BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip"

Transkripsi

1 BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah sangat identik dengan generator arus searah. Kenyataannya mesin yang bekerja sebagai generator arus searah akan dapat bekerja sebagai motor arus searah. Oleh sebab itu, sebuah mesin arus searah dapat digunakan baik sebagai motor arus searah maupun generator arus searah. Berdasarkan fisiknya motor arus searah secara umum terdiri atas bagian yang diam dan bagian yang berputar. Pada bagian yang diam (stator) merupakan tempat diletakkannya kumparan medan yang berfungsi untuk menghasilkan fluksi magnet sedangkan pada bagian yang berputar (rotor) ditempati oleh rangkaian jangkar seperti kumparan jangkar, komutator dan sikat. Motor arus searah bekerja berdasarkan prinsip interaksi antara dua fluksi magnetik. Dimana kumparan medan akan menghasilkan fluksi magnet yang arahnya dari kutub utara menuju kutub selatan dan kumparan jangkar akan menghasilkan fluksi magnet yang melingkar. Interaksi antara kedua fluksi magnet ini menimbulkan suatu gaya. Dimana gaya ini akan menghasilkan momen puntir atau torsi. Apabila torsi start lebih besar dari torsi beban, maka motor akan berputar. 5

2 2.2. Konstruksi Motor Arus Searah Konstruksi motor arus searah ditunjukkan oleh Gambar 2.1 (bagian stator) dan Gambar 2.2 (bagian rotor) di bawah ini : Gambar 2.1 Konstruksi Motor Arus Searah Bagian Stator Gambar 2.2 Konstruksi Motor Arus Searah Bagian Rotor Keterangan dari Gambar 2.1 dan Gambar 2.2 tersebut adalah : 1. Rangka Rangka motor arus searah adalah tempat meletakkan sebagian besar komponen mesin dan melindungi bagian mesin. Untuk itu rangka harus dirancang 6

3 memiliki kekuatan mekanis yang tinggi untuk mendukung komponen-komponen mesin tersebut. Rangka juga berfungsi sebagai tempat mengalirkan fluksi magnet yang dihasilkan oleh kutub-kutub medan. Rangka dibuat dengan menggunakan bahan ferromagnetik yang memiliki permeabilitas tinggi. Rangka biasanya terbuat dari baja tuang (cast steel) atau baja lembaran (rolled steel) yang berfungsi sebagai penopang mekanis dan juga sebagai bagian dari rangkaian magnet. Pada rangka terdapat papan nama (name plat) yang bertuliskan spesifikasi umum atau data teknik dari motor. Papan nama tersebut untuk mengetahui beberapa hal pokok yang perlu diketahui dari motor tersebut. 2. Kutub Medan Kutub medan terdiri atas inti kutub dan sepatu kutub. Sepatu kutub yang berdekatan dengan celah udara dibuat lebih besar dari badan inti. Adapun fungsi dari sepatu kutub adalah : a. Sebagai pendukung secara mekanis untuk kumparan medan b. Menghasilkan distribusi fluksi yang lebih baik yang tersebar di seluruh jangkar dengan menggunakan permukaan yang melengkung. Inti kutub terbuat dari lembaran-lembaran besi tuang atau baja tuang yang terisolasi satu sama lain. Kutub medan (inti kutub dan sepatu kutub) direkatkan bersama-sama kemudian dibuat pada rangka. 7

4 3. Sikat Sikat adalah jembatan bagi aliran arus ke lilitan jangkar. Dimana permukaan sikat ditekan ke permukaan segmen komutator untuk menyalurkan arus listrik. Sikat memegang peranan penting untuk terjadinya komutasi. 4. Kumparan Medan Kumparan medan adalah susunan konduktor yang dibelitkan pada inti kutub. Dimana konduktor tersebut terbuat dari kawat tembaga yang berbentuk bulat ataupun persegi. Rangkaian medan yang berfungsi untuk menghasilkan fluksi utama dibentuk dari kumparan pada setiap kutub. 5. Jangkar Inti jangkar yang umumnya digunakan dalam motor arus searah adalah berbentuk silinder yang diberi alur-alur pada permukaannya untuk tempat melilitkan kumparan jangkar tempat terbentuknya ggl induksi. Seperti halnya pada inti kutub magnet, jangkar juga dibuat dari bahan berlapis-lapis tipis untuk mengurangi panas yang terbentuk karena adanya arus liar (eddy current). Inti jangkar terbuat dari bahan ferromagnetik yaitu sejenis campuran baja silikon. 6. Kumparan Jangkar Kumparan jangkar pada motor arus searah merupakan tempat dibangkitkannya ggl induksi. Kumparan jangkar ditempatkan di dalam alur-alur inti jangkar. Jenis-jenis konstruksi kumparan jangkar pada rotor ada tiga macam, yaitu : kumparan jerat (lap winding, kumparan gelombang (wave winding), kumparan zig-zag (frog-leg winding) 8

5 7. Komutator Untuk memperoleh tegangan searah diperlukan alat penyearah yang disebut komutator dan sikat. Komutator terdiri dari sejumlah segmen tembaga yang berbentuk lempengan-lempengan yang dirakit ke dalam silinder yang terpasang pada poros. Agar dihasilkan tegangan arus searah yang konstan, maka komutator yang digunakan hendaknya dalam jumlah yang besar. 8. Celah Udara Celah udara merupakan ruang atau celah antara permukaan jangkar dengan permukaan sepatu kutub yang menyebabkan jangkar tidak bergesekan dengan sepatu kutub. Fungsi dari celah udara adalah sebagai tempat mengalirnya fluksi yang dihasilkan oleh kutub-kutub medan Prinsip Kerja Motor Arus Searah Motor arus searah mempunyai prinsip kerja berdasarkan percobaan Lorentz yang menyatakan : jika sebatang penghantar listrik yang berarus berada di dalam medan magnet maka pada kawat penghantar tersebut akan terbentuk suatu gaya. Gaya yang terbentuk merupakan gaya mekanik yang sering dinamakan gaya Lorentz. Sebuah konduktor yang dialiri arus mempunyai medan magnet disekelilingnya. Pada saat konduktor yang dialiri arus listrik ditempatkan pada suatu medan magnet, maka konduktor akan mengalami gaya mekanik seperti diperlihatkan pada Gambar 2.3 berikut 9

6 (a) (b) (c) Gambar 2.3 Pengaruh Penempatan Konduktor Berarus Dalam Medan Magnet Kuat medan magnet yang timbul tergantung pada besarnya arus yang mengalir dalam konduktor, seperti ditunjukkan oleh persamaan (2.1) berikut ini : H = N I...(2.1) Dimana : H = kuat medan magnet (lilitan Ampere/meter) N = banyak kumparan (lilitan) I = arus yang mengalir pada penghantar (Ampere) = panjang dari penghantar (meter) Pada Gambar 2.3(a) menunjukkan sebuah medan magnet seragam yang dihasilkan oleh kutub-kutub magnet utara dan selatan yang arahnya dari kutub utara menuju kutub selatan. Sedangkan Gambar 2.3(b) menggambarkan sebuah konduktor yang dialiri arus searah dan menghasilkan medan magnet (garis-garis gaya fluksi) disekelilingnya. Jika konduktor yang dialiri arus tersebut ditempatkan di dalam medan magnet seragam, maka interaksi kedua medan akan menimbulkan medan yang tidak seragam seperti yang ditunjukkan pada Gambar 2.3 (c). Sehingga kerapatan fluksi akan bertambah besar di atas sebelah kanan konduktor (dekat kutub selatan) dan di bawah sebelah kiri konduktor (dekat kutub utara) sedangkan kerapatan 10

