APLIKASI WELL LOGGING DALAM EVALUASI FORMASI BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

Ukuran: px
Mulai penontonan dengan halaman:

Download "APLIKASI WELL LOGGING DALAM EVALUASI FORMASI BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah"

Transkripsi

1 APLIKASI WELL LOGGING DALAM EVALUASI FORMASI BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Saat ini teknologi di dalam eksplorasi dan eksploitasi minyak dan gas bumi telah berkembang dengan pesat. Hal tersebut sangat diperlukan mengingat harga minyak dan gas bumi yang semakin meningkat sehingga perlu dilakukan eksplorasi terhadap sumur minyak baru maupun peningkatan produksi terhadap sumur minyak yang telah ada sebelumnya. Sebelum dilakukan pengeboran kita harus melakukan evaluasi formasi untuk mengetahui karakteristik formasi batuan yang akan di bor. Berbagai macam metode digunakan untuk mengetahui karakteristik formasi baik melalui analisis batu inti, analisis cutting, maupun analisis data well logging. Analisis well logging saat ini banyak digunakan karena biayanya yang relatif lebih murah dan kualitas datanya yang akurat. Untuk itu perlu dilakukan pembahasan mengenai Aplikasi Well Logging di dalam Evaluasi Formasi. 1.2 Maksud dan Tujuan Maksud Maksud dari penulisan referat ini adalah untuk mengetahui aplikasi well logging di dalam evaluasi formasi Tujuan Tujuan penulisan referat ini adalah sebagai berikut: 1. Untuk mengetahui apa yang dimaksud dengan evaluasi formasi 2. Untuk mengetahui apa itu well logging 3. Untuk mengetahui jenis-jenis log dan karakteristiknya 4. Untuk mengetahui kegunaan data well logging tersebut dalam mengidentifikasi reservoar, memperkirakan litologi, memperkirakan kandungan fluida, menghitung porositas, menghitung permeabelitas, dan menghitung saturasi.

2 1.3 Rumusan Masalah Dalam referat ini yang akan dibahas adalah: 1. Apa yang dimaksud dengan well logging 2. Apa yang dimaksud dengan evaluasi formasi 3. Jenis-jenis log dan karakteristiknya 4. Aplikasi data well logging tersebut dalam mengidentifikasi reservoar, memperkirakan litologi, memperkirakan kandungan fluida, menghitung porositas, menghitung permeabelitas, dan menghitung saturasi

3 BAB II EVALUASI FORMASI 2.1 Ruang Lingkup Evaluasi Formasi Evaluasi formasi batuan adalah suatu proses analisis ciri dan sifat batuan di bawah tanah dengan menggunakan hasil pengukuran lubang sumur (Harsono, 1997). Evaluasi formasi membutuhkan berbagai macam pengukuran dan analisis yang saling melengkapi satu sama lain. Tujuan utama dari evaluasi formasi adalah untuk mengidentifikasi reservoar, memperkirakan cadangan hidrokarbon, dan memperkirakan perolehan hidrokarbon (Harsono, 1997). 2.2 Metode Metode Evaluasi Formasi Evaluasi formasi umumnya dilakukan secara berurutan dan sistematis. Daerah yang dianggap berpotensi mengandung hidrokarbon awalnya ditentukan melalui survei seismik, gravitasi, dan magnetik (Bateman, 1985). Setelah daerah tersebut dibor selanjutnya dilakukan mud logging dan measurements while drilling (MWD) ; setelah itu bisa dilakukan pengambilan batu inti (Bateman, 1985). Saat mata bor tersebut telah mencapai kedalaman tertentu maka logging dapat dilakukan. Penjelasan mengenai metode metode yang digunakan dalam evaluasi formasi adalah sebagai berikut : Mud Logging Mud logging merupakan proses mensirkulasikan dan memantau perpindahan mud dancutting pada sumur selama pemboran (Bateman, 1985). Menurut Darling (2005) terdapat dua tugas utama dari seorang mud logger yaitu : 1. Memantau parameter pengeboran dan memantau sirkulasi gas/cairan/padatan dari sumur agar pengeboran dapat berjalan dengan aman dan lancar Menyediakan informasi sebagai bahan evaluasi bagi petroleum engineering department. Mud-logging unit akan menghasilkan mud log yang akan dikirim ke kantor pusat perusahaan minyak. Menurut Darling (2005), mud log tersebut meliputi:

4 Pembacaan gas yang diperoleh dari detektor gas atau kromatograf Pengecekan terhadap ketidakhadiran gas beracun (H 2 S, SO 2 ) Laporan analisis cutting yang telah dideskripsi secara lengkap Rate of Penetration (ROP) Indikasi keberadaan hidrokarbon yang terdapat di dalam sampel Mud log merupakan alat yang berharga untuk petrofisis dan geolog di dalam mengambil keputusan dan melakukan evaluasi. Darling (2005) menyatakan bahwa mud log digunakan untuk hal hal berikut ini: Identifikasi tipe formasi dan litologi yang dibor Identifikasi zona yang porous dan permeabel Picking of coring, casing, atau batas kedalaman pengeboran akhir Memastikan keberadaan hidrokarbon sampai pada tahap membedakan jenis hidrokarbon tersebut apakah minyak atau gas Deskripsi Cutting Pekerjaan lain dari seorang mud logger adalah melakukan deskripsi cutting. Cuttingmerupakan material hasil hancuran batuan oleh mata bor yang dibawa oleh lumpur pemboran ke permukaan (Bateman,1985). Sebagian sampel dimasukkan ke dalam plastikpolyethene sebagai sampel basah sementara sebagian sampel lain yang telah dicuci dan dikeringkan dikenal sebagai sampel kering. Sampel yang telah dibersihkan diamati di bawah mikroskop yang ada di mud-logging unit. Hasil deskripsi kemudian diserahkan ke kantor pusat pengolahan data. Agar informasi tersebut berguna maka ada standar deskripsi baku yang harus dilakukan. Darling (2005) menyatakan bahwa deskripsi tersebut harus meliputi: Sifat butir Tekstur Tipe Warna Roundness dan sphericity Sortasi Kekerasan Ukuran Kehadiran mineral jejak (misalnya pirit, kalsit, dolomit, siderit) Tipe partikel karbonat Partikel skeletal (fosil, foraminifera) Partikel non-skeletal (lithoclast, agregat, rounded particles) Porositas dan permeabelitas Tipe porositas (intergranular, fracture, vuggy) Permeabelitas (permeabelitas rendah, menengah, atau tinggi) Deteksi Hidrokarbon

5 Dapat dilakukan melalui natural fluorescence, solvent cut, acetone test, visible staining, dan analisis odor Coring Coring merupakan metode yang digunakan untuk mengambil batu inti (core) dari dalam lubang bor (Bateman,1985). Coring penting untuk mengkalibrasi model petrofisik dan mendapat informasi yang tidak diperoleh melalui log. Setelah pengeboran, core (biasanya 0,5 m setiap 10 menit) dibungkus dan dijaga agar tetap awet. Core tersebut mewakili kondisi batuan tempatnya semula berada dan relatif tidak mengalami gangguan sehingga banyak informasi yang bisa didapat. Informasi penting yang bisa didapat oleh seorang petrofisis dari data core tersebut menurut Darling (2005) antara lain: Homogenitas reservoar Tipe sementasi dan distribusi dari porositas dan permeabilitas Kehadiran hidrokarbon dari bau dan pengujian dengan sinar ultraviolet Tipe mineral Kehadiran fracture dan orientasinya Kenampakan dip Keterbatasan Analisis Core Data core tidak selalu akurat, menurut Darling (2005) ada sejumlah alasan yang menyebabkan hal tersebut yaitu: ü Suatu core diambil pada water leg, dimana proses diagenesis mungkin saja terjadi, hal ini menyebabkan core tidak selalu dapat mewakili oil atau gas leg di reservoar. ü Coring dan proses pemulihannya menyebabkan tejadinya perubahan tekanan dan suhu batuan sehingga bisa menyebabkan terjadinya perubahan struktur pada batuan tersebut ü Proses penyumbatan, pembersihan, dan pengeringan dapat mengubah wettability dari sumbat sehingga membuatnya tidak bisa merepresentasikan kondisi di bawah lubang bor. ü Pengukuran resistivitas sumbat pada suhu lingkungan dengan menggunakan udara sebagai fluida yang tidak basah (nonwetting fluid) bisa tidak merepresentasikan kondisi reservoar Well Logging Well logging merupakan perekaman karakteristik dari suatu formasi batuan yang diperoleh melalui pengukuran pada sumur bor (Ellis & Singer,2008). Data yang dihasilkan disebut sebagai well log. Berdasarkan proses kerjanya, logging dibagi menjadi dua jenis yaituwireline logging dan logging while drilling bor (Ellis & Singer,2008). Wireline loggingdilakukan ketika pemboran telah berhenti dan kabel digunakan sebagai alat untuk mentransmisikan data. Pada logging while drilling, logging dapat dilakukan bersamaan dengan pemboran. Logging jenis ini

6 tidak menggunakan kabel untuk mentransmisikan data. Saat ini logging while drilling lebih banyak digunakan karena lebih praktis sehingga waktu yang diperlukan lebih efisien walaupun masih memiliki kekurangan berupa transmisi data yang tidak secepat wireline logging. 2.3 Tujuan dari Evaluasi Formasi Tujuan dari evaluasi formasi menurut Ellis & Singer (2008) adalah sebagai berikut: 1. Menentukan ada tidaknya hidrokarbon Hal yang pertama kali dilakukan adalah menentukan apakah di formasi batuan tersebut terdapat hidrokarbon, setelah itu ditentukan jenisnya, minyak atau gas 1. Menentukan dimana tepatnya hidrokarbon tersebut berada Evaluasi formasi diharapkan mampu menjelaskan pada kedalaman berapa hidrokarbon tersebut berada dan pada lapisan batuan apa saja 1. Menentukan berapa banyak kandungan hidrokarbon tersebut di dalam formasi Berapa banyak hidrokarbon yang terdapat di dalam formasi harus bisa diketahui. Aspek paling penting untuk mengetahui kandungan hidrokarbon adalah dengan menentukan porositas batuan karena hidrokarbon terdapat di dalam pori pori batuan. 1. Menentukan apakah hidrokarbon tersebut potensial untuk diproduksi atau tidak Untuk menentukan potensial atau tidaknya hidrokarbon yang berada di dalam formasi batuan membutuhkan banyak parameter yang harus diketahui. Parameter yang paling penting adalah permeabilitas batuan, faktor kunci lainnya adalah oil viscosity.

7 Evaluasi formasi dilakukan dengan mengkorelasikan data data yang berasal dari sumur bor. Evaluasi formasi menyediakan nilai porositas dan saturasi hidrokarbon sebagai fungsi kedalaman dengan menggunakan informasi geologi lokal dan sifat fluida yang terakumulasi di dalam reservoar bor (Ellis & Singer,2008). Variasi formasi batuan bawah permukaan yang sangat luas menyebabkan berbagai peralatan logging harus digunakan untuk memperoleh hasil yang ideal bor (Ellis & Singer,2008). BAB III PENGERTIAN WELL LOGGING 3.1 Pengertian Log dan Well Logging Log adalah suatu grafik kedalaman (bisa juga waktu), dari satu set data yang menunjukkan parameter yang diukur secara berkesinambungan di dalam sebuah sumur (Harsono, 1997). Kegiatan untuk mendapatkan data log disebut logging Logging memberikan data yang diperlukan untuk mengevaluasi secara kuantitatif banyaknya hidrokarbon di lapisan pada situasi dan kondisi sesungguhnya. Kurva log memberikan informasi yang dibutuhkan untuk mengetahui sifat sifat batuan dan cairan. Well logging dalam bahasa Prancis disebut carrotage electrique yang berarti electrical coring, hal itu merupakan definisi awal dari well logging ketika pertama kali ditemukan pada tahun Saat ini well logging diartikan sebagai perekaman karakteristik dari suatu formasi batuan yang diperoleh melalui pengukuran pada sumur bor (Ellis & Singer,2008). Well logging mempunyai makna yang berbeda untuk setiap orang bor (Ellis & Singer,2008). Bagi seorang geolog, well logging merupakan teknik pemetaan untuk kepentingan eksplorasi bawah permukaan. Bagi seorang petrofisisis, well logging digunakan untuk mengevaluasi potensi produksi hidrokarbon dari suatu reservoar. Bagi seorang geofisisis, well logging digunakan untuk melengkapi data yang diperoleh melalui seismik. Seorang reservoir enginer menggunakan well log sebagai data pelengkap untuk membuat simulator. Kegunaan utama dari well logging adalah untuk mengkorelasikan pola pola electrical conductivity yang sama dari satu sumur ke sumur lain kadang kadang untuk area yang sangat luas bor (Ellis & Singer,2008). Saat ini teknologi well logging terus berkembang sehingga dapat digunakan untuk menghitung potensi hidrokarbon yang terdapat di dalam suatu formasi batuan. Log adalah suatu grafik kedalaman (bisa juga waktu), dari satu set data yang menunjukkan parameter yang diukur secara berkesinambungan di dalam sebuah sumur (Harsono, 1997). Log elektrik pertama kali digunakan pada 5 September 1927 oleh H. Doll dan Schlumberger bersaudara pada lapangan minyak kecil di Pechelbronn, Alsace, sebuah propinsi di timur laut Prancis (Ellis & Singer,2008).

8 Log terus mengalami perkembangan dari waktu ke waktu. Pada tahun 1929 log resistivitas mulai digunakan, disusul dengan kehadiran log SP tiga tahun kemudian, selanjutnya log neutron digunakan pada tahun 1941 disusul oleh kehadiran mikrolog,laterolog, dan log sonic pada tahun 1950-an (Schlumberger,1989). 3.2 Macam macam metode yang digunakan untuk memperoleh data log Ellis & Singer (2008) membagi metode yang digunakan untuk memperoleh data log menjadi dua macam, yaitu: Wireline Logging Pada wireline logging, hasil pengukuran akan dikirim ke permukaan melalui kabel (wire).instrumen instrumen yang terdapat pada alat ini (lihat gambar 3.1) adalah: 1. Mobile laboratory 2. Borehole 3. Wireline 4. Sonde (lihat gambar 3.2) Gambar 3.1 Alat-alat yang digunakan dalam wireline logging (Ellis & Singer,2008 dengan modifikasi). Untuk menjalankan wireline logging, lubang bor harus dibersihkan dan distabilkan terlebih dahulu sebelum peralatan logging dipasang (Bateman,1985). Hal yang pertama kali dilakukan adalah mengulurkan kabel ke dalam lubang bor hingga kedalaman maksimum lubang bor tersebut (Bateman,1985). Sebagian besar log bekerja ketika kabel tersebut ditarik dari bawah ke atas lubang bor. Kabel tersebut berfungsi sebagai transmiter data sekaligus sebagai penjaga agar alat logging berada pada posisi yang diinginkan (Bateman,1985). Bagian luar kabel tersusun atas galvanized steel sedangkan bagian dalamnya diisi oleh konduktor listrik (Ellis & Singer,2008). Kabel tersebut digulung dengan menggunakan motorized drum yang digerakkan secara manual selama loggingberlangsung (Ellis & Singer,2008). Drum tersebut menggulung kabel dengan kecepatan antara 300 m/jam (1000 ft/jam) hingga 1800 m/jam (6000 ft/jam) tergantung pada jenis alat yang digunakan (Ellis & Singer,2008). Kabel logging mempunyai penanda kedalaman (misalnya tiap 25 m) yang dicek secara mekanik namun koreksi kedalaman harus dilakukan akibat tegangan kabel dan pengaruh listrik (Bateman,1985). Biaya sewa rig yang mahal dan logging pada sumur bor yang harus dilakukan dengan seketika membuat alat logging modern saat ini dirancang agar bisa

9 menjalankan beberapa fungsi sekaligus. Rangkaian triple-combo yang dimiliki oleh Schlumberger misalnya dapat mengukur resistivitas, densitas, mikroresistivitas, neutron, dan gamma ray sekaligus (Harsono,1997). Apabila rangkaian tersebut ditambahi dengan alat Sonik maka rangkaian yang dihasilkan disebut rangkaian super-combo (Harsono,1997). Kedua rangkaian tersebut mampu bekerja dengan kecepatan 1800 ft/jam (Harsono,1997). Data yang didapat melalui berbagai alat logging yang berbeda tersebut kemudian diolah oleh CSU (Cyber service unit). CSU merupakan sistem logging komputer terpadu di lapangan yang dibuat untuk kepentingan logging dengan menggunakan program komputer yang dinamakan cyberpack (Harsono,1997). Sistem komputer CSU merekam, memproses dan menyimpan data logging dalam bentuk digital dengan format LIS (Log Information Standard), DLIS (Digital Log-Interchange Standard) atau ACSII (Harsono,1997). CSU juga berfungsi menampilkan data log dalam bentuk grafik (Harsono,1997). Sistem komputer terbaru yang digunakan oleh Schlumberger adalah MAXIS (Multiasking Acquisition and Imaging System). Sistem ini mampu mentransmisikan data lebih cepat dari sistem CSU. Tidak seperti sistem logging lainnya, sistem MAXIS mempunyai kemampuan menampilkan gambar atau citra berwarna dari data-data yang diukur dengan alatalat logging generasi baru (Harsono,1997). Gambar atau citra data ini mempermudah karakterisasi reservoar dan interpretasi data di lapangan. Gambar 3.2 Berbagai jenis alat logging. Dari kiri ke kanan, dipmeter, alat sonik, alat densitas, dan dipmeter dengan banyak elektroda ((Ellis & Singer,2008). Darling (2005) menyebutkan sejumlah kelebihan wireline logging sebagai berikut: Mampu melakukan pengukuran terhadap kedalaman logging secara otomatis Kecepatan transmisi datanya lebih cepat daripada LWD, mampu mencapai 3 Mb/detik. Wireline logging juga mempunyai sejumlah kekurangan (Darling,2005) yaitu: Sulit digunakan pada horizontal & high deviated well karena menggunakan kabel Informasi yang didapat bukan merupakan real-time data Logging While Drilling

10 Logging while drilling (LWD) merupakan suatu metode pengambilan data log dimanalogging dilakukan bersamaan dengan pemboran (Harsono,1997). Hal ini dikarenakan alatlogging tersebut ditempatkan di dalam drill collar. Pada LWD, pengukuran dilakukan secara real time oleh measurement while drilling (Harsono,1997).. Alat LWD terdiri dari tiga bagian yaitu: sensor logging bawah lubang bor, sebuah sistem transmisi data, dan sebuah penghubung permukaan (lihat gambar 3.3). Sensor loggingditempatkan di belakang drill bit, tepatnya pada drill collars (lengan yang berfungsi memperkuat drill string) dan aktif selama pemboran dilakukan (Bateman,1985). Sinyal kemudian dikirim ke permukaan dalam format digital melalui pulse telemetry melewati lumpur pemboran dan kemudian ditangkap oleh receiver yang ada di permukaan (Harsono,1997). Sinyal tersebut lalu dikonversi dan log tetap bergerak dengan pelan selama proses pemboran. Logging berlangsung sangat lama sesudah pemboran dari beberapa menit hingga beberapa jam tergantung pada kecepatan pemboran dan jarak antara bit dengan sensor di bawah lubang bor (Harsono,1997). Layanan yang saat ini disediakan oleh perusahaan penyedia jasa LWD meliputi gamma ray, resistivity, densitas, neutron, survei lanjutan (misalnya sonik). Tipe log tersebut sama (tapi tidak identik) dengan log sejenis yang digunakan pada wireline logging. Secara umum, log LWD dapat digunakan sama baiknya dengan log wireline logging dan dapat diinterpretasikan dengan cara yang sama pula (Darling,2005). Meskipun demikian, karakteristik pembacaan dan kualitas data kedua log tersebut sedikit berbeda. Menurut Darling (2005), alat LWD mempunyai sejumlah keunggulan dibandingkan denganwireline logging yaitu: Data yang didapat berupa real-time information Informasi tersebut dibutuhkan untuk membuat keputusan penting selama pemboran dilakukan seperti menentukan arah dari mata bor atau mengatur casing. Informasi yang didapat tersimpan lebih aman Hal ini karena informasi tersebut disimpan di dalam sebuah memori khusus yang tetap dapat tetap diakses walaupun terjadi gangguan pada sumur. Dapat digunakan untuk melintas lintasan yang sulit LWD tidak menggunakan kabel sehingga dapat digunakan untuk menempuh lintasan yang sulit dijangkau oleh wireline logging seperti pada sumur horizontal atau sumur bercabang banyak (high deviated well).

11 Menyediakan data awal apabila terjadi hole washing-out atau invasi Data LWD dapat disimpan dengan menggunakan memori yang ada pada alat dan baru dilepas ketika telah sampai ke permukaan atau ditransmisikan sebagai pulsa pada mud column secara real-time pada saat pemboran berlangsung (Harsono,1997). Berkaitan dengan hal tersebut terdapat Darling (2005) menyebutkan sejumlah kelemahan dari LWD yang membuat penggunaannya menjadi terbatas yaitu: Mode pemboran: Data hanya bisa ditransmisikan apabila ada lumpur yang dipompa melewati drillstring. Daya tahan baterai: tergantung pada alat yang digunakan pada string, biasanya hanya dapat bekerja antara jam Ukuran memori: Sebagian besar LWD mempunyai ukuran memori yang terbatas hingga beberapa megabit. Apabila memorinya penuh maka data akan mulai direkam di atas data yang sudah ada sebelumnya. Berdasarkan sejumlah parameter yang direkam, memori tersebut penuh antara jam Kesalahan alat: Hal ini bisa menyebabkan data tidak dapat direkam atau data tidak dapat ditransmisikan. Kecepatan data: Data ditransmisikan tanpa kabel, hal ini membuat kecepatannya menjadi sangat lambat yaitu berkisar antara 0,5-12 bit/s jauh dibawah wireline logging yang bisa mencapai 3 Mb/s. Gambar 3.3 Alat LWD ( BAB IV MACAM MACAM LOG 4.1 Log Natural Gamma Ray Sesuai dengan namanya, Log Gamma Ray merespon radiasi gamma alami pada suatu formasi batuan (Ellis & Singer,2008). Pada formasi batuan sedimen, log ini biasanya mencerminkan kandungan unsur radioaktif di dalam formasi. Hal ini dikarenakan elemen radioaktif cenderung untuk terkonsentrasi di dalam lempung dan serpih. Formasi bersih biasanya mempunyai tingkat radioaktif yang sangat rendah, kecuali apabila formasi tersebut terkena kontaminasi radioaktif misalnya dari debu volkanik atau granit (Schlumberger,1989)

12 Log GR dapat digunakan pada sumur yang telah dicasing (Schlumberger,1989). Log GR juga sering digunakan bersama-sama dengan log SP (lihat gambar 4.1) atau dapat juga digunakan sebagai pengganti log SP pada sumur yang dibor dengan menggunakan salt mud, udara, atau oil-base mud (Schlumberger,1989). Log ini dapat digunakan untuk korelasi sumur secara umum Gambar 4.1 Perbandingan antara kurva Gamma Ray dengan kurva SP dan Caliper (Ellis & Singer,2008) Karakteristik Gamma Ray Gamma ray dihasilkan oleh gelombang elektromagnetik berenergi tinggi yang dikeluarkan secara spontan oleh elemen radioaktif (Schlumberger,1989). Hampir semua radiasi gamma yang ditemukan di bumi berasal dari isotop potassium yang mempunyai berat atom 40 (K 40 ) serta unsur radioaktif uranium dan thorium (Schlumberger,1989). Setiap unsur tersebut menghasilkan gamma rays dengan jumlah dan energi yang berbeda untuk masing masing unsur. Potassium (K40) mengeluarkan gamma ray sebagai energi tunggal pada 1,46 MeV, sedangkan uranium dan thorium mengeluarkan berbagai variasi gamma ray (Ellis & Singer,2008) (lihat gambar 4,2). Gambar 4.2 Distribusi sinar gamma dari tiga unsur radioaktif yang berbeda (Ellis & Singer,2008). Untuk melewati suatu materi, gamma ray bertumbukan dengan atom dari zat penyusun formasi (Ellis & Singer,2008). Gamma ray akan kehilangan energinya setiap kali mengalami tumbukan, Setelah energinya hilang, gamma ray diabsorbsi oleh atom formasi melalui suatu proses yang disebut efek fotoelektrik (Ellis & Singer,2008). Jadi gamma ray diabsorbsi secara gradual dan energinya mengalami reduksi setiap kali melewati formasi. Laju absorbsi berbeda sesuai dengan densitas formasi (Schlumberger,1989). Formasi dengan jumlah unsur radioktif yang sama per unit volum tapi mempunyai densitas yang berbeda akan menunjukkan perbedaan tingkat radioaktivitas Formasi yang densitasnya lebih rendah akan terlihat sedikit lebih radioaktif. Respon GR log setelah dilakukan koreksi terhadap lubang bor dan sebagainya sebanding dengan berat konsentrasi unsur radioaktif yang ada di dalam formasi (Schlumberger,1989).

13 Persamaan yang digunakan adalah sebagai berikut: Dimana = densitas mineral radioaktif = bulk volume factors mineral = proportionally factors corresponding mineral radioaktif = bulk density formasi Peralatan GR sonde memiliki detektor untuk mengukur radiasi gamma yang terjadi pada formasi di dekat sonde. Detektor scintillation umumnya digunakan untuk pengukuran ini (Schlumberger,1989). Detektor ini lebih efisien dibandingkan dengan detektor Geiger-Mueller yang digunakan di masa lalu (Schlumberger,1989). Panjang detektor ini hanya beberapa inchi sehingga detil formasi bisa diperoleh dengan baik. 4.2 Spectral Gamma Ray Log Sama seperti GR log, spectral gamma ray log mengukur radioaktivitas alami dari formasi. Namun berbeda dengan GR log yang hanya mengukur radioakivitas total, log ini dapat membedakan konsentrasi unsur potassium, uranium, dan thorium di dalam formasi batuan (Schlumberger,1989). Prinsip Pengukuran Log spektral menggunakan detektor sodium iodide scintillation (Schlumberger,1989). Sinar gamma yang dikeluarkan oleh formasi jarang yang langsung ditangkap oleh detektor. Hal ini disebabkan karena sinar tersebut menyebar dan kehilangan energinya melalui tiga jenis interaksi dengan formasi; efek fotoelektrik, hamburan compton, dan produksi berpasangan (Ellis & Singer,2008). Karena tiga jenis interaksi tersebut dan respon dari detektor sodium

14 iodide scintillation, kurva yang dihasilkan mengalami degradasi sehingga menjadi lebih lentur. Gelombang energi yang dideteksi dibagi menjadi tiga jendela energi yaitu W1, W2, dan W3; dimana tiap tiap jendela merefleksikan karakter dari tiga jenis radioaktivitas yang berbeda. Dengan mengetahui respon alat dan jumlah yang dihitung pada tiap jendela kita dapat mendeterminasi banyaknya thorium 232, uranium 238, dan potassium 40 yang ada di dalam formasi (Schlumberger,1989). Tampilan Log Log spektral merekam jumlah potassium, thorium, dan uranium yang ada di dalam formasi (Schlumberger,1989). Unsur unsur tersebut biasanya ditampilkan di dalam Track 2 dan 3 dari log. Konsentrasi thorium dan uranium ditampilkan dalam bentuk berat per juta (bpj) sedangkan konsentrasi potassium ditampilkan dalam bentuk persentase (Schlumberger,1989). Jumlah total ketiga unsur radioaktif tersebut direkam di dalam kurva GR yang ditampilkan di Track 1 (Schlumberger,1989). Respon total tersebut dideterminasi berdasarkan kombinasi linear dari konsentrasi potassium, uranium, dan thorium (Schlumberger,1989). Kurva GR standar ditampilkan dalam bentuk API units. Jika diperlukan, nilai CGR juga bisa ditampilkan (lihat gambar 4.3). Nilai tersebut merupakan jumlah sinar gamma yang berasal dari potassium dan thorium saja, tanpa uranium (Schlumberger,1989). Gambar 4.3 Tampilan log Spektral Gamma Ray (Ellis & Singer,2008). 4.3 Log SP Log SP adalah rekaman perbedaan potensial listrik antara elektroda di permukaan yang tetap dengan elektroda yang terdapat di dalam lubang bor yang bergerak turun naik (Harsono,1997). Potensial listrik tersebut disebut potentiels spontanes, atau spontaneous potentials oleh Conrad Schlumberger dan H.G. Doll yang menemukannya (Rider,1996). Supaya SP dapat berfungsi, lubang harus diisi oleh lumpur konduktif.

15 Secara alamiah, karena perbedaan kandungan garam air, arus listrik hanya mengalir di sekeliling perbatasan formasi di dalam lubang bor (Harsono,1997). Pada lapisan serpih, tidak ada aliran listrik sehingga potensialnya konstan. Hal ini menyebabkan kurva SP-nya menjadi rata dan menghasilkan garis yang disebut sebagai garis dasar serpih (shale base line) (lihat gambar 4.4). Kurva SP akan menunjukkan karakteristik yang berbeda untuk tiap jenis litologi (lihat gambar 4.5) Gambar 4.4 Pergerakan kurva SP di dalam lubang bor (Dewan dalam Ellis & Singer,2008 dengan modifikasi) Saat mendekati lapisan permeabel, kurva SP akan mengalami defleksi ke kiri (negatif) atau ke kanan (positif). Defleksi ini dipengaruhi oleh salinitas relatif dari air formasi dan lumpur penyaring (Harsono,1997). Jika salinitas air formasi lebih besar daripada salinitas lumpur penyaring maka defleksi akan mengarah ke kiri sebaliknya apabila salinitas lumpur penyaring yang lebih besar daripada salinitas air formasi maka defleksi akan mengarah ke kanan (Harsono,1997). Penurunan kurva SP tidak pernah tajam saat melewati dua lapisan yang berbeda melainkan selalu mempunyai sudut kemiringan (Harsono,1997). Jika lapisan permeabel itu cukup tebal maka kurva SP menjadi konstan bergerak mendekati nilai maksimumnya sebaliknya bila memasuki lapisan serpih lain maka kurva akan bergerak kembali ke nilai serpih secara teratur (Harsono,1997). Kurva SP tidak dapat direkam di dalam lubang bor yang diisi dengan lumpur nonkonduktif, hal ini karena lumpur tersebut tidak dapat menghantarkan arus listrik antara elektroda dan formasi (Harsono,1997). Selanjutnya apabila resistivitas antara lumpur penyaring dan air formasi hampir sama, defleksi akan sangat kecil dan kurva SP menjadi tidak begitu berguna (Harsono,1997). Gambar 4.5 Kenampakan kurva SP terhadap berbagai variasi litologi (Asquith dalam Ellis & Singer,2008)

16 4.4 Log Densitas Log densitas merekam bulk density formasi batuan (Schlumberger,1989). Bulk densitymerupakan densitas total dari batuan meliputi matriks padat dan fluida yang mengisi pori. Secara geologi, bulk density merupakan fungsi dari densitas mineral yang membentuk batuan tersebut dan volume fluida bebas yang menyertainya (Rider,1996). Sebagai contoh, batupasir tanpa porositas mempunyai bulk density 2,65g/cm 3, densitasnya murni berasal dari kuarsa. Apabila porositasnya 10%, bulk density batupasir tersebut tinggal 2,49g/cm 3, hasil rata rata dari 90% butir kuarsa (densitasnya 2,65g/cm 3 ) dan 10% air (densitasnya 1,0g/cm 3 ) (Rider,1996). Prinsip Kerja Sebuah sumber radioaktif yang diarahkan ke dinding bor mengeluarkan sinar gamma berenergi sedang ke dalam formasi (Schlumberger,1989). Sinar gamma tersebut bertumbukan dengan elektron yang ada di dalam formasi. Pada tiap kali tumbukan, sinar gamma kehilangan sebagian energinya yang diserap oleh elektron (Schlumberger,1989). Sinar gamma tersebut terus bergerak dengan energinya yang tersisa. Jenis interaksi ini dikenal sebagai hamburan Compton (Schlumberger,1989). Hamburan sinar gamma tersebut kemudian ditangkap oleh detektor yang ditempatkan di dekat sumber sinar gamma. Jumlah sinar gamma yang kembali tersebut kemudian digunakan sebagai indikator dari densitas formasi (Schlumberger,1989). Nilai hamburan Compton dipengaruhi oleh jumlah elektron yang di dalam formasi (Schlumberger,1989). Sebagai akibatnya, respon density tool dibedakan berdasarkan densitas elektronnya (jumlah elektron tiap centimeter kubik). Densitas elektron berhubungan dengan true bulk density yang bergantung pada densitas matriks batuan, porositas formasi, dan densitas fluida yang mengisi pori (Schlumberger,1989). Perlengkapan Untuk mengurangi pengaruh dari mud column, maka detektor dan skidmounted sourceharus dipasangi perisai (Schlumberger,1989). Sebuah koreksi diperlukan ketika kontak antara skid dan formasi tidak sempurna. Jika hanya ada satu

17 detektor yang digunakan, koreksi tidak mudah untuk dilakukan karena pengoreksian bergantung pada ketebalan, berat, dan komposisi mudcake atau mud interposed di antara skid dan formasi (Schlumberger,1989). Pada formation density logging (FDC), digunakan dua buah detektor dengan ruang dan kedalaman yang berbeda (Schlumberger,1989). Dengan demikian maka koreksi dapat lebih mudah dilakukan. 4.5 Log Neutron Log Neutron digunakan untuk mendeliniasi formasi yang porous dan mendeterminasi porositasnya (Schlumberger,1989). Log ini mendeteksi keberadaan hidrogen di dalam formasi. Jadi pada formasi bersih dimana pori pori telah terisi oleh air atau minyak, log neutron merefleksikan porositas yang terisi oleh fluida (Schlumberger,1989). Zona gas juga dapat diidentifikasi dengan membandingkan hasil pengukuran log neutron dengan log porositas lainnya atau analisis core (Schlumberger,1989). Kombinasi log neutron dengan satu atau lebih log porositas lainnya dapat menghasilkan nilai porositas dan identifikasi litologi yang lebih akurat dibandingkan dengan evaluasi kandungan serpih (Schlumberger,1989). Prinsip Kerja Neutron merupakan bagian dari atom yang tidak memiliki muatan namun massanya ekuivalen dengan inti hidrogen (Schlumberger,1989). Neutron berinteraksi dengan material lain melalui dua cara, yaitu melalui kolisi dan absorbsi: kolisi umumnya terjadi pada tingkat energi tinggi sedangkan absorbsi terjadi pada tingkat energi yang lebih rendah (Schlumberger,1989). Jumlah energi yang hilang setiap kali terjadi kolisi tergantung pada massa relatif inti yang betumbukan dengan neutron tersebut (Schlumberger,1989). Kehilangan energi terbesar terjadi apabila neutron bertumbukan dengan material lain yang memiliki massa sama dengannya, misalnya inti hidrogen (Schlumberger,1989). Tumbukan dengan inti yang berat tidak akan terlalu memperlambat laju dari neutron. Jadi, penurunan terbesar jumlah neutron yang kembali ditentukan oleh seberapa besar kandungan air di dalam formasi batuan tersebut (Schlumberger,1989). Dalam waktu beberapa mikrodetik, neutron yang telah diperlambat melalui kolisi akan bergerak menyebar secara acak tanpa kehilangan banyak energi (Schlumberger,1989). Neutron tersebut baru akan berhenti apabila ditangkap oleh inti dari atom seperti klorin, hidrogen, atau silikon (Schlumberger,1989).

18 Saat konsentrasi hidrogen di dalam material yang mengelilingi sumber neutron besar, sebagian besar neutron akan bergerak semakin lambat dan dapat ditangkap pada jarak yang dekat dengan sumber (Schlumberger,1989). Sebaliknya, apabila konsentrasi hidrogennya sedikit, neutron akan bergerak jauh dari sumbernya baru kemudian ditangkap oleh inti atom lain (lihat gambar 4.6). Berdasarkan hal tersebut maka kandungan hidrogen di dalam suatu formasi batuan dapat ditentukan (Schlumberger,1989). Gambar 4.6 Skema cara kerja log neutron Peralatan Peralatan logging neutron meliputi GNT (gamma neutron tool) tool series, dan SNP(sidewall neutron porosity) tool (Harsono,1997). GNT merupakan detektor yang sensitif terhadap energi tinggi sinar gamma dan panas dari neutron. GNT dapat digunakan pada lubang bor dengan atau tanpa casing (Harsono,1997). Meskipun perlengkapan ini respon utamanya adalah terhadap porositas, GNT juga bisa mendeteksi pengaruh akibat salinitas fluida, suhu, tekanan, ukuran lubang bor, mudcake, standoff, dan berat lumpur (Harsono,1997). Pada peralatan SNP, detektornya hanya mampu mendeteksi neutron yang memiliki energi sekitar 0,4 ev (epitermal). Harsono (2007) menyebutkan sejumlah keunggulan SNP dibandingkan dengan NGT yaitu: Efek lubang bor lebih sedikit Neutron yang diukur adalah neutron epithermal, hal ini mengurangi efek negatif dari penyerap neutron thermal kuat (seperti boron dan klorin) pada air formasi dan matriks. Koreksi yang diperlukan dilakukan secara otomatis oleh instrumen yang ada di permukaan SNP menghasilkan pengukuran yang baik pada lubang kosong Perlengkapan SNP dirancang hanya bisa dioperasikan pada open holes, baik yang terisi oleh cairan maupun yang kosong. Diameter minimal lubang bor yang diperlukan adalah 5 inchi (Harsono,1997).

19 Tampilan Log Gambar 4.6 Tampilan log densitas dan log neutron (Ellis & Singer,2008). 4.6 Log Resistivitas Log resistivitas adalah rekaman tahanan jenis formasi ketika dilewati oleh kuat arus listrik, dinyatakan dalam ohmmeter (Schlumberger,1989). Resistivitas ini mencerminkan batuan dan fluida yang terkandung di dalam pori-porinya. Reservoar yang berisi hidrokarbon akan mempunyai tahanan jenis lebih tinggi (lebih dari 10 ohmmeter), sedangkan apabila terisi oleh air formasi yang mempunyai salinitas ringgi maka harga tahanan jenisnya hanya beberapa ohmmeter (Schlumberger,1989). Suatu formasi yang porositasnya sangat kecil(tight) juga akan menghasilkan tahanan jenis yang sangat tinggi karena tidak mengandung fluida konduktif yang dapat menjadi konduktor alat listrik (Schlumberger,1989). Menurut jenis alatnya, log ini dibagi menjadi dua yaitu laterolog, dipakai untuk pemboran yang menggunakan lumpur pemboran yang konduktif dan induksi yang digunakan untuk pemboran yang menggunakan lumpur pemboran yang fresh mud (Harsono,1997). Berdasarkan jangkauan pengukuran alatnya, log ini dibagi menjadi tiga yaitu dangkal (1-6 inci), medium (1,5-3 feet) dan dalam (>3 feet).

20 1. Alat Laterolog Alat DLT memfokuskan arus listrik secara lateral ke dalam formasi dalam bentuk lembaran tipis (Harsono,1997). Ini dicapai dengan menggunakan arus pengawal (bucking current) yang berfungsi untuk mengawal arus utama (measured current) masuk ke dalam formasi sedalam-dalamnya. Dengan mengukur tegangan listrik yang diperlukan untuk menghasilkan arus listrik utama yang besarnya tetap, resistivitasnya dapat dihitung dengan hukum Ohm (Schlumberger,1989). Sebenarnya alat DLT terdiri dari dua bagian, bagian pertama mempunyai elektroda yang berjarak sedemikian rupa untuk memaksa arus utama masuk sejauh mungkin ke dalam formasi dan mengukur LLd, resistivitas laterolog dalam (Harsono,1997). Bagian lain mempunyai elektroda yang berjarak sedemikian rupa membiarkan arus utama terbuka sedikit, dan mengukur LLs, resistivitas laterolog dangkal (Harsono,1997). Hal ini tercapai karena arus yang dipancarkan adalah arus bolak-balik dengan frekuensi yang berbeda. Arus LLd menggunakan frekuensi 28kHz sedangkan frekuensi arus LLs adalah 35 khz (Harsono,1997). Bila alat DLT mendekati formasi dengan resistivitas sangat tinggi atau selubung baja, bentuk arus DLT akan terpengaruh (Harsono,1997). Hal ini akan mengakibatkan pembacaan yang terlalu tinggi pada LLd. Pengaruh ini dikenal dengan sebutan efek Groningen (Harsono,1997). DLT generasi baru telah dilengkapi dengan suatu rangkaian elektronik yang mampu mendeteksi dampak Groningen ini dengan menampilkan kurva LLg (Harsono,1997). Bila terdapat efek Groningan biasanya pembacaan LLg tidak sama dengan LLd pada jarak anatara titik sensor dan torpedo kabel logging (Harsono,1997). 1. Alat Induksi Terdapat beberapa jenis alat Induksi yaitu: IRT (Induction Resistivity Tool), DIT- D (Dual Induction Type-D), dan DIT-E (Dual Induction Type- E) (Harsono,1997). Alat-alat tersebut menghasilkan jenis log yang berbeda pula. IRT menghasilkan ISF (Induction Spherically Focussed), DIT-D menghasilkan DIL (Dual Induction Log) sedangkan DIT-E menghasilkan PI (Pahsor Induction) (Harsono,1997). Prinsip ISF Log Sonde terdiri dari dua set kumparan yang disusun dalam batangan fiberglass nonkonduktif (Harsono,1997). Suatu rangkaian osilator menghasilkan arus konstan pada kumparan pemancar. Berdasarkan hukum fisika kita tahu bahwa bila suatu kumparan dialiri arus listrik bolak-balik akan menghasilkan medan magnet, sebaliknya medan magnet akan

21 menimbulkan arus listrik pada kumparan (Harsono,1997). Hal ini menyebabkan arus listrik yang mengalir dalam kumparan alat induksi ini menghasilkan medan magnet di sekeliling sonde (Harsono,1997). Medan magnet ini akan menhasilkan arus eddy di dalam formasi di sekitar alat sesuai dengan hukum Faraday. Formasi konduktif di sekitar alat bereaksi seperti kumparan-kumparan kecil (Harsono,1997). Bisa dibayangkan terdapat berjuta-juta kumparan kecil di dalam kimparan yang menghasilkan arus eddy terinduksi (Harsono,1997). Arus eddy selanjutnya menghasilkan medan magnet sendiri yang dideteksi oleh kumparan penerima. Kekuatan dari arus pada penerima sebanding dengan kekuatan dari medan magnet yang dihasilkan dan sebanding dengan arus eddy dan juga konduktivitas dari formasi (Harsono,1997). Perbandingan antara pengukuran Laterolog dan Induksi Hampir setiap alat pengukur resistivitas saat ini dilengkapi dengan alat pemfokus. Alat tersebut berfungsi untuk mengurangi pengaruh akibat fluida lubang bor dan lapisan di sekitarnya (Harsono,1997). Dua jenis alat pungukur resistivitas yang ada saat ini: induksi dan laterolog memiliki karakteristik masing-masing yang membuatnya digunakan untuk situasi yang berbeda (Harsono,1997). Log induksi biasanya direkomendasikan untuk lubang bor yang yang menggunakan lumpur bor konduktif sedang, non-konduktif (misalnya oil-base muds) dan pada lubang bor yang hanya berisi udara (Harsono,1997). Sementara itu laterolog direkomendasikan pada lubang bor yang menggunakan lumpur bor sangat konduktif (misalnya salt muds) (Harsono,1997). Alat induksi, karena sangat sensitif terhadap konduktivitas baik digunakan pada formasi batuan dengan resistivitas rendah sampai sedang (Harsono,1997). Sedangkan laterolog karena menggunakan peralatan yang sensitif terhadap resistivitas sangat akurat digunakan pada formasi dengan resistivitas sedang sampai tinggi (Harsono,1997)..

22 BAB V APLIKASI WELL LOGGING DALAM EVALUASI FORMASI 5.1 Mengidentifikasi Reservoar Indikator yang paling dapat dipercaya terhadap keberadaan reservoar adalah dengan melihat pergerakan dari log densitas dan log neutron, yaitu ketika log densitas bergerak ke kiri (densitas rendah) dan bersinggungan atau bersilangan dengan kurva neutron (Darling, 2005). Pada reservoar klastik, hampir tiap keberadaan reservoar dihubungkan dengan log gamma ray. Pada sejumlah kecil reservoar, log GR tidak dapat digunakan sebagai indikator pasir karena kehadiran mineral radioaktif di dalam pasir. Serpih dapat dengan jelas dikenali sebagai suatu zona ketika log densitas berada di sebelah kanan dari log neutron, dicirikan dengan nilai unit porositas sebesar 6 atau lebih (Darling, 2005). Jadi crossover antara log densitas dan log neutron lebih baik digunakan untuk mengidentifikasi reservoar. Zona gas akan menunjukkan nilai crossover yang lebih besar daripada zona air dan minyak (Darling, 2005). Log densitas dan log neutron merupakan hasil pengukuran statistik (diukur berdasarkan waktu kedatangan sinar gamma pada detektor yang bersifat acak) sehingga tampilannya dapat tetap meliuk-liuk walaupun berada pada litologi yang homogen (Darling, 2005). Oleh karena itu sangat berbahaya apabila kita membuat aturan ketat bahwa kurva densitas harus berpotongan dengan kurva neutron untuk menyatakan bahwa lapisan tersebut adalah net sand. Untuk sebagian besar reservoar, Darling (2005) menyarankan aturan aturan berikut ini: Menentukan pembacaan rata-rata GR pada clean sand (GR sa ) dan nilai serpih (GR sh ). Jangan gunakan nilai pembacaan terbesar yang teramati tapi gunakan kenampakan secara umum yang teramati. Menentukan volume serpih, V sh sebagai (GR-GR sa )/(GR sh -GR sa ). Dengan membandingkan V sh terhadap respon densitas dan neutron, tentukan nilai V sh yang akan digunakan sebagai cutoff. Umumnya nilai cutoff adalah 50%. Jika GR tidak dapat digunakan sebagai indikator pasir, lakukan langkah yang sama seperti pada pengukuran net sand lalu gunakan nilai porosity cutoff. 5.2 Mengidentifikasi jenis fluida dan kontak antar fluida

23 Perhitungan porositas tergantung pada jenis fluida yang ada di dalam formasi sehingga penting bagi kita untuk tahu mengenai prinsip keberadaan dan kontak fluida tersebut di dalam formasi (Darling, 2005). Jika tersedia informasi regional mengenai posisi gas/oil contact (GOC) atau oil/water contact (OWC), hubungkan kedalaman OWC atau GWC tersebut terhadap kedalaman sumur yang kita amati lalu tandai posisinya pada log (Darling, 2005). Hal pertama yang dilakukan adalah membandingkan densitas dan pembacaan paling besar dari log resistivitas untuk mengetahui kehadiran hirokarbon. Pada classic response, resistivitas dan densitas akan terlihat seperti tremline (bergerak searah ke kiri atau ke kanan) untuk pasir yang mengandung air dan membentuk kenampakan seperti cermin ( bergerak berlawanan arah, yang satu ke kiri dan yang satu kanan) pada pasir yang mengandung hidrokarbon (Darling, 2005). Meskipun demikian Menurut Darling (2005) tidak semua zona air dan hidrokarbon tidak menunjukkan kenampakan seperti itu karena: Ketika salinitas air formasi sangat tinggi, resistivitas clean sand juga akan turun Pada shally sand zones yang mempunyai proporsi zat konduktif tinggi, resestivitasnya akan tetap kecil walaupun berfungsi sebagai reservoar. Jika pasir tersebut merupakan laminasi tipis yang terletak diantara serpih, maka resistivitasnya akan tertutupi oleh resistivitas serpih sehingga nilainya akan tetap kecil Jika sumur telah dibor dengan jauh melebihi kesetimbangan normal (very high overbalance) maka invasi dapat menutupi respon hidrokarbon Bila air formasi sangat murni (Rw tinggi) resistivitasnya dapat terlihat seperti hidrokarbon padahal merupakan water-bearing zones. Sangat penting untuk melihat nilai absolut dari resistivitas dibandingkan sekedar melihat kenampakan kurva densitas. Bila resistiviasnya lebih besar daripada resistivitas air maka apapun bentuk kurvanya kita patut menduga bahwa di daerah itu berpotensi mengandung hidrokarbon (Darling,2005). Apabila kita masih ragu di daerah tersebut ada hidrokarbon atau tidak maka kita bisa mengujinya dengan data mud log. Meskipun demikian data mud log tidak selalu bisa digunakan untuk mengetahui keberadaan hidrokarbon, khususnya bila pasirnya tipis danoverbalance tinggi (Darling, 2005). Selain itu beberapa gas minor akan terlihat hanya sebagai water bearing (Darling, 2005). Seperti yang telah dinyatakan di awal, zona gas akan mempunyai crossover kurva neutron dan densitas yang lebih besar daripada zona minyak (Darling, 2005). Pada very clean porous sand, GOC akan relatif lebih mudah untuk diidentifikasi. Meskipun demikian, GOC hanya teridentifikasi dengan benar pada sekitar 50% kasus (Darling,2005). Secondary gas caps yang muncul pada depleted reservoir biasanya tidak bisa diidentifikasi dengan menggunakan cara ini (Darling, 2005).. Formation pressure plots lebih bisa diandalkan untuk mengidentifikasi GOC namun biasanya hanya berguna pada virgin reservoirs(darling, 2005). Berbagai variasi crossplot diusulkan di masa lalu untuk mengidentifikasi zona gas meliputi log GR, densitas, neutron, dan sonik

24 namun semuanya tidak bisa dijadikan sebagai acuan (Darling,2005). Pada depleted reservoir gas telah keluar melalui solution dari zona minyak dan tidak bisa lagi mencapai kesetimbangan (Darling, 2005). Gas akan tetap dalam bentuk football-sized pockets yang dikelilingi oleh minyak. Pada situasi seperti ini log dasar tidak akan bisa memberikan jawaban yang tepat (Darling, 2005). Cara yang paling tepat untuk mengidentifikasi zona gas adalah dengan menggunakanshear sonic log yang dikombinasikan dengan compressional sonic (Darling, 2005). Jikacompressional velocity (Vp) / shear velocity (Vs) diplotkan terhadap Vp, deviasi akan terlihat pada zona gas karena Vp lebih dipengaruhi oleh gas dibandingkan Vs (Darling, 2005). 5.3 Menghitung Porositas Menurut Schlumberger (1989), porositas dapat dihitung dari log densitas dengan menggunakan persamaan: ɸ = dengan rho m = densitas matriks (g/cc) rho f = densitas fluida (g/cc) Alat densitas bekerja dengan menginjeksikan sinar gamma ke dalam formasi batuan yang kemudian menghasilkan efek Compton scattering (Schlumberger,1989). Sinar gamma tersebut kemudian dideteksi oleh dua buah detektor. Terdapat perbedaan densitas elektron yang disebabkan oleh perbedaan mineral sehingga sebaiknya dilakukan kalibrasi terhadap hasil pengukuran densitas. Koreksi tersebut sebenarnya sangat kecil (kurang dari 1%) sehingga tidak terlalu menjadi masalah (Schlumberger,1989). Pada batupasir, rhom memiliki kisaran nilai antara 2,65 sampai 2,67 g/cc. Bila data core regional tersedia, nilai tersebut dapat diambil dari nilai rata-rata pengukuran padaconventional core plugs (Schlumberger,1989). Densitas fluida (rhom) tergantung pada tipe lumpur pemboran, sifat fluida yang ada di formasi, dan sebagian invasi yang terlihat pada log densitas (Schlumberger,1989). Untuk menguji kelayakan nilai yang digunakan, Darling (2005) menyarankan tes berikut: Bila informasi regional tersedia, zona porositas rata-rata dapat dibandingkan denganoffset sumur.

25 Pada banyak kasus, tidak ada lompatan nilai porositas yang teramati melewati kontak. Sebuah pengecualian dimana ada nilai porositas yang melewati OWC merupakan efek diagenetik yang bisa saja terjadi. Pada batupasir umumnya porositasnya tidak lebih dari 36%. Hal yang perlu diingat adalah bahwa porositas yang dihitung dengan menggunakan log densitas merupakan nilai porositas total sehingga air yang terikat di dalam pori-pori lempung (clay-bound water) tetap termasuk di dalamnya (Darling, 2005). Untuk itu hasil pengukuran log densitas perlu dibandingkan dengan hasil analisis batu inti yang relatif lebih bisa menghilangkan pengaruh clay-bound water. Dalam menghitung porositas, penting untuk memeriksa zona yang mengalami washoutsehingga nilai densitasnya menjadi sangat tinggi tak menentu dan mengakibatkan nilai porositas tinggi yang tidak realistis (Darling, 2005). Pada sejumlah kasus zona tersebut dapat dikenali dari karakternya yang soft dan mempunyai porositas tinggi. Meskipun demikian, pada sejumlah kasus perlu dilakukan pengeditan data log densitas secara manual dengan menggunakan persamaan tertentu (Darling, 2005). Menurut Schlumberger (1989), estimasi yang paling baik pada water-bearing section adalah dengan menggunakan resistivitas sebenarnya (Rt) dan persamaan Archie sebagai berikut: R t = R w * ɸ -m * atau S w = [(R t /R w )*ɸ m ] (-1/n) dengan: Rw M Sw N = resistivitas air formasi = eksponen dari sementasi atau porositas = saturasi air = eksponen saturasi Pada porositas efektif, pengukurannya agak berbeda. Pengertian porositas efektif agak berbeda untuk tiap orang namun menurut Darling (2005), porositas efektif adalah porositas total dikurangi dengan clay-bound water. Persamaan untuk menghitung porositas efektif adalah sebagai berikut: ɸ eff = ɸ total * (1 C*V sh ) Dengan C merupakan faktor yang tergantung pada porositas serpih dan CEC (caution exchange capacity). Nilai C dapat diperoleh dengan menghitung

26 porositas total dari serpih murni (Vsh=1) dan mengatur agar ɸ eff menjadi nol (Darling, 2005). Meskipun demikian sejumlah ahli meragukan apakah pengkoreksian dengan menggunakan asusmsi pada serpih non-reservoar bisa digunakan pada serpih yang bercampur pasir di reservoar (Darling, 2005). Hal ini menyebabkan sejumlah ahli tidak merekomendasikan penghitungan porositas efektif sebagai bagian dari quicklook evaluation (Darling, 2005). Darling (2005) mengemukakan sejumlah alasan mengenai kelemahan penggunaancrossplot log densitas dan neutron di dalam menghitung porositas sebagai berikut: Log neutron dan densitas merupakan statistical devices dan sangat dipengaruhi oleh kecepatan logging, kondisi detektor, kekuatan sumber, dan efek lubang bor. Kesalahan ketika dua buah alat yang bersifat acak tersebut dikomparasikan jauh lebih besar daripada ketika digunakan sendiri-sendiri. Neutron dipengaruhi oleh kehadiran atom klorin di dalam formasi. Klorin terdapat di dalam air formasi dan pada mineral lempung. Hal ini menyebabkan porositas yang dibaca oleh log neutron hanya akurat pada daerah yang tidak mengandung kedua hal tersebut. Neutron juga dipengaruhi oleh kehadiran gas tertentu 5.4 Menghitung Permeabilitas Permeabilitas merupakan kemampuan lapisan untuk melewatkan suatu fluida (Darling, 2005). Agar permeabel, suatu batuan harus mempunyai porositas yang saling berhubungan (vugs, capillaries, fissures, atau fractures). Ukuran pori, bentuk dan kontinuitas mempengaruhi permeabilitas formasi (Darling, 2005). Satuan permeabilitas adalah darcy. Satu darcy adalah kemampuan lapisan untuk melewatkan satu kubik centimeter per detik fluida dengan viskositas satu centipose melewati area seluas satu sentimeter persegi dibawah tekanan sebesar satu atmosfer per sentimeter (Schlumberger,1989). Satu darcy merupakan unit yang sangat besar sehingga pada prakteknya satuan milidarcy (md) lebih sering digunakan (Schlumberger,1989). Permeabelitas formasi batuan sangat bervariasi dari 0,1 md sampai lebih dari md (Schlumberger,1989). Penentuan batas minimal permeabelitas untuk kepentingan komersial dipengaruhi oleh sejumlah faktor yaitu: produksi minyak atau gas, viskositas hidrokarbon, tekanan formasi, saturasi air, harga minyak dan gas, kedalaman sumur, dan lain-lain (Schlumberger,1989). Saat dua atau lebih fluida yang tidak bisa menyatu (misalnya air dan minyak) hadir dalam formasi batuan, kedua fluida tersebut bergerak saling mengganggu (Schlumberger,1989). Permeabelitas efektif aliran minyak (ko) atau aliran air (kw) kemudian menjadi berkurang (Schlumberger,1989). Selain itu jumlah permeabelitas efektif selalu lebih rendah atau sama dengan jumlah permeabilitas absolut (k). Permeabelitas efektif tidak hanya dipengaruhi oleh batuan itu sendiri

Aplikasi Well Logging dalam Evaluasi Formasi

Aplikasi Well Logging dalam Evaluasi Formasi Aplikasi Well Logging dalam Evaluasi Formasi BAB 1PENDAHULUAN 1.1 Latar Belakang Masalah Saat ini teknologi di dalam eksplorasi dan eksploitasi minyak dan gas bumi telah berkembang dengan pesat. Hal tersebut

Lebih terperinci

BAB III TEORI DASAR 3.1 Ruang Lingkup Evaluasi Formasi 3.2 Metode Metode Evaluasi Formasi

BAB III TEORI DASAR 3.1 Ruang Lingkup Evaluasi Formasi 3.2 Metode Metode Evaluasi Formasi BAB III TEORI DASAR 3.1 Ruang Lingkup Evaluasi Formasi Evaluasi formasi batuan adalah suatu proses analisis ciri dan sifat batuan di bawah tanah dengan menggunakan hasil pengukuran lubang sumur (Harsono,

Lebih terperinci

Acara Well Log Laporan Praktikum Geofisika Eksplorasi II

Acara Well Log Laporan Praktikum Geofisika Eksplorasi II WELL LOG 1. Maksud dan Tujuan Maksud : agar praktikan mengetahui konsep dasar mengenai rekaman sumur pemboran Tujuan : agar praktikan mampu menginterpretasi geologi bawah permukaaan dengan metode rekaman

Lebih terperinci

Mampu menentukan harga kejenuhan air pada reservoir

Mampu menentukan harga kejenuhan air pada reservoir BAB I PENDAHULUAN 1.1 Maksud dan Tujuan 1.1.1 Maksud 1.1.1.1 Melakukan analisis kuantitatif data log dengan menggunakan data log Gamma ray, Resistivitas, Neutron, dan Densitas. 1.1.1.2 Mengevaluasi parameter-parameter

Lebih terperinci

Analisis Petrofisika Batuan Karbonat Pada Lapangan DIF Formasi Parigi Cekungan Jawa Barat Utara

Analisis Petrofisika Batuan Karbonat Pada Lapangan DIF Formasi Parigi Cekungan Jawa Barat Utara Analisis Petrofisika Batuan Karbonat Pada Lapangan DIF Formasi Parigi Cekungan Jawa Barat Utara Nadifatul Fuadiyah 1, Widya Utama 2,Totok Parafianto 3 Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Lebih terperinci

Klasifikasi Fasies pada Reservoir Menggunakan Crossplot Data Log P-Wave dan Data Log Density

Klasifikasi Fasies pada Reservoir Menggunakan Crossplot Data Log P-Wave dan Data Log Density JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-127 Fasies pada Reservoir Menggunakan Crossplot Data Log P-Wave dan Data Log Density Ismail Zaky Alfatih, Dwa Desa Warnana, dan

Lebih terperinci

WELL LOG INTRODUCTION

WELL LOG INTRODUCTION WELL LOG INTRODUCTION WELL LOGGING? Logging Rekaman suatu parameter versus jarak ataupun waktu Mud logging Log berdasarkan data pemboran, antara lain : cutting, gas reading, hc show, parameter lumpur,

Lebih terperinci

BAB I PENDAHULUAN. kegiatan yang sangat penting di dalam dunia industri perminyakan, setelah

BAB I PENDAHULUAN. kegiatan yang sangat penting di dalam dunia industri perminyakan, setelah BAB I PENDAHULUAN Kegiatan ekplorasi dan eksploitasi minyak dan gas bumi merupakan kegiatan yang sangat penting di dalam dunia industri perminyakan, setelah kegiatan eksplorasi dilaksanakan dan ditemukan

Lebih terperinci

Evaluasi Formasi dan Estimasi Permeabilitas Pada Reservoir Karbonat Menggunakan Carman Kozceny, Single Transformasi dan Persamaan Timur

Evaluasi Formasi dan Estimasi Permeabilitas Pada Reservoir Karbonat Menggunakan Carman Kozceny, Single Transformasi dan Persamaan Timur Evaluasi Formasi dan Estimasi Permeabilitas Pada Reservoir Karbonat Menggunakan Carman Kozceny, Single Transformasi dan Persamaan Timur Oleh: Ari Teguh Sugiarto 1109100053 Dosen Pembimbing: Prof. Dr.rer.nat

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... i

DAFTAR ISI. HALAMAN JUDUL... i DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii PERNYATAAN BEBAS PLAGIARISME... iii HALAMAN PERSEMBAHAN... iv KATA PENGANTAR... vi RINGKASAN... vii DAFTAR ISI... viii DAFTAR GAMBAR... xi DAFTAR

Lebih terperinci

Seminar Nasional Cendekiawan 2015 ISSN:

Seminar Nasional Cendekiawan 2015 ISSN: ANALISA DATA LOG UNTUK MENENTUKAN ZONA PRODUKTIF DAN MEMPERKIRAKAN CADANGAN AWAL PADA SUMUR R LAPANGAN Y Riza Antares, Asri Nugrahanti, Suryo Prakoso Jurusan Teknik Perminyakan Universitas Trisakti Abstrak

Lebih terperinci

GEOPHYSICAL WELL LOGGING (PENLOGAN SUMUR GEOFISIK )

GEOPHYSICAL WELL LOGGING (PENLOGAN SUMUR GEOFISIK ) GEOPHYSICAL WELL LOGGING (PENLOGAN SUMUR GEOFISIK ) Kuncoro bbkuncoro_sda@yahoo.com 08122953788 Jurusan Teknik Geologi Universitas Pembangunan Nasional (UPN) Veteran Yogyakarta Apa itu geophysical well

Lebih terperinci

ANALISA FISIKAMINYAK (PETROPHYSICS) DARI DATA LOG KONVENSIONAL UNTUK MENGHITUNG Sw BERBAGAI METODE

ANALISA FISIKAMINYAK (PETROPHYSICS) DARI DATA LOG KONVENSIONAL UNTUK MENGHITUNG Sw BERBAGAI METODE ANALISA FISIKAMINYAK (PETROPHYSICS) DARI DATA LOG KONVENSIONAL UNTUK MENGHITUNG Sw BERBAGAI METODE Cahaya Rosyidan, Listiana Satiawati* ), Bayu Satiyawira 1 Teknik Perminyakan-FTKE, Universitas Trisakti

Lebih terperinci

LAPORAN FIELDTRIP GEOLOGI STRUKTUR DAN WELL LOGGING

LAPORAN FIELDTRIP GEOLOGI STRUKTUR DAN WELL LOGGING LAPORAN FIELDTRIP GEOLOGI STRUKTUR DAN WELL LOGGING Disusun oleh : Wulan Puji Rahayu 1107045024 JURUSAN FISIKA KBK GEOFISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS MULAWARMAN SAMARINDA

Lebih terperinci

BAB V INTERPRETASI DATA. batuan dengan menggunakan hasil perekaman karakteristik dari batuan yang ada

BAB V INTERPRETASI DATA. batuan dengan menggunakan hasil perekaman karakteristik dari batuan yang ada BAB V INTERPRETASI DATA V.1. Penentuan Litologi Langkah awal yang dilakukan pada penelitian ini adalah menentukan litologi batuan dengan menggunakan hasil perekaman karakteristik dari batuan yang ada dibawah

Lebih terperinci

BAB I PENDAHULUAN I.1 LATAR BELAKANG PENELITIAN

BAB I PENDAHULUAN I.1 LATAR BELAKANG PENELITIAN BAB I PENDAHULUAN I.1 LATAR BELAKANG PENELITIAN Kiprah dan perjalanan PT. Chevron Pacific Indonesia yang telah cukup lama ini secara perlahan diikuti oleh penurunan produksi minyak dan semakin kecilnya

Lebih terperinci

EVALUASI FORMASI SUMURGJN UNTUK PENENTUAN CADANGAN GAS AWAL (OGIP) PADA LAPANGAN X

EVALUASI FORMASI SUMURGJN UNTUK PENENTUAN CADANGAN GAS AWAL (OGIP) PADA LAPANGAN X EVALUASI FORMASI SUMURGJN UNTUK PENENTUAN CADANGAN GAS AWAL (OGIP) PADA LAPANGAN X Abstrak Muhammad Fahdie, Asri Nugrahanti, Samsol Fakultas teknologi kebumian dan energi universitas trisakti Evaluasi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Hidrokarbon merupakan salah satu sumber daya alam yang dapat meningkatkan kemajuan Bangsa Indonesia khususnya pada eksplorasi minyak dan gas bumi. Kegiatan ekplorasi

Lebih terperinci

I. PENDAHULUAN I.1. Latar Belakang Penelitian Gambar 1.1

I. PENDAHULUAN I.1. Latar Belakang Penelitian Gambar 1.1 I.1. I. PENDAHULUAN Latar Belakang Penelitian Lapangan Reira telah diproduksi sejak 30 tahun yang lalu. Hingga saat ini telah lebih dari 90 sumur diproduksi di Reira. Pada awal masa eksploitasi, sumursumur

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Menurunnya angka produksi minyak dan gas bumi dewasa ini memberikan konsekuensi yang cukup besar bagi kehidupan masyarakat. Kebutuhan akan sumber daya minyak dan gas

Lebih terperinci

Rani Widiastuti Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut t Teknologi Sepuluh hnopember Surabaya 2010

Rani Widiastuti Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut t Teknologi Sepuluh hnopember Surabaya 2010 PEMETAAN BAWAH PERMUKAAN DAN PERHITUNGAN CADANGAN HIDROKARBON LAPANGAN KYRANI FORMASI CIBULAKAN ATAS CEKUNGAN JAWA BARAT UTARA DENGAN METODE VOLUMETRIK Rani Widiastuti 1105 100 034 Jurusan Fisika Fakultas

Lebih terperinci

ANALISIS PETROFISIKA DAN PERHITUNGAN CADANGAN GAS ALAM LAPANGAN KAPRASIDA FORMASI BATURAJA CEKUNGAN SUMATERA SELATAN

ANALISIS PETROFISIKA DAN PERHITUNGAN CADANGAN GAS ALAM LAPANGAN KAPRASIDA FORMASI BATURAJA CEKUNGAN SUMATERA SELATAN Analisis Petrofisika dan... ANALISIS PETROFISIKA DAN PERHITUNGAN CADANGAN GAS ALAM LAPANGAN KAPRASIDA FORMASI BATURAJA CEKUNGAN SUMATERA SELATAN M. Iqbal Maulana, Widya Utama, Anik Hilyah Jurusan Teknik

Lebih terperinci

Evaluasi Formasi Menggunakan Data Log dan Data Core pada Lapangan X Cekungan Jawa Timur Bagian Utara

Evaluasi Formasi Menggunakan Data Log dan Data Core pada Lapangan X Cekungan Jawa Timur Bagian Utara JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (24) 2337-352 (23-928X Print) B-2 Evaluasi Formasi Menggunakan Data Log dan Data Core pada Lapangan X Cekungan Jawa Timur Bagian Utara Arga Nuryanto, Bagus Jaya

Lebih terperinci

ANALISIS PENENTUAN ZONA PRODUKTIF DAN PERHITUNGAN CADANGAN MINYAK AWAL DENGAN MENGGUNAKANDATA LOGGING PADA LAPANGAN APR

ANALISIS PENENTUAN ZONA PRODUKTIF DAN PERHITUNGAN CADANGAN MINYAK AWAL DENGAN MENGGUNAKANDATA LOGGING PADA LAPANGAN APR ANALISIS PENENTUAN ZONA PRODUKTIF DAN PERHITUNGAN CADANGAN MINYAK AWAL DENGAN MENGGUNAKANDATA LOGGING PADA LAPANGAN APR Anastasya P.R1) 1) Fakultas Teknologi Kebumian dan Energi Universitas Trisakti Email

Lebih terperinci

Seminar Nasional Cendekiawan 2015 ISSN: ANALISIS DATA LOG UNTUK PERHITUNGAN CADANGAN MINYAK AWAL FORMASI KAIS PADA LAPANGAN Y

Seminar Nasional Cendekiawan 2015 ISSN: ANALISIS DATA LOG UNTUK PERHITUNGAN CADANGAN MINYAK AWAL FORMASI KAIS PADA LAPANGAN Y ANALISIS DATA LOG UNTUK PERHITUNGAN CADANGAN MINYAK AWAL FORMASI KAIS PADA LAPANGAN Y Sartika Sah Putri, Asri Nugrahanti, Slamet Soeharto Program Studi Teknik Perminyakan, Universitas Trisakti Abstrak

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN I.1. Latar Belakang Peningkatan kebutuhan energi di dunia akan minyak dan gas bumi sebagai bahan bakar fosil yang utama cenderung meningkat seiring dengan perubahan waktu. Kebutuhan dunia

Lebih terperinci

PENENTUAN CEMENTATION EXPONENT (m) TANPA ADANYA CLEAN ZONE DAN WATER BEARING PADA RESERVOAR KARBONAT

PENENTUAN CEMENTATION EXPONENT (m) TANPA ADANYA CLEAN ZONE DAN WATER BEARING PADA RESERVOAR KARBONAT PEETUA CEMETATIO EXPOET (m) TAPA ADAYA CLEA ZOE DA WATER BEARIG PADA RESERVOAR KARBOAT Oleh : Widya Utama, Puguh Hiskia, Benny ugroho Ardhiansyah, Septa Erik Prabawa Program Studi Geofisika Jurusan Fisika,

Lebih terperinci

Proposal Praktek Kerja Lapangan

Proposal Praktek Kerja Lapangan Proposal Praktek Kerja Lapangan 2015 PT. Geoservices Proposal Praktek Kerja Lapangan Metode Well Logging : Akuisisi, Processing, dan Interpretasi Jurusan Teknik Geofisika Fakultas Teknik Universitas Lampung

Lebih terperinci

BAB III DASAR TEORI. 3.1 Analisa Log. BAB III Dasar Teori

BAB III DASAR TEORI. 3.1 Analisa Log. BAB III Dasar Teori BAB III DASAR TEORI 3.1 Analisa Log Analisa log sumuran merupakan salah satu metoda yang sangat penting dan berguna dalam karakterisasi suatu reservoir. Metoda ini sangat membantu dalam penentuan litologi,

Lebih terperinci

BAB IV UNIT RESERVOIR

BAB IV UNIT RESERVOIR BAB IV UNIT RESERVOIR 4.1. Batasan Zona Reservoir Dengan Non-Reservoir Batasan yang dipakai untuk menentukan zona reservoir adalah perpotongan (cross over) antara kurva Log Bulk Density (RHOB) dengan Log

Lebih terperinci

DAFTAR ISI BAB I. PENDAHULUAN... 1

DAFTAR ISI BAB I. PENDAHULUAN... 1 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii KATA PENGANTAR... iii SARI... iv DAFTAR ISI... v DAFTAR GAMBAR... ix DAFTAR TABEL... xv DAFTAR LAMPIRAN... xvi BAB I. PENDAHULUAN... 1 1.1 Latar Belakang

Lebih terperinci

Seminar Nasional Cendekiawan 2015 ISSN: PERKIRAAN VOLUME GAS AWAL DI TEMPAT MENGGUNAKAN METODE VOLUMETRIK PADA LAPANGAN POR

Seminar Nasional Cendekiawan 2015 ISSN: PERKIRAAN VOLUME GAS AWAL DI TEMPAT MENGGUNAKAN METODE VOLUMETRIK PADA LAPANGAN POR PERKIRAAN VOLUME GAS AWAL DI TEMPAT MENGGUNAKAN METODE VOLUMETRIK PADA LAPANGAN POR Edgar G Sebastian Jurusan Teknik Perminyakan Fakultas Teknologi Kebumian Dan Energi Universitas Trisakti E-mail: edgar_bastian23@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN. Pliosen Awal (Minarwan dkk, 1998). Pada sumur P1 dilakukan pengukuran FMT

BAB I PENDAHULUAN. Pliosen Awal (Minarwan dkk, 1998). Pada sumur P1 dilakukan pengukuran FMT BAB I PENDAHULUAN I.1. Latar Belakang Penelitian Lapangan R merupakan bagian dari kompleks gas bagian Selatan Natuna yang terbentuk akibat proses inversi yang terjadi pada Miosen Akhir hingga Pliosen Awal

Lebih terperinci

Berikut ini adalah log porositas yang dihasilkan menunjukkan pola yang sama dengan data nilai porositas pada inti bor (Gambar 3.18).

Berikut ini adalah log porositas yang dihasilkan menunjukkan pola yang sama dengan data nilai porositas pada inti bor (Gambar 3.18). Gambar 3.17 Grafik silang antara porositas inti bor dan porositas log densitas. Berikut ini adalah log porositas yang dihasilkan menunjukkan pola yang sama dengan data nilai porositas pada inti bor (Gambar

Lebih terperinci

Seminar Nasional Cendekiawan 2015 ISSN: ANALISA DATA LOG UNTUK PERHITUNGAN VOLUME AWAL GAS DI TEMPAT DENGAN METODA VOLUME TRIK

Seminar Nasional Cendekiawan 2015 ISSN: ANALISA DATA LOG UNTUK PERHITUNGAN VOLUME AWAL GAS DI TEMPAT DENGAN METODA VOLUME TRIK ANALISA DATA LOG UNTUK PERHITUNGAN VOLUME AWAL GAS DI TEMPAT DENGAN METODA VOLUME TRIK Dhita Stella Aulia Nurdin Abstract Perhitungan Initial Gas In Place (IGIP) pada Lapangan KIM menjadi langkah awal

Lebih terperinci

Rani Widiastuti 1, Syamsu Yudha 2, Bagus Jaya Santosa 3

Rani Widiastuti 1, Syamsu Yudha 2, Bagus Jaya Santosa 3 PEMETAAN BAWAH PERMUKAAN DAN PERHITUNGAN CADANGAN HIDROKARBON LAPANGAN KYRANI FORMASI CIBULAKAN ATAS CEKUNGAN JAWA BARAT UTARA DENGAN METODE VOLUMETRIK Rani Widiastuti 1, Syamsu Yudha 2, Bagus Jaya Santosa

Lebih terperinci

Jl. Raya Palembang-Prabumulih KM.32 Indralaya Sumatera Selatan, Indonesia Telp/Fax. (0711) ;

Jl. Raya Palembang-Prabumulih KM.32 Indralaya Sumatera Selatan, Indonesia Telp/Fax. (0711) ; STUDI EVALUASI DATA LOGGING DAN SIFAT PETROFISIKA UNTUK MENENTUKAN ZONA HIDROKARBON PADA LAPISAN BATU PASIR FORMASI DURI LAPANGAN BALAM SOUTH, CEKUNGAN SUMATERA TENGAH STUDY EVALUATION OF DATA LOGGING

Lebih terperinci

Laporan Tugas Akhir Studi analisa sekatan sesar dalam menentukan aliran injeksi pada lapangan Kotabatak, Cekungan Sumatera Tengah.

Laporan Tugas Akhir Studi analisa sekatan sesar dalam menentukan aliran injeksi pada lapangan Kotabatak, Cekungan Sumatera Tengah. BAB I PENDAHULUAN 1.1 LATAR BELAKANG Kondisi perminyakan dunia saat ini sangat memperhatinkan khususnya di Indonesia. Dengan keterbatasan lahan eksplorasi baru dan kondisi sumur-sumur tua yang telah melewati

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang Masalah

BAB I PENDAHULUAN I.1 Latar Belakang Masalah BAB I PENDAHULUAN I.1 Latar Belakang Masalah Pengetahuan dan pemahaman yang lebih baik mengenai geologi terutama mengenai sifat/karakteristik suatu reservoir sangat penting dalam tahapan eksploitasi suatu

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian

BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian Salah satu kegiatan pengumpulan data bawah permukaan pada kegiatan pengeboran sumur minyak dan atau gas bumi baik untuk sumur eksplorasi maupun untuk sumur

Lebih terperinci

BAB III PEMODELAN RESERVOIR

BAB III PEMODELAN RESERVOIR BAB III PEMODELAN RESERVOIR Penelitian yang dilakukan pada Lapangan Rindang dilakukan dalam rangka mendefinisikan reservoir Batupasir A baik secara kualitatif maupun kuantitatif. Beberapa hal yang dilakukan

Lebih terperinci

BAB IV DATA DAN PENGOLAHAN DATA

BAB IV DATA DAN PENGOLAHAN DATA BAB IV DATA DAN PENGOLAHAN DATA 4.1 Data 4.1.1 Data Seismik Penelitian ini menggunakan data seismik Pre Stack Time Migration (PSTM) CDP Gather 3D. Penelitian dibatasi dari inline 870 sampai 1050, crossline

Lebih terperinci

ANALISIS DATA WELL LOG

ANALISIS DATA WELL LOG ANALISIS DATA WELL LOG Dosen Pengampu : Anik Hilyah, S.Si, MT Yana Hendrayana S.Si JURUSAN TEKNIK GEOFISIKA FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016 ANGGOTA

Lebih terperinci

Petrophysical Analysis and Multi-attribute Seismic for Reservoir Characterization in Field Norwegia

Petrophysical Analysis and Multi-attribute Seismic for Reservoir Characterization in Field Norwegia ANALISIS PETROFISIKA DAN MULTIATRIBUT SEISMIK UNTUK KARAKTERISASI RESERVOAR PADA LAPANGAN NORWEGIA Randy Abdul Rachman dan Dr.rer.nat Abdul Haris Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Industri perminyakan adalah salah satu industri strategis yang memegang peranan sangat penting saat ini, karena merupakan penyuplai terbesar bagi kebutuhan

Lebih terperinci

Porositas Efektif

Porositas Efektif Gambar 4.2.3. Histogram frekuensi porositas total seluruh sumur. 4.2.3. Porositas Efektif Porositas efektif adalah porositas total yang tidak terisi oleh shale. Porositas efektif ditentukan berdasarkan

Lebih terperinci

Evaluasi Cadangan Minyak Zona A dan B, Lapangan Ramses, Blok D Melalui Pemodelan Geologi Berdasarkan Data Petrofisika

Evaluasi Cadangan Minyak Zona A dan B, Lapangan Ramses, Blok D Melalui Pemodelan Geologi Berdasarkan Data Petrofisika Evaluasi Cadangan Minyak Zona A dan B, Lapangan Ramses, Blok D Melalui Pemodelan Geologi Berdasarkan Data Petrofisika a Prahara Iqbal, b Undang Mardiana a UPT Loka Uji Teknik Penambangan dan Mitigasi Bencana,

Lebih terperinci

WELL LOG & MUD LOG KELOMPOK 2

WELL LOG & MUD LOG KELOMPOK 2 WELL LOG & MUD LOG KELOMPOK 2 Abdul Aziz Afif Ahmad Ridho Ayu Ratnasari Canella Kurnia Putri Liliya Suci Prastika Novalia Ena Agustin Sheila Kusuma Putri Yulia Anggraeni Zahratul Aina WELL LOG CALIPER

Lebih terperinci

Tata cara penentuan kadar air batuan dan tanah di tempat dengan metode penduga neutron

Tata cara penentuan kadar air batuan dan tanah di tempat dengan metode penduga neutron Standar Nasional Indonesia Tata cara penentuan kadar air batuan dan tanah di tempat dengan metode penduga neutron ICS 13.080.40; 93.020 Badan Standardisasi Nasional BSN 2012 Hak cipta dilindungi undang-undang.

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN KEASLIAN KARYA ILMIAH KATA PENGANTAR ABSTRAK DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN KEASLIAN KARYA ILMIAH KATA PENGANTAR ABSTRAK DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN KEASLIAN KARYA ILMIAH KATA PENGANTAR ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH i ii iii iv vi vii viii xi xv xvi BAB I.

Lebih terperinci

ESTIMASI SUMBERDAYA BATUBARA BERDASARKAN DATA WELL LOGGING

ESTIMASI SUMBERDAYA BATUBARA BERDASARKAN DATA WELL LOGGING ESTIMASI SUMBERDAYA BATUBARA BERDASARKAN DATA WELL LOGGING DENGAN METODE CROSS SECTION DI PT. TELEN ORBIT PRIMA DESA BUHUT KAB. KAPUAS KALIMANTAN TENGAH Erihartanti 1, Simon Sadok Siregar 1, Ibrahim Sota

Lebih terperinci

1. Reservoir berada di bawah perkotaan, lalu lintas yang ramai, tempat-tempat bersejarah ataupun lahan perkebunan (pertanian).

1. Reservoir berada di bawah perkotaan, lalu lintas yang ramai, tempat-tempat bersejarah ataupun lahan perkebunan (pertanian). Pemboran berarah (directional drilling) adalah metode pemboran yang mengarahkan lubang bor menurut suatu lintasan tertentu ke sebuah titik target yang terletak tidak vertikal di bawah mulut sumur. Untuk

Lebih terperinci

PREDIKSI POTENSI HIDROKARBON SECARA KWALITATIF STRUKTUR RANTAU DAN KUALA SIMPANG BARAT BERDASARKAN EVALUASI RST

PREDIKSI POTENSI HIDROKARBON SECARA KWALITATIF STRUKTUR RANTAU DAN KUALA SIMPANG BARAT BERDASARKAN EVALUASI RST PROCEEDING SIMPOSIUM NASIONAL IATMI 2001 Yogyakarta, 35 Oktober 2001 PREDIKSI POTENSI HIDROKARBON SECARA KWALITATIF STRUKTUR RANTAU DAN KUALA SIMPANG BARAT BERDASARKAN EVALUASI RST Rizal Risnul Wathan

Lebih terperinci

PERHITUNGAN WATER SATURATION (S W ) MENGGUNAKAN PERSAMAAN ARCHIE, PERSAMAAN INDONESIA DAN METODE RASIO RESISTIVITAS

PERHITUNGAN WATER SATURATION (S W ) MENGGUNAKAN PERSAMAAN ARCHIE, PERSAMAAN INDONESIA DAN METODE RASIO RESISTIVITAS PERHITUNGAN WATER SATURATION (S W ) MENGGUNAKAN PERSAMAAN ARCHIE, PERSAMAAN INDONESIA DAN METODE RASIO RESISTIVITAS Parameter-parameter fisis suatu batuan merupakan aspek penting dalam dunia eksplorasi

Lebih terperinci

Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1)

Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1) Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1) 1) Program Studi Fisika, Fakultas Matematika Dan Ilmu Pengetahuan Alam,

Lebih terperinci

PETROLEUM SYSTEM Source rock adalah batuan yang membentuk minyak bumi dan gas alam

PETROLEUM SYSTEM Source rock adalah batuan yang membentuk minyak bumi dan gas alam PETROLEUM SYSTEM Minyak bumi dan gas alam telah lama digunakan sebagai sumber energi. Sampai saat ini pun sebagian besar kebutuhan energi kita masih ditopang oleh minyak dan gas, terlepas dari segala kekurangan

Lebih terperinci

BAB IV ANALISIS KORELASI INFORMASI GEOLOGI DENGAN VARIOGRAM

BAB IV ANALISIS KORELASI INFORMASI GEOLOGI DENGAN VARIOGRAM BAB IV ANALISIS KORELASI INFORMASI GEOLOGI DENGAN VARIOGRAM Tujuan utama analisis variogram yang merupakan salah satu metode geostatistik dalam penentuan hubungan spasial terutama pada pemodelan karakterisasi

Lebih terperinci

BAB IV METODE DAN PENELITIAN

BAB IV METODE DAN PENELITIAN 40 BAB IV METODE DAN PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian dilakukan pada Lapangan T, berada di Sub-Cekungan bagian Selatan, Cekungan Jawa Timur, yang merupakan daerah operasi Kangean

Lebih terperinci

OXEA - Alat Analisis Unsur Online

OXEA - Alat Analisis Unsur Online OXEA - Alat Analisis Unsur Online OXEA ( Online X-ray Elemental Analyzer) didasarkan pada teknologi fluoresens sinar X (XRF) yang terkenal di bidang laboratorium. Dengan bantuan dari sebuah prosedur yang

Lebih terperinci

BAB IV RESERVOIR KUJUNG I

BAB IV RESERVOIR KUJUNG I BAB IV RESERVOIR KUJUNG I Studi geologi yang dilakukan bertujuan untuk mengetahui geometri dan potensi reservoir, meliputi interpretasi lingkungan pengendapan dan perhitungan serta pemodelan tiga dimensi

Lebih terperinci

Bab I. Pendahuluan. 1.1 Latar Belakang

Bab I. Pendahuluan. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dengan berjalannya waktu jumlah cadangan migas yang ada tentu akan semakin berkurang, oleh sebab itu metoda eksplorasi yang efisien dan efektif perlu dilakukan guna

Lebih terperinci

BAB I PENDAHULUAN. Analisis fasies dan evaluasi formasi reservoar dapat mendeskripsi

BAB I PENDAHULUAN. Analisis fasies dan evaluasi formasi reservoar dapat mendeskripsi BAB I PENDAHULUAN I.1 Latar Belakang Analisis fasies dan evaluasi formasi reservoar dapat mendeskripsi sifat-sifat litologi dan fisika dari batuan reservoar, sehingga dapat dikarakterisasi dan kemudian

Lebih terperinci

III. TEORI DASAR. menjelaskan karakter reservoar secara kualitatif dan atau kuantitatif menggunakan

III. TEORI DASAR. menjelaskan karakter reservoar secara kualitatif dan atau kuantitatif menggunakan III. TEORI DASAR 3.1 Karakterisasi Reservoar Analisis / karakteristik reservoar seismik didefinisikan sebagai sutau proses untuk menjelaskan karakter reservoar secara kualitatif dan atau kuantitatif menggunakan

Lebih terperinci

EVALUASI DAN INTERPRETASI LOG DI LAPISAN X PADA LAPANGAN Y UNTUK MENGIDENTIFIKASI KANDUNGAN HIDROKARBON

EVALUASI DAN INTERPRETASI LOG DI LAPISAN X PADA LAPANGAN Y UNTUK MENGIDENTIFIKASI KANDUNGAN HIDROKARBON EVALUASI DAN INTERPRETASI LOG DI LAPISAN X PADA LAPANGAN Y UNTUK MENGIDENTIFIKASI KANDUNGAN HIDROKARBON SKRIPSI Oleh : TRIJANTO GONDOSUSILO 113112002/ TM PRORAM STUDI TEKNIK PERMINYAKAN FAKULTAS TEKNOLOGI

Lebih terperinci

Lingkungan Pengendapan Area FTM Cekungan Banggai Sula Sulawesi

Lingkungan Pengendapan Area FTM Cekungan Banggai Sula Sulawesi Lingkungan Pengendapan Area FTM Cekungan Banggai Sula Sulawesi Fatimah Teknik Geologi Sekolah Tinggi Teknologi Nasional Email: fatim_miharna@yahoo.com Abstract FTM field as the field of oil and gas. On

Lebih terperinci

EVALUASI FORMASI DAN ESTIMASI PERMEABILITAS PADA RESERVOIR KARBONAT MENGGUNAKAN CARMAN KOZCENY

EVALUASI FORMASI DAN ESTIMASI PERMEABILITAS PADA RESERVOIR KARBONAT MENGGUNAKAN CARMAN KOZCENY JURNAL SAINS POMITS Vol. 1, No. 1, (2013) 1-5 1 EVALUASI FORMASI DAN ESTIMASI PERMEABILITAS PADA RESERVOIR KARBONAT MENGGUNAKAN CARMAN KOZCENY Ari Teguh Sugiarto, Bagus Jaya Santosa 1, Dwa Desa Warnana

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Daerah penelitian, yaitu Cekungan Sunda merupakan salah satu cekungan dari rangkaian cekungan sedimen busur belakang berumur Tersier yang terletak di Sumatra dan Laut

Lebih terperinci

IDENTIFIKASI KEBERADAAN REKAHAN PADA FORMASI KARBONAT MELALUI REKAMAN LOG DAN BATUAN INTI

IDENTIFIKASI KEBERADAAN REKAHAN PADA FORMASI KARBONAT MELALUI REKAMAN LOG DAN BATUAN INTI IDENTIFIKASI KEBERADAAN REKAHAN PADA FORMASI KARBONAT MELALUI REKAMAN LOG DAN BATUAN INTI Gerry Gusti Nugraha, Benyamin, Ratnayu Sitaresmi Program Studi Teknik Perminyakan, Universitas Trisakti Abstrak

Lebih terperinci

BAB III METODE PENELITIAN. Objek yang dikaji adalah Formasi Gumai, khususnya interval Intra GUF a sebagai

BAB III METODE PENELITIAN. Objek yang dikaji adalah Formasi Gumai, khususnya interval Intra GUF a sebagai BAB III METODE PENELITIAN 3.1 Objek Penelitian Objek yang dikaji adalah Formasi Gumai, khususnya interval Intra GUF a sebagai batas bawah sampai Intra GUF sebagai batas atas, pada Lapangan Izzati. Adapun

Lebih terperinci

BAB I PENDAHULUAN. Eksplorasi hidrokarbon memerlukan analisis geomekanika untuk. menghindari berbagai masalah yang dapat mempengaruhi kestabilan sumur

BAB I PENDAHULUAN. Eksplorasi hidrokarbon memerlukan analisis geomekanika untuk. menghindari berbagai masalah yang dapat mempengaruhi kestabilan sumur BAB I PENDAHULUAN I.1. Latar Belakang Penelitian Eksplorasi hidrokarbon memerlukan analisis geomekanika untuk menghindari berbagai masalah yang dapat mempengaruhi kestabilan sumur pemboran. Analisis geomekanika

Lebih terperinci

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang BAB II TINJAUAN PUSTAKA 2.1 Umum Beton adalah campuran antara semen portland, air, agregat halus, dan agregat kasar dengan atau tanpa bahan-tambah sehingga membentuk massa padat. Dalam adukan beton, semen

Lebih terperinci

BAB 4 ANALISIS FASIES SEDIMENTASI DAN DISTRIBUSI BATUPASIR C

BAB 4 ANALISIS FASIES SEDIMENTASI DAN DISTRIBUSI BATUPASIR C BAB 4 ANALISIS FASIES SEDIMENTASI DAN DISTRIBUSI BATUPASIR C 4.1. Analisis Litofasies dan Fasies Sedimentasi 4.1.1. Analisis Litofasies berdasarkan Data Batuan inti Litofasies adalah suatu tubuh batuan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. V.1 Penentuan Zona Reservoar dan Zona Produksi

BAB V HASIL DAN PEMBAHASAN. V.1 Penentuan Zona Reservoar dan Zona Produksi BAB V HASIL DAN PEMBAHASAN V.1 Penentuan Zona Reservoar dan Zona Produksi Penentuan zona reservoir dilakukan dengan menggunakan cutoff volume serpih (VSH) dan porositas efektif (PHIE) pada zona target.

Lebih terperinci

GEOFISIKA EKSPLORASI. [Metode Geolistrik] Anggota kelompok : Maya Vergentina Budi Atmadhi Andi Sutriawan Wiranata

GEOFISIKA EKSPLORASI. [Metode Geolistrik] Anggota kelompok : Maya Vergentina Budi Atmadhi Andi Sutriawan Wiranata GEOFISIKA EKSPLORASI [Metode Geolistrik] Anggota kelompok : Maya Vergentina Budi Atmadhi Andi Sutriawan Wiranata PENDAHULUAN Metoda geofisika merupakan salah satu metoda yang umum digunakan dalam eksplorasi

Lebih terperinci

PEMBORAN EXPLORASI MANCARI DAN MENGGAMBARKAN BAGAIMANA PROSES PEMBORAN EXPLORASI

PEMBORAN EXPLORASI MANCARI DAN MENGGAMBARKAN BAGAIMANA PROSES PEMBORAN EXPLORASI PEMBORAN EXPLORASI MANCARI DAN MENGGAMBARKAN BAGAIMANA PROSES PEMBORAN EXPLORASI Pemboran Eksplorasi Suatu aktivitas vital baik dalam pengambilan sample maupun pemboran produksi. Tujuan dari kegiatan pemboran

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini di Indonesia semakin banyak ditemukan minyak dan gas yang terdapat pada reservoir karbonat, mulai dari ukuran kecil hingga besar. Penemuan hidrokarbon dalam

Lebih terperinci

BAB V ANALISIS DAN INTERPRETASI

BAB V ANALISIS DAN INTERPRETASI BAB V ANALISIS DAN INTERPRETASI 5.1. Analisis Litologi dari Crossplot Formasi Bekasap yang merupakan target dari penelitian ini sebagian besar tersusun oleh litologi sand dan shale, dengan sedikit konglomerat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Cekungan Tarakan terbagi menjadi empat Sub-Cekungan berdasarkan Pertamina BPPKA (1996), yaitu Sub-Cekungan Muara, Sub-Cekungan Berau, Sub-Cekungan Tarakan, dan Sub-Cekungan

Lebih terperinci

BAB V ANALISIS SEKATAN SESAR

BAB V ANALISIS SEKATAN SESAR BAB V ANALISIS SEKATAN SESAR Dalam pembahasan kali ini, penulis mencoba menganalisis suatu prospek terdapatnya hidrokarbon ditinjau dari kondisi struktur di sekitar daerah tersebut. Struktur yang menjadi

Lebih terperinci

PENGARUH FRESH WATER TERHADAP PENURUNAN PERMEABILITAS ABSOLUT PADA PENJENUHAN SHALLY SAND CONSOLIDATED CORE (STUDI LABORATORIUM) SKRIPSI

PENGARUH FRESH WATER TERHADAP PENURUNAN PERMEABILITAS ABSOLUT PADA PENJENUHAN SHALLY SAND CONSOLIDATED CORE (STUDI LABORATORIUM) SKRIPSI PENGARUH FRESH WATER TERHADAP PENURUNAN PERMEABILITAS ABSOLUT PADA PENJENUHAN SHALLY SAND CONSOLIDATED CORE (STUDI LABORATORIUM) SKRIPSI Oleh : MOHAMMAD RAEZAL FALAQ 113070115 PROGRAM STUDI TEKNIK PERMINYAKAN

Lebih terperinci

Cut-off Porositas, Volume shale, dan Saturasi Air untuk Perhitungan Netpay Sumur O Lapangan C Cekungan Sumatra Selatan

Cut-off Porositas, Volume shale, dan Saturasi Air untuk Perhitungan Netpay Sumur O Lapangan C Cekungan Sumatra Selatan Cut-off Porositas, Volume shale, dan Saturasi Air untuk Perhitungan Netpay Sumur O Lapangan C Cekungan Sumatra Selatan Bambang Triwibowo Jurusan Teknik Geologi FTM UPN Veteran Yogyakarta Abstract The values

Lebih terperinci

BAB 4 PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA

BAB 4 PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA BAB 4 PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA Pengolahan dan interpretasi data geofisika untuk daerah panas bumi Bonjol meliputi pengolahan data gravitasi (gaya berat) dan data resistivitas (geolistrik)

Lebih terperinci

Bab III Pengolahan dan Analisis Data

Bab III Pengolahan dan Analisis Data Bab III Pengolahan dan Analisis Data Dalam bab pengolahan dan analisis data akan diuraikan berbagai hal yang dilakukan peneliti untuk mencapai tujuan penelitian yang ditetapkan. Data yang diolah dan dianalisis

Lebih terperinci

Analisa Injection Falloff Pada Sumur X dan Y di Lapangan CBM Sumatera Selatan dengan Menggunakan Software Ecrin

Analisa Injection Falloff Pada Sumur X dan Y di Lapangan CBM Sumatera Selatan dengan Menggunakan Software Ecrin Analisa Injection Falloff Pada Sumur X dan Y di Lapangan CBM Sumatera Selatan dengan Menggunakan Software Ecrin Yosua Sions Jurusan Teknik Perminyakan Fakultas Teknik Kebumian dan Energi Universitas Trisakti

Lebih terperinci

Bab I Pendahuluan. I.1 Maksud dan Tujuan

Bab I Pendahuluan. I.1 Maksud dan Tujuan Bab I Pendahuluan I.1 Maksud dan Tujuan Pemboran pertama kali di lapangan RantauBais di lakukan pada tahun 1940, akan tetapi tidak ditemukan potensi hidrokarbon pada sumur RantauBais#1 ini. Pada perkembangan

Lebih terperinci

UNIVERSITAS DIPONEGORO

UNIVERSITAS DIPONEGORO UNIVERSITAS DIPONEGORO ANALISIS KARAKTERISTIK RESERVOIR DAN PERHITUNGAN CADANGAN PADA LAPANGAN ALFA, FORMASI BATURAJA, CEKUNGAN SUNDA DENGAN MENGGUNAKAN METODE PETROFISIK BERDASARKAN DATA SUMUR DAN SEISMIK

Lebih terperinci

Data dan Analisis Ketidakpastiannya

Data dan Analisis Ketidakpastiannya Bab III Data dan Analisis Ketidakpastiannya Penelitian-penelitian geologi, geofisika dan petrofisika telah dilakukan dilapangan Batang. Beberapa penelitian yang mendukung untuk dilakukannya pemodelan reservoar

Lebih terperinci

INTERPRETASI LOG SONIK UNTUK DETEKSI REKAHAN. Tugas Akhir. Oleh: WAHISH ABDALLAH IMAN NIM

INTERPRETASI LOG SONIK UNTUK DETEKSI REKAHAN. Tugas Akhir. Oleh: WAHISH ABDALLAH IMAN NIM INTERPRETASI LOG SONIK UNTUK DETEKSI REKAHAN Tugas Akhir Oleh: WAHISH ABDALLAH IMAN NIM 12204013 Diajukan sebagai salah satu syarat untuk mendapatkan gelar SARJANA TEKNIK pada Program Studi Teknik Perminyakan

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

Analisis dan Pembahasan

Analisis dan Pembahasan Bab V Analisis dan Pembahasan V.1 Analisis Peta Struktur Waktu Dari Gambar V.3 memperlihatkan 2 closure struktur tinggian dan rendahan yang diantara keduanya dibatasi oleh kontur-kontur yang rapat. Disini

Lebih terperinci

Cadangan bahan bakar fosil dalam bentuk minyak dan gas bumi biasanya. terakumulasi dalam batuan reservoir di bawah permukaan bumi.

Cadangan bahan bakar fosil dalam bentuk minyak dan gas bumi biasanya. terakumulasi dalam batuan reservoir di bawah permukaan bumi. BAB I PENDAHULUAN 1.1 Latar Belakang Cadangan bahan bakar fosil dalam bentuk minyak dan gas bumi biasanya terakumulasi dalam batuan reservoir di bawah permukaan bumi. Batuan reservoir merupakan batuan

Lebih terperinci

ANALISIS PETROFISIKA DAN PERHITUNGAN CADANGAN MINYAK PADA LAPANGAN BEAR CEKUNGAN SUMATRA TENGAH (Studi kasus PT Chevron Pacific Indonesia)

ANALISIS PETROFISIKA DAN PERHITUNGAN CADANGAN MINYAK PADA LAPANGAN BEAR CEKUNGAN SUMATRA TENGAH (Studi kasus PT Chevron Pacific Indonesia) ANALISIS PETROFISIKA DAN PERHITUNGAN CADANGAN MINYAK PADA LAPANGAN BEAR CEKUNGAN SUMATRA TENGAH (Studi kasus PT Chevron Pacific Indonesia) Eko Vidhotomo 1, A. M. Juwono M.Sc 1, Rinie Mekarsari M.Sc 2,

Lebih terperinci

BAB I PENDAHULUAN. Masalah-masalah pemboran (drilling hazards) seperti lost circulation

BAB I PENDAHULUAN. Masalah-masalah pemboran (drilling hazards) seperti lost circulation BAB I PENDAHULUAN I.1. Latar Belakang Masalah-masalah pemboran (drilling hazards) seperti lost circulation dan kick sering terjadi saat pemboran dilakukan oleh PT. Pertamina EP Asset 3 di Lapangan MRFP

Lebih terperinci

HALAMAN PENGESAHAN...

HALAMAN PENGESAHAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii ABSTRAK... iv PERNYATAAN... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR GAMBAR... xi DAFTAR TABEL... xiv DAFTAR LAMPIRAN... xv BAB I. PENDAHULUAN...

Lebih terperinci

UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA UNIVERSITAS INDONESIA ANALISA LOG PETROFISIKA DAN EVALUASI FORMASI RESERVOAR PADA LAPANGAN BOONSVILLE SKRIPSI MUSYAFAR KUDRI ZAIN 0706163180 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Minyak dan gasbumi hingga saat ini masih memiliki peranan sangat penting dalam pemenuhan kebutuhan energi umat manusia, meskipun sumber energy alternatif lainnya sudah

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

Keselarasan dan Ketidakselarasan (Conformity dan Unconformity)

Keselarasan dan Ketidakselarasan (Conformity dan Unconformity) Keselarasan dan Ketidakselarasan (Conformity dan Unconformity) a) Keselarasan (Conformity): adalah hubungan antara satu lapis batuan dengan lapis batuan lainnya diatas atau dibawahnya yang kontinyu (menerus),

Lebih terperinci

DAFTAR GAMBAR. Gambar 5. Pengambilan Conventinal Core utuh dalam suatu pemboran... Gambar 6. Pengambilan Side Wall Core dengan menggunakan Gun...

DAFTAR GAMBAR. Gambar 5. Pengambilan Conventinal Core utuh dalam suatu pemboran... Gambar 6. Pengambilan Side Wall Core dengan menggunakan Gun... DAFTAR GAMBAR Halaman Gambar 1. Kontribusi berbagai cabang disiplin ilmu dalam kegiatan eksplorasi (Peadar Mc Kevitt, 2004)... Gambar 2. Peta Lokasi Struktur DNF... Gambar 3. Batas batas Struktur DNF dari

Lebih terperinci

BAB I PENDAHULUAN. Lapangan X merupakan salah satu lapangan eksplorasi PT Saka Energy

BAB I PENDAHULUAN. Lapangan X merupakan salah satu lapangan eksplorasi PT Saka Energy BAB I PENDAHULUAN 1.1 Latar Belakang Lapangan X merupakan salah satu lapangan eksplorasi PT Saka Energy Indonesia yang secara umum terletak di wilayah South Mahakam, sebelah tenggara dan selatan dari Kota

Lebih terperinci