BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI A. Pemanas Induksi Pemanas induksi adalah timbulnya panas pada logam yang terkena induksi medan magnet, hal ini disebabkan karena pada logam timbul arus Eddy atau arus pusar yang arahnya melingkar melingkupi medan magnet terjadinya arus pusar akibat dari induksi magnet yang menimbulkan fluks magnetik yang menembus logam, sehingga menyebabkan panas pada logam. Induksi magnet adalah kuat medan magnet akibat adanya arus listrik yang mengalir dalam konduktor. Pemanasan Induksi juga disebut sebagai proses pemanasan nonkontak yang menggunakan listrik frekuensi tinggi untuk menghasilkan panas yang konduktif secara elektrik. Karena non-kontak, proses pemanasan tidak mencemari bahan yang sedang dipanaskan. Hal ini juga sangat efisien karena panas yang sebenarnya dihasilkan di dalam benda kerja. Ini dapat dibandingkan dengan metode pemanasan lain dimana panas yang dihasilkan dalam elemen api atau pemanas, yang kemudian diterapkan pada benda kerja. Untuk alasan ini Pemanas Induksi cocok untuk beberapa aplikasi yang unik dalam industri. Sebuah sumber listrik digunakan untuk menggerakkan sebuah arus bolak balik atau yang biasa disebut sebagai arus AC yang besar melalui sebuah kumparan induksi. Kumparan induksi ini dikenal sebagai kumparan kerja. Aliran arus yang melalui kumparan ini menghasilkan medan magnet 5

2 6 yang sangat kuat dan cepat berubah dalam kumparan kerja. Benda kerja yang akan dipanaskan ditempatkan dalam medan magnet ini dengan arus AC yang sangat kuat. Ketika sebuah beban masuk dalam kumparan kerja yang di aliri oleh arus AC, maka nilai arus yang mengalir akan mengikuti besarannya sesuai dengan nilai beban yang masuk. Medan magnet yang tinggi akan dapat menyebabkan sebuah beban dalam kumparan kerja tersebut melepaskan panasnya, sehingga panas yang ditimbulkan oleh beban tersebut justru dapat melelehkan beban itu sendiri. Karena panas yang dialami oleh beban akan semakin tinggi, hingga mencapai nilai titik leburnya. B. Komponen Elektronika 1. Mosfet MOSFET merupakan singkatan dari Metal Oxide Semiconductor Field Effect Transistor yang merepresentasikan bahan-bahan penyusunnya yang terdiri dari logam, oksida dan semikonduktor (Baskara Internalis, 2007). Terdapat 2 jenis MOSFET yaitu tipe NPN atau N channel dan PNP atau biasa disebut P channel. MOSFET dibuat dengan menyusun lapisan oksida pada semikonduktor dari tipe NPN maupun PNP dan lapisan logam diletakkan diatasnya. Biasanya bahan semikonduktor pilihan adalah silikon, namun beberapa produsen IC, terutama IBM, mulai menggunakan campuran silikon dan germanium (SiGe) sebagai kanal MOSFET. Sayangnya, banyak semikonduktor dengan karakteristik listrik yang lebih baik

3 7 daripada silikon, seperti galium arsenid (GaAs), tidak membentuk antarmuka semikonduktor ke isolator yang baik sehingga tidak cocok untuk MOSFET. Hingga kini terus diadakan penelitian untuk membuat isolator yang dapat diterima dengan baik untuk bahan semikonduktor lainnya. Untuk mengatasi peningkatan konsumsi daya akibat kebocoran arus gerbang, dielektrik κ tinggi menggantikan silikon dioksida sebagai isolator gerbang, dan gerbang logam kembali digunakan untuk menggantikan polisilikon. Gerbang dipisahkan dari kanal oleh lapisan tipis isolator yang secara tradisional adalah silikon dioksida, tetapi yang lebih maju menggunakan teknologi silicon oxynitride. Beberapa perusahaan telah mulai memperkenalkan kombinasi dielektrik κ tinggi + gerbang logam di teknologi 45 nanometer. Gambar 1. Skema MOSFET Sederhana

4 8 2. Dioda Dioda atau diode adalah sambungan bahan p-n yang berfungsi terutama sebagai penyearah. Bahan tipe-p akan menjadi sisi anoda sedangkan bahan tipe-n akan menjadi katoda. Bergantung pada polaritas tegangan yang diberikan kepadanya, dioda bisa berlaku sebagai sebuah saklar tertutup (apabila bagian anoda mendapatkan tegangan positif sedangkan katodanya mendapatkan tegangan negatif) dan berlaku sebagi saklar terbuka (apabila bagian anode mendapatkan tegangan negatif sedangkan katode mendapatkan tegangan positif). Kondisi tersebut terjadi hanya pada diode ideal-konseptual. Pada dioda faktual (riil), perlu tegangan lebih besar dari 0,7 V (untuk dioda yang terbuat dari bahan silikon) pada anoda terhadap katoda agar dioda dapat menghantarkan arus listrik. Tegangan sebesar 0,7 V ini disebut sebagai tegangan halang (barrier voltage). Dioda yang terbuat dari bahan Germanium memiliki tegangan halang kira-kira 0,3 V. Gambar 2. Susunan dan Simbol Dioda

5 9 3. Resistor Hambatan adalah komponen elektronika yang selalu digunakan dalam setiap rangkaian elektronika karena dia berfungsi sebagai pengatur arus listrik. Hambatan disingkat dengan huruf "R" (huruf R besar). Satuan Hambatan adalah Ohm, yang menemukan adalah George Simon Ohm ( ), seorang ahli fisika bangsa Jerman. Hambatan listrik dapat didistribusikan sesuai dengan kebutuhan. Gambar 3. Resistor Perhatikan gambar 3, sebuah Hambatan mempunyai jumlah cincin sebanyak 5 diantaranya yaitu cincin pertama, cincin kedua, cincin ketiga (multiflier), cincin keempat (toleransi), dan cincin kelima (kualitas). Pada gambar 3 kita dapatkan bahwa hambatan tersebut berwarna biru, merah, merah, emas dan merah.

6 10 4. Kapasitor Kondensator (Capasitor) adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad. Ditemukan oleh Michael Faraday ( ). Kondensator kini juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Italia condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", seperti bahasa Perancis condensateur, Indonesia Kondensator dan Jerman atau Spanyol Condensador. a) Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung. Gambar 4. Salah Satu Jenis Kondensator Beserta Lambangnya

7 11 b) Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju yang sering disebut kapasitor (capacitor). Gambar 5. Salah Satu Jenis Kapasitor Beserta Lambangnya Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada massa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).

8 12 C. Medan Magnet Magnet dapat kita artikan sebagai sebuah benda yang mempunyai sifat yang saling tarik-menarik terhadap benda-benda besi. Meskipun demikian tidak berarti bahwa semua potongan besi dapat dibuat magnet, apabila benda tersebut dapat dibuat magnet maka tidak akan dapat bertahan lama terhadap sifat-sifat magnet. Jika kita membuat sebatang magnet yang ringan sehingga dapat berputar maka magnet tersebut akan mengambil kedudukan dengan arah tertentu dan arahnya sesuai dengan garis yang menghubungkan ke kutub utara dan kutub selatan. Dengan adanya magnet maka akan timbul suatu medan magnet, jadi kita dapat mengartikan bahwa medan magnet merupakan suatu ruangan dimana magnet tersebut bekerja. Pada sebuah magnet terdapat dua kutub (dwi kutub) yaitu kutub utara dan kutub selatan, karena jarum penunjuk kompas menjahui kutub utara (U) dan mendekati kutub selatan (S). Di mana garis-garis medan magnet keluar dari kutub utara dan masuk ke kutub selatan. Dari garis-garis magnet maka akan timbul medan magnet dalam suatu ruangan apabila muatan listrik yang bergerak dalam ruangan tersebut mengalami gaya tertentu selama muatan itu bergerak. Supaya gambaran tentang bahan magnetik mempunyai dasar kuantitatif, maka dwi kutub magnetik sangat berguna sebagai sumber terbesar pada medan magnet. Arus medan magnet terdiri dari gerak muatan terikat dan kuat medan magnet sehingga disebut dengan magnetisasi. Medan magnet yang ditimbulkan oleh penghantar yang dialiri arus listrik dapat kita ketahui bahwa garis-garis medan magnetnya selalu tertutup sebab

9 13 medan magnet tidak memiliki sumber dan penerima. Jadi garis gaya tersebut akan menunjukkan arah medan magnet dan jumlah garis-garis gaya tiap-tiap nya akan menunjukkan besarnya kekuatan medan magnet. Pada gambar dibawah ini di mana medan magnet yang terdapat pada lilitan panjang (kumparan) yang di aliri arus listrik yaitu di dalam kumparan tersebut medan magnet berasal dari setiap lingkaran lilitan. Pada setiap lilitan akan bertumpukan satu dengan yang lain sehingga terdapat harga intensitas medan (H). Untuk mencari intensitas medan magnet maka besar-kecilnya arus yang mengalir pada kumparan tersebut harus selalu diperhitungkan secara cermat. Gambar 6. Medan magnet sebuah penghantar berbentuk lilitan panjang Pada gambar di atas maka dapat kita ketahui yaitu apabila suatu sumber tegangan (V) mengalirkan arus listrik (I) yang melalui suatu kumparan dengan jumlah lilitan (N) pada inti besinya akan timbul suatu kuat medan (H) dengan persamaan, (Ambar Rencono Wati, 2000:17). H =

10 14 Keterangan: H = Kuat Medan Magnet (A/m) N = Jumlah Lilitan l = Panjang Kumparan I = Arus (m) (Ampere) Suatu medan magnet yang ditunjukkan dengan garis gaya magnetik vektor B dititik garis medan dan berarah menurut garis singgung pada garis medan dititik akan menimbulkan kerapatan fluks magnatik (B). Kerapatan fluks magnetik yang dihasilkan akan memiliki hubungan dengan intensitas medan magnet. Hubungan diantara keduanya sangat dipengaruhi oleh sifat bahan magnetik yang digunakan untuk menghasilkan B dan H dan sifat itu disebut dengan permeabilitas (µ). Permeabilitas (µ) merupakan faktor untuk membandingkan kemampuan suatu material magnet dalam menghantarkan fluksi magnet terhadap penghantar ruang hampa, dengan definisi sebagai berikut, (Ambar Rencono Wati, 2000:18). µ = µ = Permeabilitas (Wb/A.m) B = Perubahan Kerapatan Fluks (Wb/ ) H = Perubahan Intensitas Medan Magnet (A/m) Pada setiap bahan magnetik memiliki harga permeabilitas yang berbedabeda, dan permeabilitasnya dikondisikan diruang hampa. Kondisi permeabilitas

11 15 pada ruang hampa memiliki nilai standart 1, sedangkan untuk ketiga bahan magnetik tersebut di tunjukkan pada tabel dibawah ini: Tabel 1. Kondisi Permeabilitas Pada Bahan Magnetik Bahan Kondisi Permeabilitas Diamagnetik µ < 1 Paramagnetik µ > 1 Ferro / Ferrimagnetik µ > 1 Gambaran tentang sebuah medan magnet dapat kita lukiskan sebagai garis gaya magnetik dengan vektor B dititik garis medan dititik tersebut. Apabila garis gaya magnet dilukiskan sedemikian rupa sehingga jumlah garis gaya total yang masuk secara tegak lurus sama dengan nilai B, maka jumlah garis gaya total yang ada pada medan magnet tersebut disebut dengan fluks magnetik (Φ). Satuan fluksi magnet (Φ) adalah weber (Wb) di mana jika fluks magnetik yang melalui luas A adalah jumlah garis fluks yang menembus luas permukaan dengan komponen B yang tegak lurus permukaan A maka, (Ambar Rencono Wati, 2000:19). Φ = B. A Φ = Fluks Magnetik (Wb) B = Kerapatan Fluks Magnet (Wb/ ) A = Luas Penampang ( )

12 16 Kerapatan dari sebuah fluksi magnetik nilainya dapat kita lihat dari kerapatan fluks magnet (B) dalam ruang hampa, tetapi kerapatan fluks dapat kita ketahui apabila komponen medan yang lain diketahui sesuai persamaan dibawah ini, (Ambar Rencono Wati, 2000:19). B = µo. H B = Kerapatan Fluksi Magnet (Wb/ ) µo = Permeabilitas Relatif (Wb/A.m) H = Intensitas Medan Magnet (A/m) Kerapatan fluks magnet (B) diukur dalam weber per meter persegi (Wb/ ) atau dalam satuan internasioal disebut dengan Tesla (lt = 1 Wb/ ). Di dalam rangkaian magnetik jumlah NI adalah jumah ampere-lilitan total, jadi suatu agm (mmf) sangat dibutuhkan untuk menimbulkan medan magnetik dalam inti. Salah satu suku yang mengalikan fluks magnetik adalah Reluktansi (R) dan merupakan parameter resistansi. Reluktansi nilaiya akan berpengaruh pada kemampuan daya hantar magnet dengan persamaan, (Ambar Rencono Wati, 2000:20). R = R = Reluktansi L = Panjang Lilitan ( A/Wb) (m)

13 17 A = Luas Penampang ( ) µ = Permeabilitas (Wb/A.m) D. Induktansi Induktansi (imbasan) merupakan parameter terakhir dari tiga parameter dalam teori rangkaian diantaranya yaitu resistansi dan kapasitansi, untuk mengetahui lebih jelas tentang induktansi maka penjelasan tentang fluks magnet sangat diperlukan. Apabilah sebuah medan berubah - ubah terhadap waktu sebagai akibat arus bolak balik sinusoida maka akan terdapat sebuah medan listrik yang diinduksikan. Salah satu contoh yaitu kita tinjau sebuah lilitan melingkar (kumparan) yang memiliki jumlah lilitan (N) dan dialiri arus (I) sehingga menimbulkan fluks total (Φ), dimana fluksnya bertautan dengan masing - masing lilitan. Dari lilitan tersebut maka akan kita lihat masing - masing lilitan yang saling bertautan dengan fluks total. Keterangan untuk contoh di atas dapat kita analogikan menjadi dengan defenisi kapasitansi sehingga induktansi itu sendiri dapat didefinisikan sebagai hasil bagi dari pertautan fluks total dengan arus yang bertautan dengan persamaan sebagai berikut, (Ambar Rencono Wati, 2000:22). L = L = Induktansi (Henry) N = Lilitan Φ = Fluks Total (Wb)

14 18 I = Arus (Ampere) E. Solenoida Solenoida merupakan sekumpulan lilitan bersambung satu dengan yang lain dan berbentuk lurus memanjang. Penampang masing - masing lilitan membentuk satu sumbu lurus dan tegak lurus dengan sumbu tersebut, untuk lebih jelasnya dapat kita lihat pada gambar dibawah ini : Gambar 7. Bentuk Lilitan Solenoida Persamaan untuk kuat medan akan dimasukkan pada persamaan induktansi maka diperoleh bentuk persamaan baru untuk induktansi solenoida yang berbentuk lingkaran yaitu sebagai berikut, (Ambar Rencono Wati, 2000:23). Ls = Ls = Induktansi solenoida (Henry) N = Jumlah Lilitan = Permeabilitas (H/m) l = Panjang Solenoida a = Jari - jari penampang lilitan (m) (m)

15 19 Setelah persamaan untuk menghitung induktansi dengn penampang yang berbentuk lingkaran sudah kita ketahui, maka dapat kita lihat bahwa induktansi solenoida tergantung pada besaran geometris solenoida dan konstanta permeabilitas magnet bahan magnetik. F. Histerisis Energi yang dibutuhkan untuk memutar dipol magnetik dalam bahan yang kemudian hilang dalam bentuk kalor (panas), akan menimbulkan kerugian akibat histerisis dan disebut dengan rugi - rugi histerisis. Definisi rugi - rugi histerisis dapat kita artikan sebagai rugi - rugi yang timbul karena fluks bolak - balik yang ada pada inti besi dengan persamaan, (Ambar Rencono Wati, 2000:29). Ph = Kh f Ph = Rugi - rugi Histerisis (Watt) Kh = Konstanta Histerisis = Fluks Maksismum (Wb/ ) f = Frekuensi (Hz) Untuk Kh adalah tetapan pembanding yang besarnya tergantung pada karakteristik dan volume besi dan satuan yang dipergunakan. Untuk pangkat n harganya berkisar antara 1,5 sampai dengan 2,5 tetapi biasanya diambil 2 dalam memperkirakan hasil tampilan.

16 20 G. Arus Eddy (Eddy Current) Jika sebuah logam ditempatkan di dalam suatu kumparan elektromagnetik dan dialiri arus AC, maka akan timbul ggl (gaya gerak listrik) induksi di dalam logam tersebut. Di dalam logam tersebut terdapat banyak jalur konduksi yang terdiri dari aliran gaya gerak listrik induksi dalam jalur tertutup. Arus induksi dalam jalur tertutup ini dinamakan arus pusar (Eddy Current), (Ambar Rencono Wati, 2000:31). Pe = Ke ( f Pe = Rugi - rugi Arus Eddy (Watt) Ke = Konstanta Eddy = Fluks Magnetik (Wb/ ) f = Frekuensi (Hz) Kedua persamaan rugi - rugi diatas yaitu rugi - rugi histerisis dan rugi - rugi arus eddy kita dapat jelaskan berapa besar presentasi efisiensi dari pemanas induksi. Untuk menghitung jumlah rugi - rugi pada inti besi maka harga dari kedua rugi - rugi tersebut harus diketahui terlebih dan menggunakan persamaan, (Ambar Rencono Wati, 2000:32). Rugi - rugi = Pe + Ph Pe = Rugi - rugi Arus Eddy (Watt) Ph = Rugi - rugi Histerisis (Watt)

17 21 Efisiensi yang ditentukan dari pengukuran rugi - rugi dapat dipergunakan untuk membandingkan alat sejenis jika metode pengukurannya dan perhitungannya sama. Persamaan efisiensi dinyatakan sebagai berikut, (Ambar Rencono Wati, 2000:33). Efisiensi (η) = + Kumparan pemanas induksi yang berfungsi sebagai beban merupakan pengaplikasian dari sumber AC yang berfrekuensi tinggi, dalam penerapannya maka pada permukaan kumparan dapat diletakkan sebuah lempeng baja. Pemanas akan dikondisikan sesuai dengan frekuensi yang dihasilkan sumber AC sehingga proses dari pemanas induksi ini akan terlihat dengan mengamati perubahan temperatur pada inti besi tersebut. Sejumlah disipasi daya, seperti panas pada bagian permukaan logam dalam hubungannya dengan kepekaan fluks magnit, frekuensi dan karakteristik bahan atau logam yang dipanaskan akan diperoleh dari persamaan, (Ambar Rencono Wati, 2000:35). ΔP = ΔP = Disipasi Daya (Arus Eddy) Ht = Kerapatan Fluks (Wb/ ) = Resistivitas Besi (Ω m) µ = Permeabilitas (Wb/A.m) f = Frekuensi (Hz)

18 22 Disipasi daya yang akan dihasilkan dari persamaan di atas merupakan harga dari arus eddy, sebab disipasi daya ini berfungsi sebagai arus eddy. Karena kerapatan fluksi magnetik (Ht) setara pada putaran ampere dari dalam lilitan, maka faktor H dapat digantikan dengan dengan catatan kondisi waktu konstan. Pada saat pemanas induksi yang telah menghasilkan panas, maka kedalaman penembusan atau penetrasi (δ) dari panas tersebut kita ketahui. Karena N (Lilitan) adalah jumlah putaran lilitan yang bernilai analog maka kita dapat memprediksikan bahwa arus eddy akan menjadi magnitude yang paling besar pada permukaan objek yang dipanaskan yaitu lempeng logam. Dari persamaan medan magnetik dan intensitas elektrik yang maka kedalaman penetrasinya dapat kita ketahui dengan menggunakan persamaan berikut, (Ambar Rencono Wati, 2000:36). δ = δ = Penetrasi (Penembusan) (Inchi) = Konduktivitas (m) = Permeabilitas (Wb/A.m) f = Frekuensi (Hz)

19 23 H. Kalor Kalor adalah sesuatu yang dipindahkan diantara suatu sistem dan lingkunganya sebagai akibat perbedaan temperatur (suhu). Berikut ini adalah persamaan untuk mendapatkan besar kalor, (Ambar Rencono Wati, 2000:42). Q = m c ΔT Q = Kalor (Kalori) ΔT = Kenaikan Suhu ( ) m = Massa Inti Besi (gr) c = Kalor Jenis Besi (0,11 Kal / g ) I. Waktu Pemanasan Pada setiap bahan yang dipanas sampai melebur memiliki waktu yang berbeda meskipun diberi daya yang sama. Ini dikarnakan setiap bahan memiliki karakteristik yang berbeda sehingga berdampak pada kalor yang berpindah. Persamaan yang digunakan untuk mengetahui waktu pemanasan dari setiap bahan sebagai berikut, (Ambar Rencono Wati, 2000). t = t = Waktu Pemanasan (Detik / Sekon ) Qt = Bahan Perantara (Wadah / Tungku ) Qb = Bahan Uji

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Teori Pemanas Induksi Suatu pemanas induksi dapat kita bayangkan bagian dari suatu trafo dengan pengisian arus terjadi pada lilitan kumparan. Setelah sumber AC dihubungkan dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 1. Batubara Batubara merupakan salah satu kekayaan alam terbesar yang dimiliki Indonesia. Batubara terdiri atas campuran senyawa-senyawa organik yang tersusun dari karbon, hidrogen,

Lebih terperinci

Komponen aktif dan pasif elektronika

Komponen aktif dan pasif elektronika Komponen aktif dan pasif elektronika by webmaster - Tuesday, October 08, 2013 http://johans.student.akademitelkom.ac.id/index.php/2013/10/08/elektronika/ KOMPONEN AKTIF DAN KOMPONEN PASIF ELEKTRONIKA Komponen

Lebih terperinci

Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.

Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung. 3. Kapasitor (Kondensator) Kondensator (Capasitor) adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator

Lebih terperinci

Konduktor dan isolator

Konduktor dan isolator Konduktor dan isolator Arus listrik adalah nama yang diberikan untuk aliran elektronelektron (atau pembawa (carrier) muatan negatif). Elektronelektron berputar (to orbit) mengelilingi inti (nucleus) atom.

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi

Lebih terperinci

INSTRUKSI KERJA Penggunaan Multimeter Digital

INSTRUKSI KERJA Penggunaan Multimeter Digital LABORATORIUM DESAIN DAN PROTOTIPE TE FTUB INSTRUKSI KERJA Penggunaan Multimeter Digital Menggunakan Multitester Digital sebagai Volt Meter 1. Pasang Kabel hitam ke COM (Ground), dan pasang Kabel Merah

Lebih terperinci

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,

Lebih terperinci

Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya

Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya Peralatan Elektronika adalah sebuah peralatan yang terbentuk dari beberapa Jenis Komponen Elektronika dan masing-masing Komponen Elektronika tersebut

Lebih terperinci

LATIHAN UAS 2012 LISTRIK STATIS

LATIHAN UAS 2012 LISTRIK STATIS Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...

Lebih terperinci

INDUKSI ELEKTROMAGNETIK

INDUKSI ELEKTROMAGNETIK INDUKSI ELEKTROMAGNETIK Hukum Faraday Persamaan Maxwell Keempat (Terakhir) Induksi Elektromagnetik Animasi 8.1 Fluks Magnet yang Menembus Loop Analog dengan Fluks Listrik (Hukum Gauss) (1) B Uniform (2)

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

Hubungan antara hambatan, tegangan, dan arus, dapat disimpulkan melalui hukum berikut ini, yang terkenal sebagai [[hukum Ohm:

Hubungan antara hambatan, tegangan, dan arus, dapat disimpulkan melalui hukum berikut ini, yang terkenal sebagai [[hukum Ohm: Resistor atau yang biasa disebut (bahasa Belanda) werstand, tahanan atau penghambat, adalah suatu komponen elektronik yang memberikan hambatan terhadap perpindahan elektron (muatan negatif). Resistor disingkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Perangkat Keras ( Hardware) Dalam pembuatan tugas akhir ini diperlukan penguasaan materi yang digunakan untuk merancang kendali peralatan listrik rumah. Materi tersebut merupakan

Lebih terperinci

Pengenalan Komponen dan Teori Semikonduktor

Pengenalan Komponen dan Teori Semikonduktor - 1 Pengenalan Komponen dan Teori Semikonduktor Missa Lamsani Hal 1 SAP Pengelompokan bahan-bahan elektrik dari sifat-sifat listriknya. Pengertian resistivitas dan nilai resistivitas bahan listrik : konduktor,

Lebih terperinci

Gerak Gaya Listrik (GGL) Electromotive Force (EMF)

Gerak Gaya Listrik (GGL) Electromotive Force (EMF) FISIKA II Gerak Gaya Listrik (GGL) Electromotive Force (EMF) Jika suatu kawat penghantar digerakkan memotong arah suatu medan magnetic, maka akan timbul suatu gaya gerak listrik pada kawat penghantar tersebut.

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

KOMPONEN DASAR ELEKTRONIKA. Prakarya X

KOMPONEN DASAR ELEKTRONIKA. Prakarya X KOMPONEN DASAR ELEKTRONIKA Prakarya X Ukuran Komponen Elektronika Komponen Elektronika? Peralatan Elektronika adalah sebuah peralatan yang terbentuk dari beberapa Jenis Komponen Elektronika dan masing-masing

Lebih terperinci

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat

Lebih terperinci

Pertemuan 10 A. Tujuan 1. Standard Kompetensi: Mempersiapkan Pekerjaan Merangkai Komponen

Pertemuan 10 A. Tujuan 1. Standard Kompetensi: Mempersiapkan Pekerjaan Merangkai Komponen Pertemuan 10 A. Tujuan 1. Standard Kompetensi: Mempersiapkan Pekerjaan Merangkai Komponen Elektronik 2. Kompetensi Dasar : Memahami komponen dasar elektronika B. Pokok Bahasan : Komponen Dasar Elektronika

Lebih terperinci

JURNAL PRAKTIKUM FISIKA DASAR PENGATURAN INTENSITAS CAHAYA MENGGUNAKAN TRANSISTOR

JURNAL PRAKTIKUM FISIKA DASAR PENGATURAN INTENSITAS CAHAYA MENGGUNAKAN TRANSISTOR JURNAL PRAKTIKUM FISIKA DASAR PENGATURAN INTENSITAS CAHAYA MENGGUNAKAN TRANSISTOR Disusun Oleh : Kelompok N Nama Anggota : 1. Frans Romario Panjaitan (333508xxxx) 2. Stevano Augusta M (333208xxxx) 3. xxxx

Lebih terperinci

BAB II RANGKAIAN ELEKTRONIK DAN KOMPONEN

BAB II RANGKAIAN ELEKTRONIK DAN KOMPONEN BAB II RANGKAIAN ELEKTRONIK DAN KOMPONEN 2.1 PENDAHULUAN Deskripsi Singkat Manfaat Relevansi CapaianPembelajaran 1. Penjelasan tentang rangkaian elektronik dengan didukung oleh komponen-komponen dasar

Lebih terperinci

Magnet Rudi Susanto 1

Magnet Rudi Susanto 1 Magnet Rudi Susanto 1 MAGNET Sifat kemagnetan telah dikenal ribuan tahun yang lalu ketika ditemukan sejenis batu yang dapat menarik besi Dengan semakin berkembangnya ilmu pengetahuan, orang telah dapat

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Power Regulator Pada umumnya adalah sebagai alat atau perangkat keras yang mampu menyuplai tenaga atau tegangan listrik secara langsung dari sumber tegangan listrik ke tegangan

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

AVOMETER 1 Pengertian AVO Meter Avometer berasal dari kata AVO dan meter. A artinya ampere, untuk mengukur arus listrik. V artinya voltase, untuk

AVOMETER 1 Pengertian AVO Meter Avometer berasal dari kata AVO dan meter. A artinya ampere, untuk mengukur arus listrik. V artinya voltase, untuk AVOMETER 1 Pengertian AVO Meter Avometer berasal dari kata AVO dan meter. A artinya ampere, untuk mengukur arus listrik. V artinya voltase, untuk mengukur voltase atau tegangan. O artinya ohm, untuk mengukur

Lebih terperinci

Dalam materi pembelajaran ini akan dibatas tiga komponen passif yakin

Dalam materi pembelajaran ini akan dibatas tiga komponen passif yakin BAB I. KOMPONEN PASIF ELEKTRONIKA ANALOG Elektronika adalah suatu bentuk piranti kelistrikan yang menggunakan arus lemah, sehingga tegangan operasionalnya umummnya menggunakan tegangan rendah. Secara umum

Lebih terperinci

MAKALAH FISIKA. Tentang KEMAGNETAN/INDUKSI ELEKTROMAGNETIK

MAKALAH FISIKA. Tentang KEMAGNETAN/INDUKSI ELEKTROMAGNETIK MAKALAH FISIKA Tentang KEMAGNETAN/INDUKSI ELEKTROMAGNETIK DISUSUN OLEH : KELOMPOK 3 ANGGOTA : 1. AMMASE.S 2. ALIYATARRAFI AH 3. ANNISWATI NURUL ISLAMI 4. ASRIANI JURUSAN PENDIDIKAN FISIKA FAKULTAS TARBIYAH

Lebih terperinci

MAGNET JARUM. saklar. Besi lunak. Sumber arus Oleh : DRS. BRATA,M.Pd. SMAN1 KRA. kumparan. lampu. kumparan

MAGNET JARUM. saklar. Besi lunak. Sumber arus Oleh : DRS. BRATA,M.Pd. SMAN1 KRA. kumparan. lampu. kumparan MAGNET JARUM Besi lunak saklar kumparan kumparan lampu Sumber arus Oleh : DRS. BRATA,M.Pd. SMAN1 KRA Jika arus listrik dapat menimbulkan medan magnet, apakah medan magnet juga dapat menimbulkan arus listrik?

Lebih terperinci

SEMIKONDUKTOR. Komponen Semikonduktor I. DIODE

SEMIKONDUKTOR. Komponen Semikonduktor I. DIODE SEMIKONDUKTOR Komponen Semikonduktor Di dunia listrik dan elektronika dikenal bahan yang tidak bisa mengalirkan listrik (isolator) dan bahan yang bisa mengalirkan listrik (konduktor). Gbr. 1. Tingkatan

Lebih terperinci

LISTRIK STATIS. Listrik statis adalah energi yang dikandung oleh benda yang bermuatan listrik.

LISTRIK STATIS. Listrik statis adalah energi yang dikandung oleh benda yang bermuatan listrik. KELISTRIKAN DAN KEMAGNETAN SITI MAESYAROH STKIP INVADA 2015 LISTRIK adalah adalah sesuatu yang memiliki muatan positif (proton) dan muatan negatif (elektron) yang mengalir melalui penghantar (konduktor)

Lebih terperinci

TUGAS XIII LISTRIK DAN MAGNET

TUGAS XIII LISTRIK DAN MAGNET TUGAS XIII LISTRIK DAN MAGNET 1. Sebuah kapasitor keping sejajar yang tebalnya d mempunyai kapasitas C o. Ke dalam kapasitor ini dimasukkan dua bahan dielektrik yang masing-masing tebalnya d/2 dengan konstanta

Lebih terperinci

SOAL SOAL TERPILIH 1 SOAL SOAL TERPILIH 2

SOAL SOAL TERPILIH 1 SOAL SOAL TERPILIH 2 SOAL SOAL TERPILIH 1 1. Sebuah kumparan mempunyai 50 lilitan dalam waktu 0,02 s kumparan dimasuki fluks 310 mwb, yang kemudian turun hingga 100 mwb. Berapakah GGL induksi rata rata yang dibangkitkan oleh

Lebih terperinci

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber)

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Bahan Magnetik oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Historis Magnet Gejala kemagnetan merupakan cikal bakal berkembangnya pengetahuan tentang kelistrikan. Ditemukan sejak 2000 tahun

Lebih terperinci

Konsep Dasar Kemagnetan

Konsep Dasar Kemagnetan Konsep Dasar Kemagnetan Intro Gejala kemagnetan merupakan cikal bakal berkembangnya pengetahuan tentang kelistrikan. Ditemukan sejak 2000 tahun yang lalu di Yunani pada sejenis batuan yang dinamakan magnetit

Lebih terperinci

1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi

1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi perubahan medan magnetik dapat menimbulkan perubahan arus listrik (Michael Faraday) Fluks magnetik adalah banyaknya garis-garis medan magnetik yang menembus permukaan bidang secara tegak lurus GGL induksi

Lebih terperinci

BAB III KOMPONEN ELEKTRONIKA

BAB III KOMPONEN ELEKTRONIKA BAB III KOMPONEN ELEKTRONIKA Komponen elektronika dapat dibagi menjadi 2 yaitu: 1. Komponen Pasif: merupakan komponen yang dapat bekerja tanpa sumber tegangan. a. Resistor b. Kapasitor c. Induktor 2. Komponen

Lebih terperinci

KUMPULAN SOAL FISIKA KELAS XII

KUMPULAN SOAL FISIKA KELAS XII KUMPULAN SOAL FISIKA KELAS XII Nada-Nada Pipa Organa dan Dawai Soal No. 1 Sebuah pipa organa yang terbuka kedua ujungnya memiliki nada dasar dengan frekuensi sebesar 300 Hz. Tentukan besar frekuensi dari

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

Induksi Elektromagnet

Induksi Elektromagnet Induksi Elektromagnet Fluks magnet Sebagaimana fluks listrik, fluks magnet juga dapat diilustrasikan sebagai banyaknya garis medan yang menembus suatu permukaan. n Fluks listrik yang dihasilkan oleh medan

Lebih terperinci

1. Dalam suatu ruang terdapat dua buah benda bermuatan listrik yang sama besar seperti ditunjukkan pada gambar...

1. Dalam suatu ruang terdapat dua buah benda bermuatan listrik yang sama besar seperti ditunjukkan pada gambar... Kumpulan Soal Latihan UN UNIT LISTRIK & MAGNET Gaya Coulomb, Energi & Potensial Listrik 1. Dalam suatu ruang terdapat dua buah benda bermuatan listrik yang sama besar seperti ditunjukkan pada gambar....

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB XII LISTRIK MAGNET Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB 5 KEMAGNETAN. A. SIFAT MAGNET 1. Garis Gaya Magnet

BAB 5 KEMAGNETAN. A. SIFAT MAGNET 1. Garis Gaya Magnet BAB 5 KEMAGNETAN STANDAR KOMPETENSI Menerapkan konsep magnet dan elektromagnet KOMPETENSI DASAR Menguasai konsep kemagnetan Menguasai hukum magnet dan elektromagnet Menggunakan magnet Menggunakan elektromagnet

Lebih terperinci

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA)

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA) SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA) 1. Komponen elektronik yang berfungsi untuk membatasi arus listrik yang lewat dinamakan A. Kapasitor D. Transistor B. Induktor

Lebih terperinci

KAPASITOR (KONDENSATOR)

KAPASITOR (KONDENSATOR) 1 KAPASITOR (KONDENSATOR) Kapasitor (Kondensator) yang dalam rangkaian elektronika dilambangkan dengan huruf "C" adalah suatu komponen elektronika yang dapat menyimpan energi/muatan listrik di dalam medan

Lebih terperinci

BAB 2. KOMPONEN PASIF

BAB 2. KOMPONEN PASIF RESISTOR BAB 2. KOMPONEN PASIF Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak, emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan material

Lebih terperinci

i : kuat arus listrik (A) a : jarak dari kawat berarus (m)

i : kuat arus listrik (A) a : jarak dari kawat berarus (m) INDUKSI MAGNETIK Hans Christian Oersted pada tahun 18 menemukan bahwa arus listrik dalam sebuah kawat penghantar dapat menghasilkan efek magnetik. Efek magnetik yang ditimbulkan oleh arus tersebut dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Pemanas Induksi 2.1.1. Definisi Pemanas Induksi Pemanasan induksi (Induction Heating) adalah solusi rancangan teknologi termal yang efisien, efektif dan hemat energi

Lebih terperinci

DASAR PENGUKURAN LISTRIK

DASAR PENGUKURAN LISTRIK DASAR PENGUKURAN LISTRIK OUTLINE 1. Objektif 2. Teori 3. Contoh 4. Simpulan Objektif Teori Tujuan Pembelajaran Mahasiswa mampu: Menjelaskan dengan benar mengenai prinsip dasar pengukuran. Mengukur arus,

Lebih terperinci

BAB 7 INDUKSI ELEKTROMAGNET

BAB 7 INDUKSI ELEKTROMAGNET BAB 7 INDUKSI ELEKTROMAGNET Induksi Elektromagnetik Hasil Yang harus anda capai Menerapkan konsep kelistrikan dan kemagnetan berbagai penyelesaian masalah dan produk teknologi Setelah mempelajari Bab ini

Lebih terperinci

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk

II. TINJAUAN PUSTAKA. Transformator merupakan suatu peralatan listrik yang berfungsi untuk II. TINJAUAN PUSTAKA A. Transformator Transformator merupakan suatu peralatan listrik yang berfungsi untuk memindahkan dan mengubah tenaga listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya,

Lebih terperinci

ELEKTRONIKA DASAR 105J

ELEKTRONIKA DASAR 105J 1 105J 1. TEORI DASAR Kapasitor (Kondensator) yang dalam rangkaian elektronika dilambangkan dengan huruf "C" adalah suatu alat yang dapat menyimpan energi/muatan listrik di dalam medan listrik, dengan

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - MEDAN MAGNET - MEDAN MAGNET

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - MEDAN MAGNET - MEDAN MAGNET LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Nama : Kelas/No : / Medan Magnet - - MEDAN MAGNET - MEDAN MAGNET A. Medan Magnet 1. Medan Magnet oleh arus listrik

Lebih terperinci

BAB V PEMBAHASAN Analisis Faktor. Faktor-faktor dominan adalah faktor-faktor yang diduga berpengaruh

BAB V PEMBAHASAN Analisis Faktor. Faktor-faktor dominan adalah faktor-faktor yang diduga berpengaruh BAB V PEMBAHASAN. 5.1. Analisis Faktor. Faktor-faktor dominan adalah faktor-faktor yang diduga berpengaruh terhadap waktu pencapaian panas dan arus kompor induksi. Dari data waktu pencapaian panas dan

Lebih terperinci

Dioda Semikonduktor dan Rangkaiannya

Dioda Semikonduktor dan Rangkaiannya - 2 Dioda Semikonduktor dan Rangkaiannya Missa Lamsani Hal 1 SAP Semikonduktor tipe P dan tipe N, pembawa mayoritas dan pembawa minoritas pada kedua jenis bahan tersebut. Sambungan P-N, daerah deplesi

Lebih terperinci

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya.

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. BAB III MAGNETISME Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya. Magnetisme (kemagnetan) tercakup dalam sejumlah besar operasi alat listrik, seperti

Lebih terperinci

MAKALAH INDUKTANSI DAN TRANSFORMATOR

MAKALAH INDUKTANSI DAN TRANSFORMATOR MAKALAH INDUKTANSI DAN TRANSFORMATOR Disusun oleh : Zahra Dhiyah Nafisa Kelas : XII IPA MADRASAH MULTITEKNIK ASIH PUTERA Jl. Muhammad Daeng Ardiwinata No. 199, Cimahi PEMBAHASAN A. INDUKTANSI I. SEJARAH

Lebih terperinci

Rangkuman Materi Teori Kejuruan

Rangkuman Materi Teori Kejuruan Rangkuman Materi Kejuruan Program Keahlian Teknik Elektronika Industri 2. SK : Dasar-Dasar Kelistrikan a. Besaran Pokok dan Turunan Besaran Pokok Kuantitas Satuan Dasar Simbol Panjang Massa Waktu Arus

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan perealisasian inductive wireless charger untuk telepon seluler. Teori-teori yang digunakan dalam skripsi

Lebih terperinci

MAGNET. Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang, magnet ladam, magnet jarum

MAGNET. Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang, magnet ladam, magnet jarum MAGNET Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang, magnet ladam, magnet jarum MAGNET Magnet dapat diperoleh dengan cara buatan. Jika baja di gosok

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

TEORI DASAR. 2.1 Pengertian

TEORI DASAR. 2.1 Pengertian TEORI DASAR 2.1 Pengertian Dioda adalah piranti elektronik yang hanya dapat melewatkan arus/tegangan dalam satu arah saja, dimana dioda merupakan jenis VACUUM tube yang memiliki dua buah elektroda. Karena

Lebih terperinci

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1 Perkuliahan PLPG Fisika tahun 2009 Jurusan Fisika FPMIPA UPI 1 Muatan Listrik Dua jenis muatan listrik: positif dan negatif Satuan muatan adalah coulomb [C] Muatan elektron (negatif) atau proton (positif)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1 Data Hasil Pengukuran Setelah melakukan pengujian di PT. Emblem Asia dengan menggunakan peralatan penguji seperti dijelaskan pada bab 3 didapatkan sekumpulan data berupa

Lebih terperinci

DASAR KONVERSI ENERGI Sistem Tenaga Listrik

DASAR KONVERSI ENERGI Sistem Tenaga Listrik DASAR KONVERSI ENERGI Sistem Tenaga Listrik Proses Penyaluran Tenaga Listrik Sistem Tenaga Listrik adalah sekumpulan Pusat Listrik dan Gardu Induk yang satu sama lain dihubungkan oleh Jaringan Transmisi

Lebih terperinci

ARUS SEARAH (ARUS DC)

ARUS SEARAH (ARUS DC) ARUS SEARAH (ARUS DC) Bahan Ajar Pernahkah Anda melihat remot televisi? Tahukah anda kenapa remot tersebut dapat digunakan untuk mengganti saluran televisi? Apa yang menyebabkan remot dapat digunakan?

Lebih terperinci

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih BAB II TRASFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

Gaya Lorentz. 1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi

Gaya Lorentz. 1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi ruang / daerah di sekitar magnet dimana benda-benda magnetik yang diletakkan di daerah ini masih dipengaruhi oleh magnet tersebut medan magnetik di sekitar kawat lurus berarus listrik medan magnetik di

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Medan Magnet Sumber : (Giancoli, 2001) Gambar 2.1 Penggambaran Garis Medan Magnet Sebuah Magnet Batang Arah medan magnet pada suatu titik bisa didefinisikan sebagai arah yang

Lebih terperinci

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik.

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik. BAB I PENDAHULUAN 1.1. Latar Belakang Pengukuran merupakan suatu aktifitas dan atau tindakan membandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang sudah diketahui

Lebih terperinci

BAB II LANDASAN TEORI. 2.1 Ohm meter. Pada dasarnya ohm meter adalah suatu alat yang di digunakan untuk

BAB II LANDASAN TEORI. 2.1 Ohm meter. Pada dasarnya ohm meter adalah suatu alat yang di digunakan untuk BAB II LANDASAN TEORI 2.1 Ohm meter Pada dasarnya ohm meter adalah suatu alat yang di digunakan untuk mengukur hambatan listrik. Alat ukur ohmmeter dipasaran biasanya menjadi satu bagian dengan alat ukur

Lebih terperinci

BAB II BUSUR API LISTRIK

BAB II BUSUR API LISTRIK BAB II BUSUR API LISTRIK II.1 Definisi Busur Api Listrik Bahan isolasi atau dielekrik adalah suatu bahan yang memiliki daya hantar arus yang sangat kecil atau hampir tidak ada. Bila bahan isolasi tersebut

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI 1 LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI A. TUJUAN 1. Mempelajari watak kumparan jika dialiri arus listrik searah (DC).. Mempelajari watak kumparan jika dialiri arus listrik bolak-balik

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Medan Magnet - Latihan Soal Doc. Name: RK13AR12FIS0301 Version: 2016-10 halaman 1 01. Medan magnet dapat ditimbulkan oleh: (1) muatan listrik yang bergerak (2) konduktor

Lebih terperinci

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik)

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik) Prinsip dasar dari sebuah mesin listrik adalah konversi energi elektromekanik, yaitu konversi dari energi listrik ke energi mekanik atau sebaliknya dari energi mekanik ke energi listrik. Alat yang dapat

Lebih terperinci

TOPIK 9 ELEKTROMAGNETIK

TOPIK 9 ELEKTROMAGNETIK TOPIK 9 ELEKTROMAGNETIK HUKUM FARADAY DAN INDUKSI ELEKTROMAGNETIK Hukum Faraday Setelah dalam tahun 1820 Oersted memperlihatkan bahwa arus listrik dapat mempengaruhi jarum kompas, Faraday mempunyai kepercayaan

Lebih terperinci

BAB 20. KEMAGNETAN Magnet dan Medan Magnet Hubungan Arus Listrik dan Medan Magnet

BAB 20. KEMAGNETAN Magnet dan Medan Magnet Hubungan Arus Listrik dan Medan Magnet DAFTAR ISI DAFTAR ISI...1 BAB 20. KEMAGNETAN...2 20.1 Magnet dan Medan Magnet...2 20.2 Hubungan Arus Listrik dan Medan Magnet...2 20.3 Gaya Magnet...4 20.4 Hukum Ampere...9 20.5 Efek Hall...13 20.6 Quis

Lebih terperinci

2 A (C) - (D) - (E) -

2 A (C) - (D) - (E) - 01. Gaya F sebesar 12 N bekerja pada sebuah benda yang masanya m 1 menyebabkan percepatan sebesar 8 ms -2. Jika F bekerja pada benda yang bermassa m 2 maka percepatannya adalah 2m/s -2. Jika F bekerja

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015

SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015 SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Fisika Dasar 2 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1994 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Dua buah bola A dan B dengan massa m A = 3 kg;

Lebih terperinci

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung BAB II DASAR TEORI 2.1 Energi Listrik Energi adalah kemampuan untuk melakukan kerja. Salah satu bentuk energi adalah energi listrik. Energi listrik adalah energi yang berkaitan dengan akumulasi arus elektron,

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Metode penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen murni. Eksperimen dilakukan untuk mengetahui pengaruh frekuensi medan eksitasi terhadap

Lebih terperinci

KONSTRUKSI GENERATOR ARUS SEARAH

KONSTRUKSI GENERATOR ARUS SEARAH KONSTRUKSI GENERATOR ARUS SEARAH BAGAN DARI MESIN LISTRIK Konversi energi Trafo Listrik Listrik Medan magnet Generator Motor mekanik BAGIAN-BAGIAN MESIN ARUS SEARAH Bagian-bagian penting pada suatu mesin

Lebih terperinci

Medan Magnetik. Sumber Tegangan

Medan Magnetik. Sumber Tegangan Medan Magnetik INDUKSI ELEKTROMANETIK PENDAHULUAN Dalam pembahasan mengenai medan magnet telah dijelaskan bahwa : - Arus listrik dapat menghasilkan medan magnetik - Medan magnetik mengerjakan gaya pada

Lebih terperinci

Induksi elektromagnetik

Induksi elektromagnetik Induksi elektromagnetik Dede Djuhana E-mail:dede@fisika.ui.ac.id Departemen Fisika FMIPA-UI 0-0 Pendahuluan Induksi Magnetik Dalam eksperimen Oersted, Biot-Savart dan Ampere menyatakan bahwa adanya gaya

Lebih terperinci

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik.

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Generator listrik Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

Fisika EBTANAS Tahun 1991

Fisika EBTANAS Tahun 1991 Fisika EBTNS Tahun 99 EBTNS-9-0 Sebuah benda dijatuhkan dari ujung sebuah menara tanpa kecepatan awal. Setelah detik benda sampai di tanah (g = 0 m s ). Tinggi menara tersebut. 40 m B. 5 m C. 0 m D. 5

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

TUGAS FISIKA DASAR 2

TUGAS FISIKA DASAR 2 TUGAS FISIKA DASAR 2 RANGKUMAN MAGNET Dosen Pengampu: Bachrun Sutrisno Ir. M.Sc. Oleh: Nama : RIFQI ARIGHI FAHMI NIM : 13522121 Kelas : B UNIVERSITAS ISLAM INDONESIA A. Pengertian Magnet Magnet atau magnit

Lebih terperinci

CIRCUIT DASAR DAN PERHITUNGAN

CIRCUIT DASAR DAN PERHITUNGAN CIRCUIT DASAR DAN PERHITUNGAN Oleh : Sunarto YB0USJ ELEKTROMAGNET Listrik dan magnet adalah dua hal yang tidak dapat dipisahkan, setiap ada listrik tentu ada magnet dan sebaliknya. Misalnya ada gulungan

Lebih terperinci

RANGKAIAN LISTRIK. Kuliah 1 (Umum)

RANGKAIAN LISTRIK. Kuliah 1 (Umum) RANGKAIAN LISTRIK Kuliah 1 (Umum) DEFINISI Rangkaian listrik adalah susunan komponenkomponen elektronika yang dirangkai dengan sumber tegangan menjadi satu kesatuan yang memiliki fungsi dan kegunaan tertentu.

Lebih terperinci

Menu hari ini: Induktansi & Energi Magnetik Material Magnet

Menu hari ini: Induktansi & Energi Magnetik Material Magnet Induktans Menu hari ini: Induktansi & Energi Magnetik Material Magnet 2 Hukum Faraday tentang Induksi Perubahan fluks magnet menginduksi GGL Lenz: Induksi melawan perubahan 3 Cara untuk Menginduksi GGL

Lebih terperinci

BAB I KOMPONEN DASAR ELEKTRONIKA

BAB I KOMPONEN DASAR ELEKTRONIKA BAB I KOMPONEN DASAR ELEKTRONIKA A. Komponen Elektronika Merupakan sebuah benda yang menjadi bagian pendukung satu sistem rangkaian elektronik. Tiap komponen elektronika memiliki fungsi, nilai, dan cara

Lebih terperinci

Kelas XII Semester 1

Kelas XII Semester 1 MEDAN MAGNET Kelas XII Semester 1 MEDAN MAGNET Standart Kompetensi Kompetensi Dasar Indikator Materi STANDART KOMPETENSI Kelas XII 2 Semester 1 Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai

Lebih terperinci