7 fluksi menjadi berkurang di atas sebelah kiri konduktor dan di bawah sebelah kanan konduktor. Kerapatan fluksi yang tidak seragam ini menyebabkan konduktor di sebelah kiri akan mengalami gaya ke atas, sedangkan konduktor di sebelah kanan akan mengalami gaya ke bawah. Kedua gaya tersebut akan menghasilkan torsi yang akan memutar jangkar dengan arah putaran searah dengan putaran jarum jam. Prinsip inilah yang menjadi dasar dari prinsip kerja sebuah motor arus searah. Untuk lebih jelasnya, prinsip kerja sebuah motor arus searah dapat dijelaskan dengan Gambar 2.4 berikut ini : Gambar 2.4 Prinsip Perputaran Motor Arus Searah Berdasarkan Gambar 2.4 di atas, kedua kutub stator dibelitkan dengan konduktor- konduktor sehingga membentuk kumparan yang dinamakan kumparan stator atau kumparan medan. Kumparan medan tersebut dihubungkan dengan suatu sumber tegangan, maka pada kumparan medan itu akan mengalir arus medan (I f ). Kumparan medan yang dialiri arus ini akan menimbulkan fluksi utama yang dinamakan fluksi stator. Fluksi ini merupakan medan magnet yang arahnya dari kutub utara menuju kutub selatan (hal ini dapat dilihat dengan adanya garisgaris fluksi). Apabila pada kumparan jangkar mengalir arus yakni arus jangkar, 11

8 berdasarkan hukum Lorentz kita ketahui bahwa apabila sebuah konduktor yang dialiri arus ditempatkan pada sebuah medan magnet maka pada konduktor tersebut akan timbul gaya (F), maka demikian pula halnya pada kumparan jangkar. Besarnya gaya ini bergantung dari besarnya arus yang mengalir pada kumparan jangkar (I), kerapatan fluksi (B) dari kedua kutub dan panjang konduktor jangkar ( ). Semakin besar fluksi yang terimbas pada kumparan jangkar maka arus yang mengalir pada kumparan jangkar juga besar, dengan demikian gaya yang terjadi pada konduktor juga semakin besar. Jika arus jangkar (I) tegak lurus dengan arah induksi magnetik (B), maka besar gaya (F) yang dihasilkan oleh arus yang mengalir pada konduktor jangkar sepanjang yang ditempatkan dalam suatu medan magnet dapat ditunjukkan oleh persamaan (2.2) : Dimana : F = B. I (2.2) F = gaya Lorentz (Newton) I = arus yang mengalir pada konduktor jangkar (Ampere) B = kerapatan fluksi (Weber/meter 2 ) = panjang konduktor jangkar (meter) Maka besar gaya keseluruhan yang ditimbulkan oleh jumlah total konduktor jangkar ditunjukkan oleh persamaan (2.3) : Dimana : F = Z. B. I (2.3) Z = jumlah total konduktor jangkar 12

9 Gaya yang terjadi pada kumparan jangkar di atas akan menghasilkan torsi yang besarnya ditunjukkan oleh persamaan (2.4) : T a = F. r (2.4) Jika persamaan (2.3) disubstitusikan ke persamaan (2.4), maka akan menghasilkan persamaan (2.5) : T a = Z. B. I.. r......(2.5) Dimana : T a = torsi jangkar (Newton-meter) r = jari-jari rotor (meter) Apabila torsi start lebih besar dari torsi beban, maka jangkar akan berputar Reaksi Jangkar Reaksi jangkar merupakan pengaruh medan magnet yang disebabkan oleh mengalirnya arus pada jangkar, dimana jangkar tersebut berada di dalam medan magnet. Reaksi jangkar menyebabkan terjadinya dua hal, yaitu : 1. Demagnetisasi atau penurunan kerapatan fluksi medan utama. 2. Magnetisasi silang. Apabila kumparan medan dialiri oleh arus tetapi kumparan jangkar tidak dialiri oleh arus, maka dengan mengabaikan pengaruh celah udara, jalur fluksi ideal untuk kutub utama dari motor arus searah dua kutub, berasal dari kutub utara menuju kutub selatan seperti pada Gambar 2.5 berikut ini : 13

10 Bidang Netral Magnetis U S Sikat O F M Gambar 2.5 Fluksi yang dihasilkan oleh Kumparan Medan Dari Gambar 2.5 dapat dijelaskan bahwa : Fluksi didistribusikan simetris terhadap bidang netral magnetis. Sikat ditempatkan bertepatan dengan bidang netral magnetis. Bidang netral magnetis didefinisikan sebagai bidang di dalam motor dimana konduktor bergerak sejajar dengan garis gaya magnet (ggm) sehingga gaya gerak listrik (ggl) induksi konduktor pada bidang tersebut adalah nol. Seperti yang terlihat dari Gambar 2.5 sikat selalu ditempatkan di sepanjang bidang netral magnetis. Oleh karena itu, bidang netral magnetis juga disebut sebagai sumbu komutasi karena pembalikan arah arus jangkar berada pada bidang tersebut. Vektor OF M mewakili besar dan arah dari fluksi medan utama, dimana vektor ini tegak lurus terhadap bidang netral magnetis. Sewaktu hanya konduktor jangkar saja yang dialiri oleh arus listrik sementara kumparan medan tidak dieksitasi, maka disekeliling konduktor jangkar timbul garis gaya magnet atau fluksi. Gambaran arah garis gaya magnet ditunjukkan pada Gambar 2.6 berikut ini : 14

11 Bidang Netral Magnetis O U S F A Gambar 2.6 Fluksi yang dihasilkan oleh Kumparan Jangkar Penentuan arah dari garis gaya magnet yang diakibatkan oleh arus jangkar ditentukan dengan aturan putaran sekrup (cork screw rule). Besar dan arah garis gaya magnet tersebut diwakili oleh vektor OF A yang sejajar dengan bidang netral magnetis. Pada prakteknya, sewaktu mesin beroperasi maka konduktor jangkar dan konduktor medan sama- sama dialiri oleh arus listrik, distribusi fluksi resultan diperoleh dari menggabungkan kedua fluksi tersebut. Oleh karena itu distribusi fluksi medan utama yang melalui jangkar tidak lagi simetris tetapi sudah mengalami pembelokan saat mendekati konduktor yang dialiri arus tersebut. Hal tersebut dikarenakan pengaruh fluksi jangkar yang dapat dilihat dari Gambar 2.7 berikut ini : ω U S Bidang netral magnetis baru β O F A Bidang netral magnetis lama F M Fr Gambar 2.7 Hasil Kombinasi Antara Fluksi Medan dan Fluksi Jangkar 15

