BAB II TINJAUAN PUSTAKA. dalam sistem mikrokontroler ATMega16, Solar Cell, Aki kering dan pengendalian

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. dalam sistem mikrokontroler ATMega16, Solar Cell, Aki kering dan pengendalian"

Transkripsi

1 BAB II TINJAUAN PUSTAKA Dalam bab ini dibahas mengenai teori penunjang dari peralatan yang digunakan dalam sistem mikrokontroler ATMega16, Solar Cell, Aki kering dan pengendalian lampu LED. 2.1 Gambaran Umum Mikrokontroler Mikrokontroler merupakan suatu IC yang di dalamnya berisi CPU, ROM, RAM, dan I/O. Dengan adanya CPU tersebut maka mikrokontroler dapat melakukan proses berfikir berdasarkan program yang telah diberikan kepadanya. Mikrokontroler banyak terdapat pada peralatan elektronik yang serba otomatis, mesin fax, dan peralatan elektronik lainnya. Mikrokontroler dapat disebut pula sebagai komputer yang berukuran kecil yang berdaya rendah sehingga sebuah baterai dapat memberikan daya. Mikrokontroler terdiri dari beberapa bagian seperti yang terlihat pada gambar 2.1 : Gambar 2.1 Susunan mikrokontroler

2 Pada gambar tersebut tampak suatu mikrokontroler standart yang tersusun atas komponen-komponen sebagai berikut : A. Central Processing Unit (CPU) CPU merupakan bagian utama dalam suatu mikrokontroler. CPU pada mikrokontroler ada yang berukuran 8 bit ada pula yang berukuran 16 bit. CPU ini akan membaca program yang tersimpan di dalam ROM dan melaksanakannya. B. Read Only Memory (ROM) ROM merupakan suatu memori (alat untuk mengingat) yang sifatnya hanya dibaca saja. Dengan demikian ROM tidak dapat ditulisi. Dalam dunia mikrokontroler ROM digunakan untuk menyimpan program bagi mikrokontroler tersebut. Program tersimpan dalm format biner ( 0 atau 1 ). Susunan bilangan biner tersebut bila telah terbaca oleh mikrokontroler akan memiliki arti tersendiri. C. Random Acces Memory (RAM) Berbeda dengan ROM, RAM adalah jenis memori selain dapat dibaca juga dapat ditulis berulang kali. Tentunya dalam pemakaian mikrokontroler ada semacam data yang bisa berubah pada saat mikrokontroler tersebut bekerja. Perubahan data tersebut tentunya juga akan tersimpan ke dalam memori. Isi pada RAM akan hilang jika catu daya listrik hilang. D. Input / Output (I/O) Untuk berkomunikasi dengan dunia luar, maka mikrokontroler menggunakan terminal I/O (port I/O), yang digunakan untuk masukan atau keluaran.

3 E. Komponen lainnya Beberapa mikrokontroler memiliki timer/counter, ADC (Analog to Digital Converter), dan komponen lainnya. Pemilihan komponen tambahan yang sesuai dengan tugas mikrokonter oleh akan sangat membantu perancangan sehingga dapat mempertahankan ukuran yang kecil. Apabila komponen - komponen tersebut belum ada pada suatu mikrokontroler, umumnya komponen tersebut masih dapat ditambahkan pada sistem mikrokontroler melalui port - portnya. 2.2 Mikrokontroler AVR ATMega16 AVR merupakan seri mikrokontroler CMOS 8-bit buatan Atmel, berbasis arsitektur RISC (Reduced Instruction Set Computer). Hampir semua instruksi dieksekusi dalam satu siklus clock. AVR mempunyai 32 register general-purpose, timer/counter fleksibel dengan mode compare, interrupt internal dan eksternal, serial UART, programmable Watchdog Timer, dan mode power saving, ADC dan PWM internal. AVR juga mempunyai In-System Programmable Flash on-chip yang mengijinkan memori program untuk diprogram ulang dalam sistem menggunakan hubungan serial SPI. ATMega16. ATMega16 mempunyai throughput mendekati 1 MIPS per MHz membuat disainer sistem untuk mengoptimasi konsumsi daya versus kecepatan proses Arsitektur Mikrokontroler ATMega16 Mikrokontroler ini mempunyai empat port I/O, akumulator, register, RAM internal, stack pointer, Arithmetic Logic Unit (ALU), pengunci (latch), dan

