 4. GPS 5. Software D-ITG

Lebih terperinci

- S. Indriani Lestariningati, M.T- Week 3 TERMINAL-TERMINAL TELEKOMUNIKASI

- S. Indriani Lestariningati, M.T- Week 3 TERMINAL-TERMINAL TELEKOMUNIKASI - S. Indriani Lestariningati, M.T- Week 3 TERMINAL-TERMINAL TELEKOMUNIKASI Dengan kemajuan teknologi, telekomunikasi menjadi lebih cepat, lebih andal dan lebih murah dibandingkan dengan metode komunikasi

Lebih terperinci

BAB 10 ULTRA HIGH FREQUENCY ANTENNA. Mahasiswa mampu menjelaskan secara lisan/tertulis mengenai jenis-jenis frekuensi untuk

BAB 10 ULTRA HIGH FREQUENCY ANTENNA. Mahasiswa mampu menjelaskan secara lisan/tertulis mengenai jenis-jenis frekuensi untuk BAB 10 ULTRA HIGH FREQUENCY ANTENNA Kompetensi: Mahasiswa mampu menjelaskan secara lisan/tertulis mengenai jenis-jenis frekuensi untuk komunikasi, salah satunya pada rentang band Ultra High Frequency (HF).

Lebih terperinci