Pengenalan Ekspresi Wajah Berdasarkan Bentuk dan Tekstur

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengenalan Ekspresi Wajah Berdasarkan Bentuk dan Tekstur"

Transkripsi

1 Pengenalan Ekspresi Wajah Berdasarkan Bentuk dan Tekstur Pangondian Marhutala Sinaga dan Rully Soelaiman, M.Kom, Teknik Informatika, Fakultas Teknologi Informasi, ITS, Surabaya [email protected] Abstrak Pada Tugas Akhir ini diperkenalkan suatu metode untuk mengenali ekspresi wajah. Metode ini terdiri dari 2 teknik utama, yaitu spatially maximum occurrence model (SMOM), yang dapat mengolah banyak citra wajah dengan ekspresi yang sama menghasilkan representasi ekspresi, dan elastic shape-texture matching (ESTM) yaitu mencari kesamaan 2 citra. Dari nilai-nilai persamaan citra wajah antar citra wajah dalam database, akan dikelompokkan dan diklasifikasikan ke dalam 6 kategori ekspresi wajah. Kata kunci : pengenalan wajah; pengenalan ekspresi wajah; Elastic shape texture matching; Spatially maximum occurrence model; Gabor wavelets. I. Pendahuluan Selama 1 dasawarsa terakhir ini, penelitian pada analisis ekspresi wajah otomatis kembali aktif lagi; ini memiliki aplikasi yang berpotensi pada wilayah seperti interaksi manusia - komputer, pembacaan bibir, pemampatan gambar wajah, animasi wajah buatan, konferensi video, analisis emosi manusia dan lain-lain. Ekspresi wajah ditimbulkan dengan penyusutan otot wajah, yang menghasilkan pada perubahan bentuk fitur wajah seperti kelopak mata, alis mata, hidung dan bibir, dan juga hasil pergantian menjadi posisi relatif. Pergerakan otot yang sama atau perubahan bentuk fitur wajah yang berbeda dapat disusun pada model ekspresi yang sama proses ini disebut pengenalan ekspresi wajah. Ekspresi gambar wajah menunjukkan bentuk atau ragam posisi fitur wajah antara citra dan citra yang berhubungan pada ekspresi normal. Oleh karena itu kebanyakan metode pengenalan ekspresi wajah tergantung pada deretan citra atau tangkapan video, yang termasuk gambar wajah dengan ragam ekspresi dan citra pada ekspresi normal sebagai referensi. Sistem pengkodean gerakan wajah (FACS) menyediakan metode yang paling banyak digunakan untuk mengukur pergerakan wajah. Pada FACS, wajah dibagi menjadi 44 unit gerakan (AUs) tergantung pada lokasinya sebagaimana intensitasnya. Kombinasi AU digunakan untuk memodelkan masing-masing ekspresi. Pada Tugas Akhir ini diperkenalkan suatu metode untuk mengenali ekspresi wajah dengan memperhatikan bentuk dan tekstur dari posisi mata dan mulut pada citra wajah untuk normalisasi dan penjajaran. Dengan mengkombinasikan kedua fitur tersebut akan dihitung persamaan dua citra wajah. Dari nilainilai persamaan citra wajah antar citra wajah dalam database, akan dikelompokkan dan diklasifikasikan ke dalam 5 kategori ekspresi wajah. 1

2 II. Pengenalan Wajah Banyak dilakukan penelitian untuk mencari algoritm-algoritma yang tepat bagi komputer agar dapat mengenali suatu wajah yang diinputkan dengan memperhatikan faktor kecepatan dan akurasinya. 1. Aplikasi pengenalan wajah Beberapa contoh aplikasi dari pengenalan wajah oleh komputer adalah : Pengenalan credit card, surat ijin mengemudi (SIM), passport Pengenalan wajah untuk sekuritas sebagai pengganti tanda tangan atau sidik jari, misal untuk verifikasi credit card. Pengenalan pasien yang tidak sadarkan diri. Pengenalan orang yang hilang atau seorang kriminal. Pengontrolan masyarakat, seperti kamera di bank sehingga dapat mengidentifikasi bila ada orang jahat yang masuk ke bank. Rekonstruksi wajah sesuai dengan bayangan dari saksi pada suatu peristiwa kejahatan. Klasifikasi jenis kelamin. 2. Tahapan umum Pengenalan Wajah Algoritma untuk mengenali wajah ada bermacam-macam. Tapi pada umumnya ada tahapan-tahapan umum yang dipakai dalam pengenalan wajah. Tahapan-tahapan umum dari pengenalan wajah yaitu : Perbaikan Gambar Citra hasil scanning biasanya mengandung banyak noise yang harus dihilangkan. Kemudian harus diterapkan algoritma-algoritma untuk mempertajam gambar bila gambar kabur, seperti filtering yang teorinya ada pada pengolahan citra. Segmentasi Segmentasi digunakan dengan suatu algoritma untuk mengenali gambar mana yang merupakan wajah. Pencarian feature Ada dua macam feature pada wajah, yaitu holistic features dan partial features. Pada partial feature, dalam hal pengenalan wajah biasanya disebut sebagai facial feature, contoh feature-nya adalah warna dan bentuk rambut, besar dan letak hidung, mulut, mata, telinga dan lain-lain. Sedangkan pada holistic feature setiap feature-nya adalah merupakan suatu karakteristik dari seluruh wajah, maksudnya wajah dianggap sebagai suatu kesatuan yang utuh. Skew Detection / perbaikan kemiringan Foto oval dari wajah orang yang didapatkan dari hasil segmentasi dapat tegak, atau miring ke kiri atau ke kanan, atau bahkan terbalik. Oleh karena itu proses perbaikan kemiringan ini diperlukan, sehingga gambar yang miring atau terbalik bisa diperbaiki sehingga menjadi gambar yang benar-benar tegak. Identifikasi Setelah komputer tahu tentang feature dari testing foto yang diinputkan, maka dapat dilakukan pembandingan dengan feature-feature dari foto pelatihan. III. Pengenalan Ekspresi Wajah 1. Filter Gaussian Filter Gaussian digunakan dalam pengolahan citra digital untuk membuat citra menjadi lebih halus. Filter Gaussian diformulasikan dengan rumus sebagai berikut : p( σ ) = ( x y( σ ) = p e 2 ( σ ) 2 /(2σ )) /( σ * dimana, σ = standard deviasi 2π ) (1) 2