4 rangkaian osilasi yang membuat mikrokontroler ini dapat beroperasi hanya dengan sekeping IC. Secara fisik, mikrokontroler ATMega16 mempunyai 40 pin, Pin-pin pada ATMega16 dengan kemasan 40-pin DIP (dual inline package) ditunjukkan oleh seperti gambar di bawah 2.2. Guna memaksimalkan performa, AVR menggunakan arsitektur Harvard (dengan memori dan bus terpisah untuk program dan data). Gambar 2.2 Pin-pin ATMega16 kemasan 40-pin Berikut Penjelasan dari port : Port sebagai input/output digital ATMega16 mempunyai empat buah port yang bernama PortA,PortB, PortC, dan PortD. Keempat port tersebut merupakan jalur bidirectional dengan pilihan internal pull-up. Tiap port mempunyai tiga buah register bit, yaitu DDxn, PORTxn,

5 dan PINxn. Huruf x mewakili nama huruf dari port sedangkan huruf n mewakili nomor bit. Bit DDxn terdapat pada I/O address DDRx, bit PORTxn terdapat pada I/O address PORTx, dan bit PINxn terdapat pada I/O address PINx. Bit DDxn dalam register DDRx (Data Direction Register) menentukan arah pin. Bila DDxn diset 1 maka Px berfungsi sebagai pin output. Bila DDxn diset 0 maka Px berfungsi sebagai pin input.bila PORTxn diset 1 pada saat pin terkonfigurasi sebagai pin input, maka resistor pull-up akan diaktifkan. Untuk mematikan resistor pull-up, PORTxn harus diset 0 atau pin dikonfigurasi sebagai pin output. Pin port adalah tri-state setelah kondisi reset. Bila PORTxn diset 1 pada saat pin terkonfigurasi sebagai pin output maka pin port akan berlogika 1. Dan bila PORTxn diset 0 pada saat pin terkonfigurasi sebagai pin output maka pin port akan berlogika 0. Saat mengubah kondisi port dari kondisi tri-state (DDxn=0, PORTxn=0) ke kondisi output high (DDxn=1, PORTxn=1) maka harus ada kondisi peralihan apakah itu kondisi pull-up enabled (DDxn=0, PORTxn=1) atau kondisi output low (DDxn=1, PORTxn=0). Biasanya, kondisi pull-up enabled dapat diterima sepenuhnya, selama lingkungan impedansi tinggi tidak memperhatikan perbedaan antara sebuah strong high driver dengan sebuah pull-up. Jika ini bukan suatu masalah, maka bit PUD pada register SFIOR dapat diset 1 untuk mematikan semua pull-up dalam semua port. Peralihan dari kondisi input dengan pull-up ke kondisi output low juga menimbulkan masalah yang sama. Kita harus menggunakan kondisi tri-state (DDxn=0, PORTxn=0) atau kondisi output high (DDxn=1, PORTxn=0) sebagai kondisi transisi. Beberapa keistimewaan dari AVR ATMega16 antara lain:

6 1. Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Fully Static Operation Up to 16 MIPS Throughput at 16 MHz On-chip 2-cycle Multiplier 2. Nonvolatile Program and Data Memories 8K Bytes of In-System Self-Programmable Flash Optional Boot Code Section with Independent Lock Bits 512 Bytes EEPROM 512 Bytes Internal SRAM Programming Lock for Software Security 3. Peripheral Features Two 8-bit Timer/Counters with Separate Prescalers and Compare Mode Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode Real Time Counter with Separate Oscillator Four PWM Channels 8-channel, 10-bit ADC Byte-oriented Two-wire Serial Interface Programmable Serial USART

7 4. Special Microcontroller Features Power-on Reset and Programmable Brown-out Detection Internal Calibrated RC Oscillator External and Internal Interrupt Sources Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Powerdown, Standby and Extended Standby 5. I/O and Package 32 Programmable I/O Lines 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad MLF 6. Operating Voltages V for Atmega16L V for Atmega16 Tab el 2.1 Konfigurasi pin port Bit 2 PUD : Pull-up Disable Bila bit diset bernilai 1 maka pull-up pada port I/O akan dimatikan walaupun register DDxn dan PORTxn dikonfigurasikan untuk menyalakan pull-up (DDxn=0, PORTxn=1).

8 A. Timer Timer/counter adalah fasilitas dari ATMega16 yang digunakan untuk perhitungan pewaktuan. Beberapa fasilitas chanel dari timer counter antara lain: counter channel tunggal, pengosongan data timer sesuai dengan data pembanding, bebas -glitch, tahap yang tepat Pulse Width Modulation (PWM), pembangkit frekuensi, event counter external. Gambaran umum gambar diagram block timer/counter 8 bit ditunjukan pada gambar 2.3. Untuk penempatan pin I/O telah di jelaskan pada bagian I/O di atas. CPU dapat diakses register I/O, termasuk dalam pinpin I/O dan bit I/O. Device khusus register I/O dan lokasi bit terdaftar pada deskripsi timer/counter 8 bit. Gambar 2.3 Blok diagram timer/counter Timer/counter didesain sinkron clock timer (clkt0) oleh karena itu ditunjukkan sebagai sinyal enable clock pada gambar 2.4. Gambar ini termasuk

9 informasi ketika flag interrupt dalam kondisi set. Data timing digunakan sebagai dasar dari operasi timer/counter. Gambar 2.4 Timing diagram timer/counter, tanpa prescaling. Sesuai dengan gambar 2.5 timing diagram timer/counter dengan prescaling maksudnya adalah counter akan menambahkan data counter (TCNTn) ketika terjadi pulsa clock telah mencapai 8 kali pulsa dan sinyal clock pembagi aktif clock dan ketika telah mencapai nilai maksimal maka nilai TCNTn akan kembali ke nol. Dan kondisi flag timer akan aktif ketika TCNTn maksimal. Gambar 2.5 Timing diagram timer/counter, dengan prescaling. Sama halnya timing timer diatas, timing timer/counter dengan seting OCFO timer mode ini memasukan data ORCn sebagai data input timer. Ketika nilai ORCn

10 sama dengan nilaitcntn maka pulsa flag timer akan aktif. TCNTn akan bertambah nilainya ketika pulsa clock telah mencapai 8 pulsa. Dan kondisi flag akan berbalik (komplemen) kondisi ketika nilai TCNTn kembali kenilai 0 (overflow). Gambar 2.6 Timing diagram timer/counter, menyeting OCFO, dengan pescaler (fclk_i/o/8). Ketika nilai ORCn sama dengan nilai TCNTn maka pulsa flag timer akan aktif. TCNTn akan bertambah nilainya ketika pulsa clock telah mencapai 8 pulsa. Dan kondisi flag akan berbalik (komplemen) kondisi ketika nilai TCNTn kembali kenilai 0 (overflow). Gambar 2.7 Timing diagram timer/counter, menyeting OCFO, pengosongan data timer sesuai dengan data pembanding,dengan pescaler (fclk_i/o/8).

11 Deskripsi Register Timer/Counter 8 bit seperti gambar di bawah ini : Gambar 2.8 Regiter timer counter 8 bit. Bit 7 FOCO : perbandingan kemampuan output FOCO hanya akan aktif ketika spesifik-spesifik bit WGM00 tanpa PWM mode. Adapun untuk meyakinkan terhadap kesesuaian dengan device-device yang akan digunakan, bit ini harus diset nol ketika TCCRO ditulisi saat mengoperasikan mode PWM. Ketika menulisi logika satu ke bit FOCO, dengan segera dipaksakan untuk disesuaikan pada unit pembangkit bentuk gelombang. Output OCO diubah disesuaikan pda COM01: bit 0 menentukan pengaruh daya pembanding. Bit 6,3 WGM01:0: Waveform Generation Mode Bit ini mengontrol penghitungan yang teratur pada counter, sumber untuk harga counter maksimal ( TOP )., dan tipe apa dari pembangkit bentuk gelombang yang digunakan. Mode-mode operasi didukung oleh unit timer/counter sebagai berikut : mode normal, pembersih timer pada mode penyesuaian dengan pembanding ( CTC ), dan dua tipe mode Pulse Width Modulation ( PWM ).

12 Tabel 2.2 Deskripsi Bit Mode Pembangkit Bentuk Gelombang. catatan: definisi nama-nama bit CTC0 dan PWM0 sekarang tidak digunakan lagi. Gunakan WGM 01: 0 definisi. Bagaimanapun lokasi dan fungsional dan lokasi dari masing-masing bit sesuai dengan versi timer sebelumnya. Bit 5:4 COMO1:0 Penyesuaian Pembanding Mode Output Bit ini mengontrol pin output compare (OCO), jika satu atau kedua bit COM01:0 diset, output OC0 melebihi fungsional port normal I/O dan keduanya terhubung juga. Bagaimanapun, catatan bahwa bit Direksi Data Register (DDR) mencocokan ke pin OC0 yang mana harus diset dengan tujuan mengaktifkan. Ketika OC0 dihubungkan ke pin, fungsi dari bit COM01:0 tergantung dari pengesetan bit WGM01:0. Tabel di bawah menunjukkan COM fungsional ketika bit-bt WGM01:0 diset ke normal atau mode CTC (non PWM). Tabel 2.3 Mode Output Pembanding, tanpa PWM Tabel 2.4 menunjukan bit COM01:0 fungsional ketika bit WGM01:0 diset ke mode fast PWM.

13 Tabel 2.4 Mode Output Pembanding, Mode fast PWM. Tabel 2.5 menunjukan bit COM01:0 fungsional ketika bit WGM01:0 diset ke mode phase correct PWM. Tabel 2.5 Mode Output Pembanding, Mode phase correct PWM. Bit 2:0 CS02:0 : Clock Select Tiga bit clock select sumber clock digunakan dengan timer/counter. Jika mode pin eksternal digunakan untuk timer counter0, perpindahan dari pin T0 akan memberi clock counter. Tabel 2.6 Deskripsi bit clock select

14 Sesuai dengan tabel diatas maka sumber clock dapat dibagi sehingga timer/counter dapat disesuaikan dengan banyak data yang dihitung. Register Timer/Counter TCNT0 : Gambar 2.9 Register timer TCNT0 Register timer/counter memberikan akses secara langsung, keduanya digunakan untuk membaca dan menulis operasi, untuk penghitung unit 8-bit timer/counter. Menulis ke blok-blok register TCNT0 (removes) disesuaikan dengan clock timer berikutnya. Memodifikasi counter (TCNT0) ketika perhitungan berjalan, memperkenalkan resiko kehilangan perbandingan antara TCNC0 dengan register OCR0. Register Timer/Counter OCR0 Gambar 2.10 Register timer OCR0 Register output pembanding berisi sebuah haraga 8 bit yang mana secara terus-menerus dibandingkan dengan harga counter (TCNT0). Sebuah penyesuaian dapat digunakan untuk membangkitkan output interrupt pembanding, atau untuk membangkitkan sebuah output bentuk gelombang pada pin OC0.

15 B. Register Timer/Counter Interrupt Mas 1. Bit 1-OCIE0: output timer counter menyesuaikan dengan kesesuaian interrupt yang aktif. Ketika bit OCIE0 ditulis satu, dan 1-bit pada register status dalam kondisi set (satu), membandingkan timer/counter pada interrupt yang sesuai diaktifkan. Mencocokkan interrupt yang dijalankan kesesuaian pembanding pada timer/counter0 terjadi, ketika bit OCF0 diset pada register penanda timer/counter-tifr. 2. Bit 0 TOIE0: Timer/Counter 0 Overflow Interrupt Enable Ketika bit TOIE0 ditulis satu, dan 1-bit pada register status dalam kondisi set (satu), timer/counter melebihi interrupt diaktifkan. Mencocokkan interrupt dijalankan jika kelebihan pada timer/counter0 terjadi, ketika bit TOV0 diset pada register penanda timer/counter- TIFR. Register Timer/Counter Register TIFR Gambar 2.11 Register timer TIFR 3. Bit 1 OCF0: Output Compare Flag 0 OCF0 dalam kondisi set (satu) kesesuaian pembanding terjadi antara timer/counter dan data pada OCRO Register 0 keluaran pembanding. OCF0 diclear oleh hardware ketika eksekusi pencocokan penanganan vector interrupt. Dengan alternatif mengclearkan OCF0 dengan menuliskan logika satu pada flag. Ketika I-bit

16 pada SREG, OCIE0 (Timer/Counter0 penyesuaian pembanding interrupt enable), dan OCF0 diset (satu), timer/counter pembanding kesesuaian interrupt dijalankan. 4. Bit 0 TOV0: Timer/Counter Overflow Flag Bit TOV0 diset (satu) ketika kelebihan terjadi pada timer/counter0. TOV0 diclearkan dengan hardware ketika penjalanan pencocokan penanganan vector interrupt. Dengan alternatif, TOV0 diclearkan dengan jalan memberikan logika satu pada flag. Ketika Ibit pada SREG, TOIE0 (Timer/Counter0 overflow interrupt enable), dan TOV0 diset (satu ), timer/counter overflow interrupt dijalankan. Pada tahap mode PWM yang tepat, bit ini di set ketika timer/counter merubah bagian perhitungan pada $ Serial pada ATMega16 Universal synchronous dan asynchronous pemancar danpenerima serial adalah suatu alat komunikasi serial sangat fleksibel. Jenis yang utama adalah : a) Operasi full duplex (register penerima dan pengirim serial dapat berdiri sendiri). b) Operasi Asychronous atau synchronous. c) Master atau slave mendapat clock dengan operasi synchronous. d) Pembangkit baud rate dengan resolusi tinggi. e) Dukung frames serial dengan 5, 6, 7, 8 atau 9 Data bit dan 1 atau 2 Stop bit. f) Tahap odd atau even parity dan parity check didukung oleh hardware. g) Pendeteksian data overrun. h) Pendeteksi framing error.

17 i) Pemfilteran gangguan (noise) meliputi pendeteksian bit false start dan pendeteksian low pass filter digital. j) Tiga interrupt terdiri dari TX complete, TX data register empty dan RX complete. k) Mode komunikasi multi-processor. l) Mode komunikasi double speed asynchronous. D. Generator Clock Logic generator clock menghasilkan dasar clock untuk pengirim dan penerima. USART mendukung empat mode operasi clock: Normal Asynchronous, Double Speed Asynchronous mode Master Synchronous dan Slave Synchronous. Bit UMSEL pada USART control dan status register C (UCSRC) memilih antara operasi Asychronous dan Synchronous. Double speed (hanya pada mode Asynchronou ) dikontrol oleh U2X yang mana terdapat pada register UCSRA. Ketika mengunakan mode operasi synchronous (UMSEL = 1) dan data direction register untuk pin XCk (DDR_XCK) mengendalikan apakah sumber clock tersebut adalah internal (master mode) atau eksternal (slave mode) pin-pin XCK hanya akan aktif ketika menggunakan mode Synchronous. Gambar 2.12 Blok diagram clock generator logic.

18 Keterangan sinyal : txclk : clock pengirim (internal clock). rxclk : clock dasar penerima (internal clock). xcki : input dari pin XCK (sinyal internal). Digunakan untuk operasi slave synchronous. xcko : clock output ke pin XCK (sinyal internal). Digunakan untuk operasi master synchronous. fosc : frekuensi pin XTAL (system clock). Generator Internal Clock Pembangkit Baud rate Generasi internal clock digunakan untuk mode mode operasi master asynchronous dan synchronous. Register USART baud rate (UBRR) dan downcounter dikoneksikan kepada fungsinya sebagai programmable prescaler atau pembangkit baud rate. Down-counter, dijalankan pada system clock ( fosc), dibebani dengan nilai UBRR setiap counter telah dihitung mundur ke nol atau ketika register UBRRL ditulisi. Clock dibangkitkan setiap counter mencapai nol. Clock ini adalah pembangkit baud rate clock output (fosc/( UBBR+1)). Pemancar membagi baud rete generator clock output dengan 2, 8, atau 16 cara tergantung pada mode. Pembangkit output baud rate digunakan secara langsung oleh penerima clock dan unit-unit pelindung data. Unit-unit recovery menggunakan suatu mesin status yang menggunakan 2, 8, atau 16 cara yang tergantung pada cara menyimpan status dari UMSEL, bit-bit U2X dan DDR_XCK.

19 Tabel di bawah menunjukan penyamaan perhitungan baud rate dan nilai UBRR tiap mode operasi mengunakan sumber pembangkit clock internal. Tabel 2.7 Persamaan untuk menyeting perhitungan register baud rate. note: baud rate menunjukan pengiriman rate bit tiap detik (bps). BAUD :baud rate ( pada bit-bit per detik,bps ) fosc frekuensi sistem clock osilator. UBRR : terdiri dari UBRRH dan UBBRL,( ). Eksternal Clock Eksternal clock digunakan untuk operasi mode slave synchronous. Eksternal clock masuk dari pin XCK dicontohkan oleh suatu daftar sinkronisasi register untuk memperkecil kesempatan meta-stabilitas. Keluaran dari sinkronisasi register kemudian harus menerobos detector tepi sebelum digunakan oleh pengirim dan penerima. Proses ini mengenalkan dua period delay clock CPU dan oleh karena itu maksimal frekuensi clock XCK eksternal dibatasi oleh persamaan sebagai berikut Fxck < fosc/4 Keterangan: fosc tergantung pada stabilitas sistem sumber clock.

20 Operasi Synchronous Clock Ketika mode sinkron digunakan (UMSEL=1), pin XCK akan digunakan sama seperti clock input (slave) atau clock output (master). Dengan ketergantungan antara tepi clock dan data sampling atau perubahan data menjadi sama. Prinsip dasarnya adalah data input (on RxD) dicontohkan pada clock XCK berlawanan dari tepi data output (TxD) sehingga mengalami perubahan. Gambar 2.13 Operasi synchronous Clock UCPOL bit UCRSC memilih tepi yang mana clock XCK digunakan untuk data sampling dan yang mana digunakan untuk perubahan data. Seperti yang ditunjukan pada gambar di atas, ketika UCPOL nol data akan diubah pada tepi kenaikan XCK dan dicontohkan pada tepi XCK saat jatuh. Jika UCPOL dalam kondisi set, data akan mengalami perubahan pada saat tepi XCK jatuh dan data akan dicontohkan pada saat tepi XCK naik. E. Inisialisasi USART USART harus diinisialisasi sebelum komunikasi manapun dapat berlangsung. Proses inisialisasi normalnya terdiri dari pengesetan baud rate, penyetingan frame format dan pengaktifan pengirim atau penerima tergantung pada pemakaian. Untuk

21 interrupt menjalankan operasi USART, global interrupt flag (penanda) sebaiknya dibersihkan (dan interrupt global disable) ketika inisialisasi dilakukan. Sebelum melakukan inisialisasi ulang dengan mengubah baud rate atau frame format, untuk meyakinkan bahwa tidak ada transmisi berkelanjutan sepanjang periode register yang diubah. Flag TXC dapat digunakan untuk mengecek bahwa pemancar telah melengkapi semua pengiriman, dan flag RXC dapat digunakan untuk mengecek bahwa tidak ada data yang tidak terbaca pada buffer penerima. Tercatat bahwa flag TXC harus dibersihkan sebelum tiap transmisi (sebelum UDR ditulisi) jika itu semua digunakan untuk tujuan tersebut. 2.3 Solar Cell / Solar Panel Pembangkit Listrik Tenaga Surya (PLTS), adalah pembangkit yang memanfaatkan sinar matahari sebagai sumber penghasil listrik. Alat utama untuk menangkap, perubah dan penghasil listrik adalah Photovoltaic atau yang disebut secara umum Modul / Panel Solar Cell. Dengan alat tersebut sinar matahari dirubah menjadi listrik melalui proses aliran-aliran elektron negatif dan positif didalam cell modul tersebut karena perbedaan electron. Hasil dari aliran elektron-elektron akan menjadi listrik DC yang dapat langsung dimanfatkan untuk mengisi battery / aki sesuai tegangan dan ampere yang diperlukan. Rata-rata produk modul solar cell yang ada dipasaran menghasilkan tegangan 12 s/d 18 VDC dan ampere antara 0.5 s/d 7 Ampere. Modul juga memiliki kapasitas beraneka ragam mulai kapsitas 10 Watt Peak s/d 200 Watt Peak juga memiliki type cell monocrystal dan polycrystal