NME D3 Sperisa Distantina BAB V NERACA PANAS

Ukuran: px
Mulai penontonan dengan halaman:

Download "NME D3 Sperisa Distantina BAB V NERACA PANAS"

Transkripsi

1 NME D Sperisa Distantina 1 Q<0 reaktor lingkungan energi BAB V NERACA PANAS Hukum konservasi energi (hk I termodinamika): [Energi masuk] [energi keluar] [energi yang terbangkitkan sistem] [energi yang terkonsumsi sistem] [energi terakumulasi dalam sistem] Reaksi kimia yang bersifat eksotermis ( menghasilkan panas), maka energi yang dihasilkan disebut sebagai energi yang terbangkitkan sistem. Reaksi kimia yang bersifat endotermis (membutuhkan panas), maka energi yang dihasilkan disebut sebagai energi yang terkonsumsi oleh sistem. Q>0 reaktor lingkungan energi Eksotermis Endotermis Untuk sistem dengan proses steady state, maka energi yang terakumulasi 0. Langkah-langkah penyusunan neraca panas mirip dengan neraca massa. Bentuk-bentuk energi : (lihat kembali materi kuliah ermodinamika ) 1. Energi potensial (EP) : akibat posisi objek relatif terhadap bidang datum (bidang referensi).. Energi Kinetik (EK) : akibat gerakan objek.. Internal Energi (U) : akibat gerakan molekuler di dalam bahan. 4. Work / Kerja (W) : a. Shaft work : kerja turbin. Contoh : turbin air, pompa, kompresor. b. Kerja yang hilang karena gesekan / friksi. Contoh : friksi di permukaan pipa. 5. Heat/ panas (Q). 6. Energi listrik. Neraca panas / energi / tenaga : : a. NP total pada sistem alir ( flow system) pada keadaan steady state W Q 1 Bidang datum

2 Ditinjau NP di sistem sekitar titik 1 ke titik : Input output EP 1 EK 1 U 1 P 1 V 1 Q EP EK U P V W EP EK U PV Q W V g Ζ U PV Q W g Persamaan di atas sering dipakai untuk kasus transportasi fluida, yaitu persamaan Bernoulli. b. Neraca Energi untuk proses kimia ( non flow system ). Sistem non alir dianggap terjadi di dalam alat-alat proses, misal alat penukar panas (HE heat exchanger), reaktor, dan alat-alat transfer massa lainnya. Pada sistem ini, biasanya EP dan EK <<< Q dan W, sehingga EP dan EK dapat diabaikan dan NP menjadi : U PV Q W H U PV Q W H Q W H H1 Q W Untuk beberapa proses, biasanya nilai W sangat kecil. Sehingga : H H1 Q H Dengan, H1 entalpi arus masuk (titik satu), H entalpi arus keluar (titik dua). Macam-macam perubahan entalpi (panas): 1. sensible ( panas yang bisa dirasakan perubahan suhunya). Kapasitas panas (cp ) banyaknya panas yang dibutuhkan untuk menaikkan suhu setiap satuan massa setiap satuan suhu. Untuk padatan dan gas, Cp merupakan fungsi suhu. Beberapa sumber data-data Cp : a. Cp f () ; appendix D, Coulson and Richardson, Chemical Engineering. able E.1. Himmelblau. b. Cp dalam bentuk grafik; Geankoplis; Perry. c. Cp untuk foods and biological material; appendix A.4, Geankoplis, ransport Processes and Unit Operation.. laten ( panas perubahan fase dengan suhu tetap). a. Panas peleburan ( dari fase padat menjadi cair). b. Panas sublimasi ( dari fase padat menjadi gas ). c. Panas kondensasi ( dari fase gas menjadi cair ). d. Panas penguapan (dari fase cair menjadi gas).. reaksi (panas yang dihasilkan atau dibutuhkan pada proses yang melibatkan reaksi kimia). Macam-macam entalpi reaksi : a. Heat of reaction. b. Heat of formation. c. Heat of combustion.

3 Pada kuliah Neraca Massa dan Energi akan banyak mempelajari neraca panas proses kimia, sedangkan neraca panas proses fisis banyak dipelajari di mata kuliah Perpindahan Panas. skema HE shell and tube: HE 1- ( 1 pass in shell, passes in tube) HE 1-1 ( 1 pass in shell, 1 pass in tube) Skema double pipe HE: Co current Counter current

4 PANAS REAKSI Panas reaksi pada kondisi standar. H o R panas yang dihasilkan atau dibutuhkan jika reaksi dijalankan pada kondisi standar. satuan panas setiap satuan mol reaktan yang bereaksi. H o R 4 H o R bernilai negatif menunjukkan reaksi menghasilkan panas. H o R berilai positif menunjukkan reaksi membutuhkan panas. Kondisi standar : komponen murni; P 1 atm; suhu 5 o C. Sumber data H o R : 1. Data H o R yang tersedia di tabel. Contoh : Reaksi : NO ½ O NO Dari tabel diperoleh H o R -56,68 KJ Panas reaksi di atas dibaca sebagai berikut : Reaksi di atas menghasilkan panas sebesar 56,68 KJ mol NO yang bereaksi 56,68 KJ 1/mol O yang bereaksi 56,68 KJ mol NO yang dihasilkan dari reaksi Soal : Berapakah panas yang dihasilkan untuk membakar 10 gram NO? Berapakah panas yang dihasilkan untuk membakar 150 gram NO?. Nilai H o R dievaluasi dari nilai H o f (panas pembentukan) atau panas pembakaran ( H o C ). Nilai H o f elemen bebas adalah nol. Sumber data H o f : able 9; Hougen Watson, Appendix F; Himmelblau. Appendix A..; Geankoplis. Appendix B; Felder & Rousseau. able). Hubungan H o R dengan H o f : H o R Σ ( ni. H o f ) produk - Σ ( nj. H o f ) reaktan Dengan: i komponen produk persamaan reaksi, j komponen reaktan dari persamaan reaksi Hubungan H o R dengan H o C : H o R - [ Σ ( ni. H o C ) produk - Σ ( nj. H o C ) reaktan ] Dengan: i komponen produk persamaan reaksi, j komponen reaktan dari persamaan reaksi Contoh : NO ½ O NO

