SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL"

Transkripsi

1 1 SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (Human Face Detection System on Digital Images) Setyo Nugroho 1, Agus Harjoko 2 Program Studi Ilmu Komputer Program Pascasarjana Universitas Gadjah Mada ABSTRACT Face detection is one of the most important preprocessing step in face recognition systems used in biometric identification. Face detection can also be used in searching and indexing still image or video containing faces in various size, position, and background. This paper describes a face detection system using multi-layer perceptron and Quickprop algorithm. The system achieves its ability by means of learning by examples. The training is performed using active learning method to minimize the amount of data used in training. Experimental results show that the accuracy of the system strongly depends on the quality and quantity of the data used in training. Quickprop algorithm and active learning method improve the training speed significantly. Keywords : face detection, neural networks, Quickprop, active learning 1. STMIK STIKOM Balikpapan 2. Fakultas MIPA Universitas Gadjah Mada, Yogyakarta

2 2 PENGANTAR Teknologi pengenalan wajah makin banyak diaplikasikan dalam sistem pengenalan biometrik, pencarian dan pengindeksan database citra dan video digital, sistem keamanan, konferensi video, dan interaksi manusia dengan komputer. Pendeteksian wajah (face detection) juga merupakan salah satu tahap awal yang sangat penting sebelum dilakukan proses pengenalan wajah (face recognition). Masalah deteksi wajah dapat dirumuskan sebagai berikut: diberikan masukan sebuah citra digital sembarang, maka sistem akan mendeteksi apakah ada wajah manusia di dalam citra tersebut. Jika ada maka sistem akan memberitahu berapa wajah yang ditemukan dan lokasi wajah-wajah tersebut di dalam citra. Keluaran dari sistem adalah posisi subcitra berisi wajah yang berhasil dideteksi. Deteksi wajah dapat dipandang sebagai masalah klasifikasi pola dimana inputnya adalah suatu citra dan outputnya adalah label kelas dari citra tersebut. Dalam hal ini terdapat dua label kelas, yaitu wajah dan non-wajah (Sung, 1996). Teknik-teknik pengenalan wajah yang dilakukan selama ini banyak yang menggunakan asumsi bahwa data wajah yang tersedia memiliki ukuran yang sama dan latar belakang yang seragam. Di dunia nyata, asumsi ini tidak selalu berlaku karena wajah dapat muncul di dalam citra dengan berbagai ukuran, berbagai posisi, dan latar belakang yang bervariasi (Hjelmas dan Low, 2001). Supervised Learning Tujuan pada pembelajaran supervised learning adalah untuk menentukan nilai bobot-bobot koneksi di dalam jaringan sehingga jaringan dapat melakukan pemetaan

3 3 (mapping) dari input ke output sesuai dengan yang diinginkan. Pemetaan ini ditentukan melalui satu set pola contoh atau data pelatihan (training data set). Setiap pasangan pola p terdiri dari vektor input x p dan vektor target t p. Setelah selesai pelatihan, jika diberikan masukan x p seharusnya jaringan menghasilkan nilai output t p. Besarnya perbedaan antara nilai vektor target dengan output aktual diukur dengan nilai error yang disebut juga dengan cost function: E = 1 2 p P n p ( t n s p n ) 2 (1) di mana n adalah banyaknya unit pada output layer. Tujuan dari training ini pada dasarnya sama dengan mencari suatu nilai minimum global dari E. Algoritma Quickprop Algoritma Quickprop merupakan hasil pengembangkan dari algoritma backpropagation standar. Pada algoritma Quickprop dilakukan pendekatan dengan asumsi bahwa kurva fungsi error terhadap masing-masing bobot penghubung berbentuk parabola yang terbuka ke atas, dan gradien dari kurva error untuk suatu bobot tidak terpengaruh oleh bobot-bobot yang lain (Fahlman, 1988). Dengan demikian perhitungan perubahan bobot hanya menggunakan informasi lokal pada masing-masing bobot. Perubahan bobot pada algoritma Quickprop dirumuskan sebagai berikut: E ( t) E w( t) = ε ( t) + w * w( t 1) (2) w E E ( t 1) ( t) w w di mana: w(t) : perubahan bobot w ( t 1) : perubahan bobot pada epoch sebelumnya ε : adalah learning rate

4 4 E (t) : derivatif error w E ( t 1) : derivatif error pada epoch sebelumnya w Pada eksperimen dengan masalah XOR dan encoder/decoder (Fahlman, 1988), terbukti bahwa algoritma Quickprop dapat meningkatkan kecepatan training. CARA PENELITIAN Data yang digunakan dalam penelitian ini terdiri dari sekumpulan citra untuk pelatihan (training data set) dan sekumpulan citra untuk pengujian (testing data set). Jumlah citra wajah yang digunakan sebanyak 3000 buah dengan ukuran 20x20 pixel. Sedangkan citra non-wajah diambil dari file-file citra yang tidak terdapat wajah di dalamnya. Jaringan syaraf tiruan (JST) yang digunakan pada sistem ini menggunakan jenis multi-layer perceptron. Arsitektur yang digunakan diadaptasi dari hasil penelitian (Rowley dkk., 1998). Lapisan input terdiri dari 400 unit input, yang menerima masukan dari nilai grayscale pixel 20x20 dari subcitra yang akan dideteksi. Sebelum dijadikan input untuk JST, nilai grayscale yang berkisar dari 0 sampai 255 dinormalisasi menjadi antara 1 dan 1. Lapisan output terdiri dari sebuah unit dengan nilai keluaran berkisar antara 1 dan 1. Pada training data set didefinisikan nilai 1 untuk data wajah dan 1 untuk data non-wajah. Lapisan tersembunyi (hidden layer) terdiri dari total 25+16=41 unit. Bagian pertama terhubung dengan lapisan input yang membentuk 25 area berukuran 4x4 pixel.

5 5 Bagian kedua terhubung dengan lapisan input yang membentuk 16 area berukuran 5x5 pixel. Secara keseluruhan jaringan ini memiliki 883 bobot penghubung, sudah termasuk bias. Pada sistem (Rowley dkk., 1998) yang lebih kompleks, jumlah bobot penghubungnya mencapai Teknik Active Learning Dengan teknik active learning (Sung, 1996), training dilakukan secara bertahap. Pada tahap pertama training dimulai dengan menggunakan sedikit data non-wajah. Pada tahap berikutnya, data training non-wajah ditambah sedikit demi sedikit. Namun data tambahan tersebut diseleksi hanya untuk data tertentu saja, yaitu data yang yang dideteksi sebagai wajah (false positive) pada hasil training tahap sebelumnya. Dengan demikian jumlah data training yang digunakan untuk jaringan syaraf tiruan akan lebih sedikit. Karena data training yang digunakan lebih sedikit, waktu yang diperlukan untuk proses training juga akan lebih singkat. Gambar 1 menunjukkan penerapan teknik active learning untuk sistem pendeteksi wajah. Detektor Wajah Bagian detektor wajah ini menggunakan arsitektur jaringan syaraf yang sama dengan yang digunakan untuk training. Bobot penghubung yang digunakan diambil dari bobot terakhir yang dihasilkan pada proses training. Hasil deteksi akan diputuskan sebagai wajah jika output dari JST lebih dari 0, dan diputuskan sebagai non-wajah jika output JST kurang dari atau sama dengan 0.

6 6 Koleksi Contoh Data Wajah Data Training Data Awal Non-Wajah Trainer JST Data Tambahan Non-Wajah Pilih random Bobot JST Hasil Training Koleksi Contoh Data Non-Wajah Detektor Wajah Hasil Deteksi (False Positive) Gambar 1. Teknik Active Learning untuk Sistem Pendeteksi Wajah Ekstraksi Subcitra Pada citra yang akan dideteksi, posisi wajah bisa berada di mana saja. Pengklasifikasi jaringan syaraf tiruan pada detektor wajah memerlukan input citra 20x20 pixel. Karena itu digunakan window 20x20 pixel yang digeser melalui seluruh daerah citra. Detektor akan memeriksa satu persatu subcitra yang dilalui oleh window tersebut. Pada citra yang dideteksi, wajah bisa memiliki ukuran yang bervariasi. Karena itu citra akan diperkecil secara bertahap dengan skala perbandingan 1:1,2 sebagaimana

7 7 dilakukan pada (Rowley dkk., 1998). Pada setiap ukuran citra yang diperkecil, window 20x20 pixel akan digeser melalui seluruh area citra. Preprocessing Citra yang akan digunakan sebagai training data set akan mengalami tahaptahap preprocessing berikut: Histogram Equalization, untuk memperbaiki kontras citra. Masking, yaitu menghilangkan bagian sudut-sudut citra untuk mengurangi variasi citra sehingga memperkecil dimensi data. Normalisasi, yaitu mengkonversi nilai intensitas grayscale citra sehingga memiliki range dari 1 sampai dengan 1. Tahap-tahap preprocessing yang sama juga dilakukan pada saat proses pendeteksian wajah. Gambar 2. Contoh data wajah yang telah mengalami preprocessing Merging Pada saat dilakukan deteksi wajah pada citra, biasanya sebuah wajah akan terdeteksi pada beberapa lokasi yang berdekatan. Lokasi-lokasi ini disebut dengan kandidat wajah. Untuk itu perlu dilakukan proses penggabungan (merging), yaitu menyatukan lokasi kandidat-kandidat wajah yang berdekatan.

8 8 HASIL DAN PEMBAHASAN Untuk mengukur evaluasi unjuk kerja dari detektor wajah, pada umumnya digunakan dua parameter, yaitu detection rate dan false positive rate (Yang dkk., 2002). Detection rate adalah perbandingan antara jumlah wajah yang berhasil dideteksi dengan jumlah seluruh wajah yang ada. Sedangkan false positive rate adalah banyaknya subcitra non-wajah yang dideteksi sebagai wajah. Gambar 3 menunjukkan contoh hasil deteksi yang dilakukan pada beberapa citra pengujian. Pengujian dilakukan dengan data uji citra yang berasal dari Massachusetts Institute of Technology (MIT) yang terdiri dari 23 file citra yang secara keseluruhan berisi 149 wajah (data uji MIT-23). Kumpulan citra ini pertama kali dipublikasikan pada (Sung dan Poggio, 1994). Pada data uji ini diperoleh hasil detection rate sebesar 71,14% dan false positives sebanyak 62. Hasil ini diperoleh dari training yang menggunakan 3000 data wajah dan 5200 data non-wajah yang diperoleh melalui metode active learning. Tabel 1 menunjukkan hasil deteksi yang pernah dilakukan oleh para peneliti lain dengan menggunakan data uji MIT-23. Perbandingan ini tidak bisa dijadikan patokan mutlak untuk menyimpulkan bahwa satu metode lebih baik dari metode yang lain, karena faktor-faktor berikut (Hjelmas dan Low, 2001): data set yang digunakan untuk training tidak sama jumlah data yang digunakan untuk training tidak sama Metode Detection False Rate Positive Support vector machines (SVM) (Osuna, 1997) 74,2% 20 Distribution-based dan clustering (Sung, Poggio, 1994) 79,9% 5 Neural Networks (Rowley, 1998) 84,5% 8 Kullback relative information (Lew, Huijsmans, 1996) 94,1% 64 Tabel 1. Beberapa hasil deteksi wajah pada data uji MIT-23

9 9 Gambar 3 Contoh hasil deteksi wajah pada beberapa citra uji

10 10 Pengaruh Jumlah Data Training yang Digunakan Tabel 2 menunjukkan pengaruh jumlah data training yang digunakan terhadap hasil deteksi. Tabel ini berdasarkan hasil deteksi pada suatu citra berisi 15 wajah dan memiliki total window. Terlihat bahwa semakin banyak data training nonwajah yang digunakan, semakin kecil angka false positive yang dihasilkan. Hal ini menunjukkan bahwa dengan data yang semakin lengkap, hasil belajar sistem akan semakin baik. Jumlah data training Detection False nonwajah wajah total Rate Positive / / / / / / / / / / / / / / / /15 1 Tabel 2. Pengaruh Jumlah Data Training pada Unjuk Kerja Deteksi Wajah Pengaruh Algoritma Quickprop pada Kecepatan Training Tabel 3 menunjukkan perbandingan waktu training yang diperlukan antara training yang menggunakan algoritma backpropagation standar dengan training yang menggunakan algoritma Quickprop. Terlihat bahwa dengan jumlah data training yang semakin besar, algoritma Quickprop memberikan peningkatan kecepatan yang signifikan.

11 11 Waktu training (detik) Jumlah Error Data training Backprop Quickprop standar Tabel 3. Pengaruh Algoritma Quickprop pada Kecepatan Training Pengaruh Metode Active Learning Tabel 4 menunjukkan perbandingan antara hasil training yang menggunakan metode active learning, dengan hasil training yang menggunakan data yang dipilih secara random. Jumlah data yang digunakan adalah sama. Terlihat bahwa teknik active learning memberikan hasil yang lebih baik. Ini berarti bahwa teknik active learning dapat memilih data yang benar-benar perlu, sehingga dapat meminimalkan jumlah data training yang digunakan. Data training Random Data Active Learning wajah nonwajah Rate Positive Rate Positive Detection False Detection False total ,76% ,14% ,42% ,14% 201 Tabel 4. Pengaruh Active Learning pada Unjuk Kerja Deteksi Wajah KESIMPULAN DAN SARAN Kesimpulan Dari penelitian ini dapat diambil kesimpulan sebagai berikut: 1. Jaringan syaraf tiruan dapat dimanfaatkan untuk melakukan deteksi wajah pada citra digital. 2. Pada sistem deteksi wajah yang berbasis contoh, hasil yang diperoleh sangat tergantung dari kualitas dan banyaknya contoh yang diberikan.

12 12 3. Pada training dengan jumlah data yang besar, algoritma Quickprop dapat memberikan peningkatan kecepatan yang signifikan. 4. Metode active learning dapat digunakan untuk meminimalkan jumlah data training yang digunakan, sehingga mempercepat proses training. Saran 1. Untuk meningkatkan unjuk kerja sistem pendeteksi wajah, dapat diberikan pelatihan lebih lanjut dengan tambahan data training yang lebih banyak dan lebih bervariasi. 2. Sistem deteksi wajah ini dapat dimanfaatkan lebih lanjut untuk membangun sistem pengenalan wajah (face recognition). DAFTAR PUSTAKA Fahlman, S.E., 1988, An Empirical Study of Learning Speed in Back-Propagation Networks, Technical Report CMU-CS , Carnegie Mellon University, USA. Hjelmas, E., Low, B.K., 2001, Face Detection: A Survey, Computer Vision and Image Understanding. 83, pp Rowley, H., Baluja, S., Kanade, T., 1998, Neural Network-Based Face Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1. Sung, K.K., 1996, Learning and Example Selection for Object and Pattern Detection, AITR 1572, Massachusetts Institute of Technology AI Lab. Sung, K.K., Poggio, T., 1994, Example-Based Learning for View-Based Human Face Detection, Technical Report AI Memo 1521, Massachusetts Institute of Technology AI Lab. Yang, M.H., Kriegman, D., Ahuja, N., 2002, Detecting Faces in Images: A Survey, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 1.

SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh. NamaMhs NIM: XX.YY.ZZZ. Kepada

SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh. NamaMhs NIM: XX.YY.ZZZ. Kepada SISTEM PENDETEKSI WAJAH MANUSIA PADA CITRA DIGITAL (PROPOSAL SKRIPSI) diajukan oleh NamaMhs NIM: XX.YY.ZZZ Kepada JURUSAN TEKNIK INFORMATIKA STMIK STIKOM BALIKPAPAN LEMBAR PERSETUJUAN Proposal Skripsi

Lebih terperinci

JARINGAN SARAF TIRUAN

JARINGAN SARAF TIRUAN MAKALAH KECERDASAN BUATAN JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Disusun Oleh: KELOMPOK VI Hery Munazar (100411068) Rizky Ramadhan(100411066) PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK NEGERI

Lebih terperinci

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses 8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

Lebih terperinci

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam

Lebih terperinci

Sistem Pendeteksi Wajah Manusia pada Citra Digital

Sistem Pendeteksi Wajah Manusia pada Citra Digital Sistem Pendeteksi Wajah Manusia pada Citra Digital Tesis Untuk memenuhi sebagian persyaratan Mencapai derajat Sarjana S-2 Program Studi Ilmu Komputer Jurusan Ilmu-Ilmu Matematika dan Pengetahuan Alam Diajukan

Lebih terperinci

BAB I PENDAHULUAN. mengenai deteksi wajah dengan Differential Evolution Based Neural Network

BAB I PENDAHULUAN. mengenai deteksi wajah dengan Differential Evolution Based Neural Network BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Berdasarkan penelitian yang telah dilakukan oleh Yudistira Dewanata mengenai deteksi wajah dengan Differential Evolution Based Neural Network mendapatkan total

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM Dalam bab ini akan dibahas mengenai perancangan dan pembuatan sistem aplikasi yang digunakan sebagai user interface untuk menangkap citra ikan, mengolahnya dan menampilkan

Lebih terperinci

SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST)

SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST) Berkala Fisika ISSN : 1410-9662 Vol. 15, No. 1, Januari 2012, hal 15-20 SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST) Tri Mulyono, Kusworo Adi dan Rahmat Gernowo Jurusan

Lebih terperinci

BAB 2 KONSEP DASAR PENGENAL OBJEK

BAB 2 KONSEP DASAR PENGENAL OBJEK BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Citra Digital Gambar atau citra merupakan informasi yang berbentuk visual. Menurut kamus Webster citra adalah suatu representasi, kemiripan atau imitasi dari suatu objek atau

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION ABSTRAK Juventus Suharta (0722026) Jurusan Teknik Elektro

Lebih terperinci

KNIT-2 Nusa Mandiri ISBN: SISTEM BIOMETRIK TELINGA MENGGUNAKAN JARINGAN SYARAF TIRUAN

KNIT-2 Nusa Mandiri ISBN: SISTEM BIOMETRIK TELINGA MENGGUNAKAN JARINGAN SYARAF TIRUAN SISTEM BIOMETRIK TELINGA MENGGUNAKAN JARINGAN SYARAF TIRUAN Ina Agustina 1, Fauziah 2, Aris Gunaryati 3 1, 2 Sistem Informasi, 3Teknik Informatika, Universitas Nasional Jl Sawo Manila Pejaten Pasar Minggu

Lebih terperinci

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini. BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada

Lebih terperinci

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN : PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PRODUKSI AIR MINUM MENGGUNAKAN ALGORITMA BACKPROPAGATION (STUDI KASUS : PDAM TIRTA BUKIT SULAP KOTA LUBUKLINGGAU) Robi Yanto STMIK Bina Nusantara

Lebih terperinci

IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION

IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION J~ICON, Vol. 3 No. 2, Oktober 2015, pp. 89 ~ 95 89 IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION Rini Miyanti Maubara 1, Adriana Fanggidae

Lebih terperinci

HALAMAN SAMPUL SKRIPSI PENGENALAN POLA TELAPAK TANGAN DENGAN MENGGUNAKAN ALGORITMA BACK PROPAGATION NEURAL NETWORK

HALAMAN SAMPUL SKRIPSI PENGENALAN POLA TELAPAK TANGAN DENGAN MENGGUNAKAN ALGORITMA BACK PROPAGATION NEURAL NETWORK HALAMAN SAMPUL SKRIPSI PENGENALAN POLA TELAPAK TANGAN DENGAN MENGGUNAKAN ALGORITMA BACK PROPAGATION NEURAL NETWORK Oleh: MOH SHOCHWIL WIDAT 2011-51-034 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK

Lebih terperinci

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM Pada bab ini akan dijelaskan mengenai tahapan dan algoritma yang akan digunakan pada sistem pengenalan wajah. Bagian yang menjadi titik berat dari tugas akhir

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION Disusun oleh: Togu Pangaribuan 0722087 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg. Suria Sumantri, MPH No. 65, Bandung

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK Fany Hermawan Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung E-mail : [email protected]

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI Bab ini berisi analisis pengembangan program aplikasi pengenalan karakter mandarin, meliputi analisis kebutuhan sistem, gambaran umum program aplikasi yang

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan

Lebih terperinci

JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK PENGENALAN WAJAH METODE EKSTRAKSI FITUR Sigit Kusmaryanto Teknok Elektro FTUB,

JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK PENGENALAN WAJAH METODE EKSTRAKSI FITUR Sigit Kusmaryanto Teknok Elektro FTUB, JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK PENGENALAN WAJAH METODE EKSTRAKSI FITUR Sigit Kusmaryanto Teknok Elektro FTUB, [email protected] ABSTRAKSI Salah satu kelemahan umum pada pengenalan pola untuk

Lebih terperinci

Pengenalan Hand Gesture Dinamis Menggunakan JST Metode Pembelajaran Backpropagation

Pengenalan Hand Gesture Dinamis Menggunakan JST Metode Pembelajaran Backpropagation Pengenalan Hand Gesture Dinamis Menggunakan JST Metode Pembelajaran Backpropagation SEMINASIK FMIPA UGM 2013 Yuan Lukito, Agus Harjoko [email protected], [email protected] Hand Gesture Gerakan anggota

Lebih terperinci

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun Oleh : Apriliyanto Taufik Betama (1022070) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. drg. Suria Sumantri, MPH, No.

Lebih terperinci

IMPLEMENTASI DEEP LEARNING BERBASIS TENSORFLOW UNTUK PENGENALAN SIDIK JARI

IMPLEMENTASI DEEP LEARNING BERBASIS TENSORFLOW UNTUK PENGENALAN SIDIK JARI Royani Darma Nurfita, Gunawan Ariyanto, Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari IMPLEMENTASI DEEP LEARNING BERBASIS TENSORFLOW UNTUK PENGENALAN SIDIK JARI Royani Darma

Lebih terperinci

PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK

PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK Naskah Publikasi disusun oleh Zul Chaedir 05.11.0999 Kepada SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER

Lebih terperinci

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF)

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF) Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Yogyakarta, 14 Mei 2011 PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF

Lebih terperinci

BAB 3 PROSEDUR DAN METODOLOGI. menawarkan pencarian citra dengan menggunakan fitur low level yang terdapat

BAB 3 PROSEDUR DAN METODOLOGI. menawarkan pencarian citra dengan menggunakan fitur low level yang terdapat BAB 3 PROSEDUR DAN METODOLOGI 3.1 Permasalahan CBIR ( Content Based Image Retrieval) akhir-akhir ini merupakan salah satu bidang riset yang sedang berkembang pesat (Carneiro, 2005, p1). CBIR ini menawarkan

Lebih terperinci

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI Oleh Nama : Januar Wiguna Nim : 0700717655 PROGRAM GANDA TEKNIK INFORMATIKA DAN MATEMATIKA

Lebih terperinci

PENGEMBANGAN SISTEM PENGENALAN EKSPRESI WAJAH MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION (STUDI KASUS PADA DATABASE MUG)

PENGEMBANGAN SISTEM PENGENALAN EKSPRESI WAJAH MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION (STUDI KASUS PADA DATABASE MUG) PENGEMBANGAN SISTEM PENGENALAN EKSPRESI WAJAH MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION (STUDI KASUS PADA DATABASE MUG) Zaenal Abidin Jurusan Matematika Universitas Negeri Semarang Kampus Sekaran

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Jaringan Syaraf Tiruan Artificial Neural Network atau Jaringan Syaraf Tiruan (JST) adalah salah satu cabang dari Artificial Intelligence. JST merupakan suatu sistem pemrosesan

Lebih terperinci

PERBANDINGAN ANALISIS PENGENALAN HURUF ARAB MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN K-NEAREST NEIGHBOR

PERBANDINGAN ANALISIS PENGENALAN HURUF ARAB MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN K-NEAREST NEIGHBOR PERBANDINGAN ANALISIS PENGENALAN HURUF ARAB MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN K-NEAREST NEIGHBOR Ragil Anggararingrum Perwira Nagara¹, Adiwijaya², Ratri Dwi Atmaja³ ¹Teknik

Lebih terperinci

PREDIKSI KUALITAS AIR BERSIH PDAM KOTA PALU MENGGUNAKAN METODE BACKPROPAGATION

PREDIKSI KUALITAS AIR BERSIH PDAM KOTA PALU MENGGUNAKAN METODE BACKPROPAGATION JIMT Vol. 4 No. Juni 207 (Hal 47-55) ISSN : 2450 766X PREDIKSI KUALITAS AIR BERSIH PDAM KOTA PALU MENGGUNAKAN METODE BACKPROPAGATION J.R. Mustakim, R. Ratianingsih 2 dan D. Lusiyanti 3,2,3 Program Studi

Lebih terperinci

PENGENALAN WAJAH DENGAN PENDEKATAN ROBUST REGRESSION YANG MENGGUNAKAN HISTOGRAM REMAPPING DENGAN DISTRIBUSI NON-UNIFORM

PENGENALAN WAJAH DENGAN PENDEKATAN ROBUST REGRESSION YANG MENGGUNAKAN HISTOGRAM REMAPPING DENGAN DISTRIBUSI NON-UNIFORM PENGENALAN WAJAH DENGAN PENDEKATAN ROBUST REGRESSION YANG MENGGUNAKAN HISTOGRAM REMAPPING DENGAN DISTRIBUSI NON-UNIFORM Budi Nugroho 1, Febriliyan Samopa 2 1 Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

Segitiga Fuzzy-Neural Network untuk Mengenali Pola dari Model Input Data yang Berdistribusi

Segitiga Fuzzy-Neural Network untuk Mengenali Pola dari Model Input Data yang Berdistribusi J. Math. and Its Appl. ISSN: 1829-605X Vol. 4, No. 1, May 2007, 9 16 Segitiga Fuzzy-Neural Network untuk Mengenali Pola dari Model Input Data yang Berdistribusi Hary Budiarto Pusat Teknologi Informasi

Lebih terperinci

Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan

Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan JURNAL TEKNIK POMITS 1-7 1 Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan Dhita Azzahra Pancorowati, M. Arief Bustomi Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital

Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital JURNAL SAINS DAN SENI IS Vol. 6, No.1, (2017) 2337-3520 (2301-928X Print) A 18 Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital Zulfa Afiq Fikriya, Mohammad Isa Irawan, dan Soetrisno

Lebih terperinci

Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation

Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation Anjar Wanto STIKOM Tunas Bangsa Pematangsiantar Pematangsiantar, Indonesia [email protected]

Lebih terperinci

ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT

ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT Kristian Adi Nugraha 1), Albertus Joko Santoso 2), Thomas Suselo 3) 1,2,3) Program Studi Magister Teknik Informatika,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sistem jaringan komputer memiliki peran yang sangat penting dalam masyarakat modern karena memungkinkan informasi dapat diakses, disimpan dan dimanipulasi secara online.

Lebih terperinci

Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation

Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation Anjar Wanto STIKOM Tunas Bangsa Pematangsiantar Pematangsiantar, Indonesia [email protected]

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA (Studi Eksplorasi Pengembangan Pengolahan Lembar Jawaban Ujian Soal Pilihan Ganda di

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tahapan Penelitian Tahapan yang dilakukan dalam penelitian ini disajikan pada Gambar 14, terdiri dari tahap identifikasi masalah, pengumpulan dan praproses data, pemodelan

Lebih terperinci

BAB II NEURAL NETWORK (NN)

BAB II NEURAL NETWORK (NN) BAB II NEURAL NETWORK (NN) 2.1 Neural Network (NN) Secara umum Neural Network (NN) adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan syaraf manusia. NN ini merupakan

Lebih terperinci

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS

ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS ALGORITMA LEARNING VECTOR QUANTIZATION UNTUK PENGENALAN BARCODE BUKU DI PERPUSTAKAAN UNIVERSITAS GALUH CIAMIS Egi Badar Sambani 1), Neneng Sri Uryani 2), Rifki Agung Kusuma Putra 3) Jurusan Teknik Informatika,

Lebih terperinci

SKRIPSI RAYMOND P.H. SIRAIT

SKRIPSI RAYMOND P.H. SIRAIT PERANGKAT LUNAK CAPTURE PLAT NOMOR POLISI MOBIL DENGAN ALGORITMA JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION DAN BACK PROPAGATION BERBASIS IP CAMERA SKRIPSI RAYMOND P.H. SIRAIT 071401040 PROGRAM

Lebih terperinci

PENGENALAN TANDA TANGAN MENGGUNAKAN METODE JARINGAN SARAF TIRUAN PERCEPTRON DAN BACKPROPAGATION

PENGENALAN TANDA TANGAN MENGGUNAKAN METODE JARINGAN SARAF TIRUAN PERCEPTRON DAN BACKPROPAGATION PENGENALAN TANDA TANGAN MENGGUNAKAN METODE JARINGAN SARAF TIRUAN PERCEPTRON DAN BACKPROPAGATION Restu Poetra Alqurni 1, Muljono 2 1,2 Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas

Lebih terperinci

Pengenalan Aksara Lampung Menggunakan Jaringan Syaraf Tiruan

Pengenalan Aksara Lampung Menggunakan Jaringan Syaraf Tiruan Pengenalan Aksara Lampung Menggunakan Jaringan Syaraf Tiruan Adhika Aryantio School of Electrical Engineering and Informatics Institute Technology of Bandung 10th Ganeca Street Bandung, Indonesia. [email protected]

Lebih terperinci

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN MOMENT INVARIANT DAN ALGORITMA BACK PROPAGATION ABSTRAK

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN MOMENT INVARIANT DAN ALGORITMA BACK PROPAGATION ABSTRAK IDENTIFIKASI TANDA TANGAN MENGGUNAKAN MOMENT INVARIANT DAN ALGORITMA BACK PROPAGATION Nasep Muhamad Ramdan (0522135) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha Jalan Prof. Drg.

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN 32 BAB III ANALISIS DAN PERANCANGAN Pada bab ini akan dibahas tentang analisis sistem melalui pendekatan secara terstruktur dan perancangan yang akan dibangun dengan tujuan menghasilkan model atau representasi

Lebih terperinci

1. Pendahuluan Perumusan Masalah Dari latar belakang yang dipaparkan di atas, masalah yang dapat dirumuskan adalah:

1. Pendahuluan Perumusan Masalah Dari latar belakang yang dipaparkan di atas, masalah yang dapat dirumuskan adalah: 1. Pendahuluan 1.1. Latar Belakang Wajah manusia dapat menunjukkan dimorfisme seksual yang cukup jelas [1][2][3][4][5]. Wajah pria dan wanita memiliki bentuk dan tekstur yang berbeda, dan petunjuk yang

Lebih terperinci

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, Erlinda Ningsih 2 1 Dosen Teknik Informatika, STMIK Potensi Utama 2 Mahasiswa Sistem Informasi, STMIK

Lebih terperinci

Identifikasi Gender Berdasarkan Citra Wajah Menggunakan Deteksi Tepi dan Backpropagation

Identifikasi Gender Berdasarkan Citra Wajah Menggunakan Deteksi Tepi dan Backpropagation Identifikasi Gender Berdasarkan Citra Wajah Menggunakan Deteksi Tepi dan Backpropagation Destri Wulansari, Esmeralda C. Djamal, Ridwan Ilyas Jurusan Informatika, Fakultas MIPA Universitas Jenderal Achmad

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Mata adalah indra terbaik yang dimiliki oleh manusia sehingga citra (gambar) memegang peranan penting dalam perspektif manuasia. Namun mata manusia memiliki keterbatasan

Lebih terperinci

PERANCANGAN PARAMETER TERBAIK UNTUK PREDIKSI PRODUKSI BAN GT3 MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILIENT PROPAGATION

PERANCANGAN PARAMETER TERBAIK UNTUK PREDIKSI PRODUKSI BAN GT3 MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILIENT PROPAGATION PERANCANGAN PARAMETER TERBAIK UNTUK PREDIKSI PRODUKSI BAN GT3 MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILIENT PROPAGATION Fitrisia, Adiwijaya, dan Andrian Rakhmatsyah Program Studi S1 Teknik Informatika,

Lebih terperinci

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION No Makalah : 299 Konferensi Nasional Sistem Informasi 2012, STMIK - STIKOM Bali 23-25 Pebruari 2012 DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION Ratri Dwi Atmaja 1,

Lebih terperinci

PENGENALAN WAJAH MANUSIA MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN ADAPTIVE RESONANCE THEORY TWO (ART-2)

PENGENALAN WAJAH MANUSIA MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN ADAPTIVE RESONANCE THEORY TWO (ART-2) PENGENALAN WAJAH MANUSIA MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN ADAPTIVE RESONANCE THEORY TWO (ART-2) SKRIPSI Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi

Lebih terperinci

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER Fakultas Teknologi Informasi Universitas Merdeka Malang Abstract: Various methods on artificial neural network has been applied to identify

Lebih terperinci

JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI STATUS GIZI BALITA JENIS KELAMIN LAKI-LAKI DENGAN METODE BACKPROPAGATION

JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI STATUS GIZI BALITA JENIS KELAMIN LAKI-LAKI DENGAN METODE BACKPROPAGATION JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI STATUS GIZI BALITA JENIS KELAMIN LAKI-LAKI DENGAN METODE BACKPROPAGATION Naskah Publikasi Program Studi Informatika Fakultas Komunikasi dan Informatika Oleh: Hasna

Lebih terperinci

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( )

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( ) SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN Evelyn Evangelista (1022004) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof. Drg. Suria

Lebih terperinci

ANALISIS VARIASI PARAMETER LEARNING VECTOR QUANTIZATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA ODOR

ANALISIS VARIASI PARAMETER LEARNING VECTOR QUANTIZATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA ODOR Jurnal Teknik dan Ilmu Komputer ANALISIS VARIASI PARAMETER LEARNING VECTOR QUANTIZATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA ODOR PARAMETER VARIATION ANALYSIS OF LEARNING VECTOR QUANTIZATION

Lebih terperinci

IDENTIFIKASI SESEORANG BERDASARKAN CITRA TELINGA DENGAN MENGGUNAKAN METODE TRANSFORMASI HOUGH ABSTRAK

IDENTIFIKASI SESEORANG BERDASARKAN CITRA TELINGA DENGAN MENGGUNAKAN METODE TRANSFORMASI HOUGH ABSTRAK IDENTIFIKASI SESEORANG BERDASARKAN CITRA TELINGA DENGAN MENGGUNAKAN METODE TRANSFORMASI HOUGH Syafril Tua (0822088) Jurusan Teknik Elektro email: [email protected] ABSTRAK Struktur telinga adalah

Lebih terperinci

IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR SCALE INVARIANT FEATURE TRANSFORM

IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR SCALE INVARIANT FEATURE TRANSFORM IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR SCALE INVARIANT FEATURE TRANSFORM (SIFT) Vikri Ahmad Fauzi (0722098) Jurusan Teknik Elektro email: [email protected]

Lebih terperinci

STUDI ESTIMASI CURAH HUJAN, SUHU DAN KELEMBABAN UDARA DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

STUDI ESTIMASI CURAH HUJAN, SUHU DAN KELEMBABAN UDARA DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION STUDI ESTIMASI CURAH HUJAN, SUHU DAN KELEMBABAN UDARA DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Muh. Ishak Jumarang 1), Lyra Andromeda 2) dan Bintoro Siswo Nugroho 3) 1,3) Jurusan Fisika,

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Dalam pengerjaan perancangan dan pembuatan aplikasi pengenalan karakter alfanumerik JST algoritma Hopfield ini menggunakan software Borland Delphi 7.0. 3.1 Alur Proses Sistem

Lebih terperinci

IDENTIFIKASI NOMOR POLISI KENDARAAN BERMOTOR MENGGUNAKAN JARINGAN SYARAF TIRUAN SELF ORGANIZING MAPS (SOMS)

IDENTIFIKASI NOMOR POLISI KENDARAAN BERMOTOR MENGGUNAKAN JARINGAN SYARAF TIRUAN SELF ORGANIZING MAPS (SOMS) Powered by TCPDF (www.tcpdf.org) IDENTIFIKASI NOMOR POLISI KENDARAAN BERMOTOR MENGGUNAKAN JARINGAN SYARAF TIRUAN SELF ORGANIZING MAPS (SOMS) Inung Wijayanto¹, Iwan Iwut Tritoasmoro², Koredianto Usman³

Lebih terperinci

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION Suhendry Effendy Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Bina Nusantara University

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Barcode Salah satu obyek pengenalan pola yang bisa dipelajari dan akhirnya dapat dikenali yaitu PIN barcode. PIN barcode yang merupakan kode batang yang berfungsi sebagai personal

Lebih terperinci

PERANCANGAN SISTEM KONTROL POSISI DAN KECEPATAN PADA KAPAL SELAM MENGGUNAKAN JARINGAN SARAF TIRUAN

PERANCANGAN SISTEM KONTROL POSISI DAN KECEPATAN PADA KAPAL SELAM MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK PERANCANGAN SISTEM KONTROL POSISI DAN KECEPATAN PADA KAPAL SELAM MENGGUNAKAN JARINGAN SARAF TIRUAN Agus Syahril / 0322013 Jurusan Teknik Elektro, Fakultas Teknik Universitas Kristen Maranatha Jl.

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN 31 BAB 3 METODE PENELITIAN 3.1 Pengumpulan Data (Data gathering). Pengumpulan data harus mampu mendeskripsikan data yang ada, serta memiliki kontribusi terhadap pengetahuan. Data yang tidak lengkap perlu

Lebih terperinci

Neural Networks. Machine Learning

Neural Networks. Machine Learning MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,

Lebih terperinci

lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi,

lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi, LAMPIRAN 15 Lampiran 1 Algoritme Jaringan Syaraf Tiruan Propagasi Balik Standar Langkah 0: Inisialisasi bobot (bobot awal dengan nilai random yang paling kecil). Langkah 1: Menentukan maksimum epoch, target

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Biometrik adalah salah satu teknologi cangih yang banyak dipakai untuk menjadi bagian dari system keamanan di berbagai bidang. Biometrik ini bahkan sudah digunakan

Lebih terperinci

PERANCANGAN ALGORITMA BELAJAR JARINGAN SYARAF TIRUAN MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO)

PERANCANGAN ALGORITMA BELAJAR JARINGAN SYARAF TIRUAN MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO) Jurnal POROS TEKNIK, Volume 5, No. 1, Juni 2013 : 18-23 PERANCANGAN ALGORITMA BELAJAR JARINGAN SYARAF TIRUAN MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO) Nurmahaludin (1) (1) Staf Pengajar Jurusan Teknik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

MATERI DAN METODE. Cara Pengambilan Data

MATERI DAN METODE. Cara Pengambilan Data MATERI DAN METODE Lokasi dan Waktu Penelitian ini dilaksanakan di Laboratorium Lapang Bagian Ilmu Produksi Ternak Perah, Fakultas Peternakan Institut Pertanian Bogor. Penelitian dilaksanakan selama dua

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2

Lebih terperinci

PERBANDINGAN KINERJA METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DAN NEURAL NETWORK (NN) PADA PENGENALAN WAJAH

PERBANDINGAN KINERJA METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DAN NEURAL NETWORK (NN) PADA PENGENALAN WAJAH PERBANDINGAN KINERJA METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DAN NEURAL NETWORK (NN) PADA PENGENALAN WAJAH Khoirul Anam (1), Anang Aris Widodo (2), Sultoni (3) Jurusan Teknik Informatika, FTI Universitas

Lebih terperinci

SISTEM PELACAKAN WAJAH METODE HAAR

SISTEM PELACAKAN WAJAH METODE HAAR SISTEM PELACAKAN WAJAH METODE HAAR Endah Sudarmilah Jurusan Teknik Informatika, Fakultas Komunikasi dan Informatika, Universitas Muhammadiyah Surakarta Email : [email protected] Abstrak. Penelitian deteksi

Lebih terperinci

BAB I PENDAHULUAN. mengenali dan membedakan ciri khas yang dimiliki suatu objek (Hidayatno,

BAB I PENDAHULUAN. mengenali dan membedakan ciri khas yang dimiliki suatu objek (Hidayatno, 1 BAB I PENDAHULUAN A. Latar belakang Saat ini pemanfaatan teknologi pengolaan citra untuk mempermudah manusia dalam menyelesaikan masalah-masalah tertentu sudah banyak diterapkan, khususnya dibidang Identifikasi.

Lebih terperinci

PERBANDINGAN BEBERAPA MODEL UNTUK KINERJA ALGORITMA BACKPROPAGATION COMPARISON OF SOME MODEL FOR PEFORMANCE IMPROVEMENT IN BACKPROPAGATION ALGORITHM

PERBANDINGAN BEBERAPA MODEL UNTUK KINERJA ALGORITMA BACKPROPAGATION COMPARISON OF SOME MODEL FOR PEFORMANCE IMPROVEMENT IN BACKPROPAGATION ALGORITHM JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol.6 No. 2, Desember 217 : 8-91 PERBANDINGAN BEBERAPA MODEL UNTUK KINERJA ALGORITMA BACKPROPAGATION COMPARISON OF SOME MODEL FOR PEFORMANCE IMPROVEMENT IN BACKPROPAGATION

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN : Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) Edisi.,Volume,. Bulan.. ISSN : 289-933 ANALISIS METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK PENGENALAN SEL KANKER OTAK Novita Handayani Teknik Informatika

Lebih terperinci

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network Neural Network (NN) adalah suatu prosesor yang melakukan pendistribusian secara besar-besaran, yang memiliki kecenderungan alami untuk menyimpan suatu pengenalan yang pernah dialaminya, dengan kata lain

Lebih terperinci

PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION SKRIPSI

PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION SKRIPSI PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION (Studi Kasus : Harga Penutupan Saham Unilever Indonesia Tbk. Periode September

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi senantiasa membawa dampak secara langsung maupun tidak langsung, baik itu berdampak positif maupun negatif dan akan sangat berpengaruh terhadap

Lebih terperinci

IDENTIFIKASI DAN VERIFIKASI TANDA TANGAN STATIK MENGGUNAKAN BACKPROPAGATION DAN ALIHRAGAM WAVELET

IDENTIFIKASI DAN VERIFIKASI TANDA TANGAN STATIK MENGGUNAKAN BACKPROPAGATION DAN ALIHRAGAM WAVELET TESIS IDENTIFIKASI DAN VERIFIKASI TANDA TANGAN STATIK MENGGUNAKAN BACKPROPAGATION DAN ALIHRAGAM WAVELET ROSALIA ARUM KUMALASANTI No. Mhs. : 135302014/PS/MTF PROGRAM STUDI MAGISTER TEKNIK INFORMATIKA PROGRAM

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Perceptron 2. ADALINE 3. MADALINE 2 Perceptron Perceptron lebih powerful dari Hebb Pembelajaran perceptron mampu menemukan konvergensi terhadap bobot yang

Lebih terperinci

PENGENALAN HURUF HASIL DARI TULISAN TANGAN MENGGUNAKAN ALGORITMA FORWARD-ONLY COUNTER PROPAGATION

PENGENALAN HURUF HASIL DARI TULISAN TANGAN MENGGUNAKAN ALGORITMA FORWARD-ONLY COUNTER PROPAGATION PENGENALAN HURUF HASIL DARI TULISAN TANGAN MENGGUNAKAN ALGORITMA FORWARD-ONLY COUNTER PROPAGATION ABSTRAK Gerald Patrick Siahainenia (0522128) Jurusan Teknik Elektro email : [email protected]

Lebih terperinci

Pengenalan Wajah Menggunakan Metode Support Vector Machine (SVM)

Pengenalan Wajah Menggunakan Metode Support Vector Machine (SVM) Pengenalan Wajah Menggunakan Metode Support Vector Machine (SVM) Yudhie Suherdani / 9922109 Jurusan Teknik Elektro, Fakultas Teknik, Univeristas Kristen Maranatha Jln. Prof. Drg. Suria Sumantri 65, Bandung

Lebih terperinci

Klasifikasi kelompok usia berdasarkan citra wajah menggunakan algoritma neural network dengan fitur face anthropometry dan kedalam kerutan

Klasifikasi kelompok usia berdasarkan citra wajah menggunakan algoritma neural network dengan fitur face anthropometry dan kedalam kerutan Klasifikasi kelompok usia berdasarkan citra wajah menggunakan algoritma neural network dengan fitur face anthropometry dan kedalam kerutan Nur Hayatin Teknik Informatika, Universitas Muhammadiyah Malang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat

Lebih terperinci

JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN)

JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN) JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN) Marihot TP. Manalu Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma

Lebih terperinci

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR ABSTRAK

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR ABSTRAK VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR Eric (0822026) Jurusan Teknik Elektro Universitas Kristen Maranatha email: [email protected] ABSTRAK Pola pembuluh

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning

BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning BAB 2 TINJAUAN PUSTAKA 2.1. Data Mining Data mining adalah kombinasi secara logis antara pengetahuan data, dan analisa statistik yang dikembangkan dalam pengetahuan bisnis atau suatu proses yang menggunakan

Lebih terperinci

UJM 3 (1) (2014) UNNES Journal of Mathematics.

UJM 3 (1) (2014) UNNES Journal of Mathematics. UJM 3 (1) (2014) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm APLIKASI JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM PERAMALAN BEBAN PUNCAK DISTRIBUSI LISTRIK DI WILAYAH PEMALANG

Lebih terperinci

PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK

PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK Berkala Fisika ISSN : 1410-9662 Vol.18, No.4, Oktober 2015, hal 151-156 PREDIKSI PERHITUNGAN DOSIS RADIASI PADA PEMERIKSAAN MAMMOGRAFI MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN PROPAGASI BALIK Zaenal

Lebih terperinci

PENERAPAN MODEL NEURAL NETWORK BACKPROPAGATION UNTUK PREDIKSI HARGA AYAM

PENERAPAN MODEL NEURAL NETWORK BACKPROPAGATION UNTUK PREDIKSI HARGA AYAM PENERAPAN MODEL NEURAL NETWORK BACKPROPAGATION UNTUK PREDIKSI HARGA AYAM Nanik Susanti 1* 1 Program Studi Sistem Informasi, Fakultas Teknik, Universitas Muria Kudus Gondangmanis, PO Box 53, Bae, Kudus

Lebih terperinci