12 Fluksi yang dihasilkan oleh garis gaya magnet jangkar menentang fluksi medan utama pada setengah bagian dari salah satu kutubnya dan memperkuat fluksi medan utama pada setengah bagian yang lain. Hal ini jelas akan menyebabkan penurunan kerapatan fluksi pada setengah bagian dari salah satu kutubnya dan terjadi kenaikan pada setengah bagian yang lain di kutub yang sama. Efek dari intensitas medan magnet atau lintasan fluksi pada jangkar yang memotong lintasan fluksi medan utama ini disebut sebagai reaksi jangkar magnetisasi silang (cross magnetization). Magnetisasi-silang ini juga menyebabkan pergeseran bidang netral. Pada Gambar 2.7 dapat dilihat bahwa vektor OFr merupakan resultan vektor OF A dan OF M, serta posisi bidang netral magnetis yang baru, di mana selalu tegak lurus terhadap vektor OFr. Bidang netral magnetis motor yang baru bergeser sejauh β karena posisi bidang netral magnetis ini selalu tegak lurus terhadap vektor OF. Dengan pergeseran bidang netral ini maka sikat juga akan bergeser sejauh pergeseran bidang netral magnetis. Hal ini dapat menimbulkan bunga api di segmen komutator dekat sikat. Kebanyakan mesin listrik bekerja pada kerapatan fluksi yang dekat titik jenuhnya, sehingga dapat menimbulkan kejenuhan magnetik. Apabila kejenuhan magnetik ini terjadi, maka efek penguatan fluksi resultan lebih kecil bila dibandingkan dengan efek pelemahan fluksi resultan atau dengan kata lain pertambahan kerapatan fluksi resultan pada salah satu bagian kutub lebih sedikit bila dibandingkan dengan pengurangan keraptan fluksi pada bagian yang lainnya. Sehingga fluksi resultan akan berkurang dari harga tanpa bebannya. Hali inilah 16

13 yang disebut efek demagnetisasi reaksi jangkar dan perlu diingat bahwa demagnetisasi hanya terjadi karena adanya saturasi magnetik Jenis Jenis Motor Arus Searah Berdasarkan sumber tegangan penguatannya, motor arus searah dapat dibagi menjadi dua, yaitu : 1. Motor arus searah penguatan bebas 2. Motor arus searah penguatan sendiri Motor Arus Searah Penguatan Bebas Motor arus searah penguatan bebas adalah motor arus searah yang sumber tegangan penguatannya berasal dari luar motor. Pada motor ini, kumparan medan tidak terhubung dengan kumparan jangkar. Masing-masing kumparan tersebut disuplai dengan sumber tegangan DC tersendiri. Rangkaian ekivalen motor arus searah penguatan bebas dapat dilihat pada Gambar 2.8 di bawah ini : + I a I f V t R a + E a - R f + - V f - Gambar 2.8 Rangkaian Ekivalen Motor Arus Searah Penguatan Bebas Berdasarkan hukum Kirchoff tentang tegangan, dari Gambar 2.8 diperoleh persamaan tegangan terminal motor seperti persamaan (2.6) : V t = E a + I a.r a + V sikat.....(2.6) 17

14 Dari Gambar 2.11 diperoleh juga persamaan tegangan terminal penguat medan dari motor tersebut seperti ditunjukkan oleh persamaan (2.7) : V f = I f. R f (2.7) Dimana: V t R a I f V f R f E a = tegangan terminal jangkar motor arus searah (Volt) = tahanan jangkar (Ohm) = arus medan penguatan bebas (Ampere) = tegangan terminal medan penguatan bebas (Volt) = tahanan medan penguatan bebas (Ohm) = gaya gerak listrik motor arus searah (Volt) V sikat = jatuh tegangan pada sikat (Volt) Umumnya jatuh tegangan pada sikat relatif kecil sehingga besarnya dapat diabaikan, maka untuk rumus selanjutnya V sikat ini diabaikan Motor Arus Searah Penguatan Sendiri Motor arus searah penguatan sendiri adalah motor arus searah yang sumber tegangan penguatannya berasal dari motor itu sendiri. Dimana kumparan medan berhubungan langsung dengan kumparan jangkar. Kumparan medan dapat dihubungkan secara seri maupun paralel dengan kumparan jangkar dan dapat juga dihubungkan dengan keduanya, yaitu secara seri dan paralel, tergantung pada jenis penguatan yang diberikan terhadap motor. Berdasarkan hubungan kumparan medan dengan kumparan jangkarnya, motor arus searah penguatan sendiri dapat diklasifikasikan sebagai berikut : 1. Motor arus searah penguatan seri 18

15 2. Motor arus searah penguatan shunt 3. Motor arus searah penguatan kompon Motor Arus Searah Penguatan Seri Rangkaian ekivalen motor arus searah penguatan seri ditunjukkan pada Gambar 2.9 di bawah ini : + I L R s I S I a V t R a + E a - - Gambar 2.9 Rangkaian Ekivalen Motor Arus Searah Penguatan Seri Pada motor arus searah penguatan seri, kumparan medan dihubungkan secara seri dengan rangkaian jangkar. Oleh sebab itu arus yang mengalir pada kumparan medan seri sama dengan arus yang mengalir pada kumparan jangkar. Dari Gambar 2.12 diperoleh persamaan tegangan terminal motor seperti ditunjukkan oleh persamaan (2.8) : V t = E a + I s.r s + I a. R a.....(2.8) Karena I L = I a = I s Maka persamaan (2.8) dapat juga ditulis seperti persamaan (2.9) : Dimana : V t = E a + I a (R a + R s )...(2.9) 19

16 I s = arus kumparan medan seri (Ampere) R s = tahanan medan seri (Ohm) I L = arus dari jala-jala (Ampere) Motor Arus Searah Penguatan Shunt Rangkaian ekivalen motor arus searah penguatan shunt ditunjukkan pada Gambar 2.10 di bawah ini : + I L I sh I a + V t R sh R a E a - - Gambar 2.10 Rangkaian Ekivalen Motor Arus Searah Penguatan Shunt Pada motor arus searah penguatan shunt, kumparan medan dihubungkan langsung pada terminal sehingga paralel dengan kumparan jangkar. Dari Gambar 2.13 diperoleh persamaan tegangan terminal motor seperti ditunjukkan oleh persamaan (2.10) : V t = E a + I a.r a.....(2.10) Sedangkan persamaan arus yang mengalir pada motor ditunjukkan oleh persamaan (2.11) dan persamaan (2.12) : I sh = V R t sh. (2.11) I L = I a + I sh...(2.12) Dimana : I sh = arus kumparan medan shunt (Ampere) 20

17 R sh = tahanan medan shunt (Ohm) Motor arus searah penguatan kompon Motor arus searah penguatan kompon merupakan gabungan motor arus searah penguatan seri dan motor arus searah penguatan shunt, sehingga mempunyai sifat diantara keduanya tergantung mana yang kuat lilitannya ( kumparan seri atau shuntnya ). Terdapat dua jenis motor arus searah penguatan kompon yang umum dijumpai, yaitu : motor arus searah penguatan kompon pendek dan motor arus searah penguatan kompon panjang. Pada motor arus searah penguatan kompon pendek, kumparan medan serinya terhubung secara paralel terhadap kumparan jangkar dan kumparan medan shunt. Rangkaian ekivalen motor arus searah penguatan kompon pendek ditunjukkan oleh Gambar 2.11 berikut ini : + I L R s I s I sh I a + V t R sh R a E a - - Gambar 2.11 Rangkaian Ekivalen Motor Arus Searah Penguatan Kompon Pendek Dari Gambar 2.11 diperoleh persamaan tegangan terminal motor arus searah penguatan kompon pendek seperti ditunjukkan oleh persamaan (2.13) : V t = E a + I s.r s + I a. R a...(2.13) 21

18 Sedangkan persamaan arus yang mengalir pada motor ditunjukkan oleh persamaan (2.14) : I L = I s = I a + I sh...(2.14) Pada motor arus searah penguatan kompon panjang, kumparan medan serinya terhubung secara seri terhadap kumparan jangkarnya dan terhubung paralel terhadap kumparan medan shunt. Rangkaian ekivalen motor arus searah penguatan kompon panjang ditunjukkan oleh Gambar 2.12 di bawah ini : + I L R s I sh I s I a + V t R sh R a E a - - Gambar 2.12 Rangkaian Ekivalen Motor Arus Searah Penguatan Kompon Panjang Dari Gambar 2.12 diperoleh persamaan tegangan terminal motor arus searah penguatan kompon panjang seperti ditunjukkan oleh persamaan (2.15) : V t = E a + I s.r s + I a.r a...(2.15) Karena I s = I a Maka persamaan (2.15) dapat juga ditulis seperti persamaan (2.16) : V t = E a + I a (R s + R a )...(2.16) Sedangkan persamaan arus yang mengalir pada motor ditunjukkan oleh persamaan (2.17) dan persamaan (2.18) : I L = I a + I sh...(2.17) 22

19 I sh = V R t sh.. (2.18) 2.6. Gaya Gerak Listrik Lawan Pada Motor Arus Searah Ketika jangkar motor DC berputar dibawah pengaruh torsi penggerak, konduktor jangkar bergerak di dalam medan magnet dan akan menghasilkan tegangan induksi di dalamnya seperti halnya pada generator. Sesuai dengan hukum Lentz, arah ggl induksi tersebut berlawanan dengan tegangan yang diberikan pada motor ( Vt ) dan dikenal sebagai ggl lawan atau ggl balik E a. Proses terjadinya ggl lawan adalah : 1. Kumparan jangkar ( terletak diantara kutub kutub magnet ) diberi sumber DC. 2. Pada kumparan kumparan jangkar timbul torsi, sehingga jangkar berputar ( arahnya sesuai dengan kaidah tangan kiri ). 3. Dalam hal ini jangkar berputar dalam medan magnet sehingga timbul ggl. 4. Arah ggl induksi tersebut berlawanan dengan arah ggl sumber sehingga kita sebut ggl lawan. (2.19) : Besarnya tegangan yang diinduksikan tersebut sesuai dengan persamaan E a = a P. 60 Z. n.ф...(2.19) Karena P. Z a.60 bernilai konstan, maka dapat dianggap sebagai suatu konstanta K sehingga persamaan (2.19) dapat juga ditulis seperti persamaan (2.20) : Dimana : E a = K. n. Ф...(2.20) 23

20 E a = gaya gerak listrik lawan motor arus searah (Volt) K = konstanta (bergantung pada ukuran fisik motor) n = kecepatan putaran jangkar (rotasi per menit) Φ = fluksi masing masing kutub (Weber) P = jumlah kutub Z = jumlah total konduktor jangkar a = jumlah kumparan tersambung paralel 2.7 Karakteristik Motor Arus Searah Penguatan Kompon Karakteristik dari suatu motor harus diketahui, karena karakteristik dari suatu motor akan mencerminkan performansi (unjuk kerja) dari motor listrik tersebut selama kondisi operasinya. Untuk motor arus searah penguatan seri dan motor arus searah penguatan shunt hanya memiliki satu komponen medan. Sedangkan untuk motor arus searah penguatan kompon memiliki dua kumparan medan yakni kumparan medan shunt dan kumparan medan seri. Pada motor arus searah penguatan kompon panjang dan motor arus searah penguatan kompon pendek terdapat tiga karakteristik, yaitu : 1. Karakteristik torsi arus jangkar (T/I a ) 2. Karakteristik putaran arus jangkar (n/i a ) 3. Karakteristik torsi putaran (T/n) Karakteristik Torsi Arus Jangkar (T/I a ) Pada motor arus searah penguatan kompon berlaku persamaan (2.22) : T = K. Ф m. I a...(2.22) 24

21 Dimana Ф m = Ф sh + Ф s Sehingga persamaan (2.22) dapat juga ditulis seperti persamaan (2.23) : Dimana : T = K. (Ф sh + Ф s ). I a...(2.23) T = torsi jangkar (Newton-meter) Ф sh = fluksi pada kumparan medan shunt (Weber) Ф s = fluksi pada kumparan medan seri (Weber) Dari persamaan (2.24) dapat dilihat bahwa dengan pertambahan arus jangkar (I a ) maka fluks magnetik (Ф m ) juga akan bertambah sehingga menyebabkan torsi (T) meningkat. Pada motor arus searah penguatan kompon panjang, fluksi medan shunt lebih besar dibandingkan medan seri maka bentuk kurva karakteristik torsi arus jangkar (T/I a ) seperti kurva 1 pada Gambar Sedangkan pada motor arus searah penguatan kompon pendek, fluksi medan seri lebih besar dibandingkan dengan medan shunt maka bentuk kurva karakteristik torsi arus jangkar (T/I a ) seperti kurva 2 pada Gambar Untuk lebih jelasnya, bentuk kurva karakteristik torsi arus jangkar dapat dilihat pada Gambar 2.14 berikut : r Gambar 2.13 Kurva Karakteristik Torsi Arus Jangkar (T/I a ) 25

22 2.7.2 Karakteristik Putaran Arus Jangkar (n/i a ) Sebagaimana telah diketahui bahwa kecepatan putaran motor arus searah sesuai dengan persamaan (2.24) : Ea n ~...(2.24) Φ Pada motor arus searah penguatan kompon panjang, fluks magnetik (Φ) dan GGL lawan (E a ) hampir konstan di bawah kondisi normal. Dengan demikian, kecepatan putaran motor (n) hampir selalu konstan walaupun arus jangkar (I a ) berubah-ubah nilainya. Ketika beban bertambah, GGL lawan dan fluks magnetik berkurang akibat drop tegangan pada tahanan jangkar (R a ). Dalam hal ini, GGL lawan berkurang lebih sedikit dibandingkan fluks magnetik. Dengan demikian, kecepatan putaran motor juga menurun sedikit seperti ditunjukkan oleh kurva 2 pada Gambar Sedangkan pada motor arus searah penguatan kompon pendek, kecepatan putaran motor akan berubah seiring dengan pertambahan beban seperti ditunjukkan oleh kurva 1 pada Gambar Untuk lebih jelasnya, bentuk kurva karakteristik putaran arus jangkar (n/i a ) dapat dilihat pada Gambar 2.14 berikut : Gambar 2.14 Kurva Karakteristik Putaran Arus Jangkar (N/I a ) 26

23 2.7.3 Karakteristik Torsi Putaran (T/n) Karakteristik torsi putaran (T/n) disebut juga karakteristik mekanik. Dari persamaan (2.24) dapat dilihat bahwa jika torsi (T) bertambah, maka nilai (I a ) bertambah, sedangkan fluks magnetik (Ф m ) tetap. Dengan bertambahnya torsi (T), maka kecepatan putaran (n) akan menurun. Untuk motor arus searah penguatan kompon panjang, bentuk kurva karakteristik torsi putaran (T/n) ini mendekati ke motor shunt seperti kurva 1 pada Gambar Sedangkan untuk motor arus searah penguatan kompon pendek, bentuk kurva karakteristik torsi putaran (T/n) mendekati ke motor seri seperti kurva 2 pada Gambar Untuk lebih jelasnya, karakteristik torsi putaran (T/n) dapat dilihat pada Gambar 2.15 berikut : 1 2 Gambar 2.15 Kurva Karakteristik Torsi Putaran (T/N) 2.8 Jatuh Tegangan Jatuh tegangan adalah selisih antara tegangan ujung pengirim dengan tegangan ujung penerima. Secara matematis dapat dituliskan sebagai berikut : V = Vs Vr. (2.25) Dimana : V = jatuh tegangan (volt) 27

24 Vs = tegangan di sisi pengirim (volt) Vr = tegangan di sisi penerima (volt) Atau dapat juga ditulis dalam bentuk persentase : V (%) = V V x 100%...(2.26) Dimana : V (%) = rugi tegangan dalam persen V V = tegangan kerja (volt) = rugi tegangan (volt) Jatuh tegangan pada saluran tenaga listrik secara umum berbanding lurus dengan panjang saluran dan beban serta berbanding terbalik dengan luas penampang penghantar. Besarnya jatuh tegangan dinyatakan baik dalam persen atau dalam besaran volt. Besarnya batas atas dan batas bawah ditentukan oleh kebijkasanaan perusahaan listrik terkait. Penurunan tegangan maksimum pada beban penuh yang dibolehkan di beberapa titik pada jaringan distribusi adalah [SPLN 72 : 1987] : 1. SUTM = 5% dari tegangan kerja bagi sistem radial 2. SKTM = 2% dari tegangan kerja pada sistem spindle dan gugus 3. Trafo distribusi = 3% dari tegangan kerja 4. Saluran tegangan rendah = 4% dari tegangan kerja tergantung kepadatan beban 5. Sambungan rumah = 1% dari tegangan nominal Adapun penyebab jatuh tegangan ( voltage drop ) adalah : 1. Jauhnya jaringan, jauhnya jarak transformator dari gardu induk 28

25 2. Rendahnya tegangan yang diberikan gardu induk atau rendahnya tegangan keluaran dari transformator distribusi 3. Sambungan penghantar yang tidak baik sehingga bermasalah di sisi tegangan menengah dan tegangan rendah 4. Pemilihan jenis penghantar, ukuran penghantar dan konektor yang tidak tepat 5. Arus yang dihasilkan terlalu besar Untuk menghitung jatuh tegangan, diperhitungkan reaktansinya, maupun faktor dayanya yang tidak sama dengan satu. Maka tegangan yang hilang disepanjang saluran penghantar adalah : V = I ( R cos θ + X sin θ ). (2.27) Dimana : I = arus beban (ampere) R = tahanan saluran (ohm) X = reaktansi saluran (ohm) Cos θ = faktor daya beban 2.9 Torsi Motor Arus Searah Torsi merupakan putaran atau pemuntiran dari suatu gaya terhadap suatu poros. Torsi diperoleh dari hasil kali gaya tersebut dengan jari jari lingkaran dimana gaya tersebut bekerja. Perhatikan Gambar 3.1 berikut : r F n putaran/detik Gambar 2.16 Suatu pulley yang berputar karena mengalami suatu gaya 29

26 Pada suatu pulley dengan jari jari r meter bekerja suatu gaya F newton yang menyebabkan benda berputar dengan kecepatan n putaran per detik. Maka torsi dari pulley tersebut dapat dihitung dengan persamaan (3.4) berikut : T = F x r..(2.28) Dimana : T = torsi benda (Newton-meter) F = gaya yang bekerja pada benda (Newton) R = jari jari benda (meter) Usaha yang dilakukan oleh gaya tersebut dalam satu putaran sesuai dengan persamaan (2.29) : W = F x s... (2.29) Karena s = 2 π r Maka persamaan (2.29) dapat juga ditulis seperti persamaan (2.30) : Dimana : W = F x 2 π r.....(2.30) W = usaha yang dilakukan oleh benda (Joule) s = jarak yang ditempuh benda (meter) Daya mekanik yang dibangkitkan oleh benda tersebut ditunjukkan oleh persamaan (2.31) : P m = F x 2 π r x n (2.31) Karena dan F x r = T 2 π n = ω Maka persamaan (2.31) dapat juga ditulis seperti persamaan (2.32) : 30

27 P m = T x ω....(2.32) Dimana : P m = daya yang dibangkitkan oleh benda (Watt) ω = kecepatan putaran benda (radian per detik) Torsi Jangkar Motor Arus Searah Di dalam motor arus searah, setiap konduktor di bagian permukaan jangkar akan mengalami gaya F pada suatu jarak r yang merupakan jari jari jangkar. Dengan demikian, masing-masing konduktor menghasilkan suatu torsi yang cenderung untuk memutar. Jumlah seluruh torsi yang dihasilkan oleh konduktor jangkar disebut torsi jangkar (T a ). torsi jangkar total yang dihasilkan oleh suatu konduktor adalah : T a = Z. B. I.. r (2.33) Dimana I = a Ia dan B = A Φ T a = Z x Φ A Ia x a x x r...(2.34) Dimana A = 2 π r p Sehingga persamaan (2.34) dapat ditulis menjadi persamaan (2.35) : T a = Z Φ IaP...(2.35) 2 π a atau dapat juga ditulis seperti persamaan (2.36) : 31

28 P T a = 0,159 Z I a Φ ( )...(2.36) a Karena 0,159 Z P a = K Maka diperoleh persamaan (2.37) : T a = K. Φ. I a...(2.37) Karena K nilainya selalu tetap, maka : T a ~ Φ I a Dari persamaan (2.37) dapat dilihat bahwa torsi di dalam motor arus searah berbanding langsung dengan fluks per kutub dan arus jangkar. besarnya ggl induksi pada motor arus searah adalah : E a = a P. 60 Z. n.ф Maka diperoleh persamaan (2.38) : P Φ Z a 60 E a =...(2.38) n Jika persamaan (2.38) disubstitusikan ke persamaan (2.37), maka diperoleh ekspresi lain untuk menyatakan besarnya torsi jangkar yaitu seperti persamaan (2.39) : 60 E a T a = 0,159 x x I a...(2.39) n atau dapat ditulis seperti persamaan (2.40) : T a = 9,55 x E a Ia...(2.40) n Dimana : 32

29 T a = torsi jangkar motor arus searah (Newton-meter) r = rata-rata jari-jari jangkar (meter) = panjang efektif masing-masing konduktor (meter) Z = jumlah total konduktor jangkar a = jumlah kumparan tersambung paralel I = arus dalam setiap konduktor (Ampere) B = rapat fluks rata-rata (Weber/meter 2 ) Φ = fluks masing - masing kutub (Weber) P = jumlah kutub A = luas penampang jalur fluks per kutub pada jari-jari r (meter 2 ) Torsi Poros Motor Arus Searah Pada motor arus searah, tidak semua torsi yang dihasilkan oleh jangkar berubah menjadi usaha berguna karena ada sebagian yang hilang disebabkan oleh rugi rugi besi dan rugi rugi gesek didalam motor. Torsi yang dapat dimanfaatkan oleh poros motor untuk melakukan usaha yang berguna dikenal dengan torsi poros atau torsi shaft ( T sh ). Oleh karena itu torsi poros lebih kecil nilainya bila dibandingkan dengan torsi jangkar. Besarnya torsi poros dapat dihitung dengan menggunakan persamaan : T sh = Pout...(2.41) 2 π n/60 atau dapat ditulis seperti persamaan (2.42) : T sh = P 9,55 x n out...(2.42) Dimana : T sh = torsi poros motor arus searah (Newton-meter) 33

