BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Kolektor Surya Kolektor surya merupakan sebuah alat yang digunakan untuk memanaskan fluida kerja yang mengalir kedalamnya dengan mengkonversikan energi radiasi matahari menjadi panas. Fluida yang dipanaskan dapat berupa cairan, minyak, oli, dan udara. Kolektor surya pun dapat didefinisikan sebagai sistem perpindahan panas yang menghasilkan energi panas dengan memanfaatkan radiasi sinar matahari sebagai sumber energi utama. Ketika cahaya matahari menimpa pelat penyerap pada kolektor surya, sebagian cahaya akan dipantulkan kembali ke lingkungan, sedangkan sebagian besarnya akan diserap dan dikonversi menjadi energi panas, lalu panas tersebut dipindahkan kepada fluida yang bersirkulasi di dalam kolektor surya untuk kemudian dimanfaatkan guna berbagai aplikasi (Duffie John dan William A. Beckman (1991)). Kolektor surya pada umumnya memiliki komponenkomponen utama, yaitu: 1. Kaca penutup, berfungsi untuk mengurangi rugi panas secara konveksi menuju lingkungan. 2. Pelat penyerap, berfungsi untuk menyerap panas dari radiasi cahaya matahari. 3. Pipa fluida, berfungsi sebagai saluran transmisi fluida kerja. 4. Isolator, berfungsi meminimalisasi kehilangan panas secara konduksi dari pelat penyerap menuju lingkungan. 5. Frame, berfungsi sebagai struktur pembentuk dan penahan beban kolektor Jenis-jenis Kolektor Surya a) Berdasarkan Bentuk Terdapat tiga jenis kolektor surya yang diklasifikasikan ke dalam Solar Thermal Collector System dan juga memiliki korelasi dengan pengklasifikasian kolektor surya berdasarkan dimensi dan geometri dari receiver yang dimilikinya. 1) Flat-Plate Collectors Kolektor surya plat datar mempunyai temperatur keluaran dibawah 95 C. Dalam aplikasinya kolektor plat datar digunakan untuk memanaskan udara dan air (Goswami, 1999). Keuntungan utama dari sebuah kolektor surya plat datar adalah bahwa memanfaatkan kedua komponen radiasi 4

2 matahari yaitu melalui sorotan langsung dan sebaran, tidak memerlukan tracking matahari dan juga karena desainnya yang sederhana, hanya sedikit memerlukan perawatan dan biaya pembuatan yang murah. Pada umumnya kolektor jenis ini digunakan untuk memanaskan ruangan dalam rumah, pengkondisian udara, dan proses-proses pemanasan dalam industri. (Duffie, 1991) Tipe ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur di bawah 100 C. Spesifikasi tipe ini dapat dilihat dari pelat penyerapnya yang berupa plat datar yang terbuat dari material dengan konduktivitas termal tinggi, dan dilapisi dengan cat berwarna hitam. Kolektor pelat datar memanfaatkan radiasi matahari langsung dan terpencar (beam dan diffuse), tidak membutuhkan pelacak matahari, dan hanya membutuhkan sedikit perawatan. Aplikasi umum kolektor tipe ini antara lain digunakan untuk pemanas air, pemanas gedung, pengkondisian udara, dan proses panas industri. Komponen penunjang yang terdapat pada kolektor pelat datar antara lain; transparent cover, absorber, insulasi, dan kerangka. Gambar 2.1 Penampang melintang kolektor surya pelat datar sederhana 2) Parabolic Trough Collectors Jenis ini dirancang untuk aplikasi yang membutuhkan energi panas pada temperatur antara C. Kolektor surya jenis ini mampu memfokuskan energi radiasi cahaya matahari pada suatu receiver, sehingga dapat meningkatkan kuantitas energi panas yang diserap oleh absorber. Spesifikasi jenis ini dapat dikenali dari adanya komponen konsentrator yang 5

3 terbuat dari material dengan transmisivitas tinggi. Berdasarkan komponen absorber-nya jenis ini dikelompokan menjadi dua jenis yaitu Line Focus dan Point Focus. Gambar 2.2 Konsentrator Agar cahaya matahari selalu dapat difokuskan terhadap tabung absorber, concentrator harus dirotasi. Pergerakan ini disebut dengan tracking. Temperatur fluida melebihi 400 C dapat dicapai pada sistem kolektor ini seperti terlihat pada gambar diatas. 3) Evacuated Tube Collectors Jenis ini dirancang untuk menghasilkan energi panas yang lebih tinggi dibandingkan dengan dua jenis kolektor surya sebelumnya. Keistimewaannya terletak pada efisiensi transfer panasnya yang tinggi tetapi faktor kehilangan panasnya yang relatif rendah. Hal ini dikarenakan fluida yang terjebak diantara absorber dan cover-nya dikondisikan dalam keadaan vakum, sehingga mampu meminimalisasi kehilangan panas yang terjadi secara konveksi dari permukaan luar absorber menuju lingkungan. 6

4 Gambar 2.3 Evacuated Tube Collector (Sumber:http// b) Berdasarkan Tipe Pelat Penyerap Berdasarkan bentuk plat penyerap nya, kolektor surya dibagi menjadi tiga jenis yaitu trickle collector, thermal trap collector dan standard collector. 1) Trickle collector Trickle collector adalah kolektor surya dengan plat penyerap berbentuk gelombang. Gambar 2.4 Kolektor surya tipe Trickle Collector 2) Thermal trap collector kalor. Thermal trap collector adalah kolektor surya dengan perangkap Gambar 2.5 Kolektor surya tipe Thermal trap collector 7

5 3) Standard collector Standard collector adalah kolektor surya dengan plat penyerap berbentuk datar. Gambar 2.6 Kolektor surya tipe Standard Collector Pipa Fluida Terdapat dua jenis bentuk pipa fluida yang dikenal dalam penggunaan kolektor surya. a) Pipa Paralel Gambar 2.7 Pipa fluida berbentuk paralel Kolektor Surya yang memiliki pipa fluida berbentuk paralel di design untuk memindahkan fluida dari bagian bottom kolektor ke bagian top kolektor melewati jajaran paralel pipa vertikal. Pada bentuk ini, besar diameter pipa yang terdapat pada bagian bottom dan top dibuat lebih besar daripada pipa vertikal. Sifat mekanika fluida yang menyokong laju aliran pada pipa terakhir membuat tekanan fluida pada bagian bawah pipa pertama paling besar dan bagian atas pipa terakhir paling kecil. Dengan pembesaran 8

6 diameter bagian bottom dan top, tekanan fluida akan lebih menyesuaikan dan laju aliran fluida pada setiap pipa vertikal lebih mendekati keseragaman. Tapi disayangkan bahwa bagian tengah pipa vertikal akan memiliki nilai laju aliran fluida yang lebih rendah, padahal bagian tengah merupakan bagian dimana banyak energi panas yang terkonsentrasi disana. Pada proses pembuatannya, yang perlu diperhatikan adalah saat pengelasan di bagian T setiap pipa vertikal. Karena sedikit bocor pada bagian ini akan mengganggu seluruh proses pemanasan di dalam kolektor surya. b) Pipa Seri Berkelok (Serpentine) Gambar 2.8 pipa berkelok (Serpentine) Kolektor Surya yang memiliki pipa fluida seri berkelok ini memiliki satu aliran fluida pada pipa panjang yang dibentuk fleksibel. Pada bentuk ini tidak ada permasalahan dalam perbedaan laju aliran fluida. Masalah utama pada kolektor ini adalah aliran pembatasan laju aliran fluida. Dengan pipa yang lebih besar, maka pembatasan laju aliran akan semakin besar dan akan memberikan beban yang tidak perlu pada pompa sirkulasi. Dengan membuat dua kolektor seri berkelok dan menghubungkannya secara paralel akan menghilangkan masalah tersebut. Pada proses pembuatannya, yang perlu diperhatikan adalah saat menekuk (bending) bagian pipa agar jangan sampai material menjadi rusak. 2.1 Radiasi Matahari 9

7 Radiasi matahari merupakan sumber energi utama untuk proses-proses fisika atmosfer yang menentukan kedaan cuaca dan iklim di atmosfer bumi. Permukaan matahari bertemperatur 6000 K, dengan jarak dari bumi 150 juta km. Radiasi yang sampai di puncak atmosfer W/m 2, yang sampai ke permukaan bumi setengah dari yang diterima di puncak atmosfer. Rata-rata 30% radiasi yang sampai di permukaan bumi dipantulkan kembali ke angkasa luar. Tidak semua radiasi matahari sampai ke permukaan bumi, karena sebagian ada yang dipantulkan lagi oleh awan ke angkasa dan sebagian lagi diserap oleh atmosfer bumi. Sebagian radiasi matahari diserap oleh permukaan bumi (di darat dan di laut) yang kemudian membuat permukaan bumi menjadi hangat. Radiasi matahari yang dipancarkan oleh permukaan matahari adalah sama dengan perkalian konstanta Stefan-Boltzman pangkat empat Temperatur permukaan absolut dan luas permukaan. Dengan garis tengah matahari 1,39 x 109 m, Temperatur permukaan matahari 5762 K, dan jarak rata-rata antara matahari dan bumi sebesar 1,5 x 1011 m, maka fluks radiasi persatuan luas dalam arah yang tegak lurus pada radiasi tepat diluar atmosfer bumi adalah: (2.1) ( Ted J. Jansen, 1985 hal : 14 ) G = = 1353 W/m 2 keterangan : G = Konstanta surya ( W/m 2 ) = Konstanta Stefan Boltzman ( ) d s = Diameter matahari T s = Temperatur permukaan matahari (K 4 ) R = Jarak antara matahari dengan bumi (m 2 ) Radiasi surya yang diterima pada satuan luasan di luar atmosfir tegak lurus permukaan matahari pada jarak rata-rata antara matahari dengan bumi disebut konstanta surya adalah 1353 W/m 2 dikurangi intesitasnya oleh penyerapan dan pemantulan atmosfer sebelum mencapai permukaan bumi. Tabel 2.1 Satuan lain untuk Konstanta Surya 10

8 Konstanta Surya ( Gsc ) 1353 W/m Btu/(hr.ft2) Langley/hr MJ/m2.hr (sumber Teknologi Rekayasa Surya, Diterjemahkan oleh Prof. Wiranto Arismunandar) Konstanta surya (G) adalah konstanta yang digunakan sebagai dasar acuan untuk mengetahui besarnya intensitas radiasi surya sebelum mengalami penurunan karena berbagai macam hambatan dalam perjalanannya menuju permukaan bumi. Hambatan yang timbul itu adalah seperti, ketika radiasi surya melewati lapisan-lapisan atmosfir, itu terjadinya yang mempengaruhi posisi matahari, posisi dan letak permukaan pada bumi, dan kondisi-kondisi lainnya. Tabel 2.1 memuat konstanta surya dalam satuan lain. Satuan langley sama dengan 1 kalori/cm2, adalah satuan yang umumnya dapat dijumpai dalam literatur mengenai radiasi surya, dimana 1 kalori = 4,187 Joul, maka 1 langley = 1 kalori/cm2 = 0,04187 MJ/m Jenis-jenis Radiasi Radiasi matahari yang mengenai suatu kolektor di permukaan bumi dibedakan menjadi: 1) Radiasi langsung (beam), yaitu radiasi surya yang diterima dari matahari tanpa disebarkan oleh atmosfer. 2) Radiasi hambur (diffuse), yaitu radiasi surya yang diterima dari matahari tanpa sesudah arahnya berubah setelah terpencar oleh atmosfer. 3) Radiasi pantulan tanah (ground reflected). 4) Radiasi total, yaitu penjumlahan dari radiasi beam, diffuse dan pantulan tanah Sifat-Sifat Radiasi Pada gelombang elektromagnet berjalan melalui suatu medium (vakum) dan mengenai suatu permukaan atau medium lain maka sebagian gelombang akan dipantulkan, sedangkan gelombang yang tidak dipantulkan akan menembus ke dalam medium atau permukaan yang dikenainya. Pada saat melalui medium gelombang secara berkelanjutan akan mengalami pengurangan. Jika pengurangan tersebut berlansung sampai tidak ada lagi gelombang yang akan menembus permukaan yang dikenainya maka permukaan itu disebut sebagai benda yang bertingkah laku seperti 11

9 benda hitam. Jika gelombang melalui suatu medium tanpa mengalami pengurangan hal ini disebut sebagai benda (permukaan) transparan dan jika hanya sebagian dari gelombang yang mengalami pengurangan hal ini disebut sebagai permukaan semi transparan. Suatu benda bertingkahlaku seperti benda hitam, transparan atau semi transparan tergantung kepada ketebalan lapisan materialnya. Benda logam biasanya bersifat seperti benda hitam. Benda non logam umumnya memerlukan ketebalan yang lebih besar sebelum benda ini bersifat seperti benda hitam. Permukaan yang bersifat seperti benda hitam tidak akan memantulkan cahaya radiasi yang diterimanya, oleh karena disebut sebagai penyerap paling baik atau permukaan hitam. Jadi permukaan yang tidak memantulkan radiasi akan terlihat hitam karena tidak ada sinar radiasi yang dipantulkan mengenai mata kita. Benda hitam merupakan penyerap dan penghasil energi yang baik pada setiap panjang gelombang dan arah radiasi Sifat-Sifat Cahaya Apabila sebuah cermin yang menerima cahaya, diarahkan ke sebuah dinding, maka akan nampak cahaya tersebut ke dinding. Hal ini disebabkan karena cermin dapat memantulkan cahaya ke permukaan dinding. a) Hukum Pemantulan Cahaya Snellius Ada dua buah hukum pemantulan cahaya yang dikemukakan oleh Snellius, yaitu: 1. Sinar datang, garis normal, dan sinar pantul terletak pada satu bidang dan berpotongan di satu titik pada bidang itu. 2. Sudut antara sinar pantul dan garis normal (sudut pantul /r) sama dengan sudut antara sinar dating dan garis normal (sudut datang / i ) (i=r). garis normal adalah garis yang tegak lurus bidang datar. Gambar 2.9 Sudut datang dan sudut pantul pada bidang datar (Sumber: 12

10 b) Hukum Pembiasan Cahaya Snellius Seperti pada peristiwa pemantulan cahaya, pada pembiasan cahaya juga dijumpai hukum Snellius. Misalkan cahaya merambat dari medium 1 dengan kecepatan v1 dan sudut datang i menuju ke medium 2. Saat di medium 2 kecepatan cahaya berubah menjadi v2 dan cahaya dibiaskan dengan sudut bias r. Berdasarkan teori muka gelombang, rambatan cahaya dapat digambarkan sebagai muka gelombang yang tegak lurus arah rambatan dan muka gelombang itu membelok saat menembus bidang batas medium 1 dan medium 2 seperti dipelihatkan gambar 2.2 berikut: Gambar 2.10 Muka gelombang pada peristiwa pembiasan. (Sumber: c) Jenis Pemantulan Cahaya Cahaya yang datang pada suatu permukaan akan dipantulkan. Pemantulan cahaya ini tergatung pada sifat permukaannya, dikenal dengan pematulan teratur dan pemantulan baur (difus). Sifat-sifat pemantulan teratur antara lain: 1) Berkas sinar-sinar sejajar dipantulkan sejajar juga 2) Banyak sinar pantul yang mengenai mata pengamat sehingga benda tampak bersinar terang. 3) Terjadi pada benda-benda yang permukaannya halus (rata) seperti kaca, baja, dan alumunium Sedangkan sifat-sifat pemantulan baur (difus) antara lain: 1) Berkas sinar-sinar sejajar dipantulkan ke segala arah 13

11 2) Hanya sedikit sinar pantul yang mengenai mata pengamat sehingga benda tampak suram 3) Terjadi pada benda yang mempunyai permukaan kasar (tidak rata). Gambar 2.11 Pemantulan teratur dan baur (difus) (Sumber: Radiasi Benda Hitam Benda-benda nyata bukan merupakan benda hitam meradiasikan energi lebih sedikit dibandingkan dengan benda hitam. Untuk memperhitungkan hal tersebut harus didefenisikan emissivitas (ε) dalam daya radiasi benda nyata dan benda hitam yang dihitung pada Temperatur yang sama. Perbandingan daya radiasi total benda (W) terhadap daya radiasi total benda hitam (Wb) didefinisikan sebagai daya emissivitas. Disebut benda hitam karena bahan yang mematuhi hukum ini tampak hitam. Benda hitam juga dapat dikatakan sebagai banda yang menyerap seluruh radiasi yang menimpanya. 1) Hukum-hukum radiasi benda hitam a) Hukum Stefan Boltzman Fluks radiasi panas dari sebuah permukaan benda hitam disebut daya radiasi (W) dikemukakan oleh Stefan Boltzman. Pertimbangan termodinamika memperlihatkan bahwa W sebanding dengan pangkat empat dari Temperatur mutlak (absolut). Jadi, total radiasi yang diradiasikan oleh benda hitam sebagai berikut: W = ε T 4...(2.2) Keterangan: W = Total energi radiasi (W/m 2 ) ε = Emissivitas benda = Tetapan Stefan Bolzman 5,669 x 10-8 W/ m 2 K 4 atau = 0,1714 x 10-8 Btu/jam ft 2 R 4 T = Temperatur absolut (K) (Wuryanti. Sri, 1995 hal: 89) 14

12 Nilai emissivitas pada benda berbeda-beda nilainya. Dibawah ini beberapa nilai emissivitas benda sebagian dari keseluruhan yang ada pada sumber tertulisnya. Tabel 2.4 Emissivitas Total Normal Berbagai Permukaan No Permukaan Emissivitas ε Logam 1 Aluminium Plat mengkilap 98,3% murni 0,039 0,057 Plat lembaran 0,09 Plat teroksidasi 0,2 0,31 2 Kuningan Plat pudar 0,22 Krom 0,08 0,36 3 Plat Tembaga dipanaskan 0,78 4 Baja lunak 0,2 0,32 5 Perak murni 0,02 0,032 6 Seng 0,23 Bahan-tahan api, bahan bangunan, cat dan logam 1 Bata merah 0,93 2 Karbon plat kasar 0,77 3 Aluminium cat hitam 0,52 4 Karet 0,94 5 Air 9,95 0,963 (Sumber: J.P Holman, 1994 hal ) b) Hukum Planck Jika didistribusikan dalam spektrum benda hitam, daya emissitivitas monokromatik benda hitam ditetapkan pada hukum Planck. Energi monokromatik yang dipancarkan oleh permukaan yang melakukan radiasi tergantung pada Temperatur permukaan selain panjang gelombang radiasi. c) Hukum Wien Pada Temperatur tertentu, daya radiasi monokromatik mempunyai harga maksimum, untuk gelombang (λ maks). Besarnya λ maks berbanding terbalik dengan Temperatur absolut. 15

13 2.4 Isolator Pada Kolektor Surya Isolasi adalah perlindungan atau penyekatan terhadap suhu, suara, atau tegangan listrik. Isolasi suhu atau termal adalah material yang berguna untuk mengurangi laju perpindahan panas, atau metode untuk mengurangi laju perpindahan panas. Material isolasi yang berguna untuk mengurangi perpindahan panas harus memiliki resistansi tinggi. Sifatsifat yang sangat penting dari isolasi adalah sifat termal. Selain itu juga material isolasi harus memiliki nilai ekonomis yang tinggi agar dapat menekan biaya dalam penggunaannya. Konduktivitas termal adalah sifat fisik dari suatu bahan atau material, yakni suatu besaran yang menunjukkan kemampuan suatu bahan untuk menghantarkan panas. Semakin besar nilai kondutivitas termal dari suatu bahan, maka semakin baik bahan tersebut menghantarkan panas. Satuan yang digunakan untuk konduktivitas termal adalah W/m. o C. Nilai konduktivitas fluida bervariasi, nilai tertinggi adalah logam dan paling rendah adalah serbuk yang telah dihampaskan. Bahan/material dengan konduktivitas termal yang rendah digunakan untuk bahan isolator yaitu untuk membuat aliran kalor minimum. Nilai konduktivitas beberapa bahan dapat dilihat pada tabel dibawah berikut. Tabel 2.2 Nilai Konduktivitas Termal Beberapa Bahan Material Bahan Konduktivitas Termal k W/m. o C Btu/h.ft. o F Logam Perak (murni) Tembaga (murni) Aluminium (murni) Nikel (murni) Besi (murni) Baja karbon, 1% C Bukan Logam Magnesit 4,15 2,4 Kaca, jendela 0,78 0,45 Serbuk gergaji 0,059 0,034 Wol kaca 0,038 0,022 16

14 Zat Cair Air-raksa 8,21 4,74 Air 0,556 0,327 Amonia 0,540 0,312 Freon 12, CCL 2 F 2 0,073 0,042 Gas Hidrogen 0,175 0,101 Udara 0,024 0,0139 Uap air (jenuh) 0,0206 0,0119 Karbon dioksida 0,0146 0,00844 (Sumber : J.P Holman,1994 hal: 7) Sebelumnya dijelaskan diatas konduktivitas termal berbagai bahan isolasi yang terdaftar pada tabel 2.1. Dalam mengelompokan kekuatan bahan isolasi, dalam industri bangunan dapat menggunakan nilai R. Satuan R adalah o C.m 2 /W atau o F.ft 2. h/btu. Dengan demikian sebaiknya bahan-bahan isolasi itu dikelompokan menurut penerapan dan jangkauan temperatur penggunaanya. Informasi demikian diberikan pada tabel 2.2 yang dapat digunakan sebagai acuan untuk memilih bahan-bahan isolasi. No 1 Bahan Asbes: Ditetal longgar Papan asbes semen Lembaran Lakan, 40 laminasi/in Lakan, 20 laminasi /in Gelombang, 4 plain/in Asbes semen Tabel 2.3 Jenis-Jenis Bahan Isolasi dan Penerapanya Suhu k ρ Cp α C W/m. C Kg/m 3 kj/kg. C m 2 /s x 10 7 Bahan Isolasi , ,166 0,057 0,078 0,087 2,08 2 Wol balsam 2,2 lb/ft3 32 0, Karton, gelombang - 0,064 4 Celotex 32 0,048 5 Papan gabus, 10 lb/ft3 30 0,043 Gabus butiran Ulang 6 Giling halus 7 Tanah diatome (Sil-o-cel) Lakan, rambut ,045 0,043 0,061 0, , ,816 3,3-4 1,88 2 5,3 17

15 Wol 30 0, Serat, papan isolasi 20 0, Wol gelas, 1,5 lb/ft3 23 0, ,7 22,6 10 Insulex, kering 32 0, Kapuk 30 0, Magnesia, 85% 38 0, Wol batuan, 10 lb/ft3 32 0, Ditetal longgar 150 0, Serbuk gergaji 23 0, Silika aerogel 32 0, Serutan kayu 23 0,059 Sumber: J.P Holman, 1994 hal Isolator Kapuk Kapuk adalah pohon tropis berkayu yang menghasilkan serat kapuk. Pohon ini banyak ditanam di Asia, terutama di pulau Jawa, Malaysia, Filipina, dan Amerika Selatan. Serat kapuk adalah serat alami yang tipis dan ringan. Kapuk memiliki serat selulosa lebar dengan persentase tertinggi volume berongga yang bisa menghalau angin dan kelembaban. Karakteristik dari serat kapuk yaitu berkilau, super nyaman, super lembut, alami berongga, ekologis, antiseptik, mouldproof, penyerap kelembaban, konduktif kelembaban, anti-acarid, anti-statis, dan tidak ada pilling. Kehalusannya setengah dari serat kapas. Pada industri meubel serat kapuk banyak digunakan sebagai pengisi bantal, kasur, pelampung, dan jok kursi. Pada industri elektronika dan bangunan, serat kapuk digunakan sebagai isolator panas dan peredam suara. Pada industri permesinan, serat kapuk dapat digunakan sebagai filter dan oil separator. Pada industri pemintalan, serat kapuk digunakan untuk membuat benang dan dengan proses yang benar dapat dijadikan kain tenun (Arif Mulyadi (2011)). (Sumber: 18

16 Gambar 2.12 Pohon kapuk dan serat kapuk jenis super (Sumber: Perhitungan Efisiensi Kolektor Surya Pelat Datar Efisiensi dari kolektor surya dapat didefinisikan sebagai perbandingan antara panas yang berguna dari kolektor ke air dengan energi yang diterima kolektor. Prinsip dasar untuk menghitung efisiensi kolektor adalah dengan membandingkan besar kenaikan temperatur fluida yang mengalir di dalam kolektor dengan intensitas cahaya matahari yang diterima kolektor. Untuk mendapatkan nilai efisiensi dari kolektor surya dapat menggunakan persamaan berikut: Energi yang diberikan kolektor ke air Energi panas yang diserap oleh air dari kolektor dapat diketahui dari persamaan dibawah ini : = m x C p x (T fo - T fi )......(2.3) Dimana : = panas yang diserap air (j/s) atau (W) m = laju aliran massa air (kg/s) C p = panas spesifik air (J/kg.K) T fo = Temperatur fluida output [K] T fi = Temperatur fluida input [K] 19

17 Laju aliran massa dapat dicari dengan menggunakan persamaa berikut : = x ρ (2.4) dimana : = Laju aliran massa [kg/s] = debit aliran air [m 3 /s] ρ = massa jenis air [kg/m 3 ] Energi yang diterima kolektor Energi panas yang diterima kolektor dapat dihitung dengan persamaan sebagai berikut: in = A k x I g....(2.5) Dimana : in = panas yang diterima kolektor [J/s] atau [Watt] A k = luas penampang kolektor [m 2 ] I g = pancaran radiasi matahari [Kwh/m 2 ] Efisiensi Kolektor surya (%) Efisiensi dari kolektor surya dapat didefinisikan sebagai perbandingan antara panas yang berguna dari kolektor dengan intensitas dari radiasi surya. η =... (2.6) Dengan demikian efisiensi per laju aliran massa dapat ditulis : =... (2.7) 20

BAB II DASAR TEORI. 2.1 Energi Matahari

BAB II DASAR TEORI. 2.1 Energi Matahari BAB II DASAR TEORI 2.1 Energi Matahari Matahari merupakan sebuah bola yang sangat panas dengan diameter 1.39 x 10 9 meter atau 1.39 juta kilometer. Kalau matahari dianggap benda hitam sempurna, maka energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Konstanta Surya Konstanta surya (G) adalah konstanta yang digunakan sebagai dasar acuan untuk mengetahui besarnya intensitas radiasi surya sebelum mengalami penurunan karena berbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan. Metode pengawetan dengan cara pengeringan merupakan metode paling tua dari semua metode pengawetan yang ada. Contoh makanan yang mengalami proses pengeringan ditemukan

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

Laporan Tugas Akhir BAB I PENDAHULUAN

Laporan Tugas Akhir BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini terus dilakukan beberapa usaha penghematan energi fosil dengan pengembangan energi alternatif yang ramah lingkungan. Salah satunya yaitu dengan pemanfaatan

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap BAB III METODE PENELITIAN (BAHAN DAN METODE) Pemanfaatan energi surya memakai teknologi kolektor adalah usaha yang paling banyak dilakukan. Kolektor berfungsi sebagai pengkonversi energi surya untuk menaikan

Lebih terperinci

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Letak Indonesia yang berada pada daerah khatulistiwa, maka

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-204 Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA BAB IV HASIL PENGUJIAN dan PENGOLAHAN DATA Data hasil pengukuran temperatur pada alat pemanas air dengan menggabungkan ke-8 buah kolektor plat datar dengan 2 buah kolektor parabolic dengan judul Analisa

Lebih terperinci

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di 1.1 Latar Belakang BAB I PENDAHULUAN Matahari adalah sumber energi tak terbatas dan sangat diharapkan dapat menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di Indonesia masih

Lebih terperinci

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan BAB II KAJIAN PUSTAKA 2.1 Pengertian Dasar Pengeringan Dari sejak dahulu pengeringan sudah dikenal sebagai salah satu metode untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Lebih terperinci

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

BAB V RADIASI. q= T 4 T 4

BAB V RADIASI. q= T 4 T 4 BAB V RADIASI Radiasi adalah proses perpindahan panas melalui gelombang elektromagnet atau paket-paket energi (photon) yang dapat merambat sampai jarak yang sangat jauh tanpa memerlukan interaksi dengan

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006). 3 BAB II DASAR TEORI 2.1 Pengering Surya Pengering surya memanfaatkan energi matahari sebagai energi utama dalam proses pengeringan dengan bantuan kolektor surya. Ada tiga klasifikasi utama pengering surya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses optimasi dari sebuah rancagan benda kerja memerlukan perencanaan yang cermat. Teori-teori yang berhubungan dengan benda kerja ataupun alat yang akan dioptimasi perlu dijadikan

Lebih terperinci

collectors water heater menggunakan

collectors water heater menggunakan Pengaruh Bentuk Kolektor Konsentrator Terhadap Efisiensi Pemanas Air Surya Darwin*, M. Ilham Maulana, Irwandi ZA Jurusan Teknik Mesin Fakultas Teknik Universitas Syiah Kuala Jl. Tgk. Syeh Abdurrauf No.

Lebih terperinci

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi II. TINJAUAN PUSTAKA 2.1. Energi Surya Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi panas surya (Matahari) melalui peralatan tertentu menjadi sumber daya dalam bentuk lain.

Lebih terperinci

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar Philip Kristanto Dosen Fakultas Teknik, Jurusan Teknik Mesin - Universitas Kristen Petra Yoe Kiem San Alumnus Fakultas

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C. BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi Alat Pengering Surya Berdasarkan hasil perhitungan yang dilakukan pada perancangan dan pembuatan alat pengering surya (solar dryer) adalah : Desain Termal 1.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Jurnal Ilmiah Teknik Mesin Vol. 5 No.1. April 2011 (98-102) Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap Made Sucipta, Ketut

Lebih terperinci

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari.

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. KALOR A. Pengertian Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama kelamaan

Lebih terperinci

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri Jurnal Energi dan Manufaktur Vol 9. No. 2, Oktober 2016 (161-165) http://ojs.unud.ac.id/index.php/jem ISSN: 2302-5255 (p) ISSN: 2541-5328 (e) Pengaruh variasi jenis pasir sebagai media penyimpan panas

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di

III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di 22 III. METODELOGI PENELITIAN 3.1. Waktu dan Tempat Pelaksanaan Penelitian dilaksanakan pada Mei hingga Juli 2012, dan 20 22 Maret 2013 di Laboratorium dan Perbengkelan Teknik Pertanian, Fakultas Pertanian,

Lebih terperinci

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip Jurnal Ilmiah Teknik Mesin Vol. 4 No.2. Oktober 2010 (88-92) Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip Made Sucipta, I Made Suardamana, Ketut Astawa Jurusan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : BAB IV HASIL DAN PEMBAHASAN 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah : Desain Termal 1. Temperatur udara masuk kolektor (T in ). T

Lebih terperinci

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Spektra: Jurnal Fisika dan Aplikasinya, Vol. XI No.1 Mei 2011 Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System Handjoko Permana a, Hadi Nasbey a a Staf Pengajar

Lebih terperinci

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber

Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber LAPORAN TUGAS AKHIR Analisa Efisiensi Prototype Solar Collector Jenis Parabolic Trough dengan Menggunakan Cover Glass Tube pada Pipa Absorber Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir

Lebih terperinci

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Proceeding Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja Ketut Astawa1, Nengah Suarnadwipa2, Widya Putra3 1.2,3

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan

BAB I. Pendahuluan. 1.1 Latar Belakang. Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan BAB I Pendahuluan 1.1 Latar Belakang Kebutuhan manusia akan energi semakin meningkat setiap tahun seiring dengan kemajuan teknologi. Hal ini karena semakin banyak diciptakan mesin-mesin yang membutuhkan

Lebih terperinci

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING Mulyanef 1, Marsal 2, Rizky Arman 3 dan K. Sopian 4 1,2,3 Jurusan Teknik Mesin Universitas Bung Hatta,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Matahari Matahari adalah bintang yang terdapat di jagat raya ini dan berada paling dekat dengan bumi. Matahari menyadiakan energi yang dibutuhkan oleh kehidupan di bumi ini secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Es krim adalah sejenis makanan semi padat. Di pasaran, es krim

BAB II TINJAUAN PUSTAKA. Es krim adalah sejenis makanan semi padat. Di pasaran, es krim BAB II TINJAUAN PUSTAKA 2.1 Kualitas dan pembuatan es krim Es krim adalah sejenis makanan semi padat. Di pasaran, es krim digolongkan atas kategori economy, good average dan deluxe. Perbedaan utama dari

Lebih terperinci

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI KAJIAN EKSPERIMENTAL PENGARUH INTENSITAS CAHAYA DAN LAJU ALIRAN TERHADAP EFISIENSI TERMAL DENGAN MENGGUNAKAN SOLAR ENERGY DEMONSTRATION TYPE LS-17055-2 DOUBLE SPOT LIGHT SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER Oleh: Zainul Hasan 1, Erika Rani 2 ABSTRAK: Konversi energi adalah proses perubahan energi. Alat konversi energi

Lebih terperinci

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON Caturwati NK, Agung S, Chandra Dwi Jurusan Teknik Mesin Universitas Sultan Ageng Tirtayasa Jl. Jend. Sudirman

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. ENERGI MATAHARI Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Studi Eksperimental Pengaruh Perubahan Debit Aliran... (Kristian dkk.) STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE Rio Adi

Lebih terperinci

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA Walfred Tambunan 1), Maksi Ginting 2, Antonius Surbakti 3 Jurusan Fisika FMIPA Universitas Riau Pekanbaru 1) e-mail:walfred_t@yahoo.com

Lebih terperinci

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2301-9271 1 Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup Edo Wirapraja, Bambang

Lebih terperinci

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit

TUGAS AKHIR. Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit TUGAS AKHIR Perbandingan Temperatur Pada PTC Dengan Kamera Infrared antara Fluida Air dan Minyak Kelapa Sawit Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun

Lebih terperinci

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan 4 II. TINJAUAN PUSTAKA 2.1. Kebutuhan energi Kebutuhan akan sumber energi di muka bumi ini sangat mempengaruhi aspek kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan kebutuhan pokok makhluk

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam Pendekatan Perhitungan untuk intensitas radiasi langsung (beam) Sudut deklinasi Pada 4 januari, n = 4 δ = 22.74 Solar time Solar time = Standard time + 4 ( L st L loc ) + E Sudut jam Radiasi ekstraterestrial

Lebih terperinci

TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING

TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING Maksi Ginting, Salomo, Egi Yuliora Jurusan Fisika-Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Matahari. Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga

Lebih terperinci

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR... DAFTAR ISI LEMBAR PERSETUJUAN... i LEMBAR PENGESAHAN... ii LEMBAR PERNYATAAN... iii ABSTRAK... iv ABSTRACT... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR TABEL x DAFTAR GAMBAR...xii BAB I PENDAHULUAN...

Lebih terperinci

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH) TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP

Lebih terperinci

Gambar 2. Profil suhu dan radiasi pada percobaan 1

Gambar 2. Profil suhu dan radiasi pada percobaan 1 HASIL DAN PEMBAHASAN A. Pengaruh Penggunaan Kolektor Terhadap Suhu Ruang Pengering Energi surya untuk proses pengeringan didasarkan atas curahan iradisai yang diterima rumah kaca dari matahari. Iradiasi

Lebih terperinci

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap Jurnal Ilmiah Teknik Mesin CakraM Vol. 4 No.1. April 2010 (7-15) Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap I Gst.Ketut Sukadana, Made Sucipta & I Made Dhanu

Lebih terperinci

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN :

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN : PERBEDAAN LAJU ALIRAN PANAS YANG DISERAP AIR DALAM PEMANAS AIR BERTENAGA SURYA DITINJAU DARI PERBEDAAN LAJU ALIRAN AIR DALAM PIPA KOLEKTOR PANAS Sumanto Jurusan Teknik Industri Fakultas Teknologi Industri

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

BAB I PENDAHULUAN 1.1 Latar Belakang   Jenis Energi Unit Total Exist 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari, misalnya dalam bidang industri, dan rumah tangga. Saat ini di Indonesia pada umumnya masih menggunakan

Lebih terperinci

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA)

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA) HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1.PANCARAN RADIASI SURYA Meskipun hanya sebagian kecil dari radiasi yang dipancarkan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA)

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1. Perbedaan Suhu dan Panas Panas umumnya diukur dalam satuan joule (J) atau dalam satuan

Lebih terperinci

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN Fatmawati, Maksi Ginting, Walfred Tambunan Mahasiswa Program S1 Fisika Bidang Fisika Energi Jurusan Fisika Fakultas

Lebih terperinci

Perancangan Solar Thermal Collector tipe Parabolic Trough

Perancangan Solar Thermal Collector tipe Parabolic Trough LAPORAN TUGAS AKHIR Perancangan Solar Thermal Collector tipe Parabolic Trough Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh : Nama :

Lebih terperinci

Eddy Elfiano 1, M. Natsir Darin 2, M. Nizar 3

Eddy Elfiano 1, M. Natsir Darin 2, M. Nizar 3 Analisa Pengaruh Variasi Lapisan Plat Pada Pipa Sejajar ANALISA PENGARUH VARIASI LAPISAN PLAT PADA PIPA SEJAJAR TERHADAP EFEKTIFITAS PENYERAPAN PANAS KOLEKTOR SURYA UNTUK PEMANAS AIR DENGAN SISTEM EFEK

Lebih terperinci

Pemanasan Bumi. Suhu dan Perpindahan Panas

Pemanasan Bumi. Suhu dan Perpindahan Panas Pemanasan Bumi Meteorologi Suhu dan Perpindahan Panas Suhu merupakan besaran rata- rata energi kine4k yang dimiliki seluruh molekul dan atom- atom di udara. Udara yang dipanaskan akan memiliki energi kine4k

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Matahari atau juga disebut Surya adalah bintang terdekat dengan Bumi dengan jarak sekitar 149.680.000 kilometer (93.026.724 mil). Matahari adalah suatu bola gas yang pijar dan ternyata

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Prinsip kerja kolektor surya pelat penyerap adalah memindahkan radiasi matahari ke fluida kerja. Radiasi matahari yang jatuh pada cover kaca sebagian akan langsung dipantulkan,

Lebih terperinci

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi Standar Kompetensi 7. Menerapkan konsep suhu dan kalor 8. Menerapkan konsep fluida 9. Menerapkan hukum Termodinamika 10. Menerapkan getaran, gelombang, dan bunyi 11. Menerapkan konsep magnet dan elektromagnet

Lebih terperinci

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas Azridjal Aziz Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH CHRIST JULIO BANGUN

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER Arief Rizki Fadhillah 1, Andi Kurniawan 2, Hendra Kurniawan 3, Nova Risdiyanto Ismail 4 ABSTRAK Pemanas

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian 21 III. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian Fakultas Pertanian Universitas Lampung pada bulan Desember 2012

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Sinar matahari yang sampai di bumi merupakan sumber utama energi yang menimbulkan segala macam kegiatan atmosfer seperti hujan, angin, siklon tropis, musim panas, musim

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

PENGUKURAN KONDUKTIVITAS TERMAL

PENGUKURAN KONDUKTIVITAS TERMAL PENGUKURAN KONDUKTIVITAS TERMAL A. TUJUAN 1. Mengukur konduktivitas termal pada isolator plastisin B. ALAT DAN BAHAN Peralatan yang digunakan dalam kegiatan pengukuran dapat diperhatikan pada gambar 1.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Jahe 2.1.1 Tinjauan Umum Jahe BAB II TINJAUAN PUSTAKA Jahe (Zingiber officinale), adalah tanaman rimpang yang sangat populer sebagai rempah-rempah dan bahan obat. Rimpangnya berbentuk jemari yang menggembung

Lebih terperinci

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN Optimalisasi Penyerapan Radiasi Matahari Pada Solar Water Heater... (Sulistyo dkk.) OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN Agam Sulistyo *,

Lebih terperinci

Kata kunci : pemanasan global, bahan dan warna atap, insulasi atap, plafon ruangan, kenyamanan

Kata kunci : pemanasan global, bahan dan warna atap, insulasi atap, plafon ruangan, kenyamanan Variasi bahan dan warna atap bangunan untuk Menurunkan Temperatur Ruangan akibat Pemanasan Global Nasrul Ilminnafik 1, a *, Digdo L.S. 2,b, Hary Sutjahjono 3,c, Ade Ansyori M.M. 4,d dan Erfani M 5,e 1,2,3,4,5

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

RANCANG BANGUN PEMANAS AIR MENGGUNAKAN KOLEKTOR SURYA

RANCANG BANGUN PEMANAS AIR MENGGUNAKAN KOLEKTOR SURYA JURNAL BINA TEKNIK Volume 7, Nomor 1, April 2017:16-22, ISSN : 0000-0000 RANCANG BANGUN PEMANAS AIR MENGGUNAKAN KOLEKTOR SURYA Dona Bella G. Situmeang¹, Janter P. Simajuntak ¹Alumni Program Studi Diploma

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka 2.1.1. Bejana Tekan Dinding Tipis Popov (1978) mengatakan bahwa bejana tekan berdinding tipis adalah bejana yang memiliki dinding yang idealnya

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB V ANALISIS DAN INTERPRETASI HASIL

BAB V ANALISIS DAN INTERPRETASI HASIL BAB V ANALISIS DAN INTERPRETASI HASIL Pada bab ini dibahas mengenai pemaparan analisis dan interpretasi hasil dari output yang didapatkan penelitian. Analisis penelitian ini dijabarkan dan diuraikan pada

Lebih terperinci

Rancang Bangun Kolekor Surya Tipe Parabolic Trough untuk Menguapkan Air Laut berbahan Stainless dan Tembaga dengan Luas Tangkapan Cahaya 1 M 2

Rancang Bangun Kolekor Surya Tipe Parabolic Trough untuk Menguapkan Air Laut berbahan Stainless dan Tembaga dengan Luas Tangkapan Cahaya 1 M 2 Rancang Bangun Kolekor Surya Tipe Parabolic Trough untuk Menguapkan Air Laut berbahan Stainless dan Tembaga dengan Luas Tangkapan Cahaya 1 M 2 Kusaeri 1, Tachli Supriyad 1, Setya Permana Sutisna 1, 1 Program

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Simulasi Distribusi Suhu Kolektor Surya 1. Domain 3 Dimensi Kolektor Surya Bentuk geometri 3 dimensi kolektor surya diperoleh dari proses pembentukan ruang kolektor menggunakan

Lebih terperinci

PENGARUH SUSUNAN PIPA LALUAN TERHADAP PEMANFAATAN KALOR PADA KOLEKTOR SURYA PELAT DATAR ABSORBER GRANITE

PENGARUH SUSUNAN PIPA LALUAN TERHADAP PEMANFAATAN KALOR PADA KOLEKTOR SURYA PELAT DATAR ABSORBER GRANITE PENGARUH SUSUNAN PIPA LALUAN TERHADAP PEMANFAATAN KALOR PADA KOLEKTOR SURYA PELAT DATAR ABSORBER GRANITE The Influence of Tube arrangements inlet tubeto heat utilization onplate Solar Collector Using a

Lebih terperinci

BAB 9. PENGKONDISIAN UDARA

BAB 9. PENGKONDISIAN UDARA BAB 9. PENGKONDISIAN UDARA Tujuan Instruksional Khusus Mmahasiswa mampu melakukan perhitungan dan analisis pengkondisian udara. Cakupan dari pokok bahasan ini adalah prinsip pengkondisian udara, penggunaan

Lebih terperinci

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA Rasyid Atmodigdo 1, Muhammad Nadjib 2, TitoHadji Agung Santoso 3 Program Studi S-1 Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA Firmansyah Burlian, M. Indaka Khoirullah Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Edu Physic Vol. 3, Tahun 2012 PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Vandri Ahmad Isnaini, S.Si., M.Si Program Studi Pendidikan Fisika IAIN

Lebih terperinci

KALOR. system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitatif pertukaran kalor.

KALOR. system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitatif pertukaran kalor. 59 60 system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitati pertukaran kalor. KALOR. Energi termal, atau energi dalam, U, mengacu pada energi total semua molekul pada

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Proses perpindahan panas secara konduksi Sumber : (maslatip.com)

BAB II DASAR TEORI. Gambar 2.1 Proses perpindahan panas secara konduksi Sumber : (maslatip.com) 5 BAB II DASAR TEORI 2.1 Perpindahan Panas Perpindahan panas (heat transfer) adalah proses berpindahnya energi kalor atau panas (heat) karena adanya perbedaan temperatur. Dimana, energi kalor akan berpindah

Lebih terperinci

BAB IV PERHITUNGAN SOLAR COLLECTOR TYPE PARABOLIC TROUGH

BAB IV PERHITUNGAN SOLAR COLLECTOR TYPE PARABOLIC TROUGH BAB IV PERHITUNGAN SOLAR COLLECTOR TYPE PARABOLIC TROUGH 4.1. Perhitungan Akibat Gerakan Semu Harian Matahari 4.1.1 Perhitungan Sudut Deklinasi Untuk mengetahui sudut deklinasi (δ) menggunakan persamaan

Lebih terperinci

Lampiran 1. Perhitungan kebutuhan panas

Lampiran 1. Perhitungan kebutuhan panas LAMPIRAN 49 Lampiran 1. Perhitungan kebutuhan panas 1. Jumlah Air yang Harus Diuapkan = = = 180 = 72.4 Air yang harus diuapkan (w v ) = 180 72.4 = 107.6 kg Laju penguapan (Ẇ v ) = 107.6 / (32 x 3600) =

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

RADIASI MATAHARI DAN TEMPERATUR

RADIASI MATAHARI DAN TEMPERATUR RADIASI MATAHARI DAN TEMPERATUR Gerakan Bumi Rotasi, perputaran bumi pada porosnya Menghasilkan perubahan waktu, siang dan malam Revolusi, gerakan bumi mengelilingi matahari Kecepatan 18,5 mil/dt Waktu:

Lebih terperinci

Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya

Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya 1 Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya Dewi Jumineti 1) Sutopo Purwono Fitri 2) Beni Cahyono 3) 1) Mahasiswa Jurusan Teknik Sistem Perkapalan ITS,

Lebih terperinci