3 Di bawah ini adalah contoh citra sederhana yang difilter secara Gaussian dengan nilai frekuensi cutoff yang beragam 2. Metode SMOM untuk menggambarkan ekspresi SMOM dibangun berdasarkan pada kemungkinan kejadian nilai piksel untuk semua citra yang dilatih yang diilustasikan pada gambar. Dimisalkan jumlah citra yang dilatih adalah N, (a) (b) (c) dan ukuran citra M x N. Oleh karena itu ada N nilai yang mungkin pada setiap posisi piksel ( y). Urutkan nilai kepadatan N ini semua, kita dapat memperoleh histogram H y (b) posisi piksel (y) Gambar 2. 1 (a) Potongan perspektif fungsi Filter Gaussian. (b) Filter yang ditampilkan sebagai berikut : sebagai citra. (c) Grafik filter untuk N beragam nilai D 0 H ( b) = δ ( f ( y) b, (2) y k ) k = 1 dimana 1 m = 0, δ ( m) = untuk 0 b < B 0 m 0, B adalah jumlah bin pada histogram dan f k (y) adalah nilai kepadatan citra ke-k pada posisi (y). Pada umumnya, B merupakan jumlah tingkat kepadatan pada citra. Bagaimanapun juga, kalau jumlah citra yang dilatih sedikit, jumlah bin harus dikurangi dan histogram harus dihaluskan menggunakan filter Gaussian sebagai berikut : (a) (c) (b) (d) Gambar 2.2 (a) Citra asli. (b)-(d) Hasil filtering dengan filter Gaussian dengan beragam nilai frekuensi cutoff (D) 5,15,30 3 H ' y y b ( b) = H ( b) G( σ, ) (3) Dimana G(σ,b) adalah filter Gaussian dengan varians σ, * adalah operator konvolusi, dan H y (b) adalah histogram posisi piksel (y) yang dihaluskan. Untuk setiap histogram yang dihaluskan, nilai puncaknya dikenali dan diurutkan secara menurun. Puncak terjadi pada bin jika nilainya lebih tinggi dari kedua bin yang mengapitnya. Jika bin adalah bin pertama (atau terakhir) pada histogram, dan nilainya lebih besar dari bin yang kanan (atau yang kiri), juga dapat disebut puncak. Jika m bin berurutan memiliki nilai yang sama dan nilai ini lebih tinggi daripada 2 bin yang mengapit bin yang berurutan, puncak juga ada, dan nilai bin puncak diatur pada pertengahan m bin berurutan. Tingkat keabuan tergantung pada semua bin yang puncak diurutkan sesuai dengan kemungkinan kejadian. SMOM akantetapi didefenisikan sebagai berikut :

4 { b, b } SMOM y, k) =,..., dimana ( b < B k (4) b k Untuk 0 x < M dan 0 y < H Dimana k adalah jumlah puncak yang ditentukan pada reprensentasi, b 1, b 2, b k adalah tingkat keabuan yang berhubungan dengan puncak histogram untuk posisi piksel (y), dan kondisi H ' y ( b1 ) H ' y ( b2 )... H ' y ( bk ) dipenu hi. Biasanya, k adalah nilai yang kecil. Jika jumlah puncak p pada histogram lebih kecil dari k, selisih nilai k-p akan sesuai dengan semua bin dengan kemungkinan kejadian yang terbesar. Ketiga, proses ESTM untuk mengukur kesamaan antara 2 wajah untuk tiap-tiap wajah yang ada dalam database berdasarkan pada bentuk dan tekstur. Bentuk digambarkan oleh peta tepi E( y), dan tekstur digolongkan oleh wavelet Gabor dan kemiringan arah setiap piksel, yang dideskripsikan oleh masing-masing peta Gabor dan peta sudut A( y). 3. ESTM untuk mencari kesamaan citra ESTM adalah metode yang mengukur kesamaan antara berdasarkan informasi bentuk dan tekstur. Bentuk digambarkan oleh peta tepi E(y), dan tekstur digolongkan oleh representasi wavelet Gabor dan kemiringan langsung setiap piksel yang digambarkan oleh masing-masing peta Gabor Ğ(y) dan peta sudut A(y). d e ( a, b) = a b, (5) IV. Perancangan Gambar 1. Alur Proses Sistem pengenalan ekspresi wajah 2. Proses Filter Gaussian Proses Filter Gaussian adalah untuk membuat data citra wajah menjadi lebih halus. Citra diproses dengan rotasi sebesar theta searah jarum jam dengan parameter standar deviasi tertentu. 1. Proses Pengenalan Ekspresi Wajah Untuk mengenali suatu citra wajah tergolong pada ekspresi wajah yang mana, ada 3 proses yang harus dilakukan yaitu proses filter Gaussian, proses SMOM, proses ESTM. Pertama, proses filter Gaussian untuk mengolah setiap data citra wajah menjadi lebih smooth. Kedua, proses SMOM untuk mengolah data citra wajah untuk menggambarkan ciri berbagai ekspresi. SMOM dibangun berdasarkan pada kemungkinan kejadian nilai piksel pada setiap posisi piksel untuk semua citra yang dilatih. Gambar 2. Alur Proses Filter Gaussian 4

5 3. Proses SMOM Ujicoba untuk ekspresi senyum Fungsi SMOM wajah ini bertujuan mengolah data citra wajah ujicoba dan mendapatkan representasi dari suatu ekspresi wajah. Gambar 4. Hasil Uji coba untuk ekspresi Senyum Tabel 1 Jarak smom_wajah ekspresi senyum dengan data citra wajah sampel Orang kerling terkejut kedip cemberut biasa Senyum B/S S B S B S B S Nilai kebenaran untuk ekspresi senyum : % Gambar 3. Alur Proses SMOM Uji coba untuk ekspresi Terkejut V. Hasil Ujicoba Data citra yang diuji ada 7 orang dengan 6 ekspresi berbeda setiap orang. Semua data citra wajah tersebut dibandingkan dengan representasi ekspresi wajah yang diperoleh dari metode SMOM. Nilai jarak terkecil merupakan ekspresi yang diperbandingkan. Kemudian ekspresi yang dikenali dibandingkan dengan ekspresi yang aslinya apakah benar atau tidak. Gambar III.5. Hasil Uji coba untuk ekspresi Terkejut Tabel 2. Jarak smom ekspresi terkejut dengan data citra wajah sampel Orang Kerling Terkejut Kedip Cemberut Biasa Senyum B/S B S B S B S S Nilai kebenaran : % 5

6 Nilai kebenaran untuk 7 orang citra ujicoba No Ekspresi Persentase kebenaran 1 Senyum % 2 Biasa 0 % 3 Cembeut 0 % 4 Kedip % 5 Kerling % 6 Terkejut % VI. Penutup 1. Kesimpulan Dari hasil pengamatan selama perancangan, implementasi, dan proses uji coba perangkat lunak yang dilakukan, penulis mengambil kesimpulan sebagai berikut: a. Aplikasi mampu menghasilkan representasi suatu ekspresi wajah dari beberapa sampel citra wajah yang diolah. b. Proses pengolahan ekspresi wajah rata-rata 1 menit. c. Aplikasi dapat mengenali ekspresi wajah dengan tepat rata-rata dibawah 50 %. d. Untuk ekspresi biasa dan cemberut tidak dapat dikenali (nilai kebenaran 0 %) 2. Saran Dalam pembuatan Tugas Akhir ini, terdapat beberapa kemungkinan pengembangan aplikasi yang dilakukan, yaitu: a. Proses SMOM dan ESTM harus diperbaiki lagi. b. Data citra wajah yang diolah harus lebih bagus dan banyak. [4] Moghaddam, Baback, Face Recognition, cerec/index.html, MIT [5] Pentland A. Mofhaddam B., Starner T, View-Based and Modular Eigenspaces for Face Recognition, IEEE conf. on Computer Vision & Pattern Recognition, Seattle, WA, july 1994 [6] Y. Zhu, L.C. De Silva and C.C. Ko, Using moment invariants and HMM in facial expression recognition, Pattern Recognition Lett. 23 (1 3) (2002), pp [7] B. Abboud, F. Davoine and M. Dang, Facial expression recognition and synthesis based on an appearance model, Signal Process. Image Commun. 19 (8) (2004), pp [8] Cendrillon,Raphael,Face Recognition Using Eigenfaces, html, degree thesis, University University of Queensland, Australia, Department of Computer Science and Electrical Engineering, [9] Nastar C, Ayach N, Frequency-based nonrigid motion analysis, IEEE Trans. Pattern Anal, Mach, Intell, 18(1996) [10] Gonzalez R C, Woods R E, Digital Image Processing Second Edition, Prentice Hall, New Jersey, [11] Xie X, Lam K M, Elastic shape-texture matching for human face recognition. Pattern Recognition 41, page , 2008 VII. Daftar Pustaka [1] Xie X, Lam K M, August Facial expression recognition based on shape and texture. Pattern Recognition 42 - Elsevier, [2] Tian Y L, Kanade T, Cohn, J F. Facial Expression Analysis. [3] Fasel B, Luettin J. February 2002, Automatical facial expression analysis : a survey. Pattern Recognition 36 Elsevier,

SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh. NamaMhs NIM: XX.YY.ZZZ. Kepada

SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh. NamaMhs NIM: XX.YY.ZZZ. Kepada SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh NamaMhs NIM: XX.YY.ZZZ Kepada JURUSAN TEKNIK INFORMATIKA STMIK STIKOM BALIKPAPAN LEMBAR PERSETUJUAN Proposal Skripsi

Lebih terperinci

Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski

Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski Junia Kurniati Computer Engineering Department Faculty of Computer Science Sriwijaya University South Sumatera Indonesia

Lebih terperinci

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION Suhendry Effendy Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Bina Nusantara University

Lebih terperinci

BAB I PENDAHULUAN. telinga, wajah, infrared, gaya berjalan, geometri tangan, telapak tangan, retina,

BAB I PENDAHULUAN. telinga, wajah, infrared, gaya berjalan, geometri tangan, telapak tangan, retina, BAB I PENDAHULUAN 1.1 Latar Belakang Sistem biometrika merupakan teknologi pengenalan diri dengan menggunakan bagian tubuh atau perilaku manusia. Sidik jari, tanda tangan, DNA, telinga, wajah, infrared,

Lebih terperinci

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B Heri Setiawan, Iwan Setyawan, Saptadi Nugroho IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI Nama Mahasiswa : Yuliono NRP : 1206 100 720 Jurusan : Matematika Dosen Pembimbing : Drs. Soetrisno, M.IKomp

Lebih terperinci

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer.

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer. 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Melihat perkembangan teknologi sekarang ini, penggunaan komputer sudah hampir menjadi sebuah bagian dari kehidupan harian kita. Semakin banyak muncul peralatan-peralatan

Lebih terperinci

DEKOMPOSISI NILAI SINGULAR DAN DISCRETE FOURIER TRANSFORM UNTUK NOISE FILTERING PADA CITRA DIGITAL

DEKOMPOSISI NILAI SINGULAR DAN DISCRETE FOURIER TRANSFORM UNTUK NOISE FILTERING PADA CITRA DIGITAL Seminar Nasional Aplikasi Teknologi Informasi 9 (SNATI 9) ISSN: 97- Yogyakarta, Juni 9 DEKOMPOSISI NILAI SINGULAR DAN DISCRETE FOURIER TRANSFORM UNTUK NOISE FILTERING PADA CITRA DIGITAL Adiwijaya, D. R.

Lebih terperinci

Analisis Kualitas Interpolasi Terhadap Fitur Statistik pada Citra

Analisis Kualitas Interpolasi Terhadap Fitur Statistik pada Citra Analisis Kualitas Interpolasi Terhadap Fitur Statistik pada Citra Meirista Wulandari Jurusan Teknik Elektro, Universitas Tarumanagara, Jakarta, Indonesia [email protected] Diterima 10 Desember 016

Lebih terperinci

SEGMENTASI CITRA CT SCAN TUMOR OTAK MENGGUNAKAN MATEMATIKA MORFOLOGI (WATERSHED) DENGAN FLOOD MINIMUM OPTIMAL

SEGMENTASI CITRA CT SCAN TUMOR OTAK MENGGUNAKAN MATEMATIKA MORFOLOGI (WATERSHED) DENGAN FLOOD MINIMUM OPTIMAL SEGMENTASI CITRA CT SCAN TUMOR OTAK MENGGUNAKAN MATEMATIKA MORFOLOGI (WATERSHED) DENGAN FLOOD MINIMUM OPTIMAL Andi Hendra 1 1 Jurusan Matematika MIPA Universitas Tadulako ABSTRAK Penelitian pengolahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pendeteksi senyum pada skripsi ini, meliputi metode Viola Jones, konversi citra RGB ke grayscale,

Lebih terperinci

Deteksi Senyum Menggunakan Fitur Gabor dan Histograms of Oriented Gradients pada Bagian Mulut, Hidung, dan Mata

Deteksi Senyum Menggunakan Fitur Gabor dan Histograms of Oriented Gradients pada Bagian Mulut, Hidung, dan Mata Deteksi Senyum Menggunakan Fitur Gabor dan Histograms of Oriented Gradients pada Bagian Mulut, Hidung, dan Mata Berty Chrismartin Lumban Tobing Fakultas Ilmu Komputer Universitas Indonesia Depok [email protected]

Lebih terperinci

PENGHAPUSAN NOISE PADA CITRA DENGAN FILTER ADAPTIVE- HIERARCHICAL

PENGHAPUSAN NOISE PADA CITRA DENGAN FILTER ADAPTIVE- HIERARCHICAL MAKALAH SEMINAR TUGAS AKHIR PERIODE JUNI-JULI PENGHAPUSAN NOISE PADA CITRA DENGAN FILTER ADAPTIVE- HIERARCHICAL Ana Wahyu Hakim 1, Handayani Tjandrasa 2, Bilqis Amalia 3 Teknik Informatika, Fakultas Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- 8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan

Lebih terperinci

Pembentukan Vektor Ciri Dengan Menggunakan Metode Average Absolute Deviation (AAD)

Pembentukan Vektor Ciri Dengan Menggunakan Metode Average Absolute Deviation (AAD) Berkala Fisika ISSN : 1410-9662 Vol. 6, No. 1, Januari 2003, hal 5-10 Pembentukan Vektor Ciri Dengan Menggunakan Metode Average Absolute Deviation (AAD) Kusworo Adi Laboratorium Instrumentasi dan Elektronika

Lebih terperinci

PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI

PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI Nadia R.W (0822084) Email: [email protected] Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof. Drg.

Lebih terperinci

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam

Lebih terperinci

BAB 1 PENDAHULUAN. Manusia memiliki insting untuk berinteraksi satu sama lain demi mencapai

BAB 1 PENDAHULUAN. Manusia memiliki insting untuk berinteraksi satu sama lain demi mencapai BAB 1 PENDAHULUAN 1.1 Latar Belakang Manusia memiliki insting untuk berinteraksi satu sama lain demi mencapai suatu tujuan, dan dalam interaksi itu, mengintepretasi kondisi emosional menjadi penting dalam

Lebih terperinci

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING )

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 1 Konsep Dasar Pengolahan Citra Pengertian Citra Citra atau Image merupakan istilah lain dari gambar, yang merupakan

Lebih terperinci

1. BAB I PENDAHULUAN

1. BAB I PENDAHULUAN 1. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Deteksi kulit manusia berperan penting dan digunakan secara luas sebagai langkah awal pada aplikasi pengolahan citra seperti gesture analysis, content based

Lebih terperinci

Analisa Perbandingan Algoritma Histogram of Oriented Gradient (HOG) dan Gaussian Mixture Model (GMM) Dalam Mendeteksi Manusia

Analisa Perbandingan Algoritma Histogram of Oriented Gradient (HOG) dan Gaussian Mixture Model (GMM) Dalam Mendeteksi Manusia Analisa Perbandingan Algoritma Histogram of Oriented Gradient (HOG) dan Gaussian Mixture Model (GMM) Dalam Mendeteksi Manusia Yolinda Fatimah Munawaroh 1), Ciksadan 2), Irma Salamah 3) 1),2),3 ) Program

Lebih terperinci

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR ABSTRAK

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR ABSTRAK VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR Eric (0822026) Jurusan Teknik Elektro Universitas Kristen Maranatha email: [email protected] ABSTRAK Pola pembuluh

Lebih terperinci

Pola adalah entitas yang terdefinisi dan dapat diidentifikasi melalui ciri-cirinya (features).

Pola adalah entitas yang terdefinisi dan dapat diidentifikasi melalui ciri-cirinya (features). Pola adalah entitas yang terdefinisi dan dapat diidentifikasi melalui ciri-cirinya (features). Ciri-ciri tersebut digunakan untuk membedakan suatu pola dengan pola lainnya. Ciri yang bagus adalah ciri

Lebih terperinci

PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM)

PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT...Salahuddin, dkk PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) Salahuddin 1, Tulus 2 dan Fahmi 3 1) Magister Teknik

Lebih terperinci

BAB 1 PENDAHULUAN. Dalam bidang animasi, motion capture adalah salah satu cara yang dipakai para

BAB 1 PENDAHULUAN. Dalam bidang animasi, motion capture adalah salah satu cara yang dipakai para BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam bidang animasi, motion capture adalah salah satu cara yang dipakai para kreator animasi untuk mengambil gerakan yang dapat diterapkan dalam pembuatan animasi,

Lebih terperinci

Database Ekspresi Wajah Perempuan Indonesia Berbasis 2D untuk Pengenalan Emosi

Database Ekspresi Wajah Perempuan Indonesia Berbasis 2D untuk Pengenalan Emosi Tugas Akhir Database Ekspresi Wajah Perempuan Indonesia Berbasis 2D untuk Pengenalan Emosi Oleh : Dwi Angga Y. 2210106042 Pembimbing : I. Dr. Surya Sumpeno, ST., M.Sc. II. Muhtadin, ST., MT. Halaman 1

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Penelitian mengenai pengenalan wajah termotivasi oleh banyaknya aplikasi praktis yang diperlukan dalam identifikasi wajah. Pengenalan wajah sebagai salah satu dari teknologi

Lebih terperinci

Implementasi Noise Removal Menggunakan Wiener Filter untuk Perbaikan Citra Digital

Implementasi Noise Removal Menggunakan Wiener Filter untuk Perbaikan Citra Digital UNSIKA Syntax Jurnal Informatika Vol. 5 No. 2, 2016, 159-164 159 Implementasi Noise Removal Menggunakan Wiener Filter untuk Perbaikan Citra Digital Nono Heryana 1, Rini Mayasari 2 1,2 Jl. H.S. Ronggowaluyo

Lebih terperinci

PENERAPAN METODE DETEKSI BULUMATA UNTUK PENINGKATAN AKURASI PENGENALAN PERSONAL BERBASIS CITRA IRIS

PENERAPAN METODE DETEKSI BULUMATA UNTUK PENINGKATAN AKURASI PENGENALAN PERSONAL BERBASIS CITRA IRIS PENERAPAN METODE DETEKSI BUUMATA UNTUK PENINGKATAN AKURASI PENGENAAN PERSONA BERBASIS CITRA IRIS Andi Patombongi*, Rully Soelaiman ** Program Pasca Sarjana Jurusan Teknik Informatika Fakultas Teknologi

Lebih terperinci

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login

Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine Transform Untuk Aplikasi Login The 13 th Industrial Electronics Seminar 011 (IES 011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 6, 011 Verifikasi Citra Wajah Menggunakan Metode Discrete Cosine

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1 1. BAB I PENDAHULUAN Latar Belakang Iris mata merupakan salah satu organ internal yang dapat di lihat dari luar. Selaput ini berbentuk cincin yang mengelilingi pupil dan memberikan pola warna pada mata

Lebih terperinci

Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt

Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt Ardi Satrya Afandi Fakultas Teknologi Industri Universitas Gunadarma Depok, Indonesia [email protected] Prihandoko,

Lebih terperinci

PENGENALAN EMOSI SESEORANG BERDASARKAN BENTUK BIBIR DENGAN METODE DISCRETE HARTLEY TRANSFORM ABSTRAK

PENGENALAN EMOSI SESEORANG BERDASARKAN BENTUK BIBIR DENGAN METODE DISCRETE HARTLEY TRANSFORM ABSTRAK PENGENALAN EMOSI SESEORANG BERDASARKAN BENTUK BIBIR DENGAN METODE DISCRETE HARTLEY TRANSFORM Lucas Sanjaya (1122034) Jurusan Teknik Elektro Email: [email protected] ABSTRAK Ketika berhadapan