30 P out = daya keluaran motor arus searah (Watt) Selisih torsi jangkar dan torsi poros disebut rugi-rugi torsi (torque losses). Secara matematis dapat ditulis seperti persamaan (2.43) : T a T sh = 9,55 x Rugi Rugi Besi + Rugi Rugi Gesek...(2.43) n Pengaturan Kecepatan Putaran Pada Motor Arus Searah Besarnya gaya gerak listrik induksi pada kumparan jangkar akibat berputarnya rotor yang terletak diantara kutub magnet adalah : E a = a P. 60 Z. n. φ P.Z Karena a.60 dapat dianggap sebagai suatu konstanta ( K ), maka persamaan tersebut dapat juga ditulis seperti persamaan (2.44) : E a = K. n. φ Atau n = Ea (2.44) K. φ Sebagaimana telah diketahui bahwa di dalam motor arus searah berlaku persamaan : E a = V t I a R a...(2.45) Oleh karena itu persamaan (3.19) dapat ditulis seperti : Vt - Ia. Ra n = K. φ (2.46) Dari persamaan (2.46) diatas dapat disimpulkan bahwa kecepatan putar motor diperoleh dengan cara mengubah ubah flux magnit perkutub ( φ ), pengaturan arus armatur ( I a ), atau pengubahan tegangan terminal ( V t ). 34

31 2.11 Efisiensi pada Motor Arus Searah Seperti halnya dengan mesin listrik lainnya, pada mesin listrik arus searah, efisiensinya dinyatakan sebagai berikut: η(%) = Pout Pin x 100% (2.47) Dimana Pout = 2πnT Atau pada motor : η(%) = HP output x 746 watt input x 100% (2.48) η(%) = HP output x 746 (HP input x 746)+ watt rugi x 100%...(2.49) Dimana: Pin = daya masukan Pout = daya keluaran n = putaran T = Torsi Prugi = rugi-rugi daya total 2.12 Pengaruh Turunnya Tegangan Terhadap Kinerja Motor Seperti yang sudah di jelaskan pada persamaan (2.44) diatas bahwa putaran pada motor arus searah adalah : 35

32 Vt - Ia. Ra n = K. φ Dari persamaan tersebut dapat kita lihat bahwa putaran (n) adalah sebanding dengan besarnya tegangan yang di supply ke terminal motor (V t ), sehingga apabila tegangan yang di supply ke terminal motor berkurang maka putaran yang dihasilkan oleh motor pun akan berkurang pula. Hubungan pengaruh turunnya tegangan terhadap persamaan torsi jangkar yang dihasilkan oleh motor dapat kita perhatikan pada persamaan (2.42), dimana : T a = 9,55 x E a n I a persamaan persamaan ditulis dapat ditulis seperti persamaan (2.59) berikut : (Vt - Ia. Ra) I T a = 9,55 x n a...(2.50) Dari persamaan (2.59) diatas, kita dapat melihat bahwa T a berbanding lurus dengan V t sehingga apabila tegangan yang di supply ke terminal motor berkurang maka torsi yang dihasilkan oleh motor juga akan berkurang. Hubungan pengaruh turunnya tegangan terhadap persamaan efisiensi yang dihasilkan oleh motor dapat kita perhatikan pada persamaan (2.51), dimana : P in = V t x I L (Watt) (2.51) P out = P in P rugi-rugi (2.52) η = Pin Rugi P in Rugi x 100 %... (2.53) Dari persamaan (2.53) diatas, kita dapat melihat bahwa daya input berbanding lurus dengan V t sehingga apabila tegangan yang di supply ke terminal motor berkurang maka efisinsi dari motor yang dihasilkan oleh motor juga akan berkurang. 36

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum MOTOR ARUS SEARAH Motor arus searah (DC) adalah mesin listrik yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Konstruksi motor arus

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1. Umum Motor arus searah (motor DC) adalah mesin yang merubah enargi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi BAB II DASAR TEORI 2.1 Umum (1,2,4) Secara sederhana motor arus searah dapat didefenisikan sebagai suatu mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi gerak atau energi

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran.pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah BAB II DASAR TEORI 2.1 Umum Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah tenaga listrik arus searah ( listrik DC ) menjadi tenaga gerak atau tenaga mekanik, dimana tenaga gerak

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Motor arus searah (motor DC) telah ada selama lebih dari seabad. Keberadaan motor DC telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah (motor DC) adalah mesin yang merubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Umum Seperti telah di ketahui bahwa mesin arus searah terdiri dari dua bagian, yaitu : Generator arus searah Motor arus searah Ditinjau dari konstruksinya, kedua mesin ini adalah

Lebih terperinci

BAB II DASAR TEORI. arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus

BAB II DASAR TEORI. arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus BAB II DASAR TEORI 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik dengan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja BAB II DASAR TEORI 2.1 Mesin arus searah 2.1.1. Prinsip kerja Motor listrik arus searah merupakan suatu alat yang berfungsi mengubah daya listrik arus searah menjadi daya mekanik. Motor listrik arus searah

Lebih terperinci

STUDI PERBANDINGAN PENGGUNAAN RHEOSTAT DAN AUTO-TRANSFORMATOR UNTUK PENGATURAN KECEPATAN MOTOR DC SERI

STUDI PERBANDINGAN PENGGUNAAN RHEOSTAT DAN AUTO-TRANSFORMATOR UNTUK PENGATURAN KECEPATAN MOTOR DC SERI STUDI PERBANDINGAN PENGGUNAAN RHEOSTAT DAN AUTO-TRANSFORMATOR UNTUK PENGATURAN KECEPATAN MOTOR DC SERI Tugas Akhir Ini Diajukan Untuk Melengkapi Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Teknik

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR ARUS SEARAH KOMPON

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR ARUS SEARAH KOMPON ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR ARUS SEARAH KOMPON Irpan Rosidi Tanjung, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

BAB II MOTOR ARUS SEARAH. putaran dari motor. Pada prinsip pengoperasiannya, motor arus searah sangat

BAB II MOTOR ARUS SEARAH. putaran dari motor. Pada prinsip pengoperasiannya, motor arus searah sangat BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah (motor dc) adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi mekanik tersebut berupa putaran dari motor.

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Motor arus searah (motor DC) telah ada selama lebih dari seabad. Keberadaan motor DC telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut

Lebih terperinci

TUGAS AKHIR PERBANDINGAN PENGEREMAN MOTOR DC PENGUATAN SERI DENGAN METODE DINAMIK DAN PLUGGING

TUGAS AKHIR PERBANDINGAN PENGEREMAN MOTOR DC PENGUATAN SERI DENGAN METODE DINAMIK DAN PLUGGING TUGAS AKHIR PERBANDINGAN PENGEREMAN MOTOR D PENGUATAN SERI DENGAN METODE DINAMIK DAN PLUGGING ( Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU ) Diajukan untuk memenuhi salah satu persyaratan

Lebih terperinci

BAB II GENERATOR ARUS SEARAH. arus searah. Energi mekanik di pergunakan untuk memutar kumparan kawat

BAB II GENERATOR ARUS SEARAH. arus searah. Energi mekanik di pergunakan untuk memutar kumparan kawat BB II GENERTOR RUS SERH II.1. Umum Generator arus searah mempunyai komponen dasar yang umumnya hampir sama dengan komponen mesin mesin listrik lainnya. Secara garis besar generator arus searah adalah alat

Lebih terperinci

TUGAS PERTANYAAN SOAL

TUGAS PERTANYAAN SOAL Nama: Soni Kurniawan Kelas : LT-2B No : 19 TUGAS PERTANYAAN SOAL 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a.

Lebih terperinci

PENGARUH POSISI SIKAT DAN PENAMBAHAN KUTUB BANTU TERHADAP EFISIENSI DAN TORSI MOTOR DC SHUNT

PENGARUH POSISI SIKAT DAN PENAMBAHAN KUTUB BANTU TERHADAP EFISIENSI DAN TORSI MOTOR DC SHUNT PENGARUH POSISI SIKAT DAN PENAMBAHAN KUTUB BANTU TERHADAP EFISIENSI DAN TORSI MOTOR DC SHUNT Jesayas Sihombing Syamsul Amien Konsentrasi Teknik Energi Listrik Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

KONSTRUKSI GENERATOR ARUS SEARAH

KONSTRUKSI GENERATOR ARUS SEARAH KONSTRUKSI GENERATOR ARUS SEARAH BAGAN DARI MESIN LISTRIK Konversi energi Trafo Listrik Listrik Medan magnet Generator Motor mekanik BAGIAN-BAGIAN MESIN ARUS SEARAH Bagian-bagian penting pada suatu mesin

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

Universitas Medan Area

Universitas Medan Area BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi

Lebih terperinci

BAB II GENERATOR ARUS SEARAH. energi mekanis menjadi energi listrik berupa arus searah (DC). Dimana energi listrik

BAB II GENERATOR ARUS SEARAH. energi mekanis menjadi energi listrik berupa arus searah (DC). Dimana energi listrik BAB II GENERATOR ARUS SEARAH II.1 Umum Generator arus searah adalah suatu mesin yang digunakan untuk mengubah energi mekanis menjadi energi listrik berupa arus searah (DC). Dimana energi listrik yang digunakan

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

Dasar Konversi Energi Listrik Motor Arus Searah

Dasar Konversi Energi Listrik Motor Arus Searah Modul 3 Dasar Konversi Energi Listrik Motor Arus Searah 3.1 Definisi Motor Arus Searah Motor arus searah adalah suatu mesin yang berfungsi mengubah tenaga listrik arus searah menjadi tenaga listrik arus

Lebih terperinci

STUDI PENGATURAN KECEPATAN MOTOR DC SHUNT DENGAN METODE WARD LEONARD (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

STUDI PENGATURAN KECEPATAN MOTOR DC SHUNT DENGAN METODE WARD LEONARD (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) STUDI PENGATURAN KECEPATAN MOTOR DC SHUNT DENGAN METODE WARD LEONARD (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) Dimas Harind Yudha Putra,Riswan Dinzi Konsentrasi Teknik Energi Listrik,

Lebih terperinci

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l Mesin DC Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi listrik. Prinsip kerja mesin DC (dan AC) adalah

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1 TOPIK 12 MESIN ARUS SEARAH Suatu mesin listrik (generator atau motor) akan berfungsi bila memiliki: (1) kumparan medan, untuk menghasilkan medan magnet; (2) kumparan jangkar, untuk mengimbaskan ggl pada

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi

Lebih terperinci

MOTOR DC. Karakteristik Motor DC

MOTOR DC. Karakteristik Motor DC MOTOR DC Karakteristik Motor DC Karakteristik yang dimiliki suatu motor DC dapat digambarkan melalui kurva daya dan kurva torsi/kecepatannya, dari kurva tersebut dapat dianalisa batasanbatasan kerja dari

Lebih terperinci

KONSTRUKSI GENERATOR DC

KONSTRUKSI GENERATOR DC KONSTRUKSI GENERATOR DC Disusun oleh : HENDRIL SATRIYAN PURNAMA 1300022054 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS AHMAD DAHLAN YOGYAKARTA 2015 I. DEFINISI GENERATOR DC Generator

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. 1 Sebuah motor listrik berfungsi untuk mngubah daya listrik menjadi

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

TUGAS ELECTRICAL MACHINE SEMESTER 6

TUGAS ELECTRICAL MACHINE SEMESTER 6 TUGAS ELECTRICAL MACHINE SEMESTER 6 Oleh : Luqmanul Hakim 7106040727 Mekatronika 6/4 DEPARTEMEN PENDIDIKAN NASIONAL JOINT PROGRAM BA MALANG TEKNIK ELEKTRO 2009 1 MOTOR DC dan GENERATOR DC Konstruksi Dasar

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik.

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Generator listrik Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit

Lebih terperinci

MESIN LISTRIK ARUS SEARAH (DC)

MESIN LISTRIK ARUS SEARAH (DC) BAB IX MESIN LISTRIK ARUS SEARAH (DC) Tujuan Pembelajaran : - Memahami tentang Mesin listrik ( Generator dan Motor) DC - Mengetahui prinsip kerja dan kontruksi Mesin listrik DC a. GENERATOR ARUS SEARAH

Lebih terperinci

ANALISIS EFISIENSI MOTOR DC SERI AKIBAT PERGESERAN SIKAT

ANALISIS EFISIENSI MOTOR DC SERI AKIBAT PERGESERAN SIKAT ANALISIS EFISIENSI MOTOR DC SERI AKIBAT PERGESERAN SIKAT Edi Saputra, Syamsul Amien Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara (USU) Jl. Almamater,

Lebih terperinci

Kata Kunci: motor DC, rugi-rugi. 1. Pendahuluan. 2. Rugi-Rugi Pada Motor Arus Searah Penguatan Seri Dan Shunt ABSTRAK

Kata Kunci: motor DC, rugi-rugi. 1. Pendahuluan. 2. Rugi-Rugi Pada Motor Arus Searah Penguatan Seri Dan Shunt ABSTRAK PENGARUH PENAMBAHAN KUTUB BANTU PADA MOTOR ARUS SEARAH PENGUATAN SERI DAN SHUNT UNTUK MEMPERKECIL RUGIRUGI (Aplikasi pada Laboratorium Konversi Energi Listrik FTUSU) Al Magrizi Fahni, Syamsul Amien Konsentrasi

Lebih terperinci

GENERATOR DC HASBULLAH, MT, Mobile :

GENERATOR DC HASBULLAH, MT, Mobile : GENERATOR DC HASBULLAH, MT, 2009 ELECTRICAL ENGINEERING DEPT. ELECTRICAL POWER SYSTEM Email : hasbullahmsee@yahoo.com has_basri@telkom.net Mobile : 081383893175 Definisi Generator DC Sebuah perangkat mesin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Generator merupakan suatu alat yang dapat mengubah energi mekanik menjadi energi listrik melalui medium medan magnet. Bagian utama generator terdiri dari stator dan

Lebih terperinci

PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS

PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS Samson M. Tambunsaribu, Syamsul Amien Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro

Lebih terperinci

Created By Achmad Gunawan Adhitya Iskandar P Adi Wijayanto Arief Kurniawan

Created By Achmad Gunawan Adhitya Iskandar P Adi Wijayanto Arief Kurniawan GENERATOR DC Created By Achmad Gunawan 0906602364 Adhitya Iskandar P 0906602370 Adi Wijayanto 906602383 Arief Kurniawan 0906602446 1 Generator DC / Arus Searah : 1. Pengertian Generator DC 2. Bagian-bagian

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

3/4/2010. Kelompok 2

3/4/2010. Kelompok 2 TEKNIK TENAGA LISTRIK KELOMPOK II Andinar (0906602401) Arwidya (0906602471) Christina (0906602499) Citra Marshal (0906602490) Kelompok 2 Christina M. Andinar H. Islamy Citra Marshal Arwidya Tantri A. 1

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2008

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2008 The image cannot be display ed. Your computer may not hav e enough memory to open the image, or the image may hav e been corrupted. Restart y our computer, and then open the file again. If the red x still