5 SOAL: Hitung panas reaksi pada kondisi standar dari reaksi sbb.: 1. CH 4 (g) O (g) CO (g) H O (l). CH 4 (g) O (9) CO (g) H O (g). CO (g) H (g) CO (g) H (g) 4. 4 HCl (g) O (g) H O (l) Cl (g) 5. 4FeS (s) 11 O (g) Fe O (s) 8 SO (g) 6. C H 8 (l) O (g) C H (g) CO (g) H O(l) 5 Skema reaktor (tempat terjadinya reaksi): NERACA PANAS DI SEKIAR REAKOR feed feed effluent effluent Bacth reactor Continuous flow Stirred Plug Flow reactor (PFR) Reaktor angki ank Reactor (CSR) Reaktor Alir Pipa (RAP) Berpengaduk (RB) Reaktor Alir angki Berpengaduk (RAB) Jika reaksi tidak dijalankan pada kondisi standar. Jika di reaktor reaksi tidak dijalankan pada kondisi standar, maka dipikirkan: 1. suhu umpan ( F ) diturunkan atau dinaikkan sampai suhu standar, kemudian. direaksikan pada kondisi standar ( R ), lalu. suhu produk dinaikkan suhunya sampai suhu keluar reaktor ( P ). 4. Selanjutnya panas reaksi dihitung. Perhitungan panas reaksi digambarkan sbb.: F REAKOR P H R P Panas reaksi kondisi di atas H R Q1 Q Q (1) F Q1 Q R Q R

6 Dengan, Q1 entalpi umpan N R ni cpi. d () i 1 F i komponen-komponen dalam reaktan. N jumlah komponen reaktan ni mol atau berat reaktan i ( tergantung satuan cp-nya). 6 Q panas reaksi pada kondisi standar. H o R x ( jumlah mol reaktan yang bereaksi) () Q entalpi produk N i 1 P R cpi.d mi (4) ampak bahwa untuk menyelesaikan neraca panas pada proses kimia perlu diselesaikan terlebih dahulu neraca massanya. Contoh : Suatu konverter digunakan untuk mengoksidasi SO menjadi SO. Oksigen disuplai dari udara. Dianggap berisi 1% mol O dan 79% mol N. Jika digunakan udara berlebihan 5% dan diinginkan SO yang terbentuk adalah 180 mol/jam. entukan kebutuhan SO dan udara umpan jika konversi hanya 80%. Jika suhu SO umpan adalah 40 o C, suhu udara umpan 0 o C dan suhu gas keluar konverter adalah 60 o C, berapa panas yang dihasilkan konverter itu. Penyelesaian: a. Skema: Prediksikan komponen dalam gas hasil berdasarkan data komponen umpan, konversi dan excess. Kondisi steady state. F1: SO 140 o C Reaktor (konverter) Fu udara: SO ½ O SO 1% O X 80% 79% N % excess5% u0 o C Dicari : Panas yang dihasilkan konverter? ProdukP: SO 180 mol/j SO O N p60 o C b. Neraca massa di sekitar reaktor: untuk menentukan mol/j setiap komponen di setiap arus. Basis perhitungan : SO dalam P 180 mol/j. 1. NM SO : Input reaksi output 0 reaksi 180 Jadi SO yang dihasilkan dari reaksi 180 mol/j Berdasarkan persamaan reaksi, maka: SO yang bereaksi 180 mol/j. O yang bereaksi 90 mol/j.

7 . NM SO : Input reaksi output F1-180 output Dari data konversi, maka: SO yang bereaksi 180 x 80% SO umpan F1 maka, F1 5 mol/j Berdasarkan NM SO, maka SO dalam P mol/j. 7. NM O : Input reaksi output 0,1. Fu 90 output Dari data % excess 5%, maka: O umpan 5% O yg dibutuhkan O yg Darivperhitungan sebelumnya, SO umpan 0,1Fu (0,5. 5) 5% (0,5. 5) jika SO habis bereaksi dibutuhkan jika SO habis bereaksi 5 mol/j Fu 669,64 mol/j Berdasarkan NM O, maka O dalam P 0,1. 669, ,65 mol/j. 4. NM N: Input output 0,79 Fu output maka N dalam P 59,018 mol/j. Rekapitulasi NM di sekitar reaktor: Komponen Umpan, mol/j Reaksi, mol/j Output, mol/j SO SO O 140, ,65 N 59, ,018 c. Neraca Panas, menentukan panas yang dihasilkan reaktor (Q). Skema NP: p60c SO HRQ SO O N 140C SO Q1 u0c Q O N R5C Q Q4 NP: Q Q1 Q Q Q4 Data pendukung yang dibutuhkan: a. kapasitas panas: Cpabc d ; Joule/(mol.K). b. Panas reaksi pada kondisi standar: H o R; KJ/mol.

8 Komponen a b c d H o f; KJ/mol O 8,106 -,68E-06 1,75E-05-1,07E-08 0,00 N 1,15-1,5E-0,68E-05-1,17E-08 0,00 SO,85 6,70E-0-4,96E-05 1,E-08-97,05 SO 16,7 1,46E-01-1,1E-04,4E-08-95,5 Sumber: appendix Coulson& Richardson Vol.6. Maka, H o R (-95,5 (-97,050)) -98,48 Kjoule.mol Hal ini menunjukkan reaksinya eksotermis Q1 n. cp. d SO umpan SO , , ,85(98-1) (98 1 )...Joule/j (dilanjutkan sendiri) (98 1 ) 1, ( ) 98 Q [n. cp. d ] O umpan O ,65 ( 8,106 -, , ,018 ( 1,15-1,5.10 -, ,17-7, , Joule/j [ n N umpan 98. cp N , , , d ] ) d ) d ) d Q H o (mol SO yang bereaksi) - 98,48. R 60 7 Q4 [n. cp. d ] O Produk O 98 [ n. cp. d ] N Produk N 98 [n. cps. d ] SO produk O 98 [ n. cp. d ] SOproduk SO 98 [A B C D ]. d 98 Q ,40 KJoule/j maka, Q... Jika suhu produk dipertahankan 60 o C, maka harus ada panas yang dihilangkan sebesar Q KJ/j melalui pendinginan reaktor. Wajib diselesaikan sendiri. Perhatikan satuannya.

