Sudaryatno Sudirham. MengenalSifatMaterial #2

Ukuran: px
Mulai penontonan dengan halaman:

Download "Sudaryatno Sudirham. MengenalSifatMaterial #2"

Transkripsi

1 Sudaryatno Sudirham MengenalSifatMaterial #

2 Bahan Kuliah Terbuka dalam format pdf tersedia di dalam format pps beranimasi tersedia di

3 Paparan Teori ada di Buku-e dalam format pdf tersedia di dan

4

5 Konduktor Isolator [6] Material σ e [siemens] Perak 6, Tembaga 5, mas 4, Aluminium 3, Tungsten 1, Kuningan 1, Besi 1, Nickel 1, Baja 0, Stainless steel 0, Material Gelas (kaca) Bakelit Gelas (borosilikat) Mika Polyethylene σ e [siemens]

6 Model Klasik Sederhana

7 Jika pada suatu material konduktor terjadi perbedaan potensial, arus listrik akan mengalir melalui konduktor tersebut kerapatan arus [ampere/meter ] J e kuat medan [volt/meter] Ε σ eε ρ e resistivitas [Ωm] konduktivitas [siemens]

8 Medan listrik memberikan gaya dan percepatan pada elektron sebesar Fe e a e m e Karena elektron tidak terakselerasi secara tak berhingga, maka dapat dibayangkan bahwa dalam pergerakannya ia harus kehilangan energi pada waktu menabrak materi pengotor ataupun kerusakan struktur pada zat padat. Jika setiap tabrakan membuat elektron kembali berkecepatan nol, dan waktu antara dua tabrakan berturutan adalah τ maka kecepatan rata-rata adalah: v τe m e

9 Model Klasik Sederhana kecepatan benturan v v maks e τe m τe m e e 0 τ 4τ waktu 6τ kerapatan arus J e ne τ nev σ m e e σ e ne τ m e kerapatan elektron bebas Jika tak ada medan listrik, elektron bebas bergerak cepat pada arah yang acak sehingga tak ada aliran elektron netto. Medan listrik akan membuat elektron bergerak pada arah yang sama.

10 Teori Drude-Lorentz Tentang Metal

11 1900: Drude mengusulkan bahwa konduktivitas listrik tinggi pada metal dapat dijelaskan sebagai kontribusi dari elektron valensi yang dianggap dapat bergerak bebas dalam metal, seperti halnya molekul gas bergerak bebas dalam suatu wadah. Gagasan Drude ini dikembangkan lebih lanjut oleh Lorentz. lektron dapat bergerak bebas dalam kristal metal pada potensial internal yang konstan. Ada dinding potensial pada permukaan metal, yang menyebabkan elektron tidak dapat meninggalkan metal. Semua elektron bebas berperilaku seperti molekul gas (mengikuti statistik Maxwell-Boltzmann); elektron ini memiliki distribusi energi yang kontinyu. Gerakan elektron hanya dibatasi oleh tabrakan dengan ion-ion metal.

12 Medan listrik memberikan gaya dan percepatan pada elektron sebesar Fe e a e m e Integrasi a terhadap waktu memberikan kecepatan elektron, yang disebut kecepatan drift : v drift e m e t

13 v drift e t m e Kecepatan drift ini berubah dari 0 sampai v drift maks, yaitu kecepatan sesaat sebelum tabrakan dengan ion metal. Kecepatan drift rata-rata dapat didekati dengan: v drift v drift e m e t Jika jalan bebas rata-rata elektron adalah L maka waktu rata-rata antara tabrakan dengan tabrakan berikutnya adalah t L µ + v drift kecepatan thermal v drift << µ t L µ

14 v drift e t m e e m e L µ Kerapatan arus adalah: J nev e drift ne L meµ ρ ρ m e µ ne L

15 Model Pita nergi untuk Metal

16 Pita energi paling luar, jika ia hanya sebagian terisi dan padanya terdapat tingkat Fermi, disebut sebagai pita konduksi. Pada metal, pita valensi biasanya hanya sebagian terisi Sodium kosong celah energi F terisi kosong pita valensi pita konduksi

17 Pada beberapa metal, pita valensi terisi penuh. Akan tetapi pita ini overlap dengan pita di atasnya yang kosong. Pita yang kosong ini memfasilitasi tingkat energi yang dengan mudah dicapai oleh elektron yang semula berada di pita valensi. Magnesium kosong F terisi penuh pita valensi

18 Model Mekanika Gelombang

19 Dalam model mekanika gelombang, elektron dipandang sebagai paket gelombang, bukan partikel. Kecepatan grup dari paket gelombang adalah v g df π dk f frekuensi DeBroglie k bilangan gelombang Karena hf, maka: v g π d h dk Percepatan yang dialami elektron adalah a dv dt g π d d π d h dt dk h dk dk dt

20 Percepatan yang dialami elektron adalah a dv dt g π d d π d h dt dk h dk dk dt Percepatan ini terjadi karena ada medan listrik, yang memberikan gaya sebesar e Gaya sebesar e memberikan laju perubahan energi kinetik pada elektron bebas sebesar d πe d dk π edx ev g dt dt e h dk dt h Sehingga percepatan elektron menjadi: a e 4π h d dk

21 4 dk d h e a π percepatan elektron: Bandingkan dengan relasi klasik: a m F e e Kita definisikan massa efektif elektron: 1 4 * dk d h m π * m e a Untuk elektron bebas m* m e. Untuk elektron dalam kristal m* tergantung dari energinya.

22 m* h 4π d dk 1 m* kecil celah energi sifat klasik k 1 +k 1 k d dk d dk meningkat d d menurun dk m* negatif dk positif negatif m* m e jika energinya tidak mendekati batas pita energi dan kurva terhadap k berbentuk parabolik Pada kebanyakan metal m* m e karena pita energi tidak terisi penuh. Pada material yang pita valensinya terisi penuh m* m e

23 Teori Sommerfeld Tentang Metal

24 Metal dilihat sebagai benda padat yang kontinyu, homogen, isotropik. Gambaran tentang elektron seperti pada teori Drude-Lorentz; elektron bebasa berada pada potensial internal yang konstan. Perbedaannya adalah bahwa elektron dalam sumur potensial mengikuti teori kuantum dan bukan mekanika klasik Berapa statuskah yang tersedia untuk elektron atau dengan kata lain bagaimanakah kerapatan status? Bagaimana elektron terdistribusi dalam status yang tersedia dan bagaimana mereka berpartisipasi dalam proses fisika? Kita lihat lagi Persamaan Schrödinger

25 x z y L x L y L z Sumur tiga dimensi 0 ψ + ψ + ψ + ψ z y x m h ) ( ) ( ) ( ),, ( z Z y Y x X z y x ψ 0 ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( z z Z z Z y y Y y Y x x X x X m h m z z Z z Z y y Y y Y x x X x X ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( 1 h + + Aplikasi Persamaan Schrödinger: Kasus 3 Dimensi

26 x m x x X x X ) ( ) ( 1 h y m y y Y y Y ) ( ) ( 1 h z m z z Z z Z ) ( ) ( 1 h 0 ) ( ) ( + x X m x x X x h x 8mL h n x x y 8mL h n y y z 8mL h n z z x z y L x L y L z Sumur tiga dimensi Aplikasi Persamaan Schrödinger; Kasus 3 Dimensi

27 x 8mL h n x x y 8mL h n y y z 8mL h n z z nergi elektron : nergi elektron dinyatakan dalam momentumnya: m p x x m p y y m p z z sehingga : x L h n p x x y L h n p y y z L h n p z z momentum : L i n h p i i ±

28 momentum : p i ± n h i L i Tanda ± menunjukkan bahwa arah momentum bisa positif atau negatif. Pernyataan ini menunjukkan bahwa momentum terkuantisasi. p x, p y, p z membentuk ruang momentum tiga dimensi. Jika ruang momentum berbentuk kubus, maka satuan sisi kubus adalah h/l Kwadran pertama ruang momentum (dua dimensi): p y setiap titik menunjukkan status momentum yang diperkenankan setiap status momentum menempati ruang sebesar h /4L (kasus dimensi). 0 p x

29 p y Kwadran pertama ruang momentum (dua dimensi) p y p dp 0 p x 0 p x setiap status momentum ( 4π p dp) menempati ruang sebesar N( p) dp h /4L h 3 / 8L 3 ( 4π p dp) N( p) dp h 3 / 8 V tiga dimensi

30 p y N( p) dp ( 4π p dp) h 3 V tiga dimensi Karena p ( m) 1/ 1/ dp ( m) d p dp maka N( ) d ( 4 V ) π 3 h m m ( m) 1/ d 0 p x ( π V ) 3/ ( m) 1/ d dn N ( ) d 3 h massa elektron di sini adalah massa efektif Inilah kerapatan status. Setiap status mencakup spin Berapakah yang terisi?

31 Tingkat nergi FRMI

32 Densitas Status pada 0 K ( π V ) 3/ ( m) 1/ d dn N ( ) d 3 h Status energi diisi oleh elektron valensi mulai dari tingkat terendah secra berurut ke tingkat yang lebih tinggi sampai seluruh elektron terakomodasi. lektron pada status energi yang paling tinggi analog dengan elektron pada tingkat energi paling tinggi di sumur potensial. lektron ini memerlukan tambahan energi sebesar work function untuk meninggalkan sumur potensial. Status energi paling tinggi, yaitu tingkat yang paling tinggi yang ditempati oleh elektron pada 0 K secara tentatif didefinsikan sebagai tingkat Fermi, F. (Definisi ini sesungguhnya tidak lengkap, tetapi untuk sementara kita gunakan).

33 p y Jika p adalah jarak dari titik pusat ke momentum paling luar, maka akan diperoleh status yang terisi. Status yang terisi adalah: p dp N 4 3 h 3 3 π p 3 L 8π p 3h 3 3 V 0 p x Karena ( ) 1/ p N m 8π ( m) 3/ 3h 3 3/ V F N 1 8 π V m nergi Fermi: 3/ 3 3N π V / 3 1 h m h 3N 8m π V / 3 F 3/ h

34 Densitas Status pada 0 K ( π V ) 3/ ( m) 1/ d dn N ( ) d 3 h N() 1/ F Densitas & Status terisi pada 0 K Jumlah status yang terisi dihitung dari jumlah status momentum yang terisi dalam ruang momentum: N (4 / 3) πp h 3 / L 3 3 8πp 3h 3 3 V

35 Jika elektron pada tingkat energi F kita pandang secara klasik, relasi energi: k F B T F di mana T F adalah temperatur Fermi Pada tingkat energi F sekitar 4 ev, sedang k B 8, ev maka T F 4, K Jadi suatu elektron klasik berada pada sekitar K untuk setara dengan elektron pada tingkat Fermi.

36 Hasil Perhitungan [1] elemen F [ev] T F [ o K 10-4 ] Li 4,7 5,5 Na 3,1 3,7 K,1,4 Rb 1,8,1 Cs 1,5 1,8 Cu 7,0 8, Ag 5,5 6,4 Au 5,5 6,4 k F B T F

37 Resistivitas

38 Menurut mekanika gelombang elektron bebas dalam kristal dapat bergerak tanpa kehilangan energi. Setiap kelainan pada struktur kristal akan menimbulkan hambatan pada gerakan elektron yang menyebabkan timbulnya resistansi listrik pada material. Bahkan pada 0 o K, adanya resistansi dapat teramati pada material nyata sebab pengotoran, dislokasi, kekosongan, dan berbagai ketidaksempurnaan kristal hadir dalam material. Pada metal murni, resistivitas total merupakan jumlah dari dua komponen yaitu komponen thermal ρ T, yang timbul akibat vibrasi kisi-kisi kristal, dan resistivitas residu ρ r yang disebabkan adanya pengotoran dan ketidaksempurnaan kristal. Relasi Matthiessen: resistivitas total ρ ρ T + ρ r 1 σ e konduktivitas resistivitas thermal resistivitas residu

39 ksperimen menunjukkan: [6] 6 Di atas temperatur Debye 5 komponen thermal dari resistivitas Cu, 3.3% Ni hampir linier terhadap temperatur: ρ [ohm-m] Cu,,16% Ni Cu, 1,1% Ni Cu Temperatur Debye: θ D hf k D konstanta Boltzmann 1, joule/ o K B frekuensi maks osilasi o K λ D c f s D kecepatan rambat suara panjang gelombang minimum osilator

40 Relasi Nordheim: ρ r Ax 1 ( x) konstanta tergantung dari jenis metal dan pengotoran konsentrasi pengotoran Jika x << 1 ρ r Ax 0,0 ρ r / ρ 73 0,15 0,10 In dalam Sn 0,05 1% % 3% 4%

41 Pengaruh Jenis Pengotoran pada Cu [6] P ρ [ohm-meter],5 10 8, Fe Cr Sn Ag ρ T (93) 1, ,05 0,10 0,15 0,0 % berat

42 misi lektron

43 lektron bebas dalam metal tidak meninggalkan metal, kecuali jika mendapat tambahan energi yang cukup. ef F nergi Hampa x

44 Peristiwa photolistrik cahaya emitter collector I 3x lumen x lumen x lumen V Sumber tegangan variabel A V 0 0 Pada tegangan ini semua elektron kembali ke katoda (emitter) nergi kinetik elektron e V 0 Laju keluarnya elektron (arus) tergantung dari intensitas cahaya tetapi energi kinetiknya tidak tergantung intensitas cahaya V

45 emitter cahaya collector A Intensitas cahaya konstan tetapi panjang gelombang berubah I V Sumber tegangan variabel V 01 V 0 V 03 λ6500å (merah) λ5500å (hijau) λ5000å (biru) V

46 emitter V cahaya collector A Photon dengan energi hf diserap elektron di permukaan metal sehingga elektron tersebut mendapat tambahan energi. Jika pada awalnya elektron menempati tingkat energi tertinggi di pita konduksi dan bergerak tegak lurus ke arah permukaan, ia akan meninggalkan emitter dengan energi kinetik maksimum k maks hf eφ Sumber tegangan variabel nergi yang diterima nergi untuk mengatasi hambatan di permukaan (dinding potensial)

47 emitter cahaya collector k maks V A hf eφ hf k < k maks Sumber tegangan variabel F tingkat energi terisi

48 emitter cahaya collector Jika V 0 (yang menunjukkan energi kinetik) di-plot terhadap frekuensi: V o Slope h/e A Metal 1 Metal V f φ 1 Sumber tegangan variabel φ Rumus instein: e V 0 hf eφ

49 Peristiwa misi Thermal Pada temperatur tinggi, sebagian elektron memiliki energi kinetik yang lebih tinggi dari energi rata-rata elektron sehingga dapat melampaui work function ( eφ ). katoda vakum anoda Jika arus cukup tinggi, terjadi saling tolak antara elektron di ruangan sehingga elektron dengan energi rendah tidak mencapai anoda. pemanas A V Muatan ruang makin berpengaruh jika arus makin tinggi. Arus akan mencapai kejenuhan. I V V

50 Makin tinggi temperatur katoda, akan makin tinggi energi elektron yang keluar dari permukaan katoda, dan kejenuhan terjadi pada nilai arus yang lebih tinggi. katoda vakum anoda I T 3 T 1 T pemanas A V Kejenuhan dapat diatasi dengan menaikkan V V V I V 1 V V 3 T

51 Pada tegangan yang sangat tinggi, dimana efek muatan ruang teratasi secara total, semua elektron yang keluar dari katoda akan mencapai anoda. katoda vakum anoda I V V 1 V pemanas A T Persamaan Richardson-Dushman V J AT e eφ / kt kerapatan arus konstanta dari material k konstanta Boltzman 1, joule/ o K

52 Nilai φ tergantung dari temperatur : φ φ 0 + αt katoda vakum anoda pada 0 o K α d φ / dt koefisien temperatur pemanas A V eα J 10 4 ev/ o K pada kebanyakan metal murni Persamaan Richardson-Dushman menjadi: AT eα / k eφ 0 e e / kt

53 Persamaan Richardson-Dushman katoda vakum anoda J AT eα / k eφ 0 e e / kt AT J eα / k eφ / Ae e 0 kt pemanas A ln AT eα k eφ J 0 ln A kt V ln AT J Linier terhadap 1 T

54 Beberapa Material Bahan Katoda [6] Material katoda titik leleh [ O K] temp. kerja [ O K] work function [ev] A [10 6 amp/m o K W ,5 0,060 Ta ,1 0,4 0,6 Mo , 0,55 Th ,4 0,60 Ba ,5 0,60 Cs ,9 1,6

55 Peristiwa misi Sekunder Jika elektron dengan energi tinggi (yang disebut elektron primer) ditembakkan ke permukaan metal, elektron dapat keluar dari permukaan metal (yang disebut elektron sekunder). nergi kinetik elektron sekunder tidak harus tergantung dari energi kinetik elektron yang membentur permukaan. fisiensi emisi sekunder dinyatakan sebagai rasio jumlah elektron sekunder, I s terhadap jumlah elektron primer yang membentur permukaan, I p. Rasio ini disebut secondary emission yield, δ, dan merupakan fungsi dari energi kinetik berkas elektron yang membentur permukaan. Jika energi kinetik berkas elektron yang membentur permukaan terlalu rendah hanya sedikit dihasilkan emisi sekunder.

56 Jika energi kinetik berkas elektron yang membentur permukaan terlalu tinggi hanya sedikit juga dihasilkan emisi sekunder. Hal ini disebabkan karena elektron yang membentur permukaan metal sempat masuk (penetrasi) ke dalam metal sebelum terjadi benturan dengan elektron bebas dalam metal. lektron bebas yang menerima tambahan energi mengalami tabrakantabrakan sebelum mencapai permukaan, dan mereka gagal keluar dari permukaan metal. δ Akibatnya adalah δ sebagai fungsi dari energi berkas elektron, mempunyai nilai maksimum. δ maks 0 0 k maks k

57 misi Sekunder emitter δ maks k [ev] Al 0, Cu 1, Cs 0,9 400 Mo 1,5 375 Ni 1,3 550 W 1, gelas,5 400 BeO 10, 500 Al O 3 4, [6]

58 fek SCHOTTKY Dalam peristiwa emisi thermal telah disebutkan bahwa kenaikan medan listrik antara emitter dan anoda akan mengurangi efek muatan ruang. I V 1 V V 3 Medan yang tinggi juga meningkatkan emisi karena terjadi perubahan dinding potensial di permukaan katoda. Medan memberikan potensial ex pada jarak x dari permukaan penurunan work function nergi F e e x medan listrik tinggi V ex x 0 nilai maks dinding potensial

59 Peristiwa misi Medan Hadirnya medan listrik pada permukaan katoda, selain menurunkan work function juga membuat dinding potensial menjadi lebih tipis. penurunan work function medan listrik sangat tinggi V ex nergi F e e jarak tunneling x

60

61 Karakteristik Dielektrik

62 Faktor Desipasi Dielektrik digunakan pada kapasitor dan sebagai bahan isolasi Permitivitas relatif didefinisikan sebagai rasio permitivitas dielektrik (ε) dengan permitivitas ruang hampa (ε 0 ) ε r ε ε 0 Jika suatu dielektrik yang memiliki permitivitas relatif ε r disisipkan antara dua pelat kapasitor yang memiliki luas A dan jarak antara kedua pelat adalah d, maka kapasitansi yang semula C A 0 ε 0 d berubah menjadi C A d A ε ε 0 ε r C0 d ε r dielektrik meningkatkan kapasitansi sebesar ε r kali

63 Diagram fasor kapasitor Desipasi daya (menjadi panas): im P V I C Rp V C I C tanδ I tot I C tanδ : faktor desipasi δ (loss tangent) I Rp V C re P ε r V 0 ωc V 0 tanδ πf V 0 Cε r tanδ ε r tanδ : faktor kerugian (loss factor)

64 Kekuatan Dielektrik Gradien tegangan maksimum yang masih dapat ditahan oleh dielektrik sebelum terjadi tembus listrik Nilai kekuatan dielektrik secara eksperimen sangat tergantung dari ukuran spesimen, elektroda, serta prosedur percobaan Tembus listrik diawali oleh hdirnya sejumlah elektron di pita konduksi. lektron ini mendapat percepatan oleh adanya medan listrik yang tinggi sehingga memperoleh energi kinetik yang tinggi. Sebagian energi ini ditransfer ke elektron valensi sehingga elektron valensi naik ke pita konduksi. Jika jumlah elektron ini cukup banyak maka akan terjadi avalans elektron di pita konduksi. Arus meningkat dengan cepat sehingga terjadi peleburan lokal, terbakar, atau penguapan. lektron awal bisa hadir oleh beberapa sebab: discharge antara elektroda tegangan tinggi dengan permukaan dielektrik yang terkontaminasi, poripori berisi gas dalam dielektrik, pengotoran oleh atom asing.

65 600 Kekuatan Dielektrik [6] 500 udara 400 psi SF psi Tegangan tembus [kv] High Vacuum Minyak Trafo Porselain SF 6 1 atm udara 1 atm ,13,54 Jarak elektroda [m] X 10

66 Polarisasi

67 / ε σ ε d d A Q d C Q d V Tanpa dielektrik : p e qr d σ d σ Dipole listrik : timbul karena terjadi Polarisasi r r d d A Q d C Q d V ε ε σ ε ε 0 0 / Dengan dielektrik : ( ) r r ε ε ε ε ε σ σ Polarisasi : total dipole momen listrik per satuan volume P Dua Pelat Paralel

68 Molekul di dalam dielektrik mengalami pengaruh medan listrik yang lebih besar dari medan listrik yang diberikan dari luar. Medan listrik yang dialami oleh molekul ini disebut medan lokal. σ Induksi momen dipole oleh medan lokal lok adalah pmol α lok P polarisabilitas N α lok jumlah molekul per satuan volume P Nα lok ε ( ε ) ( 1) r 0 1 ε r Nα ε 0 lok

69 4 macam polarisasi a. polarisasi elektronik : tak ada medan ada medan Teramati pada semua dielektrik. Terjadi karena pergeseran awan elektron pada tiap atom terhadap intinya.

70 4 macam polarisasi tak ada medan ada medan b. polarisasi ionik : Terjadi karena pergeseran ion-ion yang berdekatan dan berlawanan muatan. Hanya ditemui pada material ionik.

71 4 macam polarisasi tak ada medan ada medan c. polarisasi orientasi : Terjadi pada material padat dan cair yang memiliki molekul asimetris yang momen dipole permanennya dapat diarahkan oleh medan listrik.

72 4 macam polarisasi d. polarisasi muatan ruang : tak ada medan ada medan Terjadi pengumpulan muatan di perbatasan dielektrik.

73 ε r Tergantung Pada Frekuensi Dan Temperatur

74 Dalam medan bolak-baik, polarisasi total P, polarisabilitas total α, dan ε r, tergantung dari kemudahan dipole untuk mengikuti medan yang selalu berubah arah tersebut. Dalam proses mengikuti arah medan tersebut, waktu yang dibutuhkan oleh dipole untuk mencapai orientasi keseimbangan disebut waktu relaksasi. Kebalikan dari waktu relaksasi disebut frekuensi relaksasi. Jika frekuensi dari medan yang diberikan melebihi frekuensi relaksasi, dipole tidak cukup cepat untuk mengikutinya, dan proses orientasi berhenti. Karena frekuensi relaksasi dari empat macam proses polarisasi berbeda-beda, maka kontribusi dari masing-masing proses pada polarisasi keseluruhan dapat diamati.

75 muatan ruang elektronik ionik orientasi P; ε r muatan ruang orientasi ionik elektronik α absorbsi; loss factor power audio radio infra merah frekuensi listrik cahaya tampak frekuensi optik frekuensi

76 cps 10 4 cps ε r cps o C silica glass [6]

77 Kehilangan nergi

78 Diagram fasor kapasitor Desipasi daya (menjadi panas): im P V I C Rp V C I C tanδ I tot I C tanδ : faktor desipasi δ (loss tangent) P ε r V 0 ωc V 0 tanδ I Rp V C re πf V 0 Cε r tanδ ε r tanδ : faktor kerugian (loss factor)

79

80

81 Salah satu kriteria dalam pemilihan material untuk keperluan konstruksi adalah kekuatan mekanis-nya Beberapa uji mekanik: uji tarik (tensile test) uji tekan (compression test) uji kekerasan (hardness test) uji impak (impact test) uji kelelahan (fatigue test) Uji tarik (tensile test) dan uji tekan (compression test) dilakukan untuk mengetahui kemampuan material dalam menahan pembebanan statis. Uji kekerasan untuk mengetahui ketahanan material terhadap perubahan (deformation) yang permanen. Uji impak untuk mengetahui ketahanan material terhadap pembebanan mekanis yang tiba-tiba. Uji kelelahan untuk mengetahui lifetime dibawah pembebanan siklis.

82 A 0 A l 0 l sebelum pembebanan P ngineering Stress : σ, didefinisikan sebagai rasio antara beban P pada suatu sampel dengan luas penampang awal dari sampel. ngineering Stress : σ ngineering Strain : ε, didefinisikan sebagai rasio antara perubahan panjang suatu sampel dengan pembebanan terhadap panjang awal-nya. l l0 l ngineering Strain : ε l l P A dengan pembebanan

83 stress, σ [1000 psi] Stress-Strain Curve : ultimate tensile strength yield strength retak stress, σ [1000 psi] daerah elastis mulai daerah plastis linier batas elastis strain, ε [in./in.] strain, ε [in./in.] contoh kurva stress-strain dari Cu polikristal di daerah elastis: σ ε (Hukum Hooke) modulus Young

84 80 00 stress, σ [1000 psi] upper yield point lower yield point stress, σ [1000 psi] strain, ε [in./in.] strain, ε [in./in.] baja 1030 tungsten carbide

85 stress: σ [1000 psi] tekan tarik strain: ε [in./in.] besi tuang stress: σ [1000 psi] tarik tekan strain: ε [in./in.] beton

86 Uji kekerasan mengukur kekuatan material terhadap suatu indenter ; indenter ini bisa berbentuk bola, piramida, kerucut, yang terbuat dari material yang jauh lebih keras dari material yang diuji. Uji kekerasan dilakukan dengan memberikan beban secara perlahan, tegaklurus pada permukaan benda uji, dalam jangka waktu tertentu. P D Salah satu metoda adalah Test Brinell, dengan indenter bola tungsten carbide, D 10 mm Hardness Number dihitung dengan formula: d spesimen BHN πd D P D d

87 Uji impak mengukur energi yang diperlukan untuk mematahkan batang material yang diberi lekukan standar, dengan memberikan beban impuls. Beban impuls diberikan oleh bandul dengan massa tertentu, yang dilepaskan dari ketinggian tertentu. Bandul akan menabrak spesimen dan mematahkannya, kemudian naik lagi sampai ketinggian tertentu. ujung bandul spesimen penahan Dengan mengetahui massa bandul dan selisih ketinggian bandul saat ia dilepaskan dengan ketinggian bandul setelah mematahkan spesimen, dapat dihitung energi yang diserap dalam terjadinya patahan.

88

89 Semua jenis material berubah bentuk, atau berubah volume, atau keduanya, pada waktu mendapat tekanan ataupun perubahan temperatur. Perubahan tersebut dikatakan elastis jika perubahan bentuk atau volume yang disebabkan oleh perubahan tekanan ataupun temperatur dapat secara sempurna kembali ke keadaan semula jika tekanan atau temperatur kembali ke keadaan awalnya. Pada material kristal, hubungan antara stress dan strain adalah linier sedangkan pada material non kristal (dengan rantai molekul panjang) pada umumnya hubungan tersebut tidak linier. A stress, σ elastis stress, σ A elastis strain, ε strain, ε

90 Pada bagian kurva stress-strain yang linier dapat dituliskan hubungan linier σ ε modulus Young stress: σ A elastis strain: ε Modulus Young ditentukan dengan cara lain, misalnya melalui formula: v ρ kecepatan rambat suara dalam material densitas material

91 Ada beberapa konstanta proporsionalitas yang biasa digunakan dalam menyatakan hubungan linier antara stress dan strain, tergantung dari macam stress dan strain 1) Modulus Young Panjang sesudah ditarik σ z Panjang awal l l 0 stress: σ z σ ε z z σ z l l l l ε 0 0 z strain: ε z

92 ). Modulus shear γ tan θ l 0 θ δ Shear stress, τ G τ γ Shear strain, γ

93 3) Modulus bulk (volume) volume awal V 0 σ x σ hyd σ y σ hyd hydrostatic stress : σ hyd K σ hyd V /V 0 σz σ hyd perubahan volume V / V 0

94

95 nergi potensial dari dua atom sebagai fungsi jarak antara keduanya dapat dinyatakan dengan persamaan: A V + n r r B m V : energi potensial r : jarak antar atom A : konstanta proporsionalitas untuk tarik-menarik antar atom B : konstanta proporsionalitas untuk tolak-menolak antar atom n dan m : pangkat yang akan memberikan variasi dari V terhadap r

96 Gaya dari dua atom sebagai fungsi jarak antara keduanya dapat diturunkan dari relasi energi potensial: F V r na r n+ 1 + m+1 r mb Jika : na a, mb b, n + 1 N, dan m + 1 M, maka a F + N r r b M F : gaya antar atom r : jarak antar atom a : konstanta proporsionalitas untuk tarik-menarik antar atom b : konstanta proporsionalitas untuk tolak-menolak antar atom N dan M : pangkat yang akan memberikan variasi dari F terhadap r

97 Kurva energi potensial dan kurva gaya sebagai fungsi jarak antara atom, disebut kurva Condon-Morse: V r B m F b M r energi potensial, V tolak-menolak jumlah r gaya, F d 0 tolak-menolak jumlah r d 0 V A r n tarik-menarik F a r M tarik-menarik

98 Kurva gaya dan garis singgung pada d 0 untuk keperluan praktis dapat dianggap berimpit pada daerah elastis. a F + N r r b M gaya, F r d 0 daerah elastis

99 Pengaruh Temperatur Jarak rata-rata antar atom meningkat dengan peningkatan temperatur. nergi Potensial jarak antar atom d rmin d rata d rmaks 0 o K T >> d 0

100

101 Tercapainya strain maksimum bisa lebih lambat dari tercapainya stress maksimum yang diberikan. Jadi strain tidak hanya tergantung dari stress yang diberikan tetapi juga tergantung waktu. Hal ini disebut anelastisitas. Jika material mendapat pembebanan siklis, maka keterlambatan strain terhadap stress menyebabkan terjadinya desipasi energi. Desipasi energi menyebabkan terjadinya damping. Desipasi energi juga terjadi pada pembebanan monotonik isothermal di daerah plastis. Gejala ini dikenal sebagai creep.

102 fek Thermoelastik Material kristal cenderung turun temperaturnya jika diregangkan (ditarik). Jika peregangan dilakukan cukup lambat, maka material sempat menyerap energi thermal dari sekelilingnya sehingga temperaturnya tak berubah. Dalam hal demikian ini proses peregangan (straining) terjadi secara isothermik. σ σ M ε A ε M A M X σ σ M M X adiabatik isothermik O A ε O Loop Histerisis lastis ε

103 Desipasi energi per siklus tergantung dari frekuensi σ σ σ σ σ O ε O ε O ε O ε O f 1 f >f 1 f 3 >f f 4 >f 3 f 5 >f 4 ε desipasi energi per siklus f 1 f f 3 f 4 f 5 frekuensi

104

105 Peregangan bisa menyebabkan terjadinya difusi atom.

106 Waktu Relaksasi : τ ε ε a ε ε ε 1 ε 1 t 0 t 1 t ε ε ( t / τ ) ae 1 ε aε e [( t )/ τ] t 1

107

108 Keretakan adalah peristiwa terpisahnya satu kesatuan menjadi dua atau lebih bagian. Bagaimana keretakan terjadi, berbeda dari satu material ke material yang lain, dan pada umumnya dipengaruhi oleh stress yang diberikan, geometris dari sampel, kondisi temperatur dan laju strain yang terjadi. Keretakan dibedakan antara keretakan brittle dan ductile. Keretakan brittle terjadi dengan propagasi yang cepat sesudah sedikit terjadi deformasi plastis atau bahkan tanpa didahului oleh terjadinya deformasi plastis. Keretakan ductile adalah keretakan yang didahului oleh terjadinya deformasi plastis yang cukup panjang / lama, dan keretakan terjadi dengan propagasi yang lambat.

109 Pada material kristal, keretakan brittle biasanya menjalar sepanjang bidang tertentu dari kristal, yang disebut bidang cleavage. Pada material polikristal keretakan brittle tersebut terjadi antara grain dengan grain karena terjadi perubahan orientasi bidang clevage ini dari grain ke grain. Selain terjadi sepanjang bidang cleavage, keretakan brittle bisa terjadi sepanjang batas antar grain, dan disebut keretakan intergranular. Kedua macam keretakan brittle, cleavage dan intergranular, terjadi tegak lurus pada arah stress yang maksimum. Kalkulasi teoritis kekuatan material terhadap keretakan adalah sangat kompleks. Walaupun demikian ada model sederhana, berbasis pada besaran-besaran sublimasi, gaya antar atom, energi permukaan, yang dapat digunakan untuk melakukan estimasi. Tidak kita pelajari.

110 Keretakan ductile didahului oleh terjadinya deformasi plastis, dan keretakan terjadi dengan propagasi yang lambat. Pada material yang digunakan dalam engineering, keretakan ductile dapat diamati terjadi dalam beberapa tahapan terjadinya necking, dan mulai terjadi gelembung retakan di daerah ini; gelembung-gelembung retakan menyatu membentuk retakan yang menjalar keluar tegaklurus pada arah stress yang diberikan; retakan melebar ke permukaan pada arh 45 o terhadap arah tegangan yang diberikan. Mulai awal terjadinya necking, deformasi dan stress terkonsentrasi di daerah leher ini. Stress di daerah ini tidak lagi sederhana searah dengan arah gaya dari luar yang diberikan, melainkan terdistribusi secara kompleks dalam tiga sumbu arah. Keretakan ductile dimulai di pusat daerah leher, di mana terjadi shear stress maupun tensile stress lebih tinggi dari bagian lain pada daerah leher. Teori tidak kita pelajari.

111 Transisi dari ductile ke brittle Dalam penggunaan material, adanya lekukan, atau temperatur rendah, atau pada laju strain yang tinggi, bisa terjadi transisi dari keretakan ductile ke brittle. Keretakan ductile menyerap banyak energi sebelum patah, sedangkan keretakan brittle memerlukan sedikit energi. Hindarkan situasi yang mendorong terjadinya transisi ke kemungkinan keretakan brittle.

112 Keretakan karena kelelahan metal Material ductile dapat mengalami kegagalan fungsi jika mendapat stress secara siklis, walaupun stress tersebut jauh di bawah nilai yang bisa ia tahan dalam keadaan statis. Tingkat stress maksimum sebelum kegagalan fungsi terjadi, disebut endurance limit. ndurance limit didefinidikan sebagai stress siklis paling tinggi yang tidak menyebabkan terjadinya kegagalan fungsi, berapapun frekuensi siklis-nya. ndurance limit hampir sebanding dengan ultimate tensile strength (UTS). Pada alloy besi sekitar ½ dan pada alloy bukan besi sampai 1/3 UTS. Secara umum diketahui bahwa jika bagian permukaan suatu spesimen lebih lunak dari bagian dalamnya maka kelelahan metal lebih cepat terjadi dibandingkan dengan jika bagian permukaan lebih keras. Untuk meningkatkan umur mengahadapi terjadinya kelelahan metal, dilakukan pengerasan permukaan (surface-harden).

113

114 Sifat-sifat thermal yang akan kita bahas adalah kapasitas panas panas spesifik pemuaian konduktivitas panas

115 Sejumlah energi bisa ditambahkan ke dalam material melalui pemanasan, medan listrik, medan magnit, bahkan gelombang cahaya seperti pada peristwa photo listrik yang telah kita kenal. Pada penambahan energi melalui pemanasan tanggapan padatan termanifestasikan dalam gejala-gejala kenaikan temperatur sampai pada emisi thermal tergantung dari besar energi yang masuk. Dalam padatan, terdapat dua kemungkinan penyimpanan energi thermal: 1) penyimpanan dalam bentuk vibrasi atom / ion di sekitar posisi keseimbangannya ) energi kinetik yang dikandung oleh elektron-bebas.

116 Kapasitas Panas

117 Kapasitas Panas (heat capacity) Kapasitas panas pada volume konstan, C v C v d dt v : energi internal padatan yaitu total energi yang ada dalam padatan baik dalam bentuk vibrasi atom maupun energi kinetik elektron-bebas T : temperatur Kapasitas panas pada tekanan konstan, Cp C p dh dt p H : enthalpi. Pengertian enthalpi dimunculkan dalam thermodinamika karena amat sulit meningkatkan kandungan energi internal pada tekanan konstan. energi yang kita masukkan tidak hanya meningkatkan energi internal melainkan juga untuk melakukan kerja pada waktu pemuaian terjadi.

118 volume PV H + tekanan energi internal T V P T T P V T V P T T H Jika perubahan volume terhadap T cukup kecil suku ini bisa diabaikan sehingga v T T H v C p C

119 Panas Spesifik

120 Perhitungan Klasik Panas Spesifik Kapasitas panas per satuan massa per derajat K dituliskan dengan huruf kecil c v dan c p Molekul gas ideal memiliki tiga derajat kebebasan energi kinetik rata-rata per derajat kebebasan energi kinetik rata-rata (3 dimensi): energi per mole k 3 / mole NkBT Atom-atom padatan saling terikat energi rata-rata per derajat kebebasan c tot mole padat 3 v RT / cal/mole d 3R 5,96 dt v cal/mole o K 3 3 k B T RT Bilangan Avogadro T k B 1 k B T Konstanta Boltzman Menurut hukum Dulong-Petit (180), c v Hampir sama untuk semua material yaitu 6 cal/mole K

121 Pada umumnya hukum Dulong-Petit cukup teliti untuk temperatur di atas temperatur kamar. Namun beberapa unsur memiliki panas spesifik pada temperatur kamar yang lebih rendah dari angka Dulong-Petit, misalnya Be ([He] s ), B ([He] s p 1 ), C ([He] s p ), Si ([Ne] 3s 3p ) Unsur-unsur ini orbital terluarnya tersisi penuh atau membuat ikatan kovalen dengan unsur sesamanya. Oleh karena itu pada temperatur kamar hampir tidak terdapat elektron bebas dalam material ini. Lebih rendahnya kapasitas panas yang dimiliki material ini disebabkan oleh tidak adanya kontribusi elektron bebas dalam peningkatan energi internal.

122 Sebaliknya pada unsur-unsur yang sangat elektropositif seperti Na ([Ne] 3s 1 ) kapasitas panas pada temperatur tinggi melebihi prediksi Dulong-Petit karena adanya kontribusi elektron bebas dalam penyimpanan energi internal.

123 Perhitungan instein Padatan terdiri dari N atom, yang masing-masing bervibrasi (osilator) secara bebas pada arah tiga dimensi, dengan frekuensi f n nhf Frekuensi osilator Konstanta Planck bilangan kuantum, n 0, 1,,... Jika jumlah osilator tiap status energi adalah N n dan N 0 adalah jumlah asilator pada status 0, maka menuruti fungsi Boltzmann N n N 0 e ( n / k B T ) Jumlah energi per status: total energi dalam padatan: N n n n sehingga energi rata-rata osilator N n n N n n N n N n n n N n ( nhf 0e N 0 e ( nhf / k T ) B / k T ) B nhf

124 energi rata-rata osilator n T k nhf n T k nhf n n n n n B B e N nhf e N N N N ) / ( 0 ) / ( 0 misalkan T k hf x B / ( ) x x x x x x n nx n nx e e e e e e hf e nhf e Karena turunan dari penyebut, maka dapat ditulis ( )... ln x x x e e e dx d hf x e / T k hf B e e hf Dengan N atom yang masing-masing merupakan osilator bebas yang berosilasi tiga dimensi, maka didapatkan total energi internal ) / ( T k hf B e Nhf N

125 Panas spesifik adalah c v d dt v 3Nk B hf k BT e hf / k T B hf / k T ( 1) B e f : frekuensi instein ditentukan dengan cara mencocokkan kurva dengan data-data eksperimental. Hasil yang diperoleh adalah bahwa pada temperatur rendah kurva instein menuju nol jauh lebih cepat dari data eksperimen Ketidak cocokan ini dijelaskan oleh Debye

126 Perhitungan Debye Menurut Debye, penyimpangan hasil perhitungan instein disebabkan oleh asumsi yang diambil instein bahwa atom-atom bervibrasi secara bebas dengan frekuensi sama, f Analisis yang perlu dilakukan adalah menentukan spektrum frekuensi g(f) dimana g(f)df didefinisikan sebagai jumlah frekuensi yang diizinkan yang terletak antara f dan (f + df) Debye melakukan penyederhanaan perhitungan dengan menganggap padatan sebagai medium merata yang bervibrasi dan mengambil pendekatan pada vibrasi atom sebagai spectrum-gelombang-berdiri sepanjang kristal g( f ) 4πf 3 c s kecepatan rambat suara dalam padatan Debye memandang padatan sebagai kumpulan phonon karena perambatan suara dalam padatan merupakan gejala gelombang elastis

127 Postulat Debye: Frekuensi yang ada tidak akan melebihi 3N (N adalah jumlah atom yang bervibrasi tiga dimensi). Panjang gelombang minimum adalah tidak lebih kecil dari jarak antar atom dalam kristal λ D c / s f D nergi internal untuk satu mole volume kristal 9N 3 f D 0 hf D / k BT θd / T f D e hf hf / k B T θ D f 1 hf k D B df θ D didefinisikan sebagai temperatur Debye c v 3 θ T x d T D / e x 9Nk B dt v θd x 4 dx ( e 1) 0

128 ) / ( T D D θ Dengan pengertian temperatur Debye, didefinisikan fungsi Debye ( ) θ θ θ T x x D D D e dx x e T T D / ) / ( ) / ( 3 T D Nk c D B v θ Fungsi Debye tidak dapat diintegrasi secara analitis, namun dapat dicari nilai-nilai limitnya 1 ) / ( θ T D D ) / ( θ π θ D D T T D jika T jika D T θ << Pada temperatur tinggi c v mendekati nilai yang diperoleh instein R Nk c B v 3 3 Pada temperatur rendah , θ θ π D D B v T T Nk c

129 Kontribusi lektron Hanya elektron di sekitar energi Fermi yang terpengaruh oleh kenaikan temperatur dan elektron-elektron inilah yang bisa berkontribusi pada panas spesifik Pada temperatur tinggi, elektron menerima energi thermal sekitar k B T dan berpindah pada tingkat energi yang lebih tinggi jika tingkat energi yang lebih tinggi kosong F() 1 k B T T 0 T > F kurang dari 1% elektron valensi yang dapat berkontribusi pada panas spesifik pada kebanyakan metal sekitar 5 ev pada temperatur kamar k B T sekitar 0,05 ev kontribusi elektron dalam panas spesifik adalah c v elektron 3Nk F B T

130 Panas Spesifik Total c c + v total v ion c v elektron Untuk temperatur rendah, dapat dituliskan c v AT + γ T c v γ + T 3 atau AT c v /T slope A γ T

131 Panas Spesifik Pada Tekanan Konstan, c p Hubungan antara c p dan c v c diberikan dalam thermodinamika αv koefisien muai volume p cv TV β kompresibilitas volume molar dv v dp β 1 T α v 1 v dv dt p Faktor-Faktor Lain Yang Turut Berperan Pemasukan panas pada padatan tertentu dikuti proses-proses lain, misalnya: perubahan susunan molekul dalam alloy, pengacakan spin elektron dalam material magnetik, perubahan distribusi elektron dalam material superkonduktor, Proses-proses ini akan meningkatkan panas spesifik material yang bersangkutan

132 Pemuaian

133 Pada tekanan konstan α L 1 l α 3 dl dt V α L p Dengan menggunakan model Debye α 3α v L γc v β V γ : konstanta Gruneisen β : kompresibilitas

134 c p, α L, γ, untuk beberapa material.[6]. Material c p (300 K) cal/g K α L (300 K) 1/K 10 6 γ (konst. Gruneisen) Al 0, 4,1,17 Cu 0,09 17,6 1,96 Au 0,031 13,8 3,03 Fe ,8 1,60 Pb 0,3 8,0,73 Ni 0,13 13, Pt 0,031 8,8,54 Ag 0,056 19,5,40 W 0,034 3,95 1,6 Sn 0,54 3,5,14 Tl 0,036 6,7 1,75

135 Konduktivitas Panas

136 Konduktivitas Panas Jika q adalah jumlah kalori yang melewati satu satuan luas (A) per satuan waktu ke arah x maka Q q σ A T dt dx Konduktivitas Panas aliran panas berjalan dari temperatur tinggi ke temperatur rendah Pada temperatur kamar, metal memiliki konduktivitas thermal yang baik dan konduktivitas listrik yang baik pula karena elektron-bebas berperan dalam berlangsungnya transfer panas Pada material dengan ikatan ion ataupun ikatan kovalen, di mana elektron kurang dapat bergerak bebas, transfer panas berlangsung melalui phonon Dalam polimer perpindahan panas terjadi melalui rotasi, vibrasi, dan translasi molekul

137 σ T untuk beberapa material pada 300 K.[6]. Material σ T cal/(cm sec K) Lσ T /σ e T (volt/k) 10 8 Al 0,53, Cu 0,94,3 Fe 0,19,47 Ag 1,00,31 C (Intan) 1,5 - Ge 0,14 - Lorentz number

138 Konduktivitas Panas Oleh lektron pengertian klasik gas ideal T k B 3 Jika L adalah jalan bebas rata-rata elektron, maka transmisi energi per elektron adalah x T k x B 3 L x T k L x B 3 Jumlah energi yang ter-transfer ke arah x L x T k n Q B µ 3 3 kerapatan elektron kecepatan rata-rata nergi thermal yang ditransfer melalui dua bidang paralel tegak-lurus arah x dengan jarak δx pada perbedaan temperatur δt adalah x T T σ x T Q x T Q T σ σ / atau T L k n B T µ σ

139 Rasio Wiedemann-Franz Rasio ini adalah rasio antara konduktivitas thermal dan konduktivitas listrik listrik σ σ nµ k B T mµ e ne L e mµ L k B σ σ T e L o T Lorentz number hampir sama untuk kebanyakan metal

140 Isolator Panas Isolator thermal yang baik adalah material yang porous. Rendahnya konduktivitas thermal disebabkan oleh rendahnya konduktivitas udara yang terjebak dalam pori-pori Namun penggunaan pada temperatur tinggi yang berkelanjutan cenderung terjadi pemadatan yang mengurangi kualitasnya sebagai isolator thermal Material polimer yang porous bisa mendekati kualitas ruang hampa pada temperatur sangat rendah; gas dalam pori yang membeku menyisakan ruang-ruang hampa yang bertindak sebagai isolator

141 Bahan Kuliah Terbuka Mengenal Sifat Material # Sudaryatno Sudirham

Mengenal Sifat Material (2)

Mengenal Sifat Material (2) Open Course Mengenal Sifat Material () oleh: Sudaryatno Sudirham Cakupan Bahasan Struktur Kristal dan Nonkristal Teori Pita Energi dan Teori Zona Sifat Listrik Metal Sifat Listrik Dielektrik Sifat Thermal

Lebih terperinci

Mengenal Sifat Material. Teori Pita Energi

Mengenal Sifat Material. Teori Pita Energi Mengenal Sifat Material Teori Pita Energi Ulas Ulang Kuantisasi Energi Planck : energi photon (partikel) bilangan bulat frekuensi gelombang cahaya h = 6,63 10-34 joule-sec De Broglie : Elektron sbg gelombang

Lebih terperinci

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam Elektron Bebas Beberapa teori tentang panas jenis zat padat yang telah dibahas dapat dengan baik menjelaskan sifat-sfat panas jenis zat padat yang tergolong non logam, akan tetapi untuk golongan logam

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 10-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 10 Sifat Listrik Dielektrik Berbeda dari konduktor, material ini tidak

Lebih terperinci

TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES

TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES Nama Kelompok: 1. Diah Ayu Suci Kinasih (24040115130099) 2. Alfiyan Hernowo (24040115140114) Mata Kuliah Dosen Pengampu : Ilmu Material Umum : Dr.

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 15-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 15 Difusi Difusi adalah peristiwa di mana terjadi tranfer materi melalui

Lebih terperinci

BAB IV SIFAT MEKANIK LOGAM

BAB IV SIFAT MEKANIK LOGAM BAB IV SIFAT MEKANIK LOGAM Sifat mekanik bahan adalah : hubungan antara respons atau deformasi bahan terhadap beban yang bekerja. Sifat mekanik : berkaitan dengan kekuatan, kekerasan, keuletan, dan kekakuan.

Lebih terperinci

bermanfaat. sifat. berubah juga pembebanan siklis,

bermanfaat. sifat. berubah juga pembebanan siklis, SIFAT MEKANIK BAHAN Sifat (properties) dari bahan merupakan karakteristik untuk mengidentifikasi dan membedakan bahan-bahan. Semua sifat dapat diamati dan diukur. Setiap sifat bahan padat, khususnya logam,berkaitan

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal. Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal. Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 16-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 16 Oksidasi dan Korosi Dalam reaksi kimia di mana oksigen tertambahkan

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Keramik. Ikatan atom pada keramik. Sifat-sifat bahan keramik 04/10/2016. Lukhi mulia s

Keramik. Ikatan atom pada keramik. Sifat-sifat bahan keramik 04/10/2016. Lukhi mulia s Ikatan atom pada keramik Keramik Lukhi mulia s O Ikatan ion O Ikatan kovalen O Ikatan logam O Ikatan dipol O Ikatan antar atom dan sifat-sifat kristal 1 3 1438 1438 3 3 Pendahuluan O Keramik merupakan

Lebih terperinci

INFORMASI PENTING. m e = 9, kg Besar muatan electron. Massa electron. e = 1, C Bilangan Avogadro

INFORMASI PENTING. m e = 9, kg Besar muatan electron. Massa electron. e = 1, C Bilangan Avogadro PETUNJUK UMUM 1. Tuliskan NAMA dan ID peserta di setiap lembar jawaban dan lembar kerja. 2. Tuliskan jawaban akhir di kotak yang disediakan untuk di lembar Jawaban. Lembar kerja dapat digunakan untuk melakukan

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) BIDANG KIMIA SUB KIMIA FISIK 16 Mei 2017 Waktu : 120menit Petunjuk Pengerjaan H 1. Tes ini terdiri atas

Lebih terperinci

Kategori Sifat Material

Kategori Sifat Material 1 TIN107 Material Teknik Kategori Sifat Material 2 Fisik Mekanik Teknologi Kimia 6623 - Taufiqur Rachman 1 Sifat Fisik 3 Kemampuan suatu bahan/material ditinjau dari sifat-sifat fisikanya. Sifat yang dapat

Lebih terperinci

BAB I BESARAN DAN SISTEM SATUAN

BAB I BESARAN DAN SISTEM SATUAN 1.1. Pendahuluan BAB I BESARAN DAN SISTEM SATUAN Fisika berasal dari bahasa Yunani yang berarti Alam. Karena itu Fisika merupakan suatu ilmu pengetahuan dasar yang mempelajari gejala-gejala alam dan interaksinya

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

PENDEKATAN TEORITIK. Elastisitas Medium

PENDEKATAN TEORITIK. Elastisitas Medium PENDEKATAN TEORITIK Elastisitas Medium Untuk mengetahui secara sempurna kelakuan atau sifat dari suatu medium adalah dengan mengetahui hubungan antara tegangan yang bekerja () dan regangan yang diakibatkan

Lebih terperinci

PELATIHAN OSN JAKARTA 2016 LISTRIK MAGNET (BAGIAN 1)

PELATIHAN OSN JAKARTA 2016 LISTRIK MAGNET (BAGIAN 1) PLATIHAN OSN JAKATA 2016 LISTIK MAGNT (AGIAN 1) 1. Partikel deuterium (1 proton, 1 neutron) dan partikel alpha (2 proton, 2 neutron) saling mendekat dari jarak yang sangat jauh dengan energi kinetik masing-masing

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 14-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 14 Gejala Permukaan Setelah kita mengenal fasa-fasa, kita akan melihat

Lebih terperinci

Hukum Ohm. Fisika Dasar 2 Materi 4

Hukum Ohm. Fisika Dasar 2 Materi 4 Hukum Ohm Fisika Dasar 2 Materi 4 Arus Listrik Pada listrik statis, kita selalu membahas muatan yang diam. Pada listrik dinamik muatan dipandang bergerak pada suatu bahan yang disebut konduktor Muatan-muatan

Lebih terperinci

BAB IV SIFAT MEKANIK LOGAM

BAB IV SIFAT MEKANIK LOGAM BAB IV SIFAT MEKANIK LOGAM Sifat mekanik bahan adalah : hubungan antara respons atau deformasi bahan terhadap beban yang bekerja. Sifat mekanik : berkaitan dengan kekuatan, kekerasan, keuletan, dan kekakuan.

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: PENDAHULUAN Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: kristal semikonduktor intrinsik dan kristal semikonduktor ekstrinsik. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

BENDA WUJUD, SIFAT DAN KEGUNAANNYA

BENDA WUJUD, SIFAT DAN KEGUNAANNYA BENDA WUJUD, SIFAT DAN KEGUNAANNYA Benda = Materi = bahan Wujud benda : 1) Padat 2) Cair 3) Gas Benda Padat 1. Mekanis kuat (tegar), sukar berubah bentuk, keras 2. Titik leleh tinggi 3. Sebagian konduktor

Lebih terperinci

DASAR PENGUKURAN LISTRIK

DASAR PENGUKURAN LISTRIK DASAR PENGUKURAN LISTRIK OUTLINE 1. Objektif 2. Teori 3. Contoh 4. Simpulan Objektif Teori Contoh Simpulan Tujuan Pembelajaran Mahasiswa mampu: Menjelaskan dengan benar mengenai energi panas dan temperatur.

Lebih terperinci

VI. Teori Kinetika Gas

VI. Teori Kinetika Gas VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk

Lebih terperinci

Getaran Dalam Zat Padat BAB I PENDAHULUAN

Getaran Dalam Zat Padat BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Pendahuluan Getaran atom dalam zat padat dapat disebabkan oleh gelombang yang merambat pada Kristal. Ditinjau dari panjang gelombang yang digelombang yang digunakan dan dibandingkan

Lebih terperinci

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN PENGUKURAN SUHU Untuk mempelajari KONSEP SUHU dan hukum ke-nol termodinamika, Kita perlu mendefinisikan pengertian sistem,

Lebih terperinci

VII ELASTISITAS Benda Elastis dan Benda Plastis

VII ELASTISITAS Benda Elastis dan Benda Plastis VII EASTISITAS Kompetensi yang diharapkan dicapai oleh mahasiswa setelah mempelajari bab elastisitas adalah kemampuan memahami, menganalisis dan mengaplikasikan konsep-konsep elastisitas pada kehidupan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu material yang sangat penting bagi kebutuhan manusia adalah logam. Seiring dengan jaman yang semakin maju, kebutuhan akan logam menjadi semakin tinggi.

Lebih terperinci

Terjemahan ZAT PADAT. Kristal padat

Terjemahan ZAT PADAT. Kristal padat Terjemahan ZAT PADAT Zat padat adalah sebuah objek yang cenderung mempertahankan bentuknya ketika gaya luar mempengaruhinya. Karena kepadatannya itu, bahan padat digunakan dalam bangunan yang semua strukturnya

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

IV. Arus Listrik. Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis

IV. Arus Listrik. Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis IV. Arus Listrik Sebelum tahun 1800: listrik buatan hanya berasal dari friksi (muatan statis) == tidak ada kegunaan praktis listrik alam kilat Pada tahun 1800: Alessandro Volta menemukan baterai listrik

Lebih terperinci

Pertambahan arus ΔI yang melalui pertambahan permukaan ΔS yang normal pada rapatan arus ialah

Pertambahan arus ΔI yang melalui pertambahan permukaan ΔS yang normal pada rapatan arus ialah KONDUKTOR DIELEKTRIK DAN KAPASITANSI Muatan listrik yang bergerak membentuk arus. Satuan arus ialah ampere (A) yang didefinisikan sebagai laju aliran muatan yang melalui titik acuan sebesar satu coulomb

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

BAB 2 DASAR TEORI. k = A T. = kecepatan aliran panas [W] A = luas daerah hantaran panas [m 2 ] ΔT/m = gradient temperatur disepanjang material

BAB 2 DASAR TEORI. k = A T. = kecepatan aliran panas [W] A = luas daerah hantaran panas [m 2 ] ΔT/m = gradient temperatur disepanjang material 3 BAB 2 DASAR TEORI 2.1 Dasar Dasar Mekanisme Perpindahan Energi Panas Pada dasarnya terdapat tiga macam proses perpindahan energi panas. Proses tersebut adalah perpindahan energi secara konduksi, konveksi,

Lebih terperinci

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK MESIN UNIVERSITAS MEDAN AREA

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK MESIN UNIVERSITAS MEDAN AREA LAPORAN PRAKTIKUM PENGUJIAN PENGERUSAK DAN MICROSTRUKTUR DISUSUN OLEH : IMAM FITRIADI NPM : 13.813.0023 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK MESIN UNIVERSITAS MEDAN AREA KATA PENGANTAR Puji syukur

Lebih terperinci

TEORI KINETIK GAS (II) Dr. Ifa Puspasari

TEORI KINETIK GAS (II) Dr. Ifa Puspasari TEORI KINETIK GAS (II) Dr. Ifa Puspasari a) Gas terdiri atas partikelpartikel yang sangat kecil yang disebut molekul, massa dan besarnya sama untuk tiap-tiap jenis gas. b) Molekul-molekul ini selalu bergerak

Lebih terperinci

KONSEP TEGANGAN DAN REGANGAN NORMAL

KONSEP TEGANGAN DAN REGANGAN NORMAL KONSEP TEGANGAN DAN REGANGAN NORMAL MATERI KULIAH KALKULUS TEP FTP UB RYN - 2012 Is This Stress? 1 Bukan, Ini adalah stress Beberapa hal yang menyebabkan stress Gaya luar Gravitasi Gaya sentrifugal Pemanasan

Lebih terperinci

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan

Lebih terperinci

ARUS LISTRIK. Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion)

ARUS LISTRIK. Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion) ARUS LISTRIK Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion) Konduktor terisolasi Elektron-elektron tersebut tidak mempunyai

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

TEGANGAN (YIELD) Gambar 1: Gambaran singkat uji tarik dan datanya. rasio tegangan (stress) dan regangan (strain) adalah konstan

TEGANGAN (YIELD) Gambar 1: Gambaran singkat uji tarik dan datanya. rasio tegangan (stress) dan regangan (strain) adalah konstan TEGANGAN (YIELD) Gambar 1: Gambaran singkat uji tarik dan datanya Biasanya yang menjadi fokus perhatian adalah kemampuan maksimum bahan tersebut dalam menahan beban. Kemampuan ini umumnya disebut Ultimate

Lebih terperinci

LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1

LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1 LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1 KODE: L - 4 JUDUL PERCOBAAN : ARUS DAN TEGANGAN PADA LAMPU FILAMEN TUNGSTEN DI SUSUN OLEH: TIFFANY RAHMA NOVESTIANA 24040110110024 LABORATORIUM FISIKA DASAR FAKULTAS

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

BAB III SIFAT MEKANIK MATERIAL TEKNIK

BAB III SIFAT MEKANIK MATERIAL TEKNIK BAB III SIFAT MEKANIK MATERIAL TEKNIK Material dalam penggunaannya selalu dikenai gaya atau beban. Oleh karena itu perlu diketahui karakter material agar deformasi yang terjadi tidak berlebihan dan tidak

Lebih terperinci

DESKRIPSI PEMELAJARAN FISIKA

DESKRIPSI PEMELAJARAN FISIKA MATA DIKLAT : FISIKA TUJUAN : 1. Menggunakan pengetahuan fisika dalam kehidupan sehari-hari 2. Memiliki kemampuan dasar fisika untuk mengembangkan kemampuan dibidang teknologi bangunan gedung KOMPETENSI

Lebih terperinci

BAB 1. PENGUJIAN MEKANIS

BAB 1. PENGUJIAN MEKANIS BAB 1. PENGUJIAN MEKANIS 1.1.PENDAHULUAN Tujuan Pengujian Mekanis Untuk mengevaluasi sifat mekanis dasar untuk dipakai dalam disain Untuk memprediksi kerja material dibawah kondisi pembebanan Untuk memperoleh

Lebih terperinci

Dibuat oleh invir.com, dibikin pdf oleh

Dibuat oleh invir.com, dibikin pdf oleh 1. Air terjun setinggi 8 m dengan debit 10 m³/s dimanfaatkan untuk memutarkan generator listrik mikro. Jika 10% energi air berubah menjadi energi listrik dan g = 10m/s², daya keluaran generator listrik

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

Fisika UMPTN Tahun 1986

Fisika UMPTN Tahun 1986 Fisika UMPTN Tahun 986 UMPTN-86-0 Sebuah benda dengan massa kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari, m. Jika

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG Zainal Abidin Teknik Elektro Politeknik Bengkalis Jl. Bathin Alam, Sei-Alam, Bengkalis Riau [email protected]

Lebih terperinci

Doc. Name: SBMPTN2015FIS999 Version:

Doc. Name: SBMPTN2015FIS999 Version: SBMPTN 2015 Fisika Kode Soal Doc. Name: SBMPTN2015FIS999 Version: 2015-09 halaman 1 16. Posisi benda yang bergerak sebagai fungsi parabolik ditunjukkan pada gambar. Pada saat t 1 benda. (A) bergerak dengan

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

MODUL 1 KULIAH SEMIKONDUKTOR

MODUL 1 KULIAH SEMIKONDUKTOR MODUL 1 KULIAH SMIKONDUKTOR I.1. LOGAM, ISOLATOR dan SMIKONDUKTOR. Suatu bahan zat padat apabila dikaitkan dengan kemampuannya dalam menghantarkan arus listrik, maka bahan zat padat dibedakan menjadi tiga

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD [email protected] 2 BAB 4 KAPASITOR Kapasitas, Kapasitor Pelat Sejajar, Kapasitor Bola, Kapasitor Silinder, Kapasitor Pengganti Seri dan Paralel,

Lebih terperinci

Diktat TERMODINAMIKA DASAR

Diktat TERMODINAMIKA DASAR Bab III HUKUM TERMODINAMIKA I : SISTEM TERTUTUP 3. PENDAHULUAN Hukum termodinamika pertama menyatakan bahwa energi tidak dapat diciptakan dan dimusnahkan tetapi hanya dapat diubah dari satu bentuk ke bentuk

Lebih terperinci

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi.

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. MACAM GELOMBANG Gelombang dibedakan menjadi : Gelombang Mekanis : Gelombang yang memerlukan

Lebih terperinci

Materi #2 TIN107 Material Teknik 2013 SIFAT MATERIAL

Materi #2 TIN107 Material Teknik 2013 SIFAT MATERIAL #2 SIFAT MATERIAL Material yang digunakan dalam industri sangat banyak. Masing-masing material memiki ciri-ciri yang berbeda, yang sering disebut dengan sifat material. Pemilihan dan penggunaan material

Lebih terperinci

SOAL BABAK PEREMPAT FINAL OLIMPIADE FISIKA UNIVERSITAS NEGERI SEMARANG

SOAL BABAK PEREMPAT FINAL OLIMPIADE FISIKA UNIVERSITAS NEGERI SEMARANG SOAL BABAK PEREMPAT FINAL OLIMPIADE FISIKA UNIVERSITAS NEGERI SEMARANG Tingkat Waktu : SMP/SEDERAJAT : 100 menit 1. Jika cepat rambat gelombang longitudinal dalam zat padat adalah = y/ dengan y modulus

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

Uji Kekerasan Material dengan Metode Rockwell

Uji Kekerasan Material dengan Metode Rockwell Uji Kekerasan Material dengan Metode Rockwell 1 Ika Wahyuni, 2 Ahmad Barkati Rojul, 3 Erlin Nasocha, 4 Nindia Fauzia Rosyi, 5 Nurul Khusnia, 6 Oktaviana Retna Ningsih Jurusan Fisika, Fakultas Sains dan

Lebih terperinci

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya.

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran proton (bermuatan positif) dan neutron

Lebih terperinci

KIMIA FISIKA I TC Dr. Ifa Puspasari

KIMIA FISIKA I TC Dr. Ifa Puspasari KIMIA FISIKA I TC20062 Dr. Ifa Puspasari TEORI KINETIK GAS (1) Dr. Ifa Puspasari Apa itu Teori Kinetik? Teori kinetik menjelaskan tentang perilaku gas yang didasarkan pada pendapat bahwa gas terdiri dari

Lebih terperinci

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford. 1 BAB FISIKA ATOM Perkembangan teori atom Model Atom Dalton 1. Atom adalah bagian terkecil dari suatu unsur yang tidak dapat dibagi-bagi 2. Atom-atom suatu unsur semuanya serupa dan tidak dapat berubah

Lebih terperinci

Arus Listrik dan Resistansi

Arus Listrik dan Resistansi TOPIK 5 Arus Listrik dan Resistansi Kuliah Fisika Dasar II TIP,TP, UGM 2009 Ikhsan Setiawan, M.Si. Jurusan Fisika FMIPA UGM [email protected] Arus Listrik (Electric Current) Lambang : i atau I. Yaitu:

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

Asyari D. Yunus - Struktur dan Sifat Material Universitas Darma Persada - Jakarta

Asyari D. Yunus - Struktur dan Sifat Material Universitas Darma Persada - Jakarta Perbedaannya pada spesimen diletakan. Pada uji impak yang diukur adalah energi impak dan disebut juga ketangguhan takik ( notch toughness ). Bahan yang diuji diberi takik, kemudian dipukul sampai patah

Lebih terperinci

PENDAHULUAN. Atom berasal dari bahasa Yunani atomos yang artinya tidak dapat dibagi-bagi lagi.

PENDAHULUAN. Atom berasal dari bahasa Yunani atomos yang artinya tidak dapat dibagi-bagi lagi. PENDAHULUAN Atom berasal dari bahasa Yunani atomos yang artinya tidak dapat dibagi-bagi lagi. Demokritus (460-370-S.M) Bagian terkecil yang tidak dapat dibagi lagi disebut: ATOM Konsep atom yang dikemukakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan 5 BAB II TINJAUAN PUSTAKA 2.1. Material Amorf Salah satu jenis material ini adalah gelas atau kaca. Berbeda dengan jenis atau ragam material seperti keramik, yang juga dikelompokan dalam satu definisi

Lebih terperinci

Suhu dan kalor 1 SUHU DAN KALOR

Suhu dan kalor 1 SUHU DAN KALOR Suhu dan kalor 1 SUHU DAN KALOR Pengertian Sifat Termal Zat. Sifat termal zat ialah bahwa setiap zat yang menerima ataupun melepaskan kalor, maka zat tersebut akan mengalami : - Perubahan suhu / temperatur

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan BAB II TEGANGAN TINGGI 2.1 Umum Pengukuran tegangan tinggi berbeda dengan pengukuran tegangan rendah, sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan tinggi yang akan

Lebih terperinci

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini.

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. Dari gambar dapat disimpulkan bahwa tebal keping adalah... A. 4,30 mm B. 4,50 mm C. 4,70

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN JUDUL MATA KULIAH : FISIKA DASAR NOMOR KODE / SKS : FIS 101 / 3(2-3) DESKRIPSI SINGKAT : Mata kuliah Fisika Dasar ini diberikan di TPB untuk membekali seluruh mahasiswa

Lebih terperinci

Materi Listrik. LISTRIK STATIS Hukum Coulomb Medan Listrik Potensial Listrik Kapasitor Contoh Soal

Materi Listrik. LISTRIK STATIS Hukum Coulomb Medan Listrik Potensial Listrik Kapasitor Contoh Soal Materi Listrik LISTRIK STATIS Hukum Coulomb Medan Listrik Potensial Listrik Kapasitor Contoh Soal LISTRIK DINAMIS Arus Listrik Hukum Ohm Rangkaian hambatan Rangkaian Sumber tegan Hukum Kirchoff I.II Sumber

Lebih terperinci

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA SOAL-SOAL KONSEP: 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! Temperatur adalah ukuran gerakan molekuler. Panas/kalor adalah

Lebih terperinci

Bahan Listrik. Sifat Listrik Bahan

Bahan Listrik. Sifat Listrik Bahan Bahan Listrik Sifat Listrik Bahan Jenis Bahan / Material: 1.Murni unsur - logam (Fe, Hg) - nonlogam [C (grafit, intan), Si, S] 2.Senyawa - oksida / keramik (tanah liat, SiO 2 ) - polimer (kayu, karet,

Lebih terperinci

C iklm = sebagai tensor elastisitas

C iklm = sebagai tensor elastisitas Teori elastisitas menjadi dasar pokok untuk mendiskripsikan perambatan gelombang elastik. Tensor stress σ ik dan tensor strain ε ik dihubungkan oleh persamaan keadaan untuk suatu medium. Pada material

Lebih terperinci

Modul - 4 SEMIKONDUKTOR

Modul - 4 SEMIKONDUKTOR Modul - 4 SEMIKONDUKTOR Disusun Sebagai Materi Pelatihan Guru-Guru SMA/MA Provinsi Nangro Aceh Darussalam Disusun oleh: Dr. Agus Setiawan, M.Si Dr. Dadi Rusdiana, M.Si Dr. Ida Hamidah, M.Si Dra. Ida Kaniawati,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. terhadap pergeseran cermin untuk menentukan faktor konversi, dan grafik

BAB IV HASIL DAN PEMBAHASAN. terhadap pergeseran cermin untuk menentukan faktor konversi, dan grafik BAB IV HASIL DAN PEMBAHASAN Bab yang keempat ini mengulas tentang hasil penelitian yang telah dilakukan beserta analisa pembahasannya. Hasil penelitian ini nantinya akan dipaparkan olahan data berupa grafik

Lebih terperinci

Analisis Dimensi 1. Oleh : Abdurrouf Tujuan. 0.2 Ringkasan

Analisis Dimensi 1. Oleh : Abdurrouf Tujuan. 0.2 Ringkasan Analisis Dimensi 1 Oleh : Abdurrouf 2 0.1 Tujuan Setelah mempelajari topik ini, diharapkan peserta dapat memahami pengertian dimensi, mengenal dimensi besaran pokok, dapat menurunkan dimensi besaran satuan,

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMA / MA 2011 Program IPA Mata Ujian : Fisika Jumlah Soal : 20 1. Gas helium (A r = gram/mol) sebanyak 20 gram dan bersuhu 27 C berada dalam wadah yang volumenya 1,25 liter. Jika tetapan

Lebih terperinci

Sifat Sifat Material

Sifat Sifat Material Sifat Sifat Material Secara garis besar material mempunyai sifat-sifat yang mencirikannya, pada bidang teknik mesin umumnya sifat tersebut dibagi menjadi tiga sifat. Sifat sifat itu akan mendasari dalam

Lebih terperinci

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT 1.1. Partikel bermuatan BAGIAN 1 PITA ENERGI DALAM ZAT PADAT - Muatan elektron : -1,6 x 10-19 C - Massa elektron : 9,11 x 10-31 kg - Jumlah elektron dalam setiap Coulomb sekitar 6 x 10 18 buah (resiprokal

Lebih terperinci

Pengukuran Compressive Strength Benda Padat

Pengukuran Compressive Strength Benda Padat Compressive Strength 1 Pengukuran Compressive Strength Benda Padat Mei Budi Utami (081211332009), Nur Aisyiah (081211331002), Firman Maulana Ikhsan (081211331003), Dewi Puji Lestari (081211331128), Muhimatul

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Kelompok besaran berikut yang merupakan besaran

Lebih terperinci

PENGETAHUAN (C1) SYARIFAH RAISA Reguler A Tugas Evaluasi

PENGETAHUAN (C1) SYARIFAH RAISA Reguler A Tugas Evaluasi SYARIFAH RAISA 1006103030009 Reguler A Tugas Evaluasi PENGETAHUAN (C1) Pengetahuan adalah aspek yang paling dasar dalam taksonomi Bloom. Sering kali disebut juga aspek ingatan (recall). Contoh soal yang

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI SMA DAN MA F I S I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan persiapan

Lebih terperinci

Rheologi. Stress DEFORMASI BAHAN 9/26/2012. Klasifikasi Rheologi

Rheologi. Stress DEFORMASI BAHAN 9/26/2012. Klasifikasi Rheologi Rheologi Sifat-sifat rheologi didefinisikan sebagai sifat mekanik yang menghasilkan deformasi dan aliran bahan yang disebabkan karena adanya stress/gaya Klasifikasi Rheologi Stress DEFORMASI BAHAN 1 Stress

Lebih terperinci

drimbajoe.wordpress.com

drimbajoe.wordpress.com 1. Suatu bidang berbentuk segi empat setelah diukur dengan menggunakan alat ukur yang berbeda, diperoleh panjang 5,45 cm, lebar 6,2 cm, maka luas pelat tersebut menurut aturan penulisan angka penting adalah...

Lebih terperinci

ATOM BERELEKTRON BANYAK

ATOM BERELEKTRON BANYAK ATOM BERELEKTRON BANYAK A. MODEL ATOM BOHR * Keunggulan Dapat menjelaskan adanya : 1. Kestabilan atom. Spektrum garis pada atom hidrogen (deret Lyman, Balmer, Paschen, Brackett, Pfund) * Kelemahan Tidak

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci