PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKA T NUKLffi. Pusat Teknologi Akselerator Dan Proses Bahan Yogyakarta, 28 Agustus 2008

Ukuran: px
Mulai penontonan dengan halaman:

Download "PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKA T NUKLffi. Pusat Teknologi Akselerator Dan Proses Bahan Yogyakarta, 28 Agustus 2008"

Transkripsi

1 PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKA T NUKLffi PENENTUAN TINGKAT RADIOAKTIVITAS BETA TOTAL SAMPEL ABU VULKANIK, TANAH, SEDIMEN DAN PASm DISEKITAR GUNUNG MERAPI ERUPSIT~2006 Wijiyono, Sri Wahyuningsih Pusat Teknologi Akselerator dan Proses Bahan - BATAN ABSTRAK PENENTUAN TINGKAT RADIOAKTIVITAS BETA TOTAL SAMPEL ABU VULKANIK, TANAH, SEDIMEN DAN PASIR DI SEKITAR GUNUNG MERAPI ERUPSI2006. Telah dilakukan penentuan tingkat radioaktivitas beta total sampel abu vulkanik, tanah, sedimen dan pasir di sekitar gunung merapi erupsi Sampel diambil 5 x ulangan secara acak pada lokasi 1m3 sebanyak ± 400 gram abu vulkanik, tanah, sedimen dan pasir. Sampel dibersihkan dari berbagai bahan organik lalu digerlis dengan lumpang porselin hingga homogen dan disaring dengan ayakan lolos 100 mesh dan ditimbang 1 gram dimasukan dalam planset dan siap pengukuran dengan Low Background Counter selama 20 menit dengan efisiensi alat = 8,11%. Hasil pengukuran sampel Beta total tertinggi adalah sampel A sebesar 0, 79 ± 0, 13 Bq/g dan terendah yaitu sampel J sebesar 0, 14 ± 0,10 Bq/g. ABSTRACT THE.lEVEL OF GROSS P RADIOACTIVITY MONITORING OF THE VOLCANOES ASH, SEDIMENT AND SAND IN THE SURROUNDING OF THE MERAPI VOLCANO AFTER ERUPTION IN The level of gross fj radioactivity of the volcanoes ash, sediment and sand samples in the surrounding of the Merapi volcanoes after eruption in 2006 have been done. Each samples, about 400 g, collectedfrom some point stations with 1m x 1m area with 5 replicates. The sediment, volcanoes ash and sand samples were grinded, and sieved by 100 mesh siever. Each samples of volcanoes ash, sediment and sand were weight 1.0 g andfilled into aluminium planchet. Thesamplescounted during 20 minutes by GM detector in Ortee/LBC system, with 8,11% of efficiency. It wasfound that the highest of gross fj radioactivity of the sampleswas 0,79 ± 0, 13 Bq/g of A samp~e. Whereas the lowest of gross fj radioactivity afthe sampleswas 0,14 ± 0,10 Bq/g of J sample. PENDAHULUAN Secara berdampingan geografis gunungapi mulai di Gunung jawa tengah Ungaran, saling Telomoyo, Merbabu, dan Gunung Merapi. Dari keempat gunung tersebut, tinggal Gunung Merapi yang masih bertahan sebagai gunung api hingga sekarang ini. Berclasarkan sejarah, letusan Gunung Merapi terjadi dalam tahun 1006 dengan sangat dahsyat sehingga menyebabkan Kerajaan Mataram pindah dari Jawa Tengah ke Jawa Tmiur, walaupun dalam hal ini masih diperdebatkan kebenarannya. Awan panas atau aliran piroklastik tidak dapat dipisahkan dari setiap letusan G. Merapi yang kemudian dikenal dengan Tipe Merapi. Secara terminologi, Tipe Merapi atau awan panas tersebut dibedakan atas 2 macam, masing-masing awan panas letusan dan awan panas guguran. Awan panas letusan serupa dengan St. Vincent type pyroclastics flows (4) sebagai akibat langsung dari penghancuran batuan penutup/ kubah karena letusan. Sedangkan awan panas guguran atau dome collapse pyroclastics flows sebagai akibat hancurnya kubah karena gravitasi (4 Dengan adanya erupsi dari gunung berapi, akan berdampak pada daratan, karena adanya material yang keluar dari perut bumi. Hal ini akan berdampak langsung pada keadaan daratan. sehingga daratan akan lebih banyak mengadung radionuklida (2) Wijiyono, dkk. ISSN

2 Radionuklida ini akan berpengaruh pada kehidupan mahluk hidup yang berdiam di sekitar gunung berapi (3) Oeh karena itu perlu penentuan aktivitas radionuklida yang terkandung dalam sampel tanah erupsi Merapi 2006.<1 METODE Tempat dan Waktu Penelitian Penelitian dilakukan di PT APB BATAN Yogyakarta. dan dilaksanakan dalam waktu satu bulan dari bulan September sampai Oktober Bahan Bahan yang digunakan adalah sampel II lokasi berbeda, Abu vulaknik Jurang Jero (A) dan Deles (C), Pasir Kali Woro (B), Pasir Kali Kuning (D), Pasir Jurang Jero (G), Pasir Kali Boyong (H), Sedimen Kali boyong (I), Tanah Kali Woro (J), Tanah Deles (E), Tanah Alhikmah (F), Alat Alat yang digunakan meliputi alat cacah latar rendah Geiger Muller dengan BIN Power Ortec 40 I A, catu daya tegangan tinggi Canberra Model 3002D, Wadah polypropilen, planset aluminium, timbangan analitik, Cara Kerja PENELITIAN Sampel abu vulkanik, pasir dan tanah digerus dengan lumpang porselin hingga homogen, lalu diayak dengan ukuran 100 mesh. Kemudian masing-masing sam pel ditimbang sebanyak I gram dan masukan dalam planset serta ditambahkan sedikit aquades sambil diletakan diatas hot plate hingga kondisi sampel rata. Maka sam pel siap untuk dicacah deng an LBC. Sebelum pencacahan perlu uji kestabilan alat karena untuk mengetahui apakah alat cacah dalam kondisi optimimum maka perlu uji kestabilan dengan metode uji "chi squere" dengan rum us sbb: X 2_LX2_(LX)2 - n (L~2 J x= harga Chi Squere, minimal 3,3 maksimal16,9 x= hasil cacah ke-i dan n= banyak pencacahan Untuk tingkat kepercayaan sebesar 95% harga l harus terletak diantara 2 harga batas yang ditentukan oleh jumlah pengukuran (n). Menurut Suratman (1997), harga batas l dengan harga n terlihat pada tabel I. Selain uji kestabilan alat, perlu kalibrasi efisiensi pencacahan gross beta dengan persamaan = Cps x 100% (2) Dps (n) (1) s = Efisiensi deteksi (%) Cps = Laju cacah pengukuran (cps) Dps = Aktivitas sumber standar pada saat pencacahan (dps). Tabel I Harga batas Chi-square. Jumlah Pengukuran Maksimum 42,6 30,2 16,9 Minimum 10,1 17,7 3,3 Harga batas "1.2 Sedangkan untuk menghitung aktivitas dari sumber radioisotope digunakan persamaan: A= A.N (3) A = Aktivitas A = Tetapan peluruhan N = Jumlah partikel Untuk menghitung aktivitas jenis atau konsentrasi aktivitas gross p dengan menggunakan persamaan sebagai berikut : Ap = Cn/(spXL) = (Cr-CB}/(spxl) (4) Dengan : Ap = Aktivitas jenis atau konsentrasi aktivitas gross beta (Bq/L) atau (Bq/gr). Cn = Laju cacah netto (cps) CT = Laju cacah total (cps) Cp = Laju cacah Background (cps) Ep = Efisiensi deteksi p (cps/dps) L = Kuantitas sample ( L atau gr ). HASIL DAN PEMBAHASAN Radioaktivitas merupakan gejala perubahan suatu atom menjadi atom lain yang tetjadi secara sepontan. Dalam proses ini akan dibebaskan pula suatu partikel lain atau gelombang elektromagnetik yang memiliki energi tertentu. Energi yang terbebaskan ini apabila dalam jumlah yang cukup besar akan memiliki dampak yang tidak baik bagi manusia karena dapat bertindak sebagai energi pengion. Jatuhan radiasi ini dapat berasal dari alam seperti radiasi sinar kosmis yang jatuh ke bumi maupun dari radioaktif buatan. Pengukuran Groos p sebelum melakukan pencacahan groos p sampel dipreparasi terlebih dahulu. Preparasi sampel dilakukan dengan tujuan untuk menghasilkan cuplikan yang siap cacah di dalam planset yang sesuai dengan geometri detektor. Selain itu untuk menyesuaikan dengan bentuk dari standar 40K yang digunakan untuk menentukan efisiensi, karena sinar p memiliki daya tembus yang relatif kecil. Perlakuan seperti ini tidak akan merubah tingkat radiasi dari sampel. karena radiasi unsur radioaktif adalah hasil aktivasi inti atom yang tidak dipengaruhi oleh faktor-faktor ekstemal seperti preparasi cuplikan(l) 340 ISSN Wijiyono, dkk

3 Tabel. 3 Hasil Pencacahan dan Perhitungan Aktivitas Gross ~ Total Terhadap Sampel Abu Vulkanik, Sedimen, Pasir dan Tanah Erupsi Merapi 2006 Kode 0,50 0,29+ 0,88+ 0,83 0,57± 0,84± 0,74+ 1,13+0, ,12+ Berat 0,96± 1, , , , , , ,0657 1, , ,2332 (Bq/g) Aktivitas Cuplikan 2,40+ 3,55 6,00 3,85 4,95 0,43 4,15 + 5,40 5,25 Netto 2,15+0,33 2,00 2, ,15±0,33 2,20± 2,85 2,80 3,25 0,70 3,00 68,05 49,55 1,80 50,39± 53,02 1,40 57,37 44,23 1,95 1,70+0,55 (dpm) (%) 30,02 34,47 (gr) 17,44 0,11 0,16 0,17 Sampel 0,18 6,94 10,08 Latar 8,03 Efisiem 5,66 5,65 + ± + 0,38 0,42 0,44 0,46 0,52 0,51 0,55 + ± 0,32 0,30 0,35 0,62 0,33 0,53 0,60 0,50 0,56 9,77 5,01 11,28 10,54 10,63 9,67 10,94 6,65 11,04 9,96LajuLaiu Peluruhan Cacah Keterangan : A : Abu Vulkanik Jurang Jero B : Pasir Kali Woro C : Oeles o : Pasir Kali Kuning E : Tanah Oeles F :Tanah Alhikmah G : Pasir : Jurang Jero H : Pasir: Kali Boyong 1 : Sedimen : Kali boyong J :Tanah : Kali Woro Efisiensi pencacahan ~ dilakukan dengan mencacah aktivitas sumber standar KCl sedangkan untuk mengetahui kestabilan alat dilakukan uji chi square menggunakan sumber standar 90Sr.(I) Pencacahan menggunakan Geiger-Muller Counter Ortec 401 A. Hasil uji chi square dari sepuluh kali pengukuran pada tegangan 1150 volt diperoleh X\itung = 11,70 (3,3<X2hitung< 16,9) pada taraf signikansi 95 %, uji chi square GC 0H BE FJ I ini bertujuan untuk A mengetahui optimasi alat. Hasil yang diperoleh menunjukkan bahwa alat cacah ~ dalam kondisi stabil dan cukup baik untuk digunakan. Pad a penentuan efisiensi sumber standar KCI dilakukan selama 10 menit dengan massa 0,05 g, 0, I g, 0,15 g, dan seterusnya sampai 1,80 g. ketebalan sampel dalam planset turnt mempengaruhi besamya nilai efisiensi. DaTi grafik Iinier tersebut dapat diketahui nilai efisiensi pada massa sampel tertentu. dengan mengetahui efisiensi dapat menghitung aktivitas gross ~ sebagaimana tertulis pada Tabel 3 di bawah ini. Tabel 3. Hasil Pengukuran Effisiensi Abu Vulkanik, Pasir, Sedimen dan Tanah Kode Sampel 1, , , , , ,2332 0,0657 1, , ,00115 Efisiensi(%) 10,08 8,03 5,66 5,65 Berat (gram) I./J<J O/J<J O.7! ,21 1,60 1, o.r K CI (gi Gambar I Kurva Effisiensi Kemudian dibuat grafik linier hubungan antara massa sam pel dan efisiensi. Dari kurva kalibrasi LBC dengan KCI didapat persamaan Y= 1,6216 Ln (X) + 5,6668, dimana X merupakan berat sam pel. Pada pencacahan ~ ini setiap massa sampel akan memberikan efisiensi yang berbeda karena Berdasarkan hasil pencacahan dan perhitungan yang telah dilakukan dalam sampel abu vulkanik, tanah, sedimen dan tanah aktivitas gross ~ total yang terukur adalah 1,13 ± 0,19 Bq/g (sampel A), 0,50±0,16 Bq/g (sampel B), 0,96±0,18 Bq/g (sampel C), 0,74± 0,16 Bq/g (sampel D), 0,88 ± 0,16 Bq/g (sam pel E), 0,29 ± 0, II Bq/g (sampel F), 0,83 ± 0,18 Bq/g (sampel G), 0,57 ± 0,17 Bq/g (sam pel H), 0,84 ± 0,18 Bq/g (sampel I), 0,12 ± 0,08 Bq/g (sampel J) dan 0,90 ± 0,18 Bq/g untuk sam pel K. Dilihat dari hasil pengukuran diatas diketahui bahwa aktivitas gross ~ total tertinggi adalah sampel A dan yang mempunyai Wijiyono, dkk. ISSN

4 PENELITIAN DAN PENGELOLAAN PERANGKA T NUKLffi aktivitas gross p total terendah adalah sample J. Berdasarkan data yang teramati, besar kecilnya hasil pengukuran dipengaruhi oleh faktor-faktor antara lain konsentrasi aktivitas yang berbeda-beda setiap sampel, pengukuran radioaktivitas sampel lingkungan tidak dapat menghindari bias-bias pengukuran yang disebabkan oleh factor-faktor tertentu. Faktor-faktor yang dapat menyebabkan bias-bias, antara lain faktor geometri (bentuk dan ukuran sumber atau detektor dan placet bentuknya sam a bulat), faktor absorpsi diri dan waktu mati. Faktor kedua adalah pada pencacahan p dengan metode seperti yang dilakukan dalam penelitian ini tidak dapat menghindari faktor absorpsi diri yaitu akibat lapisan sumber yang tidak cukup tipis (± 2 mm) serta dengan ketebalan yang tidak rata, mengakibatkan pancaran partikel p didasar sumber diabsorpsi dalam bahan sumber sehingga lajc cacah berkurang dari aktivitas totalnya, untuk mengatasi faktor yang kedua ini telah dilakukan kalibrasi efisiensi sebagai fungsi berat KCI Faktor ketiga adalah setiap alat yang dipakai mencacah adalah radiasi atau partikel yang menunjukkan gejala konstanta waktu karakteristik. Gejala tersebut adalah setelah mencacah satu denyut, alat cacah tidak dapat memberi respon pada denyut berikutnya selama selang waktu tertentu yang disebut waktu paralisis atau waktu mati. Oalam alat detektor Geiger Miller yang digunakan untuk mencacah sampel dalam penelitian ini, aktivitas gross beta total dalam sampel dapat terukur. Hal ini disebabkan apabila sinar kosmik lemah mengenai perisai timbal bagian luar maka tenaganya akan terserap, sehingga partikel tidak mampu untuk menembus perisai bagian dalam. Kemungkinan lain karena adanya logam-iogam yang ada didalam timbal maupun kerangka besi yang dipakai akan menimbulkan radiasi sekunder. Tetapi tenaga radiasi ini sangat lemah, sehingga tidak mampu menembus perisai timbal bagian dalam. Partikel sinar kosmik kuat mampu menembus bumi sejauh kira-kira 500 meter atau timbal sebesar I meter. Hingga partikel mampu menembus partikel timbal luar mengenai GM tingkap ujung. Apabila partikel ini mengenai GM logam dan GM tingkap ujung bersama-sama, maka denyut yang ditimbulkan kedua macam GM tersebut, oleh system antikoinsidensi tidak diteruskan ke alat pencatat. Dan mengenai GM tingkap ujung, maka denyut yang dihasilkan oleh GM tingkap ujung tersebut oleh system antikoinsidensi diteruskan ke alat pencatat. Sehingga pada sistim ini cacah latar background hanya berasal dari sinar kosmik kuat yang hanya mengenai GM tingkap ujung saja. Dengan system ini cacah background dapat dikurangi menjadi kurang lebih 2.0 cpm dengan memasang GM logam serapat mungkin. Dengan sistim pencacah aktivitas rendah ini pada pencacahan cuplikan, maka aktivitas yang tercatat hanyalah aktivitas yang berasal dari cuplikan. Oalam pengukuran aktivitas gross p total tidak dapat memberikan informasi jenis radionuklida apa saja yang terkandung dalam sample, karena pencacahan tidak membedakan tenaga dan metode peluruhannya (I). Meskipun demikian data yang diperoleh dapat dijadikan sebagai dasar untuk memantau kualitas sample air minum dalam kemasan dalam penelitian ini. Berdasarkan hasil penelitian pada sampel tanah erupsi Merapi 2006 dengan kode A-K diperoleh informasi berbagai nuklida. Namun demikian aktivitas dari berbagai nuklida diduga berasal dari mineral-mineral magnetis didalam kulit bumi yang mengandung sejumlah elemen radionuklida alamiah atau primordial, yang pada umumnya merupakan pancaran alpha, beta dan gamma, karena rata-rata aktivitas tertinggi yang terkandung pada berbagai nuklida tersebut masih sangat rendah. Pada umumnya, radioaktivitas yang ada di lingkungan berasal dari debu jatuhan radioaktif, hasil pelapukan dari batuan yang mengandung radionuklida alam atau berasal dari mineral hasil erupsi gunung berapi. Keadaan tanah, pasir dan batuan ikut menentukan radiasi alam di tempat tersebut. Adanya aktivitas p total pada tanah gunung Merapi ini dikarenakan tanah tersebut berasal dari salah satu material hasil erupsi yaitu aliran lava atau magma yang mengalir keluar dari dalam bumi melalui kawah gunung api atau melalui celah (patahan) yang kemudian membeku menjadi batuan yang berbentuk bermacam-macam. Magma itu sendiri adalah batuan cair pijar bertemperatur tinggi yang terdapat di dalam kulit bumi, terjadi dari berbagai mineral dan gas yang terlarut didalamnya cairan larutan silika pijar yang terdapatdidalam lapisan kulit bumi dengan suhu tinggi (Iebih dari q, mempunyai sifat fisika dan kimia tertentu yang terdiri dari unsur-unsur pembentuk batuan, dan apabila sudah beku disebut batuan beku (3). Mineral-mineral magnetis didalam kulit bumi inilah yang diduga mengandung sejumlah elemen radionuklida alamiah atau promordial, yang pada umumnya merupakan pancaran lapha, beta dan gamma. Gunung Merapi merupakan gunung tipe basalt-andesitik dengan komposisi SiOz (quartz) berkisar an tara 50-58%. Sisanya merupakan deretan mineral-mineral magnetis yang lain. Batuan Merapi sebagian besar didominasi oleh mineral silika, tersusun dari feldspar (plagioklas), olivin, piroksen, magnetit dan amphibol (hornblende). Plagioklas merupakan 342 ISSN Wijiyono, dkk

5 mineral utama pada batuan Merapi dengan komposisi sekitar 34%. Mineral-mineral tersebut diatas temyata diketahui mengandung beberapa radiasi alamiah atau radionuklida primordial antara lain sederetan nuklida hasil peluruhan alam yang terdiri atas deret Uranium, Actinium dan thorium serta nuklida turunannya. Sehingga jelas mengapa aktivitas ~ total terdapat pad a sampel tanah pasca erupsi Gunung Merapi ini karena sampel tanah tersebut bersumber dari mineral-mineral yang mengandung radionuklida alamiah yang pada umumnya merupakan pancaran ~. Radioaktivitas jenis ~ total dalam abu vulkanik, tanah dan pasir Gunung Merapi ini tidak dapat menunjukkan daerah tersebut tercemar atau tidak karena belum memiliki baku mutu atau nilai ambang batas dari Peraturan Pemerintah rneskipun begitu diduga nilai aktivitas ~ total pada sampel tanah ini masih tergolong rendah karena sampel bersumber dari radionuklida alamiah yang konsentrasi di alam jumlahnya sangat kecil Oosis radiasi yang diterima dari radionuklida primordial merupakan radiasi latar (background radiation) yang sering dipakai sebagai garis dasar di dalam melakukan AMOAL KESIMPULAN Berdasarkan hasil penelitian dapat disimpulkan sbb : I. Berdasarkan data beta total pada sampel abu vulkanik, tanah dan pasir akibat erupsi Merapi tidak dapat menunjukkan daerah tersebut tercemar atau tidak karena belum memiliki baku mutu atau nilai am bang batas dari Peraturan Pemerintah 2. Diduga nilai aktivitas ~ total pada sampel abu vulkanik, tanah dan pasir ini masih tergolong rendah mengingat abu vulkanik, tanah dan pasir, sedimen bersumber radionuklida alamiah, karena dosis radiasi yang diterima dari radionuklida alamiah (primordial) merupakan radiasi latar (background radiation) yang sering dipakai sebagai garis dasar di dalam melakukan AMDAL 3. Beta total tertinggi adalah sampel A sebesar 0,79 ± 0,13 Bq/g dan terendah yaitu sampel J sebesaro,14 ± 0,10 Bq/g. DAFT AR PUSTAKA I. SURA TMAN Pengukuran Radioaktivitas Beta.Yogyakarta: P3TM-BATAN. (1997). 2. THOYlB. Radionuklida Pencemaran Lingkungan Dan Ekaloginya. Yogyakarta : Penerbit Pusat Dosimetri dan Standarisasi BAT AN. (1985). 3. WARDANA. Dampak Pencemaran Lingkungan. Yogyakarta : Penerbit Andi Offset. (2001). 4. ANONIM,. Pengetahuan Dasar Gunungapi Indonesia. Vulcanological Survey of Indonesia. Pusat Vulkanologi dan Mitigasi Bencana Geologi. < Diakses tanggal 1 Juli (2006) 5. ANONIM, Organisasi.. Vulcanological Survey of Indonesia. Pusat Vulkanologi dan Mitigasi Bencana Geologi. < Oiakses tanggal 8 Januari (2006) Wijiyono, dkk. ISSN

PROSIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLIR. Pusat Teknologi Akselerator Dan Proses Bahan Yogyakarta, 28 Agustus 2008

PROSIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLIR. Pusat Teknologi Akselerator Dan Proses Bahan Yogyakarta, 28 Agustus 2008 IDENTIFIKASI RADIONUKLIDA PEMANCAR GAMMA PADA SAMPEL ABU VULKANIK, SEDIMEN, TANAH DAN PASIR DI SEKITAR GUNUNG MERAPI PASCA ERUPSI 2006 Sri Artiningsih, Wijiyono Pusat Teknologi Akselerator dan Proses Bahan

Lebih terperinci

ANALISIS RADIOAKTIVITAS GROSS α, β DAN IDENTI- FIKASI RADIONUKLIDA PEMANCAR γ DARI AIR DAN SEDIMEN SUNGAI CODE YOGYAKARTA

ANALISIS RADIOAKTIVITAS GROSS α, β DAN IDENTI- FIKASI RADIONUKLIDA PEMANCAR γ DARI AIR DAN SEDIMEN SUNGAI CODE YOGYAKARTA Elin Nuraini, dkk. ISSN 0216-3128 383 ANALISIS RADIOAKTIVITAS GROSS α, β DAN IDENTI- FIKASI RADIONUKLIDA PEMANCAR γ DARI AIR DAN SEDIMEN SUNGAI CODE YOGYAKARTA Elin Nuraini, Sunardi, Bambang Irianto PTAPB-BATAN

Lebih terperinci

Wijiyono, Suparno Pusat Teknologi Akselerator dan Proses Bahan - BATAN

Wijiyono, Suparno Pusat Teknologi Akselerator dan Proses Bahan - BATAN PENGUKURAN RADIOAKTIVIT AS BETA TOTAL TUMBUHAN DI SEKIT AR GUNUNG MERAPI PASCA ERUPSI TAHUN 2006 Wijiyono, Suparno - BATAN ABSTRAK PENGUKURAN RADIOAKTIVITAS BETA TOTAL TUMBUHAN DI SEKITAR GUNUNG MERAPI

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Indonesia adalah salah satu negara yang dilewai oleh jalur rangkaian api Indonesia atau disebut juga dengan jalur Cincin Api Pasifik (The Pasific Ring of Fire) dimana

Lebih terperinci

PENGUKURAN DAN EVALUASI RADIOAKTIVITAS AIR TANGKI REAKTOR (ATR) DI PTAPB-BATAN YOGYAKARTA

PENGUKURAN DAN EVALUASI RADIOAKTIVITAS AIR TANGKI REAKTOR (ATR) DI PTAPB-BATAN YOGYAKARTA PENGUKURAN DAN EVALUASI RADIOAKTIVITAS AIR TANGKI REAKTOR (ATR) DI PTAPB-BATAN YOGYAKARTA Suparno, Mahrus Salam -BATAN, Yogyakarta Email : ptapb@batan.go.id ABSTRAK PENGUKURAN DAN EVALUASI RADIOAKTIVITAS

Lebih terperinci

PENGUKURAN RADIOAKTIVITAS BETA TOTAL PADA SAMPEL TANAH DI KAWASAN REAKTOR KARTINI TAHUN 2010

PENGUKURAN RADIOAKTIVITAS BETA TOTAL PADA SAMPEL TANAH DI KAWASAN REAKTOR KARTINI TAHUN 2010 PENGUKURAN RADIOAKTIVITAS BETA TOTAL PADA SAMPEL TANAH DI KAWASAN REAKTOR KARTINI TAHUN 2010 Sri Wahyuningsih, Siswanti, Sri Artiningsih BATAN, Babarsari Yogyakarta 55281 E-mail: ptapb@batan.go.id ABSTRAK

Lebih terperinci

EVALUASI HASIL PENGUKURAN RADIOAKTIVITAS BETA TOTAL PADA RUMPUT DI SEKITAR REAKTOR KARTINI TAHUN 2009

EVALUASI HASIL PENGUKURAN RADIOAKTIVITAS BETA TOTAL PADA RUMPUT DI SEKITAR REAKTOR KARTINI TAHUN 2009 EVALUASI HASIL PENGUKURAN RADIOAKTIVITAS BETA TOTAL PADA RUMPUT DI SEKITAR REAKTOR KARTINI TAHUN 2009 Sri Artiningsih,Wijiyono BATAN, Babarsari Yogyakarta, 55281 E-mail :ptapb@batan.go.id ABSTRAK EVALUASI

Lebih terperinci

ANALISIS RADIONUKLIDA PEMANCAR PADA SAMPEL TUMBUHAN

ANALISIS RADIONUKLIDA PEMANCAR PADA SAMPEL TUMBUHAN Yogyakarta, 6 September 01 ANALISIS RADIONUKLIDA PEMANCAR PADA SAMPEL TUMBUHAN Sri Artiningsih, Wijiyono -BATAN-Yogyakarta Jl Babarsari Nomor 1, Kotak pos 6101 Ykbb 5581 e-mail : ptapb@batan.go.id ABSTRAK

Lebih terperinci

PENGARUH CURAH HUJAN TERHADAP RADIOAKTIVITAS GROSS BETA PADA SAMPEL JATUHAN (FALL OUT)

PENGARUH CURAH HUJAN TERHADAP RADIOAKTIVITAS GROSS BETA PADA SAMPEL JATUHAN (FALL OUT) PENGARUH CURAH HUJAN TERHADAP RADIOAKTIVITAS GROSS BETA PADA SAMPEL JATUHAN (FALL OUT) SISWANTI, GEDE SUTRENA W Pusat Teknologi Akselerator dan Proses Bahan-BATAN Jl. Babarsari Kotak Pos 1008, DIY 55010

Lebih terperinci

Penentuan Efisiensi Beta Terhadap Gamma Pada Detektor Geiger Muller

Penentuan Efisiensi Beta Terhadap Gamma Pada Detektor Geiger Muller Jurnal Sains & Matematika (JSM) ISSN Artikel 0854-0675 Penelitian Volume 15, Nomor 2, April 2007 Artikel Penelitian: 73-77 Penentuan Efisiensi Beta Terhadap Gamma Pada Detektor Geiger Muller M. Azam 1,

Lebih terperinci

FISIKA ATOM & RADIASI

FISIKA ATOM & RADIASI FISIKA ATOM & RADIASI Atom bagian terkecil dari suatu elemen yang berperan dalam reaksi kimia, bersifat netral (muatan positif dan negatif sama). Model atom: J.J. Thomson (1910), Ernest Rutherford (1911),

Lebih terperinci

Morfologi dan Litologi Batuan Daerah Gunung Ungaran

Morfologi dan Litologi Batuan Daerah Gunung Ungaran Morfologi dan Litologi Batuan Daerah Gunung Ungaran Morfologi Gunung Ungaran Survei geologi di daerah Ungaran telah dilakukan pada hari minggu 15 Desember 2013. Studi lapangan dilakukan untuk mengetahui

Lebih terperinci

PEMANTAUAN RADIOAKTIVITAS BETA TOTAL SAMPEL AIR LINGKUNGAN DI SEKITAR REAKTOR KARTINI TAHUN 2011

PEMANTAUAN RADIOAKTIVITAS BETA TOTAL SAMPEL AIR LINGKUNGAN DI SEKITAR REAKTOR KARTINI TAHUN 2011 Yogyakarta, Rabu, 11 September 2013 PEMANTAUAN RADIOAKTIVITAS BETA TOTAL SAMPEL AIR LINGKUNGAN DI SEKITAR REAKTOR KARTINI TAHUN 2011 Siswanti, A.Aris Munandar PTAPB-BATAN Yogyakarta siswanti@batan.go.id

Lebih terperinci

PENGARUH KUAT ARUS PADA ANALISIS LIMBAH CAIR URANIUM MENGGUNAKAN METODA ELEKTRODEPOSISI

PENGARUH KUAT ARUS PADA ANALISIS LIMBAH CAIR URANIUM MENGGUNAKAN METODA ELEKTRODEPOSISI ISSN 1979-2409 PENGARUH KUAT ARUS PADA ANALISIS LIMBAH CAIR URANIUM MENGGUNAKAN METODA ELEKTRODEPOSISI Noviarty, Darma Adiantoro, Endang Sukesi, Sudaryati Pusat Teknologi Bahan Bakar Nuklir BATAN ABSTRAK

Lebih terperinci

PENENTUAN RADIOAKTIVITAS PEMANCAR GAMMA TOTAL DAN BETA TOTAL DALAM LIMBAH RUMAH SAKIT DI DAERAH ISTIMEWA YOGYAKARTA

PENENTUAN RADIOAKTIVITAS PEMANCAR GAMMA TOTAL DAN BETA TOTAL DALAM LIMBAH RUMAH SAKIT DI DAERAH ISTIMEWA YOGYAKARTA PENENTUAN RADIOAKTIVITAS PEMANCAR GAMMA TOTAL DAN BETA TOTAL DALAM LIMBAH RUMAH SAKIT DI DAERAH ISTIMEWA YOGYAKARTA Suhardi, Siswanti, Muljon, Iswantoro BATAN, Babarsari Yogyakarta 55281 E-mail :ptapb@batan.go.id

Lebih terperinci

PENILAIAN TINGKAT KANDUNGAN RADIOAKTIVITAS SEDIMEN DAN AIR SUNGAI DI SEMARANG

PENILAIAN TINGKAT KANDUNGAN RADIOAKTIVITAS SEDIMEN DAN AIR SUNGAI DI SEMARANG 8 ISSN 01 318 PENILAIAN TINGKAT KANDUNGAN RADIOAKTIVITAS SEDIMEN DAN AIR SUNGAI DI SEMARANG Sukirno, Agus Taftazani dan Rosidi P3TM BATAN ABSTRAK PENILAIAN TINGKAT KANDUNGAN RADIOAKTIVITAS SEDIMEN, AIR

Lebih terperinci

BAB 3 METODE PENELITIAN. -Beaker Marinelli

BAB 3 METODE PENELITIAN. -Beaker Marinelli BAB 3 METODE PENELITIAN 3.1. Alat dan Bahan 3.1.1. Alat Penelitian Alat yang digunakan untuk pengukuran radionuklida alam dalam sampel adalah yang sesuai dengan standar acuan IAEA (International Atomic

Lebih terperinci

KAJIAN RADIOAKTIVITAS AIR LINGKUNGAN DI SEKITAR REAKTOR KARTINI PASCA GEMPA 27 MEI 2006

KAJIAN RADIOAKTIVITAS AIR LINGKUNGAN DI SEKITAR REAKTOR KARTINI PASCA GEMPA 27 MEI 2006 KAJIAN RADIOAKTIVITAS AIR LINGKUNGAN DI SEKITAR REAKTOR KARTINI PASCA GEMPA 7 MEI 006 GEDE SUTRESNA WIJAYA, SISWANTI Pusat Teknologi Akselerator dan Proses Bahan-BATAN Jl. Babarsari Kotak Pos 1008, DIY

Lebih terperinci

PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLIR Pusat Teknologi Akselerator don Proses Bahan Yogyakarta, Rabu, 11 September 2013

PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLIR Pusat Teknologi Akselerator don Proses Bahan Yogyakarta, Rabu, 11 September 2013 > PRO SIDING SEMINAR Pusat Teknologi Akselerator don Proses Bahan Yogyakarta, Rabu, 11 September 2013 PENENTUAN RADIOAKTIVITAS TOTAL BETA DAN GAMMA DALAM SAMPEL BATUBARA Suhardi, Mulyono, Sutanto WW, Rosidi

Lebih terperinci

ANALISIS RADIONUKLIDA PEMANCAR PADA SAMPEL TANAH PASCA PENGATUSAN DAKHIL DI KAWASAN REAKTOR KARTINI

ANALISIS RADIONUKLIDA PEMANCAR PADA SAMPEL TANAH PASCA PENGATUSAN DAKHIL DI KAWASAN REAKTOR KARTINI Yogyakarta, 6 September 01 ANALISIS RADIONUKLIDA PEMANCAR PADA SAMPEL TANAH PASCA PENGATUSAN DAKHIL DI KAWASAN REAKTOR KARTINI Siswanti, Wijiyono -BATAN-Yogyakarta Jl Babarsari Nomor 1, Kotak pos 6101

Lebih terperinci

SIMULASI KALIBRASI EFISIENSI PADA DETEKTOR HPGe DENGAN METODE MONTE CARLO MCNP5

SIMULASI KALIBRASI EFISIENSI PADA DETEKTOR HPGe DENGAN METODE MONTE CARLO MCNP5 SIMULASI KALIBRASI EFISIENSI PADA DETEKTOR HPGe DENGAN METODE MONTE CARLO MCNP5 Rasito, P. Ilham Y., Rini Heroe Oetami, dan Ade Suherman Pusat Teknologi Nuklir Bahan dan Radiometri BATAN Jl. Tamansari

Lebih terperinci

PENGUKURAN RADIOAKTIVITAS PB-210, PB-212 DAN PB-214 DALAM CUPLIKAN DEBU VULKANIK PASCA GUNUNG MERAPI MELETUS

PENGUKURAN RADIOAKTIVITAS PB-210, PB-212 DAN PB-214 DALAM CUPLIKAN DEBU VULKANIK PASCA GUNUNG MERAPI MELETUS PENGUKURAN RADIOAKTIVITAS PB-210, PB-212 DAN PB-214 DALAM CUPLIKAN DEBU VULKANIK PASCA GUNUNG MERAPI MELETUS Iswantoro, Muljono, Sihono, Sutanto W.W. Suhardi -BATAN Yogyakarta Jl Babarsari Nomor 21, Kotak

Lebih terperinci

ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10.

ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10. ABSTRAK ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI PERANGKAT RIA IP10. Benar Bukit, Kristiyanti, Hari Nurcahyadi Pusat Rekayasa Perangkat Nuklir-BATAN ANALISIS PERHITUNGAN KETEBALAN PERISAI RADIASI

Lebih terperinci

SIMULASI KURVA EFISIENSI DETEKTOR GERMANIUM UNTUK SINAR GAMMA ENERGI RENDAH DENGAN METODE MONTE CARLO MCNP5

SIMULASI KURVA EFISIENSI DETEKTOR GERMANIUM UNTUK SINAR GAMMA ENERGI RENDAH DENGAN METODE MONTE CARLO MCNP5 SIMULASI KURVA EFISIENSI DETEKTOR GERMANIUM UNTUK SINAR GAMMA ENERGI RENDAH DENGAN METODE MONTE CARLO MCNP5 Rasito, P. Ilham Y., Muhayatun S., dan Ade Suherman Pusat Teknologi Nuklir Bahan dan Radiometri

Lebih terperinci

SIMULASI EFISIENSI DETEKTOR GERMANIUM DI LABORATORIUM AAN PTNBR DENGAN METODE MONTE CARLO MCNP5

SIMULASI EFISIENSI DETEKTOR GERMANIUM DI LABORATORIUM AAN PTNBR DENGAN METODE MONTE CARLO MCNP5 290 Simulasi Efisiensi Detektor Germanium Di Laboratorium AAN PTNBR Dengan Metode Monte Carlo MCNP5 ABSTRAK SIMULASI EFISIENSI DETEKTOR GERMANIUM DI LABORATORIUM AAN PTNBR DENGAN METODE MONTE CARLO MCNP5

Lebih terperinci

BAB II TINJAUAN PUSTAKA Potensi Panas Bumi (Geothermal) di Indonesia

BAB II TINJAUAN PUSTAKA Potensi Panas Bumi (Geothermal) di Indonesia BAB II TINJAUAN PUSTAKA 2.1. Potensi Panas Bumi (Geothermal) di Indonesia Indonesia yang kaya akan wilayah gunung berapi, memiliki potensi panas bumi yang besar untuk dapat dimanfaatkan sebagai sumber

Lebih terperinci

AKTIVITAS GUNUNGAPI SEMERU PADA NOVEMBER 2007

AKTIVITAS GUNUNGAPI SEMERU PADA NOVEMBER 2007 AKTIVITAS GUNUNGAPI SEMERU PADA NOVEMBER 27 UMAR ROSADI Pusat Vulkanologi dan Mitigasi Bencana Geologi Sari Pada bulan Oktober akhir hingga November 27 terjadi perubahan aktivitas vulkanik G. Semeru. Jumlah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara yang memiliki gunung merapi cukup banyak yang tersebar di seluruh penjuru nusantara meliputi Sumatera, Jawa, dan Irian Jaya. Di Sumatera

Lebih terperinci

EVALUASI PENGARUH POLA ALIR UDARA TERHADAP TINGKAT RADIOAKTIVITAS DI DAERAH KERJA IRM

EVALUASI PENGARUH POLA ALIR UDARA TERHADAP TINGKAT RADIOAKTIVITAS DI DAERAH KERJA IRM No. 12/ Tahun VI. Oktober 2013 ISSN 1979-2409 EVALUASI PENGARUH POLA ALIR UDARA TERHADAP TINGKAT RADIOAKTIVITAS DI DAERAH KERJA IRM Endang Sukesi I dan Suliyanto Pusat Teknologi Bahan Bakar Nuklir -BATAN

Lebih terperinci

Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down

Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down Berkala Fisika ISSN : 141-9662 Vol.9, No.1, Januari 26, hal 15-22 Penentuan Dosis Gamma Pada Fasilitas Iradiasi Reaktor Kartini Setelah Shut Down Risprapti Prasetyowati (1), M. Azam (1), K. Sofjan Firdausi

Lebih terperinci

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang BAB II TINJAUAN PUSTAKA 2.1 Umum Beton adalah campuran antara semen portland, air, agregat halus, dan agregat kasar dengan atau tanpa bahan-tambah sehingga membentuk massa padat. Dalam adukan beton, semen

Lebih terperinci

EKSPERIMEN HAMBURAN RUTHERFORD

EKSPERIMEN HAMBURAN RUTHERFORD Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi PERCOBAAN R3 EKSPERIMEN HAMBURAN RUTHERFORD Dosen Pembina : Herlik Wibowo, S.Si, M.Si Septia Kholimatussa diah* (080913025), Mirza Andiana

Lebih terperinci

KALIBRASI EFISIENSI α/β COUNTER UNTUK ANALISIS RADIONUKLIDA PEMANCAR BETA DALAM CONTOH URIN

KALIBRASI EFISIENSI α/β COUNTER UNTUK ANALISIS RADIONUKLIDA PEMANCAR BETA DALAM CONTOH URIN ABSTRAK KALIBRASI EFISIENSI α/β COUNTER UNTUK ANALISIS RADIONUKLIDA PEMANCAR BETA DALAM CONTOH URIN Ratih Kusuma P, Ruminta Ginting Pusat Teknologi Limbah Radioaktif-BATAN KALIBRASI EFISIENSI α/β COUNTER

Lebih terperinci

4.15. G. LEWOTOBI PEREMPUAN, Nusa Tenggara Timur

4.15. G. LEWOTOBI PEREMPUAN, Nusa Tenggara Timur 4.15. G. LEWOTOBI PEREMPUAN, Nusa Tenggara Timur G. Lewotobi Laki-laki (kiri) dan Perempuan (kanan) KETERANGAN UMUM Nama Lain Tipe Gunungapi : Lobetobi, Lewotobi, Lowetobi : Strato dengan kubah lava Lokasi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Seperti yang telah kita ketahui pada dasarnya setiap benda yang ada di alam semesta ini memiliki paparan radiasi, akan tetapi setiap benda tersebut memiliki nilai

Lebih terperinci

PENGGUNAAN SINAR-X KARAKTERISTIK U-Ka2 DAN Th-Ka1 PADA ANALISIS KOMPOSISI ISOTOPIK URANIUM SECARA TIDAK MERUSAK

PENGGUNAAN SINAR-X KARAKTERISTIK U-Ka2 DAN Th-Ka1 PADA ANALISIS KOMPOSISI ISOTOPIK URANIUM SECARA TIDAK MERUSAK ISSN 0852-4777 Penggunaan Sinar-X Karakteristik U-Ka2 dan Th-Ka1 Pada Analisis Komposisi Isotopik Uranium Secara Tidak Merusak (Yusuf Nampira) PENGGUNAAN SINAR-X KARAKTERISTIK U-Ka2 DAN Th-Ka1 PADA ANALISIS

Lebih terperinci

ANALISIS UNSUR RADIOAKTIVITAS UDARA BUANG PADA CEROBONG IRM MENGGUNAKAN SPEKTROMETER GAMMA

ANALISIS UNSUR RADIOAKTIVITAS UDARA BUANG PADA CEROBONG IRM MENGGUNAKAN SPEKTROMETER GAMMA No.05 / Tahun III April 2010 ISSN 1979-2409 ANALISIS UNSUR RADIOAKTIVITAS UDARA BUANG PADA CEROBONG IRM MENGGUNAKAN SPEKTROMETER GAMMA Noviarty, Sudaryati, Susanto Pusat Teknologi Bahan Bakar Nuklir -

Lebih terperinci

Proses Pembentukan dan Jenis Batuan

Proses Pembentukan dan Jenis Batuan Proses Pembentukan dan Jenis Batuan Penulis Rizki Puji Diterbitkan 23:27 TAGS GEOGRAFI Kali ini kita membahas tentang batuan pembentuk litosfer yaitu batuan beku, batuan sedimen, batuan metamorf serta

Lebih terperinci

OXEA - Alat Analisis Unsur Online

OXEA - Alat Analisis Unsur Online OXEA - Alat Analisis Unsur Online OXEA ( Online X-ray Elemental Analyzer) didasarkan pada teknologi fluoresens sinar X (XRF) yang terkenal di bidang laboratorium. Dengan bantuan dari sebuah prosedur yang

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Indonesia merupakan negara yang memiliki potensi bencana geologi yang sangat besar, fakta bahwa besarnya potensi bencana geologi di Indonesia dapat dilihat dari

Lebih terperinci

PEMANTAUAN RADIOAKTIVITAS DEBU DI UDARA DAERAH KERJA PPGN TAHUN 2011

PEMANTAUAN RADIOAKTIVITAS DEBU DI UDARA DAERAH KERJA PPGN TAHUN 2011 PEMANTAUAN RADIOAKTIVITAS DEBU DI UDARA DAERAH KERJA PPGN TAHUN 2011 Bambang Purwanto, Ngatino, Amir Djuhara Pusat Pengembangan Geologi Nuklir Jl. Lebak Bulus Raya No. 9 Kawasan PPTN Pasar Jumat Jakarta

Lebih terperinci

Penentuan Konsentrasi dan Nilai Faktor Transfer Radionuklida Alam ( 226 Ra, 232 Th, 40 K) dari Tanah Sawah ke Beras menggunakan Spektrometer Gamma

Penentuan Konsentrasi dan Nilai Faktor Transfer Radionuklida Alam ( 226 Ra, 232 Th, 40 K) dari Tanah Sawah ke Beras menggunakan Spektrometer Gamma Penentuan Konsentrasi dan Nilai Faktor Transfer Radionuklida Alam ( 226 Ra, 232 Th, 40 K) dari Tanah Sawah ke Beras menggunakan Spektrometer Gamma (The Determination of the Concentration and Transfer Factor

Lebih terperinci

RADIOKALORIMETRI. Rohadi Awaludin

RADIOKALORIMETRI. Rohadi Awaludin RADIOKALORIMETRI Rohadi Awaludin Pusat Pengembangan Radioisotop dan Radiofarmaka (P2RR) Badan Tenaga Nuklir Nasional (BATAN) Kawasan Puspiptek Serpong, Tangerang 15314, Telp/fax (021) 7563141 1. PENDAHULUAN

Lebih terperinci

PEMANTAUAN RADIOAKTIVITAS UDARA BUANG IEBE TAHUN 2009

PEMANTAUAN RADIOAKTIVITAS UDARA BUANG IEBE TAHUN 2009 ISSN 0854-5561 Hasil-hasil Penelitian EBN Tahun 2009 PEMANTAUAN RADIOAKTIVITAS UDARA BUANG IEBE TAHUN 2009 Sri Wahyuningsih ABSTRAK PEMANTAUAN RADIOAKTIVITAS UDARA BUANG IEBE TAHUN 2009. Pemantauan radioaktivitas

Lebih terperinci

METODA PENENTUAN DAYA SERAP PERISAI RADIASI UNTUK GONAD DARI KOMPOSIT LATEKS CAIR TIMBAL OKSIDA

METODA PENENTUAN DAYA SERAP PERISAI RADIASI UNTUK GONAD DARI KOMPOSIT LATEKS CAIR TIMBAL OKSIDA METODA PENENTUAN DAYA SERAP PERISAI RADIASI UNTUK GONAD DARI KOMPOSIT LATEKS CAIR TIMBAL OKSIDA Kristiyanti, Tri Harjanto, Abdul Jalil Pusat Rekayasa Perangkat Nuklir BATAN Kawasan Puspiptek Gd 71 lt 2

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Kelompok besaran berikut yang merupakan besaran

Lebih terperinci

PENGUKURAN RADIASI. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T.

PENGUKURAN RADIASI. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T. Oleh : ADI WIJAYANTO 1 Adi Wijayanto Badan Tenaga Nuklir Nasional www.batan.go.id CAKUPAN

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan salah satu negara yang terletak di ring of fire (Rokhis, 2014). Hal ini berpengaruh terhadap aspek geografis, geologis dan klimatologis. Indonesia

Lebih terperinci

DETEKTOR RADIASI INTI. Sulistyani, M.Si.

DETEKTOR RADIASI INTI. Sulistyani, M.Si. DETEKTOR RADIASI INTI Sulistyani, M.Si. Email: sulistyani@uny.ac.id Konsep Dasar Alat deteksi sinar radioaktif atau sistem pencacah radiasi dinamakan detektor radiasi. Prinsip: Mengubah radiasi menjadi

Lebih terperinci

KIMIA INTI DAN RADIOKIMIA. Stabilitas Nuklir dan Peluruhan Radioaktif

KIMIA INTI DAN RADIOKIMIA. Stabilitas Nuklir dan Peluruhan Radioaktif KIMIA INTI DAN RADIOKIMIA Stabilitas Nuklir dan Peluruhan Radioaktif Oleh : Arif Novan Fitria Dewi N. Wijo Kongko K. Y. S. Ruwanti Dewi C. N. 12030234001/KA12 12030234226/KA12 12030234018/KB12 12030234216/KB12

Lebih terperinci

PENGARUH WAKTU PENGAMBILAN SAMPLING PADA ANALISIS UNSUR RADIOAKTIF DI UDARA DENGAN MENGGUNAKAN SPEKTROMETER GAMMA

PENGARUH WAKTU PENGAMBILAN SAMPLING PADA ANALISIS UNSUR RADIOAKTIF DI UDARA DENGAN MENGGUNAKAN SPEKTROMETER GAMMA PENGARUH WAKTU PENGAMBILAN SAMPLING PADA ANALISIS UNSUR RADIOAKTIF DI UDARA DENGAN MENGGUNAKAN SPEKTROMETER GAMMA Noviarty, Iis Haryati, Sudaryati, Susanto Pusat Teknologi Bahan Bakar Nuklir-BATAN Kawasan

Lebih terperinci

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional PDL.PR.TY.PPR.00.D03.BP 1 BAB I : Pendahuluan BAB II : Prinsip dasar deteksi dan pengukuran radiasi A. Besaran Ukur Radiasi B. Penggunaan C.

Lebih terperinci

ALAT UKUR RADIASI. Badan Pengawas Tenaga Nuklir. Jl. MH Thamrin, No. 55, Jakarta Telepon : (021)

ALAT UKUR RADIASI. Badan Pengawas Tenaga Nuklir. Jl. MH Thamrin, No. 55, Jakarta Telepon : (021) ALAT UKUR RADIASI Badan Pengawas Tenaga Nuklir Jl. MH Thamrin, No. 55, Jakarta 10350 Telepon : (021) 230 1266 Radiasi Nuklir Secara umum dapat dikategorikan menjadi: Partikel bermuatan Proton Sinar alpha

Lebih terperinci

EVALUASI DOSIS RADIASI INTERNAL PEKERJA RADIASI PT-BATAN TEKNOLOGI DENGAN METODE IN-VITRO

EVALUASI DOSIS RADIASI INTERNAL PEKERJA RADIASI PT-BATAN TEKNOLOGI DENGAN METODE IN-VITRO EVALUASI DOSIS RADIASI INTERNAL PEKERJA RADIASI PT-BATAN TEKNOLOGI DENGAN METODE IN-VITRO Ruminta Ginting, Ratih Kusuma Putri Pusat Teknologi Limbah Radioaktif - BATAN ABSTRAK EVALUASI DOSIS RADIASI INTERNAL

Lebih terperinci

PENGUKURAN KONSENTRASI RADON DALAM TEMPAT PENYIMPANAN LIMBAH RADIOAKTIF. Untara, M. Cecep CH, Mahmudin, Sudiyati Pusat Teknologi Limbah Radioaktif

PENGUKURAN KONSENTRASI RADON DALAM TEMPAT PENYIMPANAN LIMBAH RADIOAKTIF. Untara, M. Cecep CH, Mahmudin, Sudiyati Pusat Teknologi Limbah Radioaktif PENGUKURAN KONSENTRASI RADON DALAM TEMPAT PENYIMPANAN LIMBAH RADIOAKTIF Untara, M. Cecep CH, Mahmudin, Sudiyati Pusat Teknologi Limbah Radioaktif ABSTRAK PENGUKURAN KONSENTRASI RADON DALAM TEMPAT PENYIMPANAN

Lebih terperinci

PENGEMBANGAN DETEKTOR GEIGER MULLER DENGAN ISIAN GAS ALKOHOL, METANA DAN ARGON

PENGEMBANGAN DETEKTOR GEIGER MULLER DENGAN ISIAN GAS ALKOHOL, METANA DAN ARGON Proseding Seminar Nasional Fisika dan Aplikasinya Sabtu, 21 November 2015 Bale Sawala Kampus Universitas Padjadjaran, Jatinangor PENGEMBANGAN DETEKTOR GEIGER MULLER DENGAN ISIAN GAS ALKOHOL, METANA DAN

Lebih terperinci

Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS

Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS 1 - Dengan menyebut nama Allah yang Maha Pengasih lagi Maha Penyayang - " Dan Kami ciptakan besi yang padanya terdapat kekuatan yang hebat dan

Lebih terperinci

RENCANA PERKULIAHAN FISIKA INTI Pertemuan Ke: 1

RENCANA PERKULIAHAN FISIKA INTI Pertemuan Ke: 1 Pertemuan Ke: 1 Mata Kuliah/Kode : Fisika Semester dan : Semester : VI : 150 menit Kompetensi Dasar : Mahasiswa dapat memahami gejala radioaktif 1. Menyebutkan pengertian zat radioaktif 2. Menjelaskan

Lebih terperinci

OPTIMASI TAWAS DAN KAPUR UNTUK KOAGULASI AIR KERUH DENGAN PENANDA I-131

OPTIMASI TAWAS DAN KAPUR UNTUK KOAGULASI AIR KERUH DENGAN PENANDA I-131 OPTIMASI TAWAS DAN KAPUR UNTUK KOAGULASI AIR KERUH DENGAN PENANDA I-131 SUGILI PUTRA, SURYO RANTJONO, TRISNADI ARIFIANSYAH Abstrak OPTIMASI JUMLAH TAWAS DAN KAPUR UNTUK KOAGULASI AIR KERUH DENGAN PENANDA

Lebih terperinci

ISSN PENGUKURAN RADIOAKTIVITAS GAMMA, BETA DAN IDENTIFIKASI RADIONUKLIDA DALAM SEDIMEN DAN AIR SUNGAI

ISSN PENGUKURAN RADIOAKTIVITAS GAMMA, BETA DAN IDENTIFIKASI RADIONUKLIDA DALAM SEDIMEN DAN AIR SUNGAI 7"D Sukirno don Sudarmadji. ISSN 0216-3128 257 PENGUKURAN RADIOAKTIVITAS GAMMA, BETA DAN IDENTIFIKASI RADIONUKLIDA DALAM SEDIMEN DAN AIR SUNGAI Sukirno dad Sudarmadji Puslitbang Teknologi Maju Batan, Yogyakarta.

Lebih terperinci

2.1 Pengertian Radionuklida 6

2.1 Pengertian Radionuklida 6 IX DAFTARISI Halaman Judul! Halaman Pengesahan Motto Halaman Persembahan Kata Pengantar u 1V v vl Abstraksi Daftarlsi DaftarTabel DaftarGambar 1X xv xvl BAB I PENDAHULUAN 1.1 Latar Belakang * 1.2 Rumusan

Lebih terperinci

PELURUHAN RADIOAKTIF. NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id

PELURUHAN RADIOAKTIF. NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id PELURUHAN RADIOAKTIF NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id 081556431053 Istilah dalam radioaktivitas Perubahan dari inti atom tak stabil menjadi inti atom yg stabil: disintegrasi/peluruhan

Lebih terperinci

KEMENTRIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI

KEMENTRIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI KEMENTRIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI JALAN DIPONEGORO NO. 57 BANDUNG 1 JALAN JEND GATOT SUBROTO KAV. 9 JAKARTA 195 Telepon: -713, 5,1-5371 Faksimile: -71, 1-537 E-mail:

Lebih terperinci

Tata cara penentuan kadar air batuan dan tanah di tempat dengan metode penduga neutron

Tata cara penentuan kadar air batuan dan tanah di tempat dengan metode penduga neutron Standar Nasional Indonesia Tata cara penentuan kadar air batuan dan tanah di tempat dengan metode penduga neutron ICS 13.080.40; 93.020 Badan Standardisasi Nasional BSN 2012 Hak cipta dilindungi undang-undang.

Lebih terperinci

PENGARUH UKURAN PARTIKEL BATU APUNG TERHADAP KEMAMPUAN SERAPAN CAIRAN LIMBAH LOGAM BERAT

PENGARUH UKURAN PARTIKEL BATU APUNG TERHADAP KEMAMPUAN SERAPAN CAIRAN LIMBAH LOGAM BERAT PENGARUH UKURAN PARTIKEL BATU APUNG TERHADAP KEMAMPUAN SERAPAN CAIRAN LIMBAH LOGAM BERAT Aditiya Yolanda Wibowo, Ardian Putra Laboratorium Fisika Bumi, Jurusan Fisika FMIPA Universitas Andalas Kampus Unand,

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Tanah vulkanis merupakan tanah yang berasal dari letusan gunungapi, pada

BAB I PENDAHULUAN. A. Latar Belakang. Tanah vulkanis merupakan tanah yang berasal dari letusan gunungapi, pada 1 BAB I PENDAHULUAN A. Latar Belakang Tanah vulkanis merupakan tanah yang berasal dari letusan gunungapi, pada saat gunungapi meletus mengeluarkan tiga jenis bahan yaitu berupa padatan, cair, dan gas.

Lebih terperinci

PENGARUH KONSENTRASI URANIUM DALAM PROSES ELEKTRODEPOSISI HASIL EKSTRAKSI DENGAN TBPjOK

PENGARUH KONSENTRASI URANIUM DALAM PROSES ELEKTRODEPOSISI HASIL EKSTRAKSI DENGAN TBPjOK ISSN 0854-5561 Hasil-hasil Penelitian EBN Tahun 2009 PENGARUH KONSENTRASI URANIUM DALAM PROSES ELEKTRODEPOSISI HASIL EKSTRAKSI DENGAN TBPjOK Yanlinastuti, Noviarty, Sutri Indaryati ABSTRAK PENGARUH KONSENTRASI

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Kondisi geografis Indonesia terletak pada busur vulkanik Circum Pacific and

BAB I PENDAHULUAN. A. Latar Belakang. Kondisi geografis Indonesia terletak pada busur vulkanik Circum Pacific and BAB I PENDAHULUAN A. Latar Belakang Kondisi geografis Indonesia terletak pada busur vulkanik Circum Pacific and Trans Asiatic Volcanic Belt dengan jajaran pegunungan yang cukup banyak dimana 129 gunungapi

Lebih terperinci

PENENTUAN KONSENTRASI TORIUM-232 DAN ANAK LURUHNYA SECARA SPEKTROMETRI ALPA

PENENTUAN KONSENTRASI TORIUM-232 DAN ANAK LURUHNYA SECARA SPEKTROMETRI ALPA PENENTUAN KONSENTRASI TORIUM-232 DAN ANAK LURUHNYA SECARA SPEKTROMETRI ALPA Bambang Irianto, Muljono, Suprihati -BATAN Yogyakarta Jl Babarsari Nomor 21, Kotak pos 6101 Ykbb 55281 e-mail : bbirianto97 @

Lebih terperinci

PENENTUAN KONSENTRASI AKTIVITAS URANIUM DARI INDUSTRI FOSFAT MENGGUNAKAN DETEKTOR ZnS(Ag)

PENENTUAN KONSENTRASI AKTIVITAS URANIUM DARI INDUSTRI FOSFAT MENGGUNAKAN DETEKTOR ZnS(Ag) Berkala Fisika ISSN : 1410-9662 Vol.9, No.2, April 2006, hal 63-70 PENENTUAN KONSENTRASI AKTIVITAS URANIUM DARI INDUSTRI FOSFAT MENGGUNAKAN DETEKTOR ZnS(Ag) Indri Setiani 1), Mohammad Munir 1), K.Sofjan

Lebih terperinci

PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLffi. Pusat Teknologi Akselerator Dan Proses Bahan Yogyakarta, 28 Agustus 2008

PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLffi. Pusat Teknologi Akselerator Dan Proses Bahan Yogyakarta, 28 Agustus 2008 PRO SIDING SEMINAR PENELITIAN DAN PENGELOLAAN PERANGKAT NUKLffi EVALUASI HASIL PEMANTAUAN RADIOAKTIVITAS UDARA DI RUANG REAKTORKARTINIPTAPB-BATANYOGYAKARTA Supamo, Elisabeth Supriyatoi - BATAN ABSTRAK

Lebih terperinci

6.6. G. TANGKOKO, Sulawesi Utara

6.6. G. TANGKOKO, Sulawesi Utara 6.6. G. TANGKOKO, Sulawesi Utara KETERANGAN UMUM Nama Lain : Tonkoko Nama Kawah : - Lokasi Ketinggian Kota Terdekat Tipe Gunungapi Pos Pengamatan Gunungapi : Administratif: termasuk Desa Makewide, Kecamatan

Lebih terperinci

Beda antara lava dan lahar

Beda antara lava dan lahar lahar panas arti : endapan bahan lepas (pasir, kerikil, bongkah batu, dsb) di sekitar lubang kepundan gunung api yg bercampur air panas dr dl kawah (yg keluar ketika gunung meletus); LAHAR kata ini berasal

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. Email: sulistyani@uny.ac.id Laju peluruhan radionuklida per satuan waktu berbanding lurus dengan jumlah radioaktif yang ada pada waktu itu. -dn/dt λn -dn/dt = λn dn/n = - λdt (jika diintegralkan)

Lebih terperinci

BAB V Ketentuan Proteksi Radiasi

BAB V Ketentuan Proteksi Radiasi BAB V Ketentuan Proteksi Radiasi Telah ditetapkan Peraturan Pemerintah No. 63 Tahun 2000 tentang Keselamatan dan kesehatan terhadap pemanfaatan radiasi pengion dan Surat Keputusan Kepala BAPETEN No.01/Ka-BAPETEN/V-99

Lebih terperinci

Contents BAB I... 1 PENDAHULUAN Latar Belakang Pokok Permasalahan Lingkup Pembahasan Maksud Dan Tujuan...

Contents BAB I... 1 PENDAHULUAN Latar Belakang Pokok Permasalahan Lingkup Pembahasan Maksud Dan Tujuan... Contents BAB I... 1 PENDAHULUAN... 1 1.1. Latar Belakang... 1 1.2 Pokok Permasalahan... 2 1.3 Lingkup Pembahasan... 3 1.4 Maksud Dan Tujuan... 3 1.5 Lokasi... 4 1.6 Sistematika Penulisan... 4 BAB I PENDAHULUAN

Lebih terperinci

PEMANFAATAN ZEOLIT ALAM SEBAGAI ADSORBEN PADA PEMURNIAN ETANOL ABSTRAK

PEMANFAATAN ZEOLIT ALAM SEBAGAI ADSORBEN PADA PEMURNIAN ETANOL ABSTRAK PEMANFAATAN ZEOLIT ALAM SEBAGAI ADSORBEN PADA PEMURNIAN ETANOL Haryadi 1*, Sariadi 2, Zahra Fona 2 1 DIV Teknologi Kimia Industri, Jurusan Teknik Kimia, Politeknik Negeri Lhokseumawe 2 Jurusan Teknik Kimia,

Lebih terperinci

EVALUASI HASIL PEMANTAUAN RADIOAKTIVITAS UDARA DI LINGKUNGAN PUSAT PENGEMBANGAN RADIOISOTOP DAN RADIOFARMAKA PERIODE APRIL DESEMBER 2000

EVALUASI HASIL PEMANTAUAN RADIOAKTIVITAS UDARA DI LINGKUNGAN PUSAT PENGEMBANGAN RADIOISOTOP DAN RADIOFARMAKA PERIODE APRIL DESEMBER 2000 ISSN 0216-3128 97 EVALUASI HASIL PEMANTAUAN RADIOAKTIVITAS UDARA DI LINGKUNGAN PUSAT PENGEMBANGAN RADIOISOTOP DAN RADIOFARMAKA PERIODE APRIL 2000 - DESEMBER 2000 Pusat Pengembangan Radioisotop Dan Radiofarmaka

Lebih terperinci

Penentuan Kadar Besi dalam Pasir Bekas Penambangan di Kecamatan Cempaka dengan Metode Analisis Aktivasi Neutron (AAN)

Penentuan Kadar Besi dalam Pasir Bekas Penambangan di Kecamatan Cempaka dengan Metode Analisis Aktivasi Neutron (AAN) Penentuan Kadar Besi dalam Pasir Bekas Penambangan di Kecamatan Cempaka dengan Metode Analisis Aktivasi Neutron (AAN) Prihatin Oktivasari dan Ade Agung Harnawan Abstrak: Telah dilakukan penentuan kandungan

Lebih terperinci

FAKTOR KOREKSI PENGUKURAN AKTIVITAS RADIOFARMAKA I-131 PADA WADAH VIAL GELAS TERHADAP AMPUL STANDAR PTKMR-BATAN MENGGUNAKAN DOSE CALIBRATOR

FAKTOR KOREKSI PENGUKURAN AKTIVITAS RADIOFARMAKA I-131 PADA WADAH VIAL GELAS TERHADAP AMPUL STANDAR PTKMR-BATAN MENGGUNAKAN DOSE CALIBRATOR 78 ISSN 0216-3128 Pujadi, dkk. FAKTOR KOREKSI PENGUKURAN AKTIVITAS RADIOFARMAKA I-131 PADA WADAH VIAL GELAS TERHADAP AMPUL STANDAR PTKMR-BATAN MENGGUNAKAN DOSE CALIBRATOR Pujadi 1, Gatot Wurdiyanto 1 dan

Lebih terperinci

BAB I PENDAHULUAN. Pulau Jawa (Busur Sunda) merupakan daerah dengan s umber daya panas

BAB I PENDAHULUAN. Pulau Jawa (Busur Sunda) merupakan daerah dengan s umber daya panas BAB I PENDAHULUAN I.1 Latar Belakang Pulau Jawa (Busur Sunda) merupakan daerah dengan s umber daya panas bumi terbesar (p otensi cadangan dan potensi diketahui), dimana paling tidak terdapat 62 lapangan

Lebih terperinci

METODE STANDARDISASI SUMBER 60 Co BENTUK TITIK DAN VOLUME MENGGUNAKAN METODE ABSOLUT PUNCAK JUMLAH

METODE STANDARDISASI SUMBER 60 Co BENTUK TITIK DAN VOLUME MENGGUNAKAN METODE ABSOLUT PUNCAK JUMLAH Pujadi, dkk. ISSN 0216-3128 5 METODE STANDARDISASI SUMBER Co BENTUK TITIK DAN VOLUME MENGGUNAKAN METODE ABSOLUT PUNCAK JUMLAH Pujadi, Hermawan Chandra P3KRBiN BATAN ABSTRAK METODE STANDARDISASI SUMBER

Lebih terperinci

Unnes Physics Journal

Unnes Physics Journal Unnes Physics 1 (1) (2012) Unnes Physics Journal http://journal.unnes.ac.id/sju/index.php/upj PENGUKURAN RADIOAKTIVITAS LINGKUNGAN DI SEKITAR INSTALASI RADIODIAGNOSTIK RUMAH SAKITDI SEMARANG Lely. N*,

Lebih terperinci

PENENTUAN KADAR URANIUM DALAM SAMPEL YELLOW CAKE MENGGUNAKAN SPEKTROMETER GAMMA

PENENTUAN KADAR URANIUM DALAM SAMPEL YELLOW CAKE MENGGUNAKAN SPEKTROMETER GAMMA ISSN 1979-2409 Penentuan Kadar Uranium Dalam Sampel Yellow Cake Menggunakan Spektrometer Gamma (Noviarty, Iis Haryati) PENENTUAN KADAR URANIUM DALAM SAMPEL YELLOW CAKE MENGGUNAKAN SPEKTROMETER GAMMA Noviarty

Lebih terperinci

ANALISIS KADAR METANOL DAN ETANOL DALAM MINUMAN BERALKOHOL MENGGUNAKAN KROMATOGRAFI GAS. Abstrak

ANALISIS KADAR METANOL DAN ETANOL DALAM MINUMAN BERALKOHOL MENGGUNAKAN KROMATOGRAFI GAS. Abstrak ANALISIS KADAR METANOL DAN ETANOL DALAM MINUMAN BERALKOHOL MENGGUNAKAN KROMATOGRAFI GAS Amalia Choirni, Atik Setiani, Erlangga Fitra, Ikhsan Fadhilah, Sri Lestari, Tri Budi Kelompok 12 Jurusan Kimia Fakultas

Lebih terperinci

BENTUKLAHAN ASAL VULKANIK

BENTUKLAHAN ASAL VULKANIK BENTUKLAHAN ASAL VULKANIK Bentuklahan asal vulkanik merupakan bentuklahan yang terjadi sebagai hasil dari peristiwa vulkanisme, yaitu berbagai fenomena yang berkaitan dengan gerakan magma naik ke permukaan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah BAB III METODOLOGI PENELITIAN 3.1 Metode penelitian Metode penelitian yang digunakan pada penelitian ini adalah eksperimental dan pembuatan keramik film tebal CuFe 2 O 4 dilakukan dengan metode srcreen

Lebih terperinci

3.2.3 Satuan lava basalt Gambar 3-2 Singkapan Lava Basalt di RCH-9

3.2.3 Satuan lava basalt Gambar 3-2 Singkapan Lava Basalt di RCH-9 3.2.2.4 Mekanisme pengendapan Berdasarkan pemilahan buruk, setempat dijumpai struktur reversed graded bedding (Gambar 3-23 D), kemas terbuka, tidak ada orientasi, jenis fragmen yang bervariasi, massadasar

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1 Alat dan Bahan 4.1.1 Alat-Alat yang digunakan : 1. Seperangkat alat kaca 2. Neraca analitik, 3. Kolom kaca, 4. Furnace, 5. Kertas saring, 6. Piknometer 5 ml, 7. Refraktometer,

Lebih terperinci

FORMAT DAN ISI LAPORAN SURVEI RADIOLOGI AKHIR

FORMAT DAN ISI LAPORAN SURVEI RADIOLOGI AKHIR LAMPIRAN IV PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 6 TAHUN 2011... TENTANG DEKOMISIONING INSTALASI NUKLIR NONREAKTOR FORMAT DAN ISI LAPORAN SURVEI RADIOLOGI AKHIR A. Kerangka Format Laporan

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

PENGARUH BAHAN PENCAMPUR SEMEN CHORMEN TERHADAP KEKUATAN FISIKA DAN KIMIA BETON LIMBAH

PENGARUH BAHAN PENCAMPUR SEMEN CHORMEN TERHADAP KEKUATAN FISIKA DAN KIMIA BETON LIMBAH PENGARUH BAHAN PENCAMPUR SEMEN CHORMEN TERHADAP KEKUATAN FISIKA DAN KIMIA BETON LIMBAH Winduwati S., Suparno, Kuat, Sugeng Pusat Teknologi Limbah Radioaktif ABSTRAK PENGARUH BAHAN PENCAMPUR SEMEN CHORMEN

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Penggunaan batubara sebagai sumber energi pada unit tabung pembakaran (boiler) pada industri akhir-akhir ini menjadi pilihan yang paling diminati oleh para pengusaha

Lebih terperinci

RINGKASAN. Program Pascasarjana Institut Pertanian Bogor; Program St~di Pengeloiaan Sumberdaya

RINGKASAN. Program Pascasarjana Institut Pertanian Bogor; Program St~di Pengeloiaan Sumberdaya RINGKASAN Program Pascasarjana Institut Pertanian Bogor; Program St~di Pengeloiaan Sumberdaya Alam dan Lingkungan. Penulis : Pande Made Udiyani; Judul : Identifikasi Radionuklida Air di Luar Kawasan PUSPIPTEK

Lebih terperinci

FISIKA 2014 TIPE A. 30 o. t (s)

FISIKA 2014 TIPE A. 30 o. t (s) No FISIKA 2014 TIPE A SOAL 1 Sebuah benda titik dipengaruhi empat vektor gaya masing-masing 20 3 N mengapit sudut 30 o di atas sumbu X positif, 20 N mnegapit sudut 60 o di atas sumbu X negatif, 5 N pada

Lebih terperinci

III. METODOLOGI PENELITIAN. di laboratorium Kimia Analitik Fakultas Matematika dan Ilmu Pengetahuan Alam

III. METODOLOGI PENELITIAN. di laboratorium Kimia Analitik Fakultas Matematika dan Ilmu Pengetahuan Alam 30 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Maret sampai dengan bulan Agustus 2011 di laboratorium Kimia Analitik Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

KIMIA (2-1)

KIMIA (2-1) 03035307 KIMIA (2-1) Dr.oec.troph.Ir.Krishna Purnawan Candra, M.S. Kuliah ke-4 Kimia inti Bahan kuliah ini disarikan dari Chemistry 4th ed. McMurray and Fay Faperta UNMUL 2011 Kimia Inti Pembentukan/penguraian

Lebih terperinci

PENGARUH EFEK GEOMETRI PADA KALIBRASI EFISIENSI DETEKTOR SEMIKONDUKTOR HPGe MENGGUNAKAN SPEKTROMETER GAMMA

PENGARUH EFEK GEOMETRI PADA KALIBRASI EFISIENSI DETEKTOR SEMIKONDUKTOR HPGe MENGGUNAKAN SPEKTROMETER GAMMA 258 Prosiding Pertemuan Ilmiah XXIV HFI Jateng & DIY, Semarang 10 April 2010 hal 258-264 PENGARUH EFEK GEOMETRI PADA KALIBRASI EFISIENSI DETEKTOR SEMIKONDUKTOR HPGe MENGGUNAKAN SPEKTROMETER GAMMA Hermawan

Lebih terperinci

7.4. G. KIE BESI, Maluku Utara

7.4. G. KIE BESI, Maluku Utara 7.4. G. KIE BESI, Maluku Utara G. Kie Besi dilihat dari arah utara, 2009 KETERANGAN UMUM Nama Lain : Wakiong Nama Kawah : Lokasi a. Geografi b. : 0 o 19' LU dan 127 o 24 BT Administrasi : Pulau Makian,

Lebih terperinci

RADIOKIMIA Kinetika dan waktu paro peluruhan. Drs. Iqmal Tahir, M.Si.

RADIOKIMIA Kinetika dan waktu paro peluruhan. Drs. Iqmal Tahir, M.Si. Departemen Kimia - FMIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Kinetika dan waktu paro peluruhan Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci