BAB II DASAR TEORI. Fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II DASAR TEORI. Fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat"

Transkripsi

1 BAB II DASAR TEORI II.1. Aliran Fluida Fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul dalam fluida jauh lebih kecil dari ikatan molekul dalam zat padat, akibatnya fluida mempunyai hambatan yang relatif kecil pada perubahan bentuk karena gesekan. Zat padat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar diberikan pada zat padat tersebut, zat padat tidak mudah berubah bentuk maupun volumenya, sedangkan zat cair dan gas, zat cair tidak mempertahankan bentuk yang tetap, zat cair mengikuti bentuk wadahnya dan volumenya dapat diubah hanya jika diberikan padanya gaya yang sangat besar dan gas tidak mempunyai bentuk dan maupun volume yang tetap,gas akan berkembang mengisi seluruh wadah. Karena fase cair dan gas tidak mempertahankan suatu bentuk yang tetap, keduanya mempunyai kemampuan untuk mengalir. Dengan demikian kedua duanya sering secara kolektif disebut sebagai fluida. II.2. Sifat Dasar Fluida Cairan dan gas disebut fluida, sebab zat cair tersebut dapat mengalir. Untuk mengerti aliran fluida maka harus mengetahui beberapa sifat dasar fluida. Adapun sifat sifat dasar fluida yaitu; kerapatan (density), berat jenis (specific gravity), tekanan (pressure), kekentalan (viscosity).

2 II.2.1. Kerapatan (density) Kerapatan atau density dinyatakan dengan ρ (ρ adalah huruf kecil Yunani yang dibaca rho ), didefinisikan sebagai mass per satuan volume. m 3 ρ = [ kg/m ] v (2-1) dimana ρ = kerapatan (kg/m 3 ) m = massa benda (kg) v = volume (m 3 ) Pada persamaan 2-1 diatas, dapat digunakan untuk menuliskan massa, dengan persamaan sebagai berikut : M = ρ v [ kg ] (2-2) Kerapatan adalah suatu sifat karakteristik setiap bahan murni. Benda tersusun atas bahan murni, misalnya emas murni, yang dapat memiliki berbagai ukuran ataupun massa, tetapi kerapatannya akan sama untuk semuanya. Satuan SI untuk kerapatan adalah kg/m 3. Kadang kerapatan diberikan dalam g/cm 3. Dengan catatan bahwa jika kg/m 3 = 1000 g/(100 cm) 3, kemudian kerapatan yang diberikan dalam g/cm 3 harus dikalikan dengan 1000 untuk memberikan hasil dalam kg/m 3. Dengan demikian kerapatan air adalah 1,00 g/cm 3, akan sama dengan 1000 kg/m 3. Berbagai kerapatan bahan diunjukkan pada tabel II-1. Dalam tabel II-1 tersebut ditetapkan suhu dan tekanan karena besaran ini akan dipengaruhi kerapatan bahan (meskipun pengaruhnya kecil untuk zat cair).

3 Tabel II-1 : Berbagai kerapatan (density) bahan Bahan Kerapatan ρ (kg/m 3 ) Cair Air pada suhu 4 0 C 1.00 х 10 3 Darah, plasma 1.03 х 10 3 Darah seluruhnya 1.05 х 10 3 Air laut х 10 3 Raksa 13.6 х 10 3 Alkohol, alkyl 0.79 х 10 3 Bensin 0.68 х 10 3 Gas Udara 1.29 Helium Karbon dioksida 1.98 Uap air pada suhu C Kerapatan ditetapkan pada suhu 0 0 C dan tekanan 1 atm, kecuali ditentukan lain II.2.2. Berat jenis (specific gravity) Berat jenis suatu bahan didefinikan sebagai perbandingan kerapatan bahan terhadap kerapatan air. Berat jenis (specific gravity disingkat SG) adalah besaran murni tanpa dimensi maupun satuan, dinyatakan pada persamaan 2-3 dan 2-4 sebagai berikut : ρ c (g/cm 3 ) Untuk fluida cair SGc = (2-3) ρ w (g/cm 3 ) ρ g (g/cm 3 ) Untuk fluida cair SGg = (2-4) ρ a (g/cm 3 )

4 Dimana ρc = massa jenis cairan (g/cm 3 ) ρw = massa jenis air (g/cm 3 ) ρg = massa jenis gas (g/cm 3 ) ρa = massa jenis udara (g/cm 3 ) II.2.3. Tekanan (pressure) Tekanan didefinisikan sebagai gaya per satuan luas, dengan gaya F dianggap bekerja secara tegak lurus terhadap luas permukaan A, maka : P = A F [ kg/m 2 ] (2-5) dimana P = tekanan (kg/m 2 ) F = gaya (kg) A = luas permukaan (m 2 ) Satuan tekanan dalam SI adalah N/m 2. Satuan ini mempunyai nama resmi Pascal (Pa), untuk penghormatan terhadap Blaise Pascal dipakai 1 Pa = 1 N/m 2. Namun untuk penyederhanaan, sering menggunakan N/m 2. Satuan lain yang digunakan adalah dyne/cm 2, lb/in 2, (kadang disingkat dengan psi ), dan kg/cm 2 (apabila kilogram adalah gaya : yaitu, 1 kg/cm 2 = 10 N/cm 2 ). Sebagai contoh perhitungan tekanan, seorang dengan berat 60 kg yang kedua kakinya menutupi luasan 500 cm 2 akan menggunakan tekanan sebesar : F/A = m.g/a = (60 kg х 9,8 m/det 2 ) / 0,050 m 2 = kg/m 2 = 12 х 10 4 N/m 2.terhadap tanah. Jika orang tersebut berdiri dengan satu kaki atau dua kaki dengan luasan yang lebih kecil, gayanya akan sama tetapi karena luasannya menjadi 1 2 maka tekanannya akan menjadi dua kali yaitu 24 х 10 4 N/m 2.

5 Konsep tekanan sangat berguna terutama dalam berurusan dengan fluida. Sebuah fakta eksperimental menunjukkan bahwa fluida menggunakan tekanan ke semua arah. Hal ini sangat dikenal oleh para perenang dan juga penyelam yang secara langsung merasakan tekanan air pada seluruh bagian tubuhnya. Pada titik tertentu dalam fluida diam, tekanan sama untuk semua arah. Ini diilustrasikan dalam II-1. Bayangan fluida dalam sebuah kubus kecil sehingga kita dapat mengabaikan gaya gravitasi yang bekerja padanya. Tekanan pada suatu sisi harus sama dengan tekanan pada sisi yang berlawanan. Jika hal ini tidak benar, gaya netto yang bekerja pada kubus ini tidak akan sama dengan nol, dan kubus ini akan bergerak hingga tekanan yang bekerja menjadi sama. Gambar II-1 : tekanan adalah sama di setiap arah dalam suatu fluida pada kedalaman tertentu jika tidak demikian maka fluida akan bergerak Tekanan dalam cairan yang mempunyai kerapatan seragam akan bervariasi terhadap kedalaman. Bayangan sebuah titik yang terletak pada kedalaman h dibawah permukaan cairan seperti yang ditunjukkan pada gambar II-2 sebagai berikut : Gambar II-2 : Tekanan pada kedalaman h dalam cairan Tekanan yang disebabkan oleh cairan pada kedalaman h ini disebabkan oleh berat kolom cairan di atasnya. Dengan demikian gaya yang bekerja pada luasan

6 tersebut adalah F = mg = ρahg,dengan Ah adalah volume kolom tersebut, ρ adalah kerapatan cairan (diasumsikan konstan), dan g adalah percepatan gravitasi. Kemudian tekanan P, adalah P = F ρgh = A A [ kg/m 2 ] (2-6) P = ρ.g.h [ kg/m 2 ] (2-7) Dengan demikian, tekanan berbanding lurus dengan kerapatan cairan, dan kedalaman cairan tersebut. Secara umum, tekanan pada kedalaman yang sama dalam cairan yang seragam sama. Persamaan 2-7, berlaku untuk fluida yang kerapatannya konstan dan tidak berubah terhadap kedalaman yaitu, jika fluida tersebut tak dapat dimampatkan (incompressible). Ini biasanya merupakan pendekatan yang baik untuk fluida (meskipun pada kedalaman yang sangat dalam didalam lautan, kerapatan air naik terutama akibat pemampatan yang disebabkan oleh berat air dalam jumlah besar diatasnya ). Dilain pihak, gas dapat mampat, dan kerapatannya dapat bervariasi cukup besar terhadap perubahan kedalaman. Jika kerapatannya hanya bervariasi sangat kecil, persamaan 2-8 berikut dapat digunakan untuk menentukan perbedaan tekanan p pada ketinggian yang berbeda dengan ρ adalah kerapatan rata-rata p = ρ g h [ mmhg ] (2-8) dimana : p = perbedaan tekanan ( mmhg ) ρ = kerapatan ( kg/m 3 ) g = gravitasi ( m/det 2 ) h = pertambahan kedalaman ( m )

7 II.2.4. Kekentalan (viscosity) Kekentalan (viscosity) didefinisikan sebagai gesekan internal atau gesekan fluida terhadap wadah dimana fluida itu mengalir. Ini ada dalam cairan atau gas, dan pada dasarnya adalah gesekan antar lapisan fluida yang berdekatan ketika bergerak melintasi satu sama lain atau gesekan antara fluida dengan wadah tempat ia mengalir. Dalam cairan, kekentalan disebabkan oleh gaya kohesif antara molekul-molekulnya sedangkan gas, berasal tumbukan diantara molekul-molekul tersebut. Kekentalan fluida yang berbeda dapat dinyatakan secara kuantatif dengan koefisien kekentalan, η yang didefinisikan dengan cara sebagai berikut : Fluida diletakkan diantara dua lempengan datar. Salah satu lempengan diam dan yang lain dibuat bergerak. Fluida yang secara langsung bersinggungan dengan masingmasing lempengan ditarik pada permukaanya oleh gaya rekat diantara molekulmolekul cairan dengan kedua lempengan tersebut. Dengan demikian permukaan fluida sebelah atas bergerak dengan laju v yang seperti lempengan atas, sedangkan fluida yang bersinggungan dengan lempengan diam bertahan diam. Kecepatan bervariasi secara linear dari 0 hingga v seperti ditunjukkan gambar II-3. Lempengan bergerak v F Fluida Lempengan diam gradien kecepatan I Gambar 2-3 : Penentuan kekentalan Kenaikan kecepatan dibagi oleh jarak dengan perubahan ini dibuat sama dengan v/i disebut gradien kecepatan. Untuk menggerakkan lempengan diatas memerlukan

8 gaya, yang dapat dibuktikan dengan menggerakkan lempengan datar melewati genangan fluida. Untuk fluida tertentu, diperoleh bahwa gaya sebagai berikut : F = FL I [ kg/m 2 ] (2-9) Untuk fluida yang berbeda, fluida yang kental, diperlukan gaya yang lebih besar. Tetapan kesebandingan untuk persamaan ini didefinisikan sebagai koefisien kekentalan, η : η = FL AV [ Pa.s ] (2-10) dimana : F = gaya (kg/m 2 ) A = luasan fluida yang bersinggungan dengan setiap lempengan ( m 2 ) V = kecepatan fluida (m/detik 2 ) L = Jarak lempengannya (m 2 ) η = koefisien kekentalan ( pa.s ) Penyelesaian untuk η, kita peroleh η = FI/vA. Satuan SI untuk η adalah N.s/m 2 = Pa.s (pascal.detik). Dalam sistem cgs, satuan ini adalah dyne.s/cm 2 dan satuan ini disebut poise (P). Kekentalan sering dinyatakan dalam centipoises (cp), yaitu 1/100 poise. Tabel II-2 menunjukkan daftar koefisien kekentalan untuk berbagai fluida. Suhu juga dispesifikasikan, karena mempunyai efek yang berpengaruh dalam menyatakan kekentalan cairan ; kekentalan cairan seperti minyak motor, sebagai contohnya, menurun dengan cepat terhadap kenaikan suhu.

9 Tabel II-2. Koefisien kekentalan untuk berbagai fluida Fluida Suhu Koefisien kekentalan η (Pa.s) Air Darah seluruh tubuh Plasma darah Alkohol ethyl Mesin mesin (SAE 10) Gliserin Udara Hidrogen Uap air ,8 х ,0 х ,3 х х ,5 х ,2 х х х ,018 х х х Pa.s = 10 P = 1000 cp II.3. Aliran dalam tabung Jika fluida tidak mempunyai kekentalan, ia dapat mengalir melalui tabung atau pipa mendatar tanpa memerlukan gaya. Oleh karena itu adanya kekentalan, perbedaan tekanan antara kedua ujung tabung diperlukan untuk aliran mantap setiap fluida nyata, misalnya air atau minyak didalam pipa. Laju alir dalam tabung bulat bergantung pada kekentalan fluida, perbedaan tekanan, dan dimensi tabung. Seorang ilmuan Perancis J.L Poiseuille ( ), yang tertarik pada fisika sirkulasi darah (yang menamakan poise ), menentukan bagaimana variabel yang mempengaruhi laju aliran fluida yang tak dapat mampat yang menjalani aliran laminar dalam sebuah tabung silinder. Hasilnya dikenal sebagai persamaan Poiseuille sebagai berikut :

10 πr 4 ( P 1 P 2 ) Q = [ m 3 /detik ] (2-11) 8 η L dimana : r = jari-jari dalam tabung ( m ) L = panjang tabung ( m ) P 1 -P 2 = perbedaan tekanan pada kedua ujung (atm) η = kekentalan (P.s/m 2 ) Q = laju aliran volume (m 3 /detik) II.3.1. Persamaan Kontiunitas Gerak fluida didalam suatu tabung aliran haruslah sejajar dengan dinding tabung. Meskipun besar kecepatan fluida dapat berbeda dari suatu titik ke titik lain didalam tabung. Pada gambar II-4 menunjukkan tabung aliran untuk membuktikan persamaan kontinuitas. Gambar II-4 : Tabung aliran membuktikan persamaan kontinuitas Pada gambar II-4, misalkan pada titik P besar kecepatan adalah V 1, dan pada titik Q adalah V 2. Kemudian A 1 dan A 2 adalah luas penampang tabung aliran tegak lurus pada titik Q. Didalam interval waktu t sebuah elemen fluida mengalir kira -kira sejauh V t. Maka massa fluida m 1 yang menyeberangi A 1 selama interval waktu t adalah m = ρ 1 A 1 V 1 t (2-12) dengan kata lain massa m1/ t adalah kira -kira sama dengan ρ 1 A 1 V 1. Kita harus mengambil t cukup kecil sehingga didalam interval waktu ini baik V maupun A

11 tidak berubah banyak pada jarak yang dijalani fluida, sehingga dapat ditulis massa di titik P adalah ρ 1 A 1 V 1 massa di titik Q adalah ρ 2 A 2 V 2, dimana ρ 1 dan ρ 2 berturut-turut adalah kerapatan fluida di P dan Q. Karena tidak ada fluida yang berkurang dan bertambah maka massa yang menyeberangi setiap bagian tabung per satuan waktu haruslah konstan. Maka massa P haruslah sama dengan massa di Q, sehingga dapatlah ditulis; ρ 1 A 1 V 1 = ρ 2 A 2 V 2 (2-13) atau ρ A V = konstan (2-14) Persamaan (2-15) berikut menyatakan hukum kekekalan massa didalam fluida. Jika fluida yang mengalir tidak termampatkan, dalam arti kerapatan konstan maka persamaan (2-15) dapat ditulis menjadi : A 1 V 1 = A 2 V 2 (2-15) A V = konstan (2-16) Persamaan diatas dikenal dengan persamaan kontinuitas. II.4. Jenis dan Karakteristik Fluida Hal yang berhubungan dengan jenis dan karakteristik aliran fluida yang dimaksudkan disini adalah profil aliran dalam wadah tertutup (pipa umumnya). Profil aliran dari fluida yang melalui pipa, akan dipengaruhi oleh gaya momentum fluida yang membuat fluida bergerak di dalam pipa, gaya viscous/gaya gesek yang menahan aliran pada dinding pipa dan fluidanya sendiri (gesekan internal) dan juga dipengaruhi oleh belokan pipa, valve sebagainya.

12 Jenis aliran fluida terbagi dalam 2 bagian yaitu : 1. Aliran Laminar 2. Aliran Turbulen Pada gambar II-5 dibawah ini diperlihatkan profil aliran fluida : Gambar II-5 : Jenis aliran fluida Laminer berasal dari bahasa latin thin plate yang berarti plate tipis atau aliran sangat halus. Pada aliran laminer, gaya viscous (gesek) yang relatif besar mempengaruhi kecepatan aliran sehingga semakin mendekati dinding pipa, semakin rendah kecepatannya. Secara teori, aliran ini berbentuk parabola dengan bagian tengah mempunyai kecepatan paling pinggir mempunyai kecepatan paling rendah akibat adanya gaya gesekan. Pada aliran turbulen, gaya momentum aliran lebih besar dibandingkan gaya gesekan dan pengaruh dari dinding pipa menjadi kecil. Karenanya aliran turbulen memberikan profil kecepatan yang lebih seragam dibandingkan aliran laminer, walaupun pada lapisan fluida dekat dinding pipa tetap laminer. Profil kecepatan pada daerah transisi antara laminer dan turbulen dapat tidak stabil dan sulit untuk diperkirakan karena aliran dapat menunjukkan sifat dari daerah aliran laminer maupun turbulen atau osilasi antara keduanya. Pada beberapa tempat, aliran turbulen dibutuhkan untuk pencampuran zat cair. Pola aliran laminar dan turbulen diperlihatkan pada gambar II-6 dibawah ini.

13 Gambar II-6 : Pola aliran Turbulen dan Laminer Untuk mengetahui jenis aliran fluida dilakukan dengan apa yang disebut dengan bilangan Reynolds (Rd). RD = Gaya momentum Gaya Gesek RD = 3160 х Q х SG (Liquid) (2-17) η х D Dimana : Rd = Bilangan Reynolds Q = Laju aliran (m 3 /menit) SG = spesific gravity (g/cm 3 ) η = Koefisien kekentalan (kg/m 3 ) D = Diameter pipa (m 2 ) Besarnya bilangan Reynold yang terjadi pada suau aliran dalam pipa dapat menunjukkan apakah profil aliran tersebut luminer atau turbulen. Biasanya angka Rd <2000 merupakan batas aliran laminer dan angka lebih besar dari Rd >2300 dikatakan aliran turbulen. Sedangkan Rd diantara keduanya dinyatakan sebagai aliran transisi. Karakteristik lain yang mempengaruhi pengukuran laju aliran adalah temperatur dan tekanan fluida tersebut, khususnya bila fluida tersebut adalah fluida gas. Hal ini disebabkan karena massa jenis (ρ) fluida gas sangat dipengaruhi oleh kedua besaran yang disebutkan diatas.

14 Jenis aliran fluida didalam pipa tergantung pada beberapa faktor, yaitu : 1. Kecepatan fluida (V) didefinisikan besarnya debit aliran yang mengalir persatuan luas. Q V = [ m/detik ] (2-18) A 2. Debit (Q) didefinisikan suatu kecepatan aliran fluida yang memberikan banyaknya volume fluida dalam pipa. Q = A х V [ m 3 detik ] (2-19) Dimana V = kecepatan aliran (m) Q = laju aliran (m 3 ) A = luas pipa (m 2 ) II.5. Pengenalan Alat Ukur Didalam pabrik-pabrik pengolahan dilengkapi dengan berbagai macam alat pengoperasian. Setiap peralatan saling mendukung antara satu peralatan dengan peralatan lainnya. Untuk mencapai hasil yang diinginkan maka diperlukan peralatan pendukung. Salah satu peralatan pendukung yang penting dalam suatu pabrik adalah peralatan instrument pabrik. Peralatan instrument merupakan bagian dari kelengkapan keterpasangan peralatan yang dapat dipergunakan untuk mengetahui dan memperoleh sesuatu yang dikehendaki dari suatu kegiatan kerja peralatan mekanik. Salah satu peralatan instrument yang penting adalah alat ukur. Penggunaan alat ukur dalam pabrik sangat banyak digunakan, ini bertujuan untuk menjaga agar hasil yang diinginkan sesuai dengan kebutuhan sehingga perlu adanya peliharaan/perawatan dari alat ukur. Alat-alat ukur instrument yang dipergunakan untuk mengukur dan menunjukkan besaran suatu fluida disebut sebagai alat ukur aliran fluida, yaitu ;

15 1. Alat Ukur Primer Yang dimaksud dengan alat ukur primer adalah bagian alat ukur yang berfungsi sebagai alat perasa. 2. Alat Ukur Sekunder Alat ukur sekunder adalah bagian yang mengubah dan menunjukkan besaran aliran yang dirasakan alat perasa supaya dapat dibaca. Alat ukur yang sering kita jumpai di dalam pabrik dibagi menurut fungsinya yaitu; a. Alat Pengukur Aliran Alat yang digunakan untuk mengukur kecepatan aliran dari fluida yang mengalir. b. Alat pengukur tekanan Alat yang digunakan untuk mengukur dan menunjukkan besaran tekanan dari fluida. c. Alat pengukur tinggi permukaan cairan Alat yang digunakan untuk mengukur ketinggian permukaan fluida d. Alat pengukur temperature Alat yang digunakan untuk mengukur dan menunjukkan besaran temperatur. II.5.1. Tujuan pengukuran aliran fluida Tujuan dari pada pengukuran aliran fluida adalah 1. Untuk mencegah kerusakan peralatan 2. Mendapatkan mutu produksi yang diinginkan dan 3. Mengontrol jalannya proses.

16 II.6. Jenis Alat Ukur Aliran Fluida Jenis alat ukur aliran fluida yang paling banyak digunakan diantara alat ukur lainnya adalah alat ukur aliran fluida jenis beda tekanan. Hal ini dikarenakan oleh konstruksinya yang sederhana dan pemasangannya yang mudah. Alat ukur aliran beda tekanan dibagi atas empat jenis : 1. Venturi Meter 2. Plat Orifice 3. Nozzle 4. Pitot Tube II.6.1. Tabung Venturi Tabung Venturi adalah suatu alat yang terdiri dari pipa dengan penyempitan dibagian tengah yang dipasang di dalam suatu pipa aliran untuk mengukur kecepatan aliran suatu zat cair. Fluida yang digunakan pada venturi meter ini dapat berupa cairan gas dan uap. Tabung Venturi ini merupakan alat primer dari pengukuran aliran yang berfungsi untuk mendapatkan beda tekanannya dapat dilihat pada gambar II-7. Sedangkan alat untuk menunjukkan besaran aliran fluida yang diukur atau alat sekundernya adalah manometer tabung U. Tabung Venturi memiliki kerugian praktek tertentu karena harganya mahal, memerlukan ruang yang besar dan rasio diameter throatnya dengan diameter pipa tidak dapat diubah. Untuk sebuah tabung venturi tertentu dan sistem manometer tertentu, kecepatan aliran yang dapat diukur adalah tetap sehingga jika kecepatan aliran maka diameter throatnya dapat diperbesar untuk memberikan pembacaan yang akurat atau diperkecil untuk mengakomodasi kecepatan aliran maksimum yang baru.

17 Pada venturi ini fluida masuk melalui bagian inlet dan diteruskan kebagaian inle cone. Pada bagian inlet ini ditempatkan titik pengambilan tekanan awal. Pada bagian inlet cone fluida akan mengalami penurunan tekanan yang disebabkan oleh bagian inlet cone yang berbentuk kerucut atau semakin mengecil kebagian throat. Kemudian fluida akan masuk kebagian throat, pada bagian throat inilah tempat-tempat pengambilan tekanan akhir dimana throat ini berbentuk bulat datar. Laju fluida akan melewati bagian akhir dari tabung venturi yaitu outlet cone. Outlet cone ini berbentuk kerucut dimanan bagian kecil berada pada throat dan pada outlet cone ini tekanan akan kembali normal. Jika aliran melalui tabung venturi benar-benar tanpa gesekan, maka tekanan fluida yang meninggalkan meteran tentulah sama persis dengan tekanan fluida yang memasuki meteran dan keberadaan meteran dalam jalur tersebut tidak akan menyebabkan kehilangan tekanan yang bersifat permanen dalam tekanan. Penurunan tekanan pada inlet cone akan dipulihkan dengan sempurna pada outlet cone. Gesekan tidak dapat ditiadakan dan juga kehilangan tekanan yang permanen dalam sebuah meteran yang dirancang dengan tepat. Gambar II-7. Tabung Venturi

18 Tabung Venturi terdiri dari 4 bagian yaitu: a. Bagian inlet Bagian yang berbentuk lurus dengan diameter yang sama seperti diameter pipa atau cerobong aliran. Lobang pengambilan tekanan awal ditempatkan pada bagian ini. b. Inlet cone Bagian inlet yang berbentuk seperti kerucut yang berfungsi untuk menaikkan tekanan fluida c. Throat (leher) Bagian tempat pengambilan beda tekanan akhir, dimana pada bagian ini berbentuk bulat datar. Hal ini dimaksudkan agar tidak mengurangi atau menambah kecepatan dari aliran yang keluar dari inlet cone d. Outlet cone Bagian akhir dari venturi meter yang merupakan kebalikan dari inlet cone. II.6.2. Plat Orifice Plat orifice merupakan pengukur aliran yang paling murah, paling mudah pemasangannya tetapi kecil juga ketelitiannya di antara pengukur-pengukur aliran jenis head flow meter. Pelat orifice merupakan plat yang berlubang dengan piringan tajam. Pelat-pelat ini terbuat dari bahan-bahan yang kuat. selain terbuat dari logam, ada juga orificenya yang terbuat dari plastic agar tidak terpengaruh oleh fluida yang menglir (erosi atau korosi).

19 II.6.3. Nozzle Flow nozzle sama halnya dengan Plat Orifice yaitu terpasang diantara dua flens. Flow nozzle biasa digunakan untuk aliran fluida yang besar, sedangkan plat orifice digunakan untuk aliran fluida yang kecil. Karena flow nozzle mempunyai lubang besar dan kehilangan tekanan lebih kecil dari pada plat orifice sehingga flow nozzle dipakai untuk fluida kecepatan tinggi seperti uap tekanan tinggi pada temperatur tinggi dan untuk penyediaan air ketel. Flow nozzle ini merupakan alat primer dari pengukuran aliran yang berfungsi untuk mendapatkan beda tekanannya. Sedangkan alat untuk menunjukkan besaran aliran fluida yang diukur atau alat sekundernya adalah berupa manometer. Pada flow nozzle kecepatan bertambah dan tekanan semakin berkurang seperti dalam venturi meter. Dan aliran fluida akan keluar secara bebas setelah melewati lubang flow nozzle sama seperti pada plat orifice. Flow nozzle terdiri dari dua bagian utama dapat dilihat pada gambar II-8, yaitu bagian yang melengkung dan bagian yang silinder. Pada flow nozzle tap-up stream atau tap awal ditempatkan pada jarak yang sama dengan diameter dari pipa yang digunakan, sedangkan untuk tap-down stream atau tap akhir ditempatkan pada jarak setengah dari diameter pipa yang digunakan. Gambar II-8 : Flow Nozzle

20 II.6.4. Pitot Tubes Nama pitot tubes datang dari konsepsi Henry De Pitot Pada tahun Pitot tubes mengukur besaran aliran fluida dengan jalan menghasilkan beda tekanan yang diberikan oleh kecepatan fluida itu sendiri, dapat dilihat pada gambar II-9, sama halnya seperti plat orifice, pitot tubes membutuhkan dua lubang pengukur tekanan untuk menghasilkan sesuatu beda tekanan. Pada pitot tube ini biasanya fluida yang digunakan adalah jenis cairan dan gas. Pitot tubes terbuat dari stainless steel dan kuningan. Gambar II-9 : Pitot Tube Pada dasarnya prinsip kerja dari keempat alat ini sama yaitu bila aliran fluida yang menglir melalui alat ini maka akan terjadi perbedaan tekanan sebelum dan sesudah alat ini. Beda tekanan menjadi lebih besar bila laju arus yang diberikan kepada alat ini bertambah.

BAB II LANDASAN TEORI. dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya

BAB II LANDASAN TEORI. dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya BAB II LANDASAN TEORI 2.1 Pengukuran Laju Aliran Fluida dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya berasal dari hukum kekekalan massa seperti yang terlihat pada Gambar

Lebih terperinci

BAB II TINJAUAN PUSTAKA. turbulen, laminar, nyata, ideal, mampu balik, tak mampu balik, seragam, tak

BAB II TINJAUAN PUSTAKA. turbulen, laminar, nyata, ideal, mampu balik, tak mampu balik, seragam, tak BAB II TINJAUAN PUSTAKA 2.1. Aliran Aliran dapat diklasifikasikan (digolongkan) dalam banyak jenis seperti: turbulen, laminar, nyata, ideal, mampu balik, tak mampu balik, seragam, tak seragam, rotasional,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

9/17/ FLUIDA. Padat. Fase materi Cair. Gas

9/17/ FLUIDA. Padat. Fase materi Cair. Gas 6. FLUIDA 9/17/01 Padat Fase materi Cair Gas 1 1 Massa Jenis dan Gravitasi Khusus 9/17/01 m ρ Massa jenis, rho (kg/m 3 ) V Contoh (1): Berapa massa bola besi yang padat dengan radius 18 cm? Jawaban: m

Lebih terperinci

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia

FLUIDA. Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia FLUIDA Fluida merupakan sesuatu yang dapat mengalir sehingga sering disebut sebagai zat alir. Fasa zat cair dan gas termasuk ke

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida MEKANIKA FLUIDA Zat dibedakan dalam 3 keadaan dasar (fase), yaitu:. Fase padat, zat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar dikerjakan pada benda padat. 2. Fase

Lebih terperinci

MEKANIKA FLUIDA A. Statika Fluida

MEKANIKA FLUIDA A. Statika Fluida MEKANIKA FLUIDA Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida, jelas bahwa bukan benda tegar, sebab jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-molekul

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Fluida Fluida adalah suatu zat yang dapat berubah secar terus menerus bila menerima tegangan geser walaupun tegangan geser itu relative kecil. Fluida dalam keadaan diam

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 11) Statika dan Dinamika Fluida Pertanyaan Apakah fluida itu? 1. Cairan 2. Gas 3. Sesuatu yang dapat mengalir 4. Sesuatu yang dapat berubah mengikuti bentuk

Lebih terperinci

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng ALIRAN FLUIDA Kode Mata Kuliah : 2035530 Bobot : 3 SKS Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng Apa yang kalian lihat?? Definisi Fluida Definisi yang lebih tepat untuk membedakan zat

Lebih terperinci

PERTEMUAN III HIDROSTATISTIKA

PERTEMUAN III HIDROSTATISTIKA PERTEMUAN III HIDROSTATISTIKA Pengenalan Statika Fluida (Hidrostatik) Hidrostatika adalah ilmu yang mempelajari perilaku zat cair dalam keadaan diam. Konsep Tekanan Tekanan : jumlah gaya tiap satuan luas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis 1 BAB FLUIDA 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis Massa Jenis Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. Yang termasuk

Lebih terperinci

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida KTSP & K-13 FIsika K e l a s XI FLUID STTIS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi fluida statis.. Memahami sifat-sifat fluida

Lebih terperinci

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya 8. FLUIDA Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Tegangan Permukaan Viskositas Fluida Mengalir Kontinuitas Persamaan Bernouli Materi Kuliah 1 Tegangan Permukaan Gaya tarik

Lebih terperinci

F L U I D A TIM FISIKA

F L U I D A TIM FISIKA L U I D A TIM ISIKA 1 Materi Kuliah luida dan enomena luida Massa Jenis Tekanan Prinsip Pascal Prinsip Archimedes LUIDA luida merupakan sesuatu yang dapat mengalir sehingga sering disebut sebagai zat alir.

Lebih terperinci

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Fisika Umum (MA101) Topik hari ini: Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Zat Padat dan Fluida Pertanyaan Apa itu fluida? 1. Cairan 2. Gas 3. Sesuatu yang

Lebih terperinci

Rumus Minimal. Debit Q = V/t Q = Av

Rumus Minimal. Debit Q = V/t Q = Av Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q

Lebih terperinci

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Beberapa topik tegangan permukaan

Lebih terperinci

Fisika Dasar I (FI-321) Mekanika Zat Padat dan Fluida

Fisika Dasar I (FI-321) Mekanika Zat Padat dan Fluida Fisika Dasar I (FI-321) Topik hari ini (minggu 11) Mekanika Zat Padat dan Fluida Keadaan Zat/Bahan Padat Cair Gas Plasma Kita akan membahas: Sifat mekanis zat padat dan fluida (diam dan bergerak) Kerapatan

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB II LANDASAN TEORI. tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat

BAB II LANDASAN TEORI. tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat BAB II LANDASAN TEORI II. 1. Teori Pengukuran II.1.1. Pengertian Pengukuran Pengukuran adalah proses menetapkan standar untuk setiap besaran yang tidak terdefinisi. Standar tersebut dapat berupa barang

Lebih terperinci

Fisika Umum (MA-301) Sifat-sifat Zat Padat Gas Cair Plasma

Fisika Umum (MA-301) Sifat-sifat Zat Padat Gas Cair Plasma Fisika Umum (MA-301) Topik hari ini (minggu 4) Sifat-sifat Zat Padat Gas Cair Plasma Sifat Atomik Zat Molekul Atom Inti Atom Proton dan neutron Quarks: up, down, strange, charmed, bottom, and top Antimateri

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

Dengan P = selisih tekanan. Gambar 2.2 Bejana Berhubungan (2.1) (2.2) (2.3)

Dengan P = selisih tekanan. Gambar 2.2 Bejana Berhubungan (2.1) (2.2) (2.3) FLUIDA STATIS 1. Tekanan Hidrostatis Tekanan (P) adalah gaya yang bekerja tiap satuan luas. Dalam Sistem Internasional (SI), satuan tekanan adalah N/m 2, yang disebut juga dengan pascal (Pa). Gaya F yang

Lebih terperinci

Materi Fluida Statik Siklus 1.

Materi Fluida Statik Siklus 1. Materi Fluida Statik Siklus 1. Untuk pembelajaran besok, kita akan belajar tentang dua hal berikut ini : Hukum Utama Hidrostatis Fluida adalah zat yang dapat mengalir dan berubah bentuk (dapat dimampatkan)

Lebih terperinci

HIDRODINAMIKA BAB I PENDAHULUAN

HIDRODINAMIKA BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Kinematika adalah tinjauan gerak partikel zat cair tanpa memperhatikan gaya yang menyebabkan gerak tersebut. Kinematika mempelajari kecepatan disetiap titik dalam medan

Lebih terperinci

MEKANIKA FLUIDA CONTOH TERAPAN DIBIDANG FARMASI DAN KESEHATAN?

MEKANIKA FLUIDA CONTOH TERAPAN DIBIDANG FARMASI DAN KESEHATAN? MEKANIKA FLUIDA DISIPLIN ILMU YANG MERUPAKAN BAGIAN DARI BIDANG MEKANIKA TERAPAN YANG MENGKAJI PERILAKU DARI ZAT-ZAT CAIR DAN GAS DALAM KEADAAN DIAM ATAUPUN BERGERAK. CONTOH TERAPAN DIBIDANG FARMASI DAN

Lebih terperinci

Fluida Statik & Dinamik

Fluida Statik & Dinamik Pendahuluan Fluida Statik & Dinamik Fluida didefinisikan sebagai zat yang dapat mengalir yaitu zat cair dan zat gas(termasuk gas yang terionisasi atau plasma) tetapi zat padat pada temperatur tertentu

Lebih terperinci

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut.

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut. HUKUM STOKES I. Pendahuluan Viskositas dan Hukum Stokes - Viskositas (kekentalan) fluida menyatakan besarnya gesekan yang dialami oleh suatu fluida saat mengalir. Makin besar viskositas suatu fluida, makin

Lebih terperinci

Definisi dan Sifat Fluida

Definisi dan Sifat Fluida TKS 4005 HIDROLIKA DASAR / 2 sks Definisi dan Sifat Fluida Ir. Suroso, M.Eng., Dipl.HE Dr. Eng. Alwafi Pujiraharjo Department University of Brawijaya Apakah Fluida itu? Bandingkan antara zat padat dan

Lebih terperinci

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap.

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap. Fluida Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-moleku1di dalam fluida mempunyai kebebasan

Lebih terperinci

FLUIDA DINAMIS. Ciri-ciri umum dari aliran fluida :

FLUIDA DINAMIS. Ciri-ciri umum dari aliran fluida : FLUIDA DINAMIS Dalam fluida dinamis, kita menganalisis fluida ketika fluida tersebut bergerak. Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran

Lebih terperinci

Soal No. 2 Seorang anak hendak menaikkan batu bermassa 1 ton dengan alat seperti gambar berikut!

Soal No. 2 Seorang anak hendak menaikkan batu bermassa 1 ton dengan alat seperti gambar berikut! Fluida Statis Fisikastudycenter.com- Contoh Soal dan tentang Fluida Statis, Materi Fisika kelas 2 SMA. Cakupan : tekanan hidrostatis, tekanan total, penggunaan hukum Pascal, bejana berhubungan, viskositas,

Lebih terperinci

BAB FLUIDA A. 150 N.

BAB FLUIDA A. 150 N. 1 BAB FLUIDA I. SOAL PILIHAN GANDA Jika tidak diketahui dalam soal, gunakan g = 10 m/s 2, tekanan atmosfer p 0 = 1,0 x 105 Pa, dan massa jenis air = 1.000 kg/m 3. dinyatakan dalam meter). Jika tekanan

Lebih terperinci

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2 DINAMIKA FLUIDA FLUIDA DINAMIS SIFAT UMUM GAS IDEAL Aliran fluida dapat merupakan aliran tunak (STEADY ) dan tak tunak (non STEADY) Aliran fluida dapat termanpatkan (compressibel) dan tak termanfatkan

Lebih terperinci

B. FLUIDA DINAMIS. Fluida 149

B. FLUIDA DINAMIS. Fluida 149 B. FLUIDA DINAMIS Fluida dinamis adalah fluida yang mengalami perpindahan bagianbagiannya. Pokok-pokok bahasan yang berkaitan dengan fluida bergerak, antara lain, viskositas, persamaan kontinuitas, hukum

Lebih terperinci

contoh soal dan pembahasan fluida dinamis

contoh soal dan pembahasan fluida dinamis contoh soal dan pembahasan fluida dinamis Rumus Minimal Debit Q = V/t Q = Av Keterangan : Q = debit (m 3 /s) V = volume (m 3 ) t = waktu (s) A = luas penampang (m 2 ) v = kecepatan aliran (m/s) 1 liter

Lebih terperinci

MODUL FISIKA SMA Kelas 10

MODUL FISIKA SMA Kelas 10 SMA Kelas 10 A. Fluida Statis Fluida statis membahas tentang gaya dan tekanan pada zat alir yang tidak bergerak. Zat yang termasuk zat alir adalah zat cair dan gas. Setiap zat baik padat, cair maupun gas

Lebih terperinci

MODUL- 2. HIDRODINAMIKA Kode : IKK.365 Materi Belajar -2

MODUL- 2. HIDRODINAMIKA Kode : IKK.365 Materi Belajar -2 MODUL- 2. HIDRODINAMIKA Kode : IKK.365 Materi Belajar -2 Pendidikan S1 Pemintan Keselamatan dan Kesehatan Kerja Industri Program Studi Imu Kesehatan Masyarakat Fakultas Ilmu Ilmu Kesehatan Universitas

Lebih terperinci

BAB II PENGUKURAN ALIRAN. Pengukuran adalah proses menetapkan standar untuk setiap besaran yang

BAB II PENGUKURAN ALIRAN. Pengukuran adalah proses menetapkan standar untuk setiap besaran yang BAB II PENGUKURAN ALIRAN II.1. PENGERTIAN PENGUKURAN Pengukuran adalah proses menetapkan standar untuk setiap besaran yang tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat

Lebih terperinci

Pengenalan Alat alat instrumen di dunia industri. Disusun oleh:rizal Agustian T NPM:

Pengenalan Alat alat instrumen di dunia industri. Disusun oleh:rizal Agustian T NPM: Pengenalan Alat alat instrumen di dunia industri Disusun oleh:rizal Agustian T NPM:3335101322 Makna kata instrumen sendiri adalah alat-alat dan piranti (device) yang dipakai untuk pengukuran dan pengendalian

Lebih terperinci

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Jurusan teknik kimia fakultas teknik universitas Sultan Ageng Tirtayasa

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

FIsika FLUIDA DINAMIK

FIsika FLUIDA DINAMIK KTSP & K-3 FIsika K e l a s XI FLUIDA DINAMIK Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi fluida dinamik.. Memahami sifat-sifat fluida

Lebih terperinci

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah.

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Nama :... Kelas :... FLUIDA Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Kompetensi dasar : 8.. Menganalisis

Lebih terperinci

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline.

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. FLUIDA BERGERAK ALIRAN FLUIDA Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. Aliran turbulen Suatu aliran dikatakan laminar / stasioner / streamline

Lebih terperinci

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET i Saat ini begitu banyak perusahaan teknologi dalam pembuatan satu barang. Salah satunya adalah alat penyemprotan nyamuk. Alat penyemprotan nyamuk ini terdiri dari beberapa komponen yang terdiri dari pompa,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

PERTEMUAN VII KINEMATIKA ZAT CAIR

PERTEMUAN VII KINEMATIKA ZAT CAIR PERTEMUAN VII KINEMATIKA ZAT CAIR PENGERTIAN Kinematika aliran mempelajari gerak partikel zat cair tanpa meninjau gaya yang menyebabkan gerak tersebut. Macam Aliran 1. Invisid dan viskos 2. Kompresibel

Lebih terperinci

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id DINAMIKA FLUIDA nurhidayah@unja.ac.id nurhidayah.staff.unja.ac.id Fluida adalah zat alir, sehingga memiliki kemampuan untuk mengalir. Ada dua jenis aliran fluida : laminar dan turbulensi Aliran laminar

Lebih terperinci

LEMBAR KEGIATAN MAHASISWA TOPIK: FLUIDA. Disusun oleh: Widodo Setiyo Wibowo, M.Pd.

LEMBAR KEGIATAN MAHASISWA TOPIK: FLUIDA. Disusun oleh: Widodo Setiyo Wibowo, M.Pd. LEMBAR KEGIATAN MAHASISWA TOPIK: FLUIDA Disusun oleh: Widodo Setiyo Wibowo, M.Pd. Widodo_setiyo@uny.ac.id KEMENTERIAN PENDIDIKAN NASIONAL FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI

Lebih terperinci

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. 24 Bandung 022. 4214714 Fax. 022. 4222587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id MODUL

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta FLUIDA DINAMIS Ada tiga persamaan dasar dalam hidraulika, yaitu persamaan kontinuitas energi dan momentum. Untuk aliran mantap dan satu dimensi persamaan energi dapat disederhanakan menjadi persamaan Bernoulli

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas 11 FISIKA UTS FISIKA LATIHAN 2 KELAS 11 Doc. Name: AR11FIS02UTS Version : 2014 10 halaman 1 01. Perhatikan gambar! 5kg F 1m 4m Berapakah besar gaya F agar papan tersebut setimbang? (A)

Lebih terperinci

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure)

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Disiapkan oleh: Bimastyaji Surya Ramadan ST MT Team Teaching: Ir. Chandra Hassan Dip.HE, M.Sc Pengantar Fluida Hidrolika Hidraulika merupakan satu topik

Lebih terperinci

FISIKA DASR MAKALAH HUKUM STOKES

FISIKA DASR MAKALAH HUKUM STOKES FISIKA DASR MAKALAH HUKUM STOKES DISUSUN OLEH Astiya Luxfi Rahmawati 26020115120033 Ajeng Rusmaharani 26020115120034 Annisa Rahma Firdaus 26020115120035 Eko W.P.Tampubolon 26020115120036 Eva Widayanti

Lebih terperinci

ρ =, (1) MEKANIKA FLUIDA

ρ =, (1) MEKANIKA FLUIDA MEKANIKA FLUIDA PENDAHULUAN Zat yang tersebar di alam dibedakan dalam tiga keadaan (fase), yaitu fase padat, cair dan gas. Beberapa perbedaan di antara ketiganya adalah: 1) Fase padat, zat mempertahankan

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika OLEH : ENUNG, ST.,M.Eng JURUSAN TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG 2011 1 SILABUS PERTEMUAN MATERI METODE I -PENDAHULUAN -DEFINISI FLUIDA

Lebih terperinci

PENERAAN ALAT UKUR LAJU ALIR FLUIDA

PENERAAN ALAT UKUR LAJU ALIR FLUIDA PENERAAN ALAT UKUR LAJU ALIR FLUIDA I. TUJUAN PERCOBAAN Tujuan percobaan ini adalah membuat kurva baku hubungan antara tinggi pelampung dalam rotameter cairan dengan laju alir air dan kurva baku hubungan

Lebih terperinci

DEFINISI DAN SIFAT-SIFAT FLUIDA

DEFINISI DAN SIFAT-SIFAT FLUIDA DEFINISI DAN SIFAT-SIFAT FLUIDA Mekanika fluida dan hidrolika adalah bagian dari mekanika terpakai (Applied Mechanics) yang merupakan salah satu cabang ilmu pengetahuan dasar bagi teknik sipil. Mekanika

Lebih terperinci

PENENTUAN VISKOSITAS ZAT CAIR

PENENTUAN VISKOSITAS ZAT CAIR PENENTUAN VISKOSITAS ZAT CAIR A. Judul Percobaan : PENENTUAN VISKOSITAS ZAT CAIR B. Prinsip Percobaan Mengalirkan cairan pipa ke dalam pipa kapiler dari Viskometer Oswald dengan mencatat waktunya. C. Tujuan

Lebih terperinci

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES)

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) 4.1 Pendahuluan Kerugian tekan (headloss) adalah salah satu kerugian yang tidak dapat dihindari pada suatu aliran fluida yang

Lebih terperinci

F L U I D A. Besaran MKS CGS W Newton Dyne. D n/m 3 dyne/cm 3 g m/det 2 cm/det 2

F L U I D A. Besaran MKS CGS W Newton Dyne. D n/m 3 dyne/cm 3 g m/det 2 cm/det 2 F L U I D A Pengertian Fluida. Fluida adalah zat yang dapat mengalir atau sering disebut Zat Alir. Jadi perkataan fluida dapat mencakup zat cair atau gas. Antara zat cair dan gas dapat dibedakan : Zat

Lebih terperinci

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy. SOAL HIDRO 1. Saluran drainase berbentuk empat persegi panjang dengan kemiringan dasar saluran 0,015, mempunyai kedalaman air 0,45 meter dan lebar dasar saluran 0,50 meter, koefisien kekasaran Manning

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Pendahuluan Dalam bagian ini kita mengkhususkan diri pada materi

Lebih terperinci

Antiremed Kelas 11 Fisika

Antiremed Kelas 11 Fisika Antiremed Kelas Fisika Fluida Dinamis - Latihan Soal Halaman 0. Perhatikan gambar penampang pipa berikut! Air mengalir dari pipa A ke B terus ke C. Perbandingan luas penampang A dengan penampang C adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1. PENGERTIAN PENGUKURAN Pengukuran merupakan suatu aktifitas dan atau tindakan mebandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data mentah berupa temperatur kerja fluida pada saat pengujian, perbedaan head tekanan, dan waktu

Lebih terperinci

Selanjutnya untuk menurunkan persamaan yang menyatakan Hukum Bernoulli tersebut dapat dikemukakan dengan gambar sebagai berikut.

Selanjutnya untuk menurunkan persamaan yang menyatakan Hukum Bernoulli tersebut dapat dikemukakan dengan gambar sebagai berikut. HUKUM BERNOULLI Persamaan dasar dalam hidrodinamika telah dapat dirintis dan dirumuskan oleh Bernoulli secara baik, sehingga dapat dimanfaatkan untuk menjelaskan gejala fisis yang berhubungan dengan dengan

Lebih terperinci

SISTEM KERJA SENSOR TABUNG VENTURI UNTUK PENGUKURAN LAJU ALIRAN FLUIDA DALAM PIPA DI LABORATORIUM OPERASI PABRIK PTKI KARYA AKHIR

SISTEM KERJA SENSOR TABUNG VENTURI UNTUK PENGUKURAN LAJU ALIRAN FLUIDA DALAM PIPA DI LABORATORIUM OPERASI PABRIK PTKI KARYA AKHIR SISTEM KERJA SENSOR TABUNG VENTURI UNTUK PENGUKURAN LAJU ALIRAN FLUIDA DALAM PIPA DI LABORATORIUM OPERASI PABRIK PTKI KARYA AKHIR Untuk Memenuhi Persyaratan Untuk Memperoleh Gelar Sarjana Sains Terapan

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini Sifat-sifat Zat Padat Gas Cair Plasma

Fisika Umum (MA-301) Topik hari ini Sifat-sifat Zat Padat Gas Cair Plasma Fisika Umum (MA-301) Topik hari ini Sifat-sifat Zat Padat Gas Cair Plasma Sifat Atomik Zat Molekul Atom Inti Atom dan elektron Proton dan neutron Quarks: up, down, strange, charmed, bottom, and top Antimateri

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

BAB II SISTEM VAKUM. Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari

BAB II SISTEM VAKUM. Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari BAB II SISTEM VAKUM II.1 Pengertian Sistem Vakum Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari kata vacuum tersebut merupakan Vakum yang ideal atau Vakum yang sempurna (Vacuum

Lebih terperinci

MODUL II VISKOSITAS. Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum.

MODUL II VISKOSITAS. Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum. MODUL II VISKOSITAS Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum. I. PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang praktikum

Lebih terperinci

FLUIDA STATIS 15B08001 ALFIAH INDRIASTUTI

FLUIDA STATIS 15B08001 ALFIAH INDRIASTUTI 2016 FLUIDA STATIS 15B08001 ALFIAH INDRIASTUTI 1 FLUIDA STATIS Fluida meliputi zat cair dan gas. Fluida Statis adalah fluida yang berada dalam fase tidak bergerak (diam) atau fluida dalam keadaan bergerak

Lebih terperinci

FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id. Didit kelas D: Arga kelas G:

FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id. Didit kelas D: Arga kelas G: FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id Didit kelas D: 08574577471 Arga kelas G: 085694788741 Fluida Mengalir MENU HARI INI Kontinuitas Persamaan Bernouli Viskositas

Lebih terperinci

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair :

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair : Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak tersebut.

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

PENGUKURAN VISKOSITAS. Review Viskositas 3/20/2013 RINI YULIANINGSIH. Newtonian. Non Newtonian Power Law

PENGUKURAN VISKOSITAS. Review Viskositas 3/20/2013 RINI YULIANINGSIH. Newtonian. Non Newtonian Power Law PENGUKURAN VISKOSITAS RINI YULIANINGSIH Review Viskositas Newtonian Non Newtonian Power Law yz = 0 + k( yz ) n Model Herschel-Bulkley ( yz ) 0.5 = ( 0 ) 0.5 + k( yz ) 0.5 Model Casson Persamaan power law

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1. Manometer Manometer adalah alat untuk mengukur tekanan fluida. Manometer tabung bourdon adalah instrument yang digunakan untuk mengukur tekanan fluida (gas atau cairan) dalam

Lebih terperinci

FLUID CIRCUIT FRICTION EXPERIMENTAL APPARATUS BAB II

FLUID CIRCUIT FRICTION EXPERIMENTAL APPARATUS BAB II BAB II FLUID CIRCUIT FRICTION EXPERIMENTAL APPARATUS 2.1 Tujuan Pengujian 1. Mengetahui pengaruh factor gesekan aliran dalam berbagai bagian pipa pada bilangan reynold tertentu. 2. Mengetahui pengaruh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Umum Turbin Tesla Turbin Tesla merupakan salah satu turbin yang memanfaatkan energi fluida dan viskositas fluida untuk menggerakkan turbin. Konsep turbin Tesla ditemukan

Lebih terperinci