9 SOAL LAIHAN DENGAN REAKSI KIMIA 9 1. Gas metan dibakar dengan oksigen. Seratus lima puluh kgmol/jam umpan terdiri atas 0% metan, 60% O dan 0% CO diumpankan ke reaktor. Konversi limiting reactant 90%. Jika suhu gas umpan 50 o C dan suhu gas keluar dari ruang pembakaran 190 o C, tentukan panas yang dibutuhkan/dihasilkan dari ruang pembakaran itu.. Gas metan dibakar dengan oksigen. Seratus lima puluh kgmol/jam umpan terdiri atas 0% metan, 60% O dan 0% CO diumpankan ke furnace. Hasil analisis gas hasil furnace menunjukkan gas hasil berisi gas metan 1,5 kgmol/jam. Jika suhu gas umpan 7 o C dan suhu gas keluar dari ruang pembakaran 7 o C, tentukan panas yang dibutuhkan/dihasilkan dari ruang pembakaran itu.. Reaktor digunakan untuk mengoksidasi SO menjadi SO. Umpan terdiri atas 1% SO, 8% O, dan 80% N dengan suhu umpan 47 o C. Jika konversi SO adalah 50%, dan gas hasil keluar reaktor pada suhu 57 o C serta 100 mol/jam gas diumpankan. entukan : a. komposisi gas hasi reaktor. b. Panas reaksi yang dihasilkan/dibutuhkan reaktor itu. 4. Reaksi amonia dijalankan pada reaktor fase gas, reaksi : 4NH 5O 4NO 6H O Oksigen disuplai dari udara yang diumpankan ke reaktor dengan 5% berlebihan. Jika diumpankan 100 gmol/jam NH dengan suhu 0 o C dan udara pada suhu 40 o C. Gas hasil keluar reaktor pada suhu 50 o C. a. Berapa udara umpan? b. Jika konversi hanya 80%, tentukan komposisi gas hasil! c.entukan panas reaksi reaktor itu! d. Eksotermis atau endotermiskah reaktor itu? 5. Suatu ketel digunakan untuk membuat uap air. Panas yang digunakan adalah panas pembakaran gas metan. Gas metan bertekanan 1 atm, suhu 47 o C dan berkecepatan L/j diumpankan ke furnace, sedangkan suhu udara yang diumpankan 7 o C. Agar terjadi pembakaran sempurna, udara yang diumpankan 50% berlebihan. Gas hasil pembakaran keluar furnace pada suhu 147 o K. entukan : a. Kecepatan arus udara umpan. b. Kecepatan dan komposisi gas hasil furnace. c. Panas yang dihasilkan. REAKSI ADIABAIS Reaksi adiabatis adalah reaksi yang dijalankan dalam suatu tempat dimana tidak ada panas yang tambahkan atau dihilangkan. Reaksi adiabatis dijalankan dalam reaktor tanpa pemanas maupun pendingin, sehingga: a. Jika reaksi bersifat endotermis (membutuhkan panas) maka reaksi akan menurunkan suhu produk reaktor. b. Jika reaksi bersifat eksotermis (menghasilkan panas) maka reaksi akan menaikkan suhu produk reaktor. Neraca Panas reaksi adiabatis: H R 0 H R Q1 Q Q Soal: Gas metan dibakar dengan oksigen dalam suatu reaktor tanpa pendingin. Seratus lima puluh kgmol/jam umpan terdiri atas 0% metan, 60% O dan 0% CO diumpankan ke reaktor. Konversi limiting reactant 90%. Jika suhu gas umpan 50 o C, tentukan suhu keluar reaktor.

NME D3 Sperisa Distantina BAB III NERACA MASSA DENGAN REAKSI KIMIA

NME D3 Sperisa Distantina BAB III NERACA MASSA DENGAN REAKSI KIMIA NME D3 Sperisa Distantina 1 BAB III NERACA MASSA DENGAN REAKSI KIMIA Pada kuliah terdahulu telah diberikan contoh kasus neraca massa tanpa reaksi kimia. Berikut ini akan dibahas neraca massa dimana reaksi

Lebih terperinci

BAB I PENDAHULUAN NERACA MASSA DAN ENERGI

BAB I PENDAHULUAN NERACA MASSA DAN ENERGI NME D3 Sperisa Distantina 1 BAB I PENDAHULUAN NERACA MASSA DAN ENERGI Definisi Teknik Kimia: Pemakaian prinsip-prinsip fisis bersama dengan prinsip-prinsip ekonomi dan human relations ke bidang yang menyangkut

Lebih terperinci

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG KESETIMBANGAN ENERGI Konsep dan Satuan Perhitungan Perubahan Entalpi Penerapan Kesetimbangan Energi Umum

Lebih terperinci

Cara Menggunakan Tabel Uap (Steam Table)

Cara Menggunakan Tabel Uap (Steam Table) Cara Menggunakan Tabel Uap (Steam Table) Contoh : 1. Air pada tekanan 1 bar dan temperatur 99,6 C berada pada keadaan jenuh (keadaan jenuh artinya uap dan cairan berada dalam keadaan kesetimbangan atau

Lebih terperinci

kimia KTSP & K-13 TERMOKIMIA I K e l a s A. HUKUM KEKEKALAN ENERGI TUJUAN PEMBELAJARAN

kimia KTSP & K-13 TERMOKIMIA I K e l a s A. HUKUM KEKEKALAN ENERGI TUJUAN PEMBELAJARAN KTSP & K-13 kimia K e l a s XI TERMOKIMIA I TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Menjelaskan hukum kekekalan energi, membedakan sistem dan

Lebih terperinci

ALAT TRANSFER MASSA ABSORBER DAN STRIPPER

ALAT TRANSFER MASSA ABSORBER DAN STRIPPER PMD D3 Sperisa Distantina ALAT TRANSFER MASSA ABSORBER DAN STRIPPER Silabi D3 Teknik Kimia: 1. Prinsip dasar alat transfer massa absorber dan stripper. 2. Variabel-variabel proses alat absorber dan stripper.

Lebih terperinci

BAB II DISKRIPSI PROSES. 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk. Isobutanol 0,1% mol

BAB II DISKRIPSI PROSES. 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk. Isobutanol 0,1% mol BAB II DISKRIPSI PROSES 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk 2.1.1. Spesifikasi bahan baku tert-butyl alkohol (TBA) Wujud Warna Kemurnian Impuritas : cair : jernih : 99,5% mol : H 2 O

Lebih terperinci

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu)

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) KINETIKA DAN KATALISIS / SEMESTER PENDEK 2009-2010 PRODI TEKNIK KIMIA FTI UPN VETERAN YOGYAKARTA Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) Senin, 19 Juli 2010 / Siti Diyar Kholisoh, ST, MT

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Reaksi pembentukan C8H4O3 (phthalic anhydride) adalah reaksi heterogen fase gas dengan katalis padat, dimana terjadi reaksi oksidasi C8H10 (o-xylene) oleh

Lebih terperinci

BAB II URAIAN PROSES. Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol,

BAB II URAIAN PROSES. Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol, 7 BB II URIN PROSES.. Jenis-Jenis Proses Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol, atau phenyl carbinol. Benzil alkohol mempunyai rumus molekul 6 H 5 H OH. Proses pembuatan

Lebih terperinci

WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA

WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA Binyamin Mechanical Engineering Muhammadiyah University Of Surakarta Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika

Lebih terperinci

BAB IV PROSES DENGAN SISTEM ALIRAN KOMPLEKS

BAB IV PROSES DENGAN SISTEM ALIRAN KOMPLEKS NME D3 Sperisa Distantina 1 BAB IV PROSES DENGAN SISTEM ALIRAN KOMPLEKS Dalam industri kimia beberapa macam sistem aliran bahan dilakukan dengan tujuan antara lain: 1. menaikkan yield. 2. mempertinggi

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES 16 BAB II DESRIPSI PROSES II.1. Spesifikasi Bahan Baku dan Produk II.1.1. Spesifikasi Bahan Baku Nama Bahan Tabel II.1. Spesifikasi Bahan Baku Propilen (PT Chandra Asri Petrochemical Tbk) Air Proses (PT

Lebih terperinci

PERHITUNGAN NERACA PANAS

PERHITUNGAN NERACA PANAS PERHITUNGAN NERACA PANAS Data-data yang dibutuhkan: 1. Kapasitas panas masing-masing komponen gas Cp = A + BT + CT 2 + DT 3 Sehingga Cp dt = Keterangan: Cp B AT T 2 2 C T 3 = kapasitas panas (kj/kmol.k)

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Persiapan Bahan Baku Proses pembuatan Acrylonitrile menggunakan bahan baku Ethylene Cyanohidrin dengan katalis alumina. Ethylene Cyanohidrin pada T-01

Lebih terperinci

BAB II URAIAN PROSES. Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol,

BAB II URAIAN PROSES. Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol, 7 BAB II URAIAN PROSES 2.1. Jenis-Jenis Proses Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol, atau phenyl carbinol. Benzil alkohol mempunyai rumus molekul C 6 H 5 CH 2 OH. Proses

Lebih terperinci

Prarancangan Pabrik Sikloheksana dengan Proses Hidrogenasi Benzena Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES

Prarancangan Pabrik Sikloheksana dengan Proses Hidrogenasi Benzena Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi Bahan Baku 1. Benzena a. Rumus molekul : C6H6 b. Berat molekul : 78 kg/kmol c. Bentuk : cair (35 o C; 1 atm) d. Warna :

Lebih terperinci

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA BAB I PENDAHULUAN I.1. Latar Belakang Alat penukar kalor (Heat Exchanger) merupakan suatu peralatan yang digunakan untuk menukarkan energi dalam bentuk panas antara fluida yang berbeda temperatur yang

Lebih terperinci

NME D3 Sperisa Distantina BAB II NERACA MASSA

NME D3 Sperisa Distantina BAB II NERACA MASSA 1 NME D3 Sperisa Distantina BAB II NERACA MASSA PENYUSUNAN DAN PENYELESAIAN NERACA MASSA KONSEP NERACA MASSA = persamaan yang disusun berdasarkan hukum kekekalan massa (law conservation of mass), yaitu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi bahan baku Etanol Fase (30 o C, 1 atm) : Cair Komposisi : 95% Etanol dan 5% air Berat molekul : 46 g/mol Berat jenis :

Lebih terperinci

BAB I PENDAHULUAN. pemikiran untuk mencari alternatif sumber energi yang dapat membantu

BAB I PENDAHULUAN. pemikiran untuk mencari alternatif sumber energi yang dapat membantu BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan energi yang sangat tinggi pada saat ini menimbulkan suatu pemikiran untuk mencari alternatif sumber energi yang dapat membantu mengurangi pemakaian bahan

Lebih terperinci

BAB 1 Energi : Pengertian, Konsep, dan Satuan

BAB 1 Energi : Pengertian, Konsep, dan Satuan BAB Energi : Pengertian, Konsep, dan Satuan. Pengenalan Hal-hal yang berkaitan dengan neraca energi : Adiabatis, isothermal, isobarik, dan isokorik merupakan proses yang digunakan dalam menentukan suatu

Lebih terperinci

Hubungan entalpi dengan energi yang dipindahkan sebagai kalor pada tekanan tetap kepada sistem yang tidak dapat melakukan kerja lain

Hubungan entalpi dengan energi yang dipindahkan sebagai kalor pada tekanan tetap kepada sistem yang tidak dapat melakukan kerja lain Hubungan entalpi dengan energi yang dipindahkan sebagai kalor pada tekanan tetap kepada sistem yang tidak dapat melakukan kerja lain Jika sistem mengalami perubahan, maka : ΔH = H 2 H 1 ΔH = ( U 2 + p

Lebih terperinci

BAB I PENDAHULUAN. ditimbulkan oleh proses reaksi dalam pabrik asam sulfat tersebut digunakan Heat Exchanger

BAB I PENDAHULUAN. ditimbulkan oleh proses reaksi dalam pabrik asam sulfat tersebut digunakan Heat Exchanger BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam proses produksi Asam Sulfat banyak menimbulkan panas. Untuk mengambil panas yang ditimbulkan oleh proses reaksi dalam pabrik asam sulfat tersebut digunakan

Lebih terperinci

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI BAB IV TERMOKIMIA A. Standar Kompetensi: Memahami tentang ilmu kimia dan dasar-dasarnya serta mampu menerapkannya dalam kehidupan se-hari-hari terutama yang berhubungan langsung dengan kehidupan. B. Kompetensi

Lebih terperinci

TERMODINAMIKA (II) Dr. Ifa Puspasari

TERMODINAMIKA (II) Dr. Ifa Puspasari TERMODINAMIKA (II) Dr. Ifa Puspasari PV Work Irreversible (Pressure External Constant) Kompresi ireversibel: Kerja = Gaya x Jarak perpindahan W = F x l dimana F = P ex x A W = P ex x A x l W = - P ex x

Lebih terperinci

Kekekalan Energi energi tidak dapat diciptakan maupun dimusnahkan

Kekekalan Energi energi tidak dapat diciptakan maupun dimusnahkan Termokimia XI IPA CO 2, mineral, panas, cahaya Kekekalan Energi energi tidak dapat diciptakan maupun dimusnahkan Manusia Fotosintesis Sayuran dan Buah Entalpi energi / kalor yang terdapat dalam suatu materi.

Lebih terperinci

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH TUTORIAL 3 REAKTOR REAKTOR KIMIA NON KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS KINETIK CSTR R. PLUG R.BATCH MODEL REAKTOR ASPEN Non Kinetik Kinetik Non kinetik : - Pemodelan Simulasi

Lebih terperinci

TRANSFER MOMENTUM FLUIDA DINAMIK

TRANSFER MOMENTUM FLUIDA DINAMIK TRANSFER MOMENTUM FLUIDA DINAMIK Fluida dinamik adalah fluida dalam keadaan bergerak atau mengalir. Syarat bagi fluida untuk mengalir adalah adanya perbedaan besar gaya antara dua titik yang dijalani oleh

Lebih terperinci

Perancangan dan Simulasi Reaktor Plug Flow Adiabatis untuk Reaksi Pembuatan 1,3 Butadiena Menggunakan Program Scilab 5.1.1

Perancangan dan Simulasi Reaktor Plug Flow Adiabatis untuk Reaksi Pembuatan 1,3 Butadiena Menggunakan Program Scilab 5.1.1 Perancangan dan Simulasi Reaktor Plug Flow Adiabatis untuk Reaksi Pembuatan 1,3 Butadiena Menggunakan Program Scilab 5.1.1 Disusun Oleh: Sherly Zagita L.N 21030113120023 Farel Abdala 21030113130195 LABORAORIUM

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES II.1 Spesifikasi Bahan Baku, Bahan Pendukung, dan Produk Spesifikasi Bahan Baku 1. Metanol a. Bentuk : Cair b. Warna : Tidak berwarna c. Densitas : 789-799 kg/m 3 d. Viskositas

Lebih terperinci

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu)

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) KINETIKA DAN KATALISIS / SEMESTER GENAP 2010-2011 PRODI TEKNIK KIMIA FTI UPN VETERAN YOGYAKARTA Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu) Siti Diyar Kholisoh & I Gusti S. Budiaman / Juni 2011

Lebih terperinci

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T.

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. Pembuatan Gula Berapa banyak air yang dihilangkan didalam evaporator (lb/jam)? Berapa besar fraksi massa komponen-komponen dalam arus buangan

Lebih terperinci

TUTORIAL III REAKTOR

TUTORIAL III REAKTOR TUTORIAL III REAKTOR REAKTOR KIMIA NON KINETIK KINETIK BALANCE EQUILIBRIUM CSTR R. YIELD R. EQUIL R. PLUG R. STOIC R. GIBBS R. BATCH REAKTOR EQUILIBRIUM BASED R-Equil Menghitung berdasarkan kesetimbangan

Lebih terperinci

proses oksidasi Butana fase gas, dibagi dalam tigatahap, yaitu :

proses oksidasi Butana fase gas, dibagi dalam tigatahap, yaitu : (pra (Perancangan (PabnHjhjmia 14 JlnhiridMaleat dari(butana dan Vdara 'Kapasitas 40.000 Ton/Tahun ====:^=^=============^==== BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Langkah Proses Pada proses

Lebih terperinci

KESETIMBANGAN ENERGI

KESETIMBANGAN ENERGI KESETIMBANGAN ENERGI Landasan: Hukum I Termodinamika Energi total masuk sistem - Energi total = keluar sistem Perubahan energi total pada sistem E in E out = E system Ė in Ė out = Ė system per unit waktu

Lebih terperinci

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES. : jernih, tidak berwarna

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES. : jernih, tidak berwarna BAB II DESKRIPSI PROSES 1. Spesifikasi Bahan Baku dan Produk 1.1. Spesifikasi Bahan Baku a. Metanol (www.kaltimmethanol.com) Fase (25 o C, 1 atm) : cair Warna : jernih, tidak berwarna Densitas (25 o C)

Lebih terperinci

BAHAN BAKAR KIMIA. Ramadoni Syahputra

BAHAN BAKAR KIMIA. Ramadoni Syahputra BAHAN BAKAR KIMIA Ramadoni Syahputra 6.1 HIDROGEN 6.1.1 Pendahuluan Pada pembakaran hidrokarbon, maka unsur zat arang (Carbon, C) bersenyawa dengan unsur zat asam (Oksigen, O) membentuk karbondioksida

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES digilib.uns.ac.id BAB III SPESIFIKASI ALAT PROSES 3.1. Spesifikasi Alat Utama 3.1.1 Mixer (NH 4 ) 2 SO 4 Kode : (M-01) : Tempat mencampurkan Ammonium Sulfate dengan air : Silinder vertical dengan head

Lebih terperinci

TERMOKIMIA. Sistem terbagi atas: 1. Sistem tersekat: Antara sistem dan lingkungan tidak dapat terjadi pertukaran energi maupun materi

TERMOKIMIA. Sistem terbagi atas: 1. Sistem tersekat: Antara sistem dan lingkungan tidak dapat terjadi pertukaran energi maupun materi TERMOKIMIA almair amrulloh 12:04:00 AM 11 IPAKimia 11 IPA Asas kekekalan energi menyatakan bahwa energi tidak dapat diciptakan atau dimusnahkan, tetapi energi dapat diubah dari satu bentuk kebentuk lain

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 27 4 HASIL DAN PEMBAHASAN 4.1 Alat Penukar Panas Alat penukar panas yang dirancang merupakan tipe pipa ganda dengan arah aliran fluida berlawanan. Alat penukar panas difungsikan sebagai pengganti peran

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. sulistyani@uny.ac.id Termokimia adalah cabang dari ilmu kimia yang mempelajari hubungan antara reaksi dengan panas. Cakupan Perubahan energi yang menyertai reaksi kimia Reaksi kimia yang

Lebih terperinci

II. DESKRIPSI PROSES

II. DESKRIPSI PROSES II. DESKRIPSI PROSES A. Proses Pembuatan Trimetiletilen Secara umum pembuatan trimetiletilen dapat dilakukan dengan 2 proses berdasarkan bahan baku yang digunakan, yaitu pembuatan trimetiletilen dari n-butena

Lebih terperinci

Disampaikan oleh : Dr. Sri Handayani 2013

Disampaikan oleh : Dr. Sri Handayani 2013 Disampaikan oleh : Dr. Sri Handayani 2013 PENGERTIAN Termokimia adalah cabang dari ilmu kimia yang mempelajari hubungan antara reaksi dengan panas. HAL-HAL YANG DIPELAJARI Perubahan energi yang menyertai

Lebih terperinci

II. DESKRIPSI PROSES

II. DESKRIPSI PROSES II. DESKRIPSI PROSES A. JENIS-JENIS PROSES Proses pembuatan metil klorida dalam skala industri terbagi dalam dua proses, yaitu : a. Klorinasi Metana (Methane Chlorination) Reaksi klorinasi metana terjadi

Lebih terperinci

TERMOKIMIA. Kalor reaksi pada pembakaran 1 mol metanol menurut reaksi adalah... CH 3 OH + O 2 CO H 2 O. Penyelesaian : H

TERMOKIMIA. Kalor reaksi pada pembakaran 1 mol metanol menurut reaksi adalah... CH 3 OH + O 2 CO H 2 O. Penyelesaian : H 1. Diketahui energi ikatan rata-rata : H - O : 111 kkal.mol -1 C - H : 99 kkal.mol -1 C - O : 85 kkal.mol -1 C = O : 173 kkal.mol -1 O = O : 119 Kkal.mol -1 TERMOKIMIA Kalor reaksi pada pembakaran 1 mol

Lebih terperinci

I. Beberapa Pengertian Dasar dan Konsep

I. Beberapa Pengertian Dasar dan Konsep BAB II ENERGETIKA I. Beberapa Pengertian Dasar dan Konsep Sistem : Bagian dari alam semesta yang menjadi pusat perhatian kita dengan batasbatas yang jelas Lingkungan : Bagian di luar sistem Antara sistem

Lebih terperinci

BAB III PERANCANGAN PROSES. bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai

BAB III PERANCANGAN PROSES. bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai BAB III PERANCANGAN PROSES 3.1 Uraian Proses Proses pembuatan Metil Laktat dengan reaksi esterifikasi yang menggunakan bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai berikut

Lebih terperinci

NERACA MASSA. Dari hukum kekekalan massa dapat dituliskan persamaan neraca massa suatu proses: Massa keluar dari Massa = suatu proses + terakumulasi

NERACA MASSA. Dari hukum kekekalan massa dapat dituliskan persamaan neraca massa suatu proses: Massa keluar dari Massa = suatu proses + terakumulasi NERACA MASSA A. Pendahuluan Desain suatu proses dimulai dengan pengembangan dari diagram alir proses. Untuk pengembangan diagram alir proses, perhitungan neraca massa sangat dibutuhkan. Neraca massa ini

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi bahan baku 2.1.1.1. Ethylene Dichloride (EDC) a. Rumus Molekul : b. Berat Molekul : 98,96 g/mol c. Wujud : Cair d. Kemurnian

Lebih terperinci

atm dengan menggunakan steam dengan suhu K sebagai pemanas.

atm dengan menggunakan steam dengan suhu K sebagai pemanas. Pra (Rancangan PabrikjEthanoldan Ethylene danflir ' BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Langkah proses Pada proses pembuatan etanol dari etilen yang merupakan proses hidrasi etilen fase

Lebih terperinci

II. DESKRIPSI PROSES. (2007), metode pembuatan VCM dengan mereaksikan acetylene dengan. memproduksi vinyl chloride monomer (VCM). Metode ini dilakukan

II. DESKRIPSI PROSES. (2007), metode pembuatan VCM dengan mereaksikan acetylene dengan. memproduksi vinyl chloride monomer (VCM). Metode ini dilakukan II. DESKIPSI POSES A. Jenis - Jenis Proses a) eaksi Acetylene (C2H2) dengan Hydrogen Chloride (HCl) Menurut Nexant s ChemSystem Process Evaluation/ esearch planning (2007), metode pembuatan VCM dengan

Lebih terperinci

BAB II DESKRIPSI PROSES. Titik didih (1 atm) : 64,6 o C Spesifik gravity : 0,792 Kemurnian : 99,85% Titik didih (1 atm) : -24,9 o C Kemurnian : 99,5 %

BAB II DESKRIPSI PROSES. Titik didih (1 atm) : 64,6 o C Spesifik gravity : 0,792 Kemurnian : 99,85% Titik didih (1 atm) : -24,9 o C Kemurnian : 99,5 % BAB II DESKRIPSI PROSES 2.1 Spesifikasi Bahan Baku dan Produk 2.1.1 Spesifikasi Bahan Baku a. Metanol (PT. KMI, 2015) Fase : Cair Titik didih (1 atm) : 64,6 o C Spesifik gravity : 0,792 Kemurnian : 99,85%

Lebih terperinci

BAB II. DISKRIPSI PROSES. bahan baku yang bervariasi. Berdasarkan bahan baku ada 2 proses komersial

BAB II. DISKRIPSI PROSES. bahan baku yang bervariasi. Berdasarkan bahan baku ada 2 proses komersial BAB II. DISKRIPSI PROSES 2.1 Jenis Proses Berdasarkan Bahan Baku Tricresyl phosphate (TCP) dapat dibuat melalui beberapa proses berdasarkan bahan baku yang bervariasi. Berdasarkan bahan baku ada 2 proses

Lebih terperinci

(VP), untuk diuapkan. Selanjutnya uap hasil dari vaporizer (VP) dipisahkan

(VP), untuk diuapkan. Selanjutnya uap hasil dari vaporizer (VP) dipisahkan BAB III PERANCANGAN PROSES 3.1 URA1AN PROSES Methane, 99,85% dari tangki penyimpan bahan baicu (T-01) yang mempunyai kondisi suhu 30»C dan teka,ata, dipompa menuju vap0ri2er (VP), untuk diuapkan. Selanjutnya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

PRARANCANGAN PABRIK ACRYLAMIDE DARI ACRYLONITRILE MELALUI PROSES HIDROLISIS KAPASITAS TON/TAHUN BAB II DESKRIPSI PROSES

PRARANCANGAN PABRIK ACRYLAMIDE DARI ACRYLONITRILE MELALUI PROSES HIDROLISIS KAPASITAS TON/TAHUN BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi Bahan Baku 1. Acrylonitrile Fase : cair Warna : tidak berwarna Aroma : seperti bawang merah dan bawang putih Specific gravity

Lebih terperinci

BAB 6. Neraca Energi dengan Efek Reaksi Kimia

BAB 6. Neraca Energi dengan Efek Reaksi Kimia BAB 6 Neraca Energi dengan Efek Reaksi Kimia 1.1 Analisis Derajat Kebebasan untuk Memasukkan Neraca Energi dengan Reaksi Neraca energi dalam penghitungan derajat kebebasan menyebabkan penambahan persamaan

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Larutan benzene sebanyak 1.257,019 kg/jam pada kondisi 30 o C, 1 atm dari tangki penyimpan (T-01) dipompakan untuk dicampur dengan arus recycle dari menara

Lebih terperinci

DESKRIPSI PROSES. pereaksian sesuai dengan permintaan pasar sehingga layak dijual.

DESKRIPSI PROSES. pereaksian sesuai dengan permintaan pasar sehingga layak dijual. II. DESKRIPSI PROSES Usaha produksi dalam pabrik kimia membutuhkan berbagai sistem proses yang dirangkai dalam suatu sistem proses produksi yang disebut teknologi proses. Secara garis besar, sistem proses

Lebih terperinci

TUGAS KELOMPOK PERANCANGAN PROSES KIMIA (4 th Week May 2009)

TUGAS KELOMPOK PERANCANGAN PROSES KIMIA (4 th Week May 2009) TUGAS KELOMPOK PERANCANGAN PROSES KIMIA (4 th Week May 2009) Tugas kelompok ini bertujuan: Melatih mahasiswa berkreasi dalam perancangan proses dari hasil-hasil penelitian laboratorium untuk dapat dipakai

Lebih terperinci

MAKALAH ALAT INDUSTRI KIMIA DAN ALAT UKUR REAKTOR KIMIA

MAKALAH ALAT INDUSTRI KIMIA DAN ALAT UKUR REAKTOR KIMIA MAKALAH ALAT INDUSTRI KIMIA DAN ALAT UKUR REAKTOR KIMIA Disusun oleh: Andri Heri K 1314017 Deddy Wahyu Priyatmono 1414904 Defrizal Rizki Pradana 1414909 Ferry Setiawan 1314048 Nungki Merinda Sari 1514030

Lebih terperinci

MODUL 1 TERMOKIMIA. A. Hukum Pertama Termodinamika. B. Kalor Reaksi

MODUL 1 TERMOKIMIA. A. Hukum Pertama Termodinamika. B. Kalor Reaksi MODUL 1 TERMOKIMIA Termokimia adalah ilmu yang mempelajari hubungan antara energi panas dan energi kimia. Sebagai prasyarat untuk mempelajari termokimia, kita harus mengetahui tentang perbedaan kalor (Q)

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN Dalam pengamatan awal dilihat tiap seksi atau tahapan proses dengan memperhatikan kondisi produksi pada saat dilakukan audit energi. Dari kondisi produksi tersebut selanjutnya

Lebih terperinci

BAB II DISKRIPSI PROSES

BAB II DISKRIPSI PROSES 19 BAB II DISKRIPSI PROSES 2.1 Spesifikasi Bahan Baku, Bahan Pembantu, dan Produk 2.1.1 Spesifikasi bahan baku a. N-Butanol (PT. Petro Oxo Nusantara) Rumus molekul : C4H9OH Fase : Cair Berat Molekul :

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB III SPESIFIKASI ALAT

BAB III SPESIFIKASI ALAT digilib.uns.ac.id 47 BAB III PROSES 3.1. Alat Utama Tabel 3.1 Spesifikasi Reaktor Kode R-01 Mereaksikan asam oleat dan n-butanol menjadi n-butil Oleat dengan katalis asam sulfat Reaktor alir tangki berpengaduk

Lebih terperinci

LAMPIRAN B PERHITUNGAN NERACA ENERGI

LAMPIRAN B PERHITUNGAN NERACA ENERGI B-1 LAMPIRAN B PERHITUNGAN NERACA ENERGI Dari hasil perhitungan neraca massa selanjutnya dilakukan perhitungan neraca energi. Perhitungan neraca energi didasarkan pada : Basis : 1 jam operasi Satuan panas

Lebih terperinci

II HUKUM THERMODINAMIKA I

II HUKUM THERMODINAMIKA I II HUKUM THERMODINAMIKA I Tujuan Instruksional Khusus: Mahasiswa mampu menjelaskan hukum thermodinamika I tentang konservasi energi, serta mampu menyelesaikan permasalahan-permasalahan yang berhubungan

Lebih terperinci

LEMBARAN SOAL 5. Pilih satu jawaban yang benar!

LEMBARAN SOAL 5. Pilih satu jawaban yang benar! LEMBARAN SOAL 5 Mata Pelajaran : KIMIA Sat. Pendidikan : SMA Kelas / Program : XI IPA ( SEBELAS IPA ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA

2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan atau dilenyapkan. Energi

Lebih terperinci

BAB I PENDAHULUAN. salah satunya adalah pembangunan industri kimia di Indonesia.

BAB I PENDAHULUAN. salah satunya adalah pembangunan industri kimia di Indonesia. BAB I PENDAHULUAN 1.1. Latar Belakang Negara Indonesia saat ini sedang berusaha untuk tumbuh dan mengembangkan kemampuan yang dimiliki negara agar dapat mengurangi ketergantungan terhadap negara lain.

Lebih terperinci

Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara Distilasi.

Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara Distilasi. MATERI : MENARA DISTILASI CAMPURAN BINER PMD D3 Sperisa Distantina Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara

Lebih terperinci

Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika

Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika Sat, 13/05/2006-7:44pm godam64 Energi dari suatu benda adalah ukuran dari kesanggupan benda tersebut untuk melakukan suatu usaha.

Lebih terperinci

PROSES PRODUKSI ASAM SULFAT

PROSES PRODUKSI ASAM SULFAT PRODU KSI A SAM SU LFAT BAB III PROSES PROSES PRODUKSI ASAM SULFAT 3.1 Flow Chart Proses Produksi Untuk mempermudah pembahasan dan urutan dalam menguraikan proses produksi, penulis merangkum dalam bentuk

Lebih terperinci

HUKUM TERMODINAMIKA I

HUKUM TERMODINAMIKA I HUKUM TERMODINAMIKA I Pertemuan 3 Sistem Isotermal: Suhu-nya tetap Adiabatik: Tidak terjadi perpindahan panas antara sistem dan lingkungan Tertutup: Tidak terjadi pertukaran materi dengan lingkungan Terisolasi:

Lebih terperinci

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari.

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari. 1 Energi Dapat diubah dari bentuk yang satu ke bentuk lainnya. Kemampuan untuk melakukan kerja. Kerja: perubahan energi yang langsung dihasilkan oleh suatu proses. Energi kinetic; energy yang dihasilkan

Lebih terperinci

Perancangan Proses Kimia PERANCANGAN

Perancangan Proses Kimia PERANCANGAN Perancangan Proses Kimia PERANCANGAN SISTEM/ JARINGAN REAKTOR 1 Rancangan Kuliah Section 2 1. Dasar dasar Penggunaan CHEMCAD/HYSYS 2. Perancangan Sistem/jaringan Reaktor 3. Tugas 1 dan Pembahasannya 4.

Lebih terperinci

BAB II DESKRIPSI PROSES. Rumus Molekul : C 3 H 4 O 2

BAB II DESKRIPSI PROSES. Rumus Molekul : C 3 H 4 O 2 BAB II DESKRIPSI PROSES II.1. Spesifikasi Bahan Baku dan Produk II.1.1. Spesifikasi Bahan Baku A. Asam Akrilat (PT. Nippon Shokubai) : Nama IUPAC : prop-2-enoic acid Rumus Molekul : C 3 H 4 O 2 Berat Molekul

Lebih terperinci

Prarancangan Pabrik Etil Akrilat dari Asam Akrilat dan Etanol Kapasitas ton/tahun BAB II DESKRIPSI PROSES. Rumus molekul : C2H5OH

Prarancangan Pabrik Etil Akrilat dari Asam Akrilat dan Etanol Kapasitas ton/tahun BAB II DESKRIPSI PROSES. Rumus molekul : C2H5OH DESKRIPSI PROSES 2.1 Spesifikasi Bahan Baku dan Produk 2.1.1 Spesifikasi Bahan Baku Utama a. Etanol Sifat fisis : Rumus molekul : C2H5OH Berat molekul, gr/mol : 46,07 Titik didih, C : 78,32 Titik lebur,

Lebih terperinci

HUBUNGAN ENERGI DALAM REAKSI KIMIA

HUBUNGAN ENERGI DALAM REAKSI KIMIA HUBUNGAN ENERGI DALAM REAKSI KIMIA _KIMIA INDUSTRI_ DEWI HARDININGTYAS, ST, MT, MBA WIDHA KUSUMA NINGDYAH, ST, MT AGUSTINA EUNIKE, ST, MT, MBA ENERGI & KERJA Energi adalah kemampuan untuk melakukan kerja.

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES 34 BAB III SPESIFIKASI PERALATAN PROSES 3.1. Tangki Tangki Bahan Baku (T-01) Tangki Produk (T-02) Menyimpan kebutuhan Menyimpan Produk Isobutylene selama 30 hari. Methacrolein selama 15 hari. Spherical

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Absorpsi dan stripper adalah alat yang digunakan untuk memisahkan satu komponen atau lebih dari campurannya menggunakan prinsip perbedaan kelarutan. Solut adalah komponen

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Pabrik Fosgen ini diproduksi dengan kapasitas 30.000 ton/tahun dari bahan baku karbon monoksida dan klorin yang akan beroperasi selama 24 jam perhari dalam

Lebih terperinci

LEMBAR AKTIVITAS SISWA ( LAS )_ 1

LEMBAR AKTIVITAS SISWA ( LAS )_ 1 LEMBAR AKTIVITAS SISWA ( LAS )_ 1 1. Perhatikan reaksi berikut: CaCO 2 (s) CaO (s) + CO 2 (g) H = 178 KJ/mol. Jelaskan! a. Arah kesetimbangan ditambahkan CaCO 2 (s) b. Tiga kemungkinan yang dapat dilakukan

Lebih terperinci

Prarancangan Pabrik Polistirena dengan Proses Polimerisasi Suspensi Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT

Prarancangan Pabrik Polistirena dengan Proses Polimerisasi Suspensi Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT BAB III SPESIFIKASI ALAT 1. Tangki Penyimpanan Spesifikasi Tangki Stirena Tangki Air Tangki Asam Klorida Kode T-01 T-02 T-03 Menyimpan Menyimpan air Menyimpan bahan baku stirena monomer proses untuk 15

Lebih terperinci

BAB II DESKRIPSI PROSES. Kemurnian : minimal 99% : maksimal 1% propana (CME Group) Density : 600 kg/m 3. : 23,2 % berat dari udara.

BAB II DESKRIPSI PROSES. Kemurnian : minimal 99% : maksimal 1% propana (CME Group) Density : 600 kg/m 3. : 23,2 % berat dari udara. 15 BAB II DESKRIPSI PROSES 2.1 Spesifikasi Bahan Baku dan Produk 2.1.1 Spesifikasi Bahan Baku Butana Bentuk Warna : cair jenuh : jernih Kemurnian : minimal 99% Impuritas : maksimal 1% propana (CME Group)

Lebih terperinci

B T A CH C H R EAC EA T C OR

B T A CH C H R EAC EA T C OR BATCH REACTOR PENDAHULUAN Dalam teknik kimia, Reaktor adalah suatu jantung dari suatu proses kimia. Reaktor kimia merupakan suatu bejana tempat berlangsungnya reaksi kimia. Rancangan dari reaktor ini tergantung

Lebih terperinci

TERMOKIMIA. Hukum Hess Perubahan entalpi reaksi tetap sama, baik berlangsung dalam satu tahap maupun beberapa tahap.

TERMOKIMIA. Hukum Hess Perubahan entalpi reaksi tetap sama, baik berlangsung dalam satu tahap maupun beberapa tahap. TERMOKIMIA (Teori) Entalpi adalah jumlah total energi kalor yang terkandung dalam suatu materi Reaksi Eksoterm Menghasilkan kalor Melepas energi Perubahan entalpi negatif Reaksi Endoterm Menyerap kalor

Lebih terperinci

DAFTAR ISI. Halaman Judul... i. Lembar Pengesahan... ii. Kata Pengantar... iv. Daftar Isi... v. Daftar Tabel... ix. Daftar Gambar...

DAFTAR ISI. Halaman Judul... i. Lembar Pengesahan... ii. Kata Pengantar... iv. Daftar Isi... v. Daftar Tabel... ix. Daftar Gambar... v vi vii DAFTAR ISI Halaman Judul... i Lembar Pengesahan... ii Kata Pengantar... iv Daftar Isi... v Daftar Tabel... ix Daftar Gambar... xii Intisari... xiii BAB I PENDAHULUAN... 1 1.1. Latar Belakang Pendirian

Lebih terperinci

BAB 2 Pengenalan Neraca Energi pada Proses Tanpa Reaksi

BAB 2 Pengenalan Neraca Energi pada Proses Tanpa Reaksi BAB Pengenalan Neraca Energi pada Prses Tanpa Reaksi Knsep Hukum Kekekalan Energi Ttal energi pada sistem dan lingkungan tidak dapat diciptakan ataupun dimusnahkan..1 Neraca Energi untuk Sistem Tertutup

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES 47 BAB III SPESIFIKASI ALAT PROSES 3.1. Alat Utama Tabel 3.1 Spesifikasi Reaktor Kode R-01 Mereaksikan asam oleat dan n-butanol menjadi n-butil Oleat dengan katalis asam sulfat Reaktor alir tangki berpengaduk

Lebih terperinci

II. PEMILIHAN DAN URAIAN PROSES

II. PEMILIHAN DAN URAIAN PROSES II. PEMILIHAN DAN URAIAN PROSES Usaha produksi dalam pabrik kimia membutuhkan berbagai sistem pemroses yang dirangkai dalam suatu sistem proses produksi yang disebut teknologi proses. Secara garis besar,

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES II. Spesifikasi Bahan Baku dan Produk II... Spesifikasi bahan baku. Epichlorohydrin Rumus Molekul : C 3 H 5 OCl Wujud : Cairan tidak berwarna Sifat : Mudah menguap Kemurnian : 99,9%

Lebih terperinci

Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung

Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung Optimasi mencakup dua proses : ❶ formulasi problem optimasi dalam bentuk persamaan matematis, ❷ penyelesaian problem matematis yang terbentuk Tujuan

Lebih terperinci

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu NERACA ENERGI DAN EFISIENSI POMPA Oleh Rizqi Pandu Sudarmawan [0906557045], Kelompok 3 I. Neraca Energi Pompa Bila pada proses ekspansi akan menghasilkan penurunan tekanan pada aliran fluida, sebaliknya

Lebih terperinci

LAMPIRAN I DATA PENGAMATAN. 1. Data Pengamatan Pengujian Internal Combustion Engine

LAMPIRAN I DATA PENGAMATAN. 1. Data Pengamatan Pengujian Internal Combustion Engine LAMPIRAN I DATA PENGAMATAN 1. Data Pengamatan Pengujian Internal Combustion Engine Tabel 6. Data Pengamatan Pengujian Internal Combustion Engine Tekanan Awal P0 (psig) Tekanan Akhir P (psig) Waktu (detik)

Lebih terperinci