Lebih terperinci

corak lukisan dengan seni dekorasi pakaian, muncul seni batik tulis seperti yang kita kenal sekarang ini. Kain batik merupakan ciri khas dari bangsa I

corak lukisan dengan seni dekorasi pakaian, muncul seni batik tulis seperti yang kita kenal sekarang ini. Kain batik merupakan ciri khas dari bangsa I Pembuatan Perangkat Lunak Untuk Menampilkan Deskripsi Mengenai Batik dan Pola Citra Batik Berdasarkan Segmentasi Objek Maulana Sutrisna, [email protected] Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007

Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007 Pengantar PENGOLAHAN CITRA Achmad Basuki PENS-ITS Surabaya 2007 TUJUAN Mahasiswa dapat membuat aplikasi pengolahan citra Mahasiswa dapat menerapkan konsep-konsep pengolahan citra untuk menghasilkan suatu

Lebih terperinci

PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION

PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION Jurnal Komputer dan Informatika (KOMPUTA) 29 PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION Raden Sofian Bahri 1, Irfan Maliki 2 1,2 Program Studi Teknik

Lebih terperinci

BAB 3 ANALISA DAN PERANCANGAN

BAB 3 ANALISA DAN PERANCANGAN 44 BAB 3 ANALISA DAN PERANCANGAN 3.1 Analisa Analisa yang dilakukan terdiri dari : a. Analisa terhadap permasalahan yang ada. b. Analisa pemecahan masalah. 3.1.1 Analisa Permasalahan Pengenalan uang kertas

Lebih terperinci

INDIKATOR MUSIK MELALUI EKSPRESI WAJAH

INDIKATOR MUSIK MELALUI EKSPRESI WAJAH INDIKATOR MUSIK MELALUI EKSPRESI WAJAH Riyanto Sigit, Achmad Basuki Politeknik Elektronika Negeri Surabaya Kampus ITS Keputih Sukolilo Surabaya 60111, Indonesia Tel:+62-31-5947280 Fax:+62-31-5946114; E-mail:[email protected]

Lebih terperinci

PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS

PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS PENGAMAN RUMAH DENGAN SISTEM FACE RECOGNITION SECARA REAL TIME MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS Sinar Monika 1, Abdul Rakhman 1, Lindawati 1 1 Program Studi Teknik Telekomunikasi, Jurusan

Lebih terperinci

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-5 1 Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram Shabrina Mardhi Dalila, Handayani Tjandrasa, dan Nanik

Lebih terperinci

ANALISIS PENGARUH EXPOSURE TERHADAP PERFORMA ALGORITMA SIFT UNTUK IMAGE MATCHING PADA UNDERWATER IMAGE

ANALISIS PENGARUH EXPOSURE TERHADAP PERFORMA ALGORITMA SIFT UNTUK IMAGE MATCHING PADA UNDERWATER IMAGE ANALISIS PENGARUH EXPOSURE TERHADAP PERFORMA ALGORITMA SIFT UNTUK IMAGE MATCHING PADA UNDERWATER IMAGE HANANTO DHEWANGKORO A11.2009.04783 Universitas Dian Nuswantoro. Semarang, Indonesia Email: [email protected]

Lebih terperinci

Muhammad Nasir. Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe

Muhammad Nasir. Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe KLASIFIKASI DAN PNGNALAN SIDIK JAI TTUMPUK BBASIS MTOD LANING VCTO QUANTIZATION Muhammad Nasir Jurusan Teknik lektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km. 280. Lhokseumawe 21 mail : [email protected]

Lebih terperinci

Pengembangan Algoritma Pengubahan Ukuran Citra Berbasiskan Analisis Gradien dengan Pendekatan Polinomial

Pengembangan Algoritma Pengubahan Ukuran Citra Berbasiskan Analisis Gradien dengan Pendekatan Polinomial Pengembangan Algoritma Pengubahan Ukuran Citra Berbasiskan Analisis Gradien dengan Pendekatan Polinomial Eric Christopher School of Electrical Engineering and Informatics, Institute Technology of Bandung,

Lebih terperinci

PEMANFAATAN GUI DALAM PENGEMBANGAN PERANGKAT LUNAK PENGENALAN CITRA WAJAH MANUSIA MENGGUNAKAN METODE EIGENFACES

PEMANFAATAN GUI DALAM PENGEMBANGAN PERANGKAT LUNAK PENGENALAN CITRA WAJAH MANUSIA MENGGUNAKAN METODE EIGENFACES PEMANFAATAN GUI DALAM PENGEMBANGAN PERANGKAT LUNAK PENGENALAN CITRA WAJAH MANUSIA MENGGUNAKAN METODE EIGENFACES Ni Wayan Marti Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan,Universitas Pendidikan

Lebih terperinci

PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS. Skripsi

PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS. Skripsi PENGENALAN WAJAH MENGGUNAKAN METODE DIAGONAL PRINCIPAL COMPONENT ANALYSIS Skripsi Di susun oleh : M. RIDHO MAJIDI (0934010056) PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVESITAS PEMBANGUNAN

Lebih terperinci

Pengolahan Citra Digital FAJAR ASTUTI H, S.KOM., M.KOM

Pengolahan Citra Digital FAJAR ASTUTI H, S.KOM., M.KOM Pengolahan Citra Digital FAJAR ASTUTI H, S.KOM., M.KOM PENILAIAN TUGAS : 30% UTS : 30% UAS : 40% REFERENSI Slides & Hand outs; Digital Image Processing; Rafael C. Gonzalez & Richard E Woods; Addison Wesley

Lebih terperinci

Arga Wahyumianto Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT

Arga Wahyumianto Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT IDENTIFIKASI DAUN BERDASARKAN FITUR TULANG DAUN MENGGUNAKAN ALGORITMA EKSTRAKSI MINUTIAE Arga Wahyumianto 2209 105 047 Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT LATAR

Lebih terperinci

Perbandingan Dua Citra Bibir Manusia Menggunakan Metode Pengukuran Lebar, Tebal dan Sudut Bibir ABSTRAK

Perbandingan Dua Citra Bibir Manusia Menggunakan Metode Pengukuran Lebar, Tebal dan Sudut Bibir ABSTRAK Perbandingan Dua Citra Bibir Manusia Menggunakan Metode Pengukuran Lebar, Tebal dan Sudut Bibir Rizki Hamdani / 0322 Jurusan Teknik Elektro, Fakultas Teknik Universitas Kristen Maranatha Jl. Prof. Drg.

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D 30 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Pengembangan Sistem Pengenalan Wajah 2D Penelitian ini mengembangkan model sistem pengenalan wajah dua dimensi pada citra wajah yang telah disiapkan dalam

Lebih terperinci

PERBANDINGAN TEKNIK SCALE INVARIANT FEATURE TRANSFORM (SIFT)

PERBANDINGAN TEKNIK SCALE INVARIANT FEATURE TRANSFORM (SIFT) PERBANDINGAN TEKNIK SCALE INVARIANT FEATURE TRANSFORM (SIFT) DAN MULTISCALE LOCAL BINARY PATTERN (MLBP) DALAM PENGENALAN WAJAH DENGAN CITRA MASUKAN BERUPA CITRA SKETSA WAJAH Yuwono (0922013) Jurusan Teknik

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54 Rekonstruksi Citra pada Super Resolusi menggunakan Projection onto Convex Sets (Image Reconstruction in Super Resolution using Projection onto Convex Sets) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BAB I PENDAHULUAN. dengan memanfaatkan ciri wajah yang telah tersimpan pada database atau wajah

BAB I PENDAHULUAN. dengan memanfaatkan ciri wajah yang telah tersimpan pada database atau wajah BAB I 1. asd PENDAHULUAN 1.1. Latar Belakang Masalah Dewasa ini perkembangan teknologi di bidang informasi khususnya dengan menggunakan komputer telah berkembang, hal ini menyebabkan banyak aplikasi baru

Lebih terperinci

PENGEMBANGAN ALGORITMA PENGUBAHAN UKURAN CITRA BERBASISKAN ANALISIS GRADIEN DENGAN PENDEKATAN POLINOMIAL

PENGEMBANGAN ALGORITMA PENGUBAHAN UKURAN CITRA BERBASISKAN ANALISIS GRADIEN DENGAN PENDEKATAN POLINOMIAL PENGEMBANGAN ALGORITMA PENGUBAHAN UKURAN CITRA BERBASISKAN ANALISIS GRADIEN DENGAN PENDEKATAN POLINOMIAL Eric Christopher #1, Dr. Ir. Rinaldi Munir, M. T. #2 #School of Electrical Engineering and Informatics,

Lebih terperinci

PERBAIKAN CITRA BER-NOISE MENGGUNAKAN SWITCHING MEDIAN FILTER DAN BOUNDARY DISCRIMINATIVE NOISE DETECTION

PERBAIKAN CITRA BER-NOISE MENGGUNAKAN SWITCHING MEDIAN FILTER DAN BOUNDARY DISCRIMINATIVE NOISE DETECTION PERBAIKAN CITRA BER-NOISE MENGGUNAKAN SWITCHING MEDIAN FILTER DAN BOUNDARY DISCRIMINATIVE NOISE DETECTION Ahmad Saikhu, Nanik Suciati, Widhiantantri S. Jurusan Teknik Informatika, Fakultas Teknologi Informasi,

Lebih terperinci

Deteksi Lokasi Bibir Otomatis Pada Citra Wajah Berbasis Ciri Bentuk dan Warna

Deteksi Lokasi Bibir Otomatis Pada Citra Wajah Berbasis Ciri Bentuk dan Warna F7 bentuk [5]. Pendekatan berbasis bentuk bibir menggunakan Deteksi Lokasi Bibir Otomatis Pada Citra Wajah Berbasis Ciri Bentuk dan Warna Shinta Puspasari, STMIK lobal Informatika MDP Abstrak Metode yang

Lebih terperinci

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD Murinto, Resa Fitria Rahmawati Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad

Lebih terperinci

CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET

CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET Nana Ramadijanti RG. Computer Vision, Program Studi Teknologi Informasi, Politeknik Elektronika Negri Surabaya E-mail: [email protected]

Lebih terperinci

Pengolahan Citra INTERACTIVE BROADCASTING. Yusuf Elmande., S.Si., M.Kom. Modul ke: Fakultas Ilmu Komunikasi. Program Studi Penyiaran

Pengolahan Citra INTERACTIVE BROADCASTING. Yusuf Elmande., S.Si., M.Kom. Modul ke: Fakultas Ilmu Komunikasi. Program Studi Penyiaran INTERACTIVE BROADCASTING Modul ke: Pengolahan Citra Fakultas Ilmu Komunikasi Yusuf Elmande., S.Si., M.Kom Program Studi Penyiaran www.mercubuana.ac.id Pendahuluan Istilah citra digital sangat populer pada

Lebih terperinci

SEMINAR TUGAS AKHIR M. RIZKY FAUNDRA NRP DOSEN PEMBIMBING: Drs. Daryono Budi Utomo, M.Si

SEMINAR TUGAS AKHIR M. RIZKY FAUNDRA NRP DOSEN PEMBIMBING: Drs. Daryono Budi Utomo, M.Si APLIKASI FILTER LOG GABOR PADA SISTEM PENGENALAN IRIS MATA (Application Log-Gabor Filter in Iris Recognition System ) SEMINAR TUGAS AKHIR M. RIZKY FAUNDRA NRP 1206100051 DOSEN PEMBIMBING: Drs. Daryono

Lebih terperinci

PERBAIKAN CITRA UNTUK PENGENALAN WAJAH PADA CITRA WAJAH DENGAN PENCAHAYAAN TIDAK MERATA

PERBAIKAN CITRA UNTUK PENGENALAN WAJAH PADA CITRA WAJAH DENGAN PENCAHAYAAN TIDAK MERATA PERBAIKAN CITRA UNTUK PENGENALAN WAJAH PADA CITRA WAJAH DENGAN PENCAHAYAAN TIDAK MERATA Naser Jawas STMIK STIKOM Bali Jl Raya Puputan no.86, Renon, Denpasar 80226 Email : [email protected])

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah

Lebih terperinci

SISTEM PELACAKAN WAJAH METODE HAAR

SISTEM PELACAKAN WAJAH METODE HAAR SISTEM PELACAKAN WAJAH METODE HAAR Endah Sudarmilah Jurusan Teknik Informatika, Fakultas Komunikasi dan Informatika, Universitas Muhammadiyah Surakarta Email : [email protected] Abstrak. Penelitian deteksi

Lebih terperinci

BAB 1 PENDAHULUAN. termasuk dalam bidang Computer Vision. Computer Vision membuat komputer

BAB 1 PENDAHULUAN. termasuk dalam bidang Computer Vision. Computer Vision membuat komputer BAB 1 PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi komputer pada dewasa ini telah mengalami kemajuan, termasuk dalam bidang Computer Vision. Computer Vision membuat komputer dapat melihat dan

Lebih terperinci

BAB V KESIMPULAN. Wajah pada Subruang Orthogonal dengan Menggunakan Laplacianfaces

BAB V KESIMPULAN. Wajah pada Subruang Orthogonal dengan Menggunakan Laplacianfaces BAB V KESIMPULAN Berdasarkan uji coba dan analisis hasil pengujian terhadap Sistem Pengenalan Wajah pada Subruang Orthogonal dengan Menggunakan Laplacianfaces Terdekomposisi QR dapat disimpulkan sebagai

Lebih terperinci

PENGENALAN OBJEK PADA CITRA BERDASARKAN SIMILARITAS KARAKTERISTIK KURVA SEDERHANA

PENGENALAN OBJEK PADA CITRA BERDASARKAN SIMILARITAS KARAKTERISTIK KURVA SEDERHANA PENGENALAN OBJEK PADA CITRA BERDASARKAN SIMILARITAS KARAKTERISTIK KURVA SEDERHANA Dina Indarti Pusat Studi Komputasi Matematika, Universitas Gunadarma Jl. Margonda Raya no. 100, Depok 16424, Jawa Barat

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis Permasalahan Aplikasi ini tergolong sebagai sistem kecerdasan buatan karena akan menggantikan peran seseorang yang mampu mengenali ekspresi wajah. Tiga ekspresi

Lebih terperinci

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC Naser Jawas STMIK STIKOM BALI [email protected] Abstrak Binerisasi citra dokumen adalah sebuah langkah awal yang sangat penting dalam

Lebih terperinci

Perancangan Perangkat Lunak untuk Ekstraksi Ciri dan Klasifikasi Pola Batik

Perancangan Perangkat Lunak untuk Ekstraksi Ciri dan Klasifikasi Pola Batik JURNAL ILMIAH SEMESTA TEKNIKA Vol. 17, No. 2, 157-165, Nov 2014 157 Perancangan Perangkat Lunak untuk Ekstraksi Ciri dan Klasifikasi Pola Batik (Software Design for Feature Extraction and Classification

Lebih terperinci

Penjejakan Objek Visual berbasis Algoritma Mean Shift dengan menggunakan kamera Pan-Tilt

Penjejakan Objek Visual berbasis Algoritma Mean Shift dengan menggunakan kamera Pan-Tilt Penjejakan Objek Visual berbasis Algoritma Mean Shift dengan menggunakan kamera Pan-Tilt Sulfan Bagus Setyawan 1, Djoko Purwanto 2 Jurusan Teknik Elektro, Institut Teknologi Sepuluh Nopember 1 [email protected]

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi

BAB III ANALISIS DAN PERANCANGAN SISTEM. Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi BAB III ANALISIS DAN PERANCANGAN SISTEM 3.1 Model Pengembangan Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi fitur yang terdapat pada karakter citra digital menggunakan metode diagonal

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAAN METODE TEMPLATE MATCHING

SISTEM PENGENALAN WAJAH MENGGUNAAN METODE TEMPLATE MATCHING SISTEM PENGENALAN WAJAH MENGGUNAAN METODE TEMPLATE MATCHING 1 Yunifa Miftachul Arif, 2 Achmad Sabar 1 Jurusan Teknik Informatika, Fakultas Saintek, UIN Maulana Malik Ibrahim Malang 2 Jurusan Sistem Komputer,

Lebih terperinci

BAB I PENDAHULUAN. Dewasa ini kepedulian masyarakat Indonesia akan budaya-budaya lokal

BAB I PENDAHULUAN. Dewasa ini kepedulian masyarakat Indonesia akan budaya-budaya lokal BAB I PENDAHULUAN 1.1. Latar Belakang Dewasa ini kepedulian masyarakat Indonesia akan budaya-budaya lokal semakin memudar. Hal ini paling jelas terlihat di kalangan kaum muda, dimana mereka telah banyak

Lebih terperinci

HASIL DAN PEMBAHASAN. Tabel 1 Operator descriptor

HASIL DAN PEMBAHASAN. Tabel 1 Operator descriptor Tabel 1 Operator descriptor Operator (P, R) Ukuran Blok (piksel) Kuantisasi Sudut (8, 1) 3 x 3 45 derajat (8, 2) 5 x 5 45 derajat (16, 2) 5 x 5 22.5 derajat (24, 3) 7 x 7 15 derajat Penentuan ukuran blok

Lebih terperinci

1. PENDAHULUAN Bidang perindustrian merupakan salah satu bidang yang juga banyak menggunakan kecanggihan teknologi, walaupun pada beberapa bagian, mas

1. PENDAHULUAN Bidang perindustrian merupakan salah satu bidang yang juga banyak menggunakan kecanggihan teknologi, walaupun pada beberapa bagian, mas PENGKLASIFIKASIAN KUALITAS KERAMIK BERDASARKAN EKSTRAKSI FITUR TEKSTUR STATISTIK Yogi Febrianto [email protected] Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Gunadarma Jl. Margonda

Lebih terperinci

Deteksi Citra Sidik Jari Terotasi Menggunakan Metode Phase-Only Correlation

Deteksi Citra Sidik Jari Terotasi Menggunakan Metode Phase-Only Correlation th Seminar on Intelligent Technology and Its Applications, SITIA 00 ISSN: 087-33X Deteksi Citra Sidik Jari Terotasi Menggunakan Metode Phase-Only Correlation Cahyo Darujati,3 Rahmat Syam,3 Mochamad Hariadi

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING Mohamad Aditya Rahman, Ir. Sigit Wasista, M.Kom Jurusan Teknik Elektronika, Politeknik Elektronika Negeri Surabaya

Lebih terperinci

Rancang Bangun Sistem Pengujian Distorsi Menggunakan Concentric Circle Method Pada Kaca Spion Kendaraan Bermotor Kategori L3 Berbasis Edge Detection

Rancang Bangun Sistem Pengujian Distorsi Menggunakan Concentric Circle Method Pada Kaca Spion Kendaraan Bermotor Kategori L3 Berbasis Edge Detection JURNAL TEKNIK POMITS Vol., No., (22) -6 Rancang Bangun Sistem Pengujian Distorsi Menggunakan Concentric Circle Method Pada Kaca Spion Kendaraan Bermotor Kategori L3 Berbasis Edge Detection Muji Tri Nurismu

Lebih terperinci

EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH. Oleh: Kholistianingsih

EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH. Oleh: Kholistianingsih EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH Oleh: Kholistianingsih Abstract Face recognition is a non-contact biometric identification that tries to verify individuals automatically based

Lebih terperinci

Deteksi Wajah Manusia pada Citra Menggunakan Dekomposisi Fourier

Deteksi Wajah Manusia pada Citra Menggunakan Dekomposisi Fourier NATURALA Journal of Scientific Modeling & Computation, Volume 1 No.1 2013 14 ISSN 23030135 Deteksi Wajah Manusia pada Citra Menggunakan Dekomposisi Fourier Dewi Yanti Liliana 1, Muh. Arif Rahman 2, Solimun

Lebih terperinci

DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE

DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE Riandika Lumaris dan Endang Setyati Teknologi Informasi Sekolah Tinggi Teknik Surabaya [email protected]

Lebih terperinci

KLASIFIKASI KAYU DENGAN MENGGUNAKAN NAÏVE BAYES-CLASSIFIER

KLASIFIKASI KAYU DENGAN MENGGUNAKAN NAÏVE BAYES-CLASSIFIER KLASIFIKASI KAYU DENGAN MENGGUNAKAN NAÏVE BAYES-CLASSIFIER ACHMAD FAHRUROZI 1 1 Universitas Gunadarma, [email protected] Abstrak Masalah yang akan diangkat dalam makalah ini adalah bagaimana

Lebih terperinci

EKSTRAKSI JALAN SECARA OTOMATIS DENGAN DETEKSI TEPI CANNY PADA FOTO UDARA TESIS OLEH: ANDRI SUPRAYOGI NIM :

EKSTRAKSI JALAN SECARA OTOMATIS DENGAN DETEKSI TEPI CANNY PADA FOTO UDARA TESIS OLEH: ANDRI SUPRAYOGI NIM : EKSTRAKSI JALAN SECARA OTOMATIS DENGAN DETEKSI TEPI CANNY PADA FOTO UDARA (Menggunakan Transformasi Wavelet Untuk Penghalusan Citra ) TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar

Lebih terperinci

DATA/ INFO : teks, gambar, audio, video ( = multimedia) Gambar/ citra/ image : info visual a picture is more than a thousand words (anonim)

DATA/ INFO : teks, gambar, audio, video ( = multimedia) Gambar/ citra/ image : info visual a picture is more than a thousand words (anonim) Pengantar DATA/ INFO : teks, gambar, audio, video ( = multimedia) Gambar/ citra/ image : info visual a picture is more than a thousand words (anonim) Citra : gambar pada bidang 2D. Secara matematis : citra

Lebih terperinci

APLIKASI TRANSFORMASI HOUGH UNTUK EKSTRAKSI FITUR IRIS MATA MANUSIA

APLIKASI TRANSFORMASI HOUGH UNTUK EKSTRAKSI FITUR IRIS MATA MANUSIA Seminar Nasional Teknologi Informasi 2007 1 APLIKASI TRANSFORMASI HOUGH UNTUK EKSTRAKSI FITUR IRIS MATA MANUSIA Murinto 1) Rusydi Umar 2) Burhanuddin 3) 1,2,3) Teknik Informatika Universitas Ahmad Dahlan

Lebih terperinci

PERANCANGAN APLIKASI PENGURANGAN NOISE PADA CITRA DIGITAL MENGGUNAKAN METODE FILTER GAUSSIAN

PERANCANGAN APLIKASI PENGURANGAN NOISE PADA CITRA DIGITAL MENGGUNAKAN METODE FILTER GAUSSIAN PERANCANGAN APLIKASI PENGURANGAN NOISE PADA CITRA DIGITAL MENGGUNAKAN METODE FILTER GAUSSIAN Warsiti Mahasiswi Program Studi Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Sp. Limun

Lebih terperinci

Percobaan 1 Percobaan 2

Percobaan 1 Percobaan 2 direpresentasikan dengan histogram. Perlakuan pertama terhadap data-data penelitian ini adalah menghitung histogramnya. Kemudian dari interval antara 0-255 akan dibagi menjadi interval-interval bagian

Lebih terperinci

100% Akurasi = (11) Lingkungan Pengembangan

100% Akurasi = (11) Lingkungan Pengembangan Algoritme Dekomposisi Wavelet Dekomposisi wavelet Haar dapat dijelaskan sebagai berikut : 1 Transformasi linear digunakan untuk mengubah ruang warna secara linear menjadi warna dasar. Karena citra yang

Lebih terperinci

YOGI WARDANA NRP

YOGI WARDANA NRP PENGEMBANGAN ALGORITMA SISTEM IDENTIFIKASI MATA MANUSIA BERBASIS PENGOLAHAN CITRA DENGAN METODE GABOR PADA PERALATAN AOI ( AUTOMATED OPTICAL INSPECTION ) YOGI WARDANA NRP. 2107 100 115 JURUSAN TEKNIK MESIN

Lebih terperinci

pola-pola yang terdapat pada suatu daerah bagian citra. Tekstur juga dapat membedakan permukaan dari beberapa kelas.

pola-pola yang terdapat pada suatu daerah bagian citra. Tekstur juga dapat membedakan permukaan dari beberapa kelas. Ruang Lingkup Penelitian Ruang Lingkup penelitian ini adalah: 1. Objek citra adalah data citra daun tumbuhan obat dan citra pohon tanaman hias di Indonesia. 2. Dalam penelitian ini operator MBLBP yang

Lebih terperinci

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter Roslyn Yuniar Amrullah 7406040026 Abstrak Computer Vision merupakan disiplin ilmu perpanjangan dari pengolahan citra digital dan kecerdasan buatan.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari- hari seringkali ditemukan uang palsu pada berbagai transaksi ekonomi. Tingginya tingkat uang kertas palsu yang beredar di kalangan masyarakat

Lebih terperinci

RANCANG BANGUN APLIKASI PENGABURAN GAMBAR

RANCANG BANGUN APLIKASI PENGABURAN GAMBAR RANCANG BANGUN APLIKASI PENGABURAN GAMBAR Muhammad Sholeh 1, Avandi Badduring 2 1, 2 Teknik Informatika, Fakultas Teknologi Industri Institut Sains & Teknologi AKPRIND Yogyakarta Jl. Kalisahak 28 Komplek

Lebih terperinci

PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN

PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN Dolly Indra [email protected] Teknik Informatika Universitas Muslim Indonesia Abstrak Pada tahap melakukan ekstraksi ciri (feature extraction) faktor

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengenalan Wajah Pengenalan wajah adalah salah satu teknologi biometrik yang telah banyak diaplikasikan dalam sistem keamanan selain pengenalan retina mata, pengenalan sidik jari

Lebih terperinci

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL Muhammad Affandes* 1, Afdi Ramadani 2 1,2 Teknik Informatika UIN Sultan Syarif Kasim Riau Kontak Person : Muhammad

Lebih terperinci

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES

UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES 1 Uji Kinerja Face Recognition Menggunakan Eigenfaces UJI KINERJA FACE RECOGNITION MENGGUNAKAN EIGENFACES ABDUL AZIS ABDILLAH 1 1STKIP Surya, Tangerang, Banten, [email protected] Abstrak. Pada paper

Lebih terperinci

JURNAL TEODOLITA. VOL. 15 NO. 1, Juni 2014 ISSN DAFTAR ISI

JURNAL TEODOLITA. VOL. 15 NO. 1, Juni 2014 ISSN DAFTAR ISI JURNAL TEODOLITA VOL. 15 NO. 1, Juni 2014 ISSN 1411-1586 DAFTAR ISI Mesjid Saka Tunggal Sebagai Ruang Ritual Komunitas Islam ABOGE di Desa Cikakak Banyumas.. 1-11 Wita Widyandini, Yohana Nursruwening Analisa

Lebih terperinci