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

Makalah Mata Kuliah Penggunaan Mesin Listrik

Makalah Mata Kuliah Penggunaan Mesin Listrik Makalah Mata Kuliah Penggunaan Mesin Listrik KARAKTERISTIK MOTOR UNIVERSAL DAN MOTOR COMPOUND Tatas Ardhy Prihanto (21060110120039) Tatas_ap@yahoo.co.id Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

Klasifikasi Motor Listrik

Klasifikasi Motor Listrik Klasifikasi Motor Listrik MOTOR DC Axial current carrying conductors Radial magnetic flux Arus Dalam Motor DC Medan Magnet dalam Motor DC Gaya Dalam Motor DC Torsi dalam Motor Listrik Perubahan Torsi dalam

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

Definisi. Oleh Maryono SMK Negeri 3 Yogyakarta

Definisi. Oleh Maryono SMK Negeri 3 Yogyakarta Oleh Maryono SMK Negeri 3 Yogyakarta http://maryonoam.wordpress.com Definisi Motor adalah suatu alat yang mengubah daya listrik menjadi daya mekanik (putaran) Generator adalah suatu alat yang mengubah

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

I. Maksud dan tujuan praktikum pengereman motor induksi

I. Maksud dan tujuan praktikum pengereman motor induksi I. Maksud dan tujuan praktikum pengereman motor induksi Mengetahui macam-macam pengereman pada motor induksi. Menetahui karakteristik pengereman pada motor induksi. II. Alat dan bahan yang digunakan Autotrafo

Lebih terperinci

PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON

PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON (Aplikasi pada Laboratorium Departemen Listrik P4TK, Medan) Andri Sitorus,Syamsul Amien Konsentrasi Teknik

Lebih terperinci

BAB VIII MOTOR DC 8.1 PENDAHULUAN 8.2 PENYAJIAN

BAB VIII MOTOR DC 8.1 PENDAHULUAN 8.2 PENYAJIAN BAB VIII MOTOR DC 8.1 PENDAHULUAN Deskripsi Singkat Manfaat Relevansi Capaian Pembelajaran Pembahasan mengenai prinsip dasar motor DC. Pembahasan bagian-bagian motor DC. Pembahasan tentang prinsip kerja

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

GENERATOR ARUS SEARAH

GENERATOR ARUS SEARAH GENERATOR ARUS SEARAH PRINSIP KERJA GENERATOR ARUS SEARAH Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday : e = N d / dt dimana : N : jumlah lilitan : fluksi magnet e : Tegangan imbas,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Penampang kumparan rotor dari atas.[4] permukaan rotor, seperti pada gambar 2.2, saat berada di daerah kutub dan

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Penampang kumparan rotor dari atas.[4] permukaan rotor, seperti pada gambar 2.2, saat berada di daerah kutub dan BAB II TINJAUAN PUSTAKA 2.1 Motor DC 2.1.1. Prinsip Kerja Motor DC Motor listrik adalah mesin dimana mengkonversi energi listrik ke energi mekanik. Jika rotor pada mesin berotasi, sebuah tegangan akan

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

PENGARUH PEGATURAN KECEPATAN MENGGUNAKAN METODE PENGATURAN FLUKSI TERHADAP EFISIENSI PADA MOTOR ARUS SEARAH KOMPON

PENGARUH PEGATURAN KECEPATAN MENGGUNAKAN METODE PENGATURAN FLUKSI TERHADAP EFISIENSI PADA MOTOR ARUS SEARAH KOMPON PENGARUH PEGATURAN KECEPATAN MENGGUNAKAN METODE PENGATURAN FLUKSI TERHADAP EFISIENSI PADA MOTOR ARUS SEARAH KOMPON Bambang Hidayat, Syamsul Amien Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

METODE PERLAMBATAN (RETARDATION TEST) DALAM MENENTUKAN RUGI-RUGI DAN EFISIENSI MOTOR ARUS SEARAH

METODE PERLAMBATAN (RETARDATION TEST) DALAM MENENTUKAN RUGI-RUGI DAN EFISIENSI MOTOR ARUS SEARAH METODE PERLAMBATAN (RETARDATION TEST) DALAM MENENTUKAN RUGI-RUGI DAN EFISIENSI MOTOR ARUS SEARAH Lamcan Raya Tamba, Eddy Warman Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

MAKALAH ELECTRICAL ENGINE

MAKALAH ELECTRICAL ENGINE MAKALAH ELECTRICAL ENGINE MOTOR DC DAN GENERATOR DC Oleh : M.Chasan Qodari MK 6/4 NIM 7106040108 EPARTEMEN PENDIDIKAN NASIONAL JOINT PROGRAM BA MALANG TEKNIK ELEKTRO 2009 Prinsip Kerja Motor Listrik Arus

Lebih terperinci

Mekatronika Modul 7 Aktuator

Mekatronika Modul 7 Aktuator Mekatronika Modul 7 Aktuator Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari Aktuator Listrik Tujuan Bagian ini memberikan informasi mengenai karakteristik dan penerapan

Lebih terperinci

Hubungan Antara Tegangan dan RPM Pada Motor Listrik

Hubungan Antara Tegangan dan RPM Pada Motor Listrik 1 Hubungan Antara Tegangan dan RPM Pada Motor Listrik Pada motor DC berlaku persamaan-persamaan berikut : V = E+I a Ra, E = C n Ф, n =E/C.Ф Dari persamaan-persamaan diatas didapat : n = (V-Ra.Ra) / C.Ф

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator adalah mesin yang mengelola energi mekanik menjadi energi listrik. Prinsip kerja generator adalah rotor generator yang digerakan oleh turbin sehingga menimbulkan

Lebih terperinci

JENIS-JENIS GENERATOR ARUS SEARAH

JENIS-JENIS GENERATOR ARUS SEARAH JENISJENIS GENERATOR ARUS SEARAH Medan magnet pada generator dapat dibangkitkan dengan dua cara yaitu : dengan magnet permanen dengan magnet remanen Generator listrik dengan magnet permanen sering juga

Lebih terperinci

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya.

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. BAB III MAGNETISME Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. Magnetisme (kemagnetan) tercakup dalam sejumlah besar operasi alat listrik, seperti

Lebih terperinci

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya BAB MOTOR KAPASTOR START DAN MOTOR KAPASTOR RUN 2.1. UMUM Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran

Lebih terperinci

Lab Elektronika Industri Fisika 2 BAB 5 MAGNET

Lab Elektronika Industri Fisika 2 BAB 5 MAGNET BAB 5 MAGNET 1. MAGNET DAN MEDAN MAGNET Efek magnet telah diketahui dan dimanfaatkan manusia jauh sebelum mengenal listrik. Magnet mempunyai dua kutub yaitu kutub utara (U) dan selatan (S) atau NORTH dan

Lebih terperinci

BAB 2. MESIN DC. Model konstruksi berbagai mesin DC dapat dilihat pada gambar 2.0 di bawah. (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

BAB 2. MESIN DC. Model konstruksi berbagai mesin DC dapat dilihat pada gambar 2.0 di bawah. (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) BAB 2. MESIN DC Meskipun persentase yang jauh lebih besar dari mesin listrik dalam pelayanan adalah mesin AC, namun mesin DC sangat penting bagi industri. Keuntungan utama dari mesin DC, khususnya DC Motor,

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1 Data Hasil Pengukuran Setelah melakukan pengujian di PT. Emblem Asia dengan menggunakan peralatan penguji seperti dijelaskan pada bab 3 didapatkan sekumpulan data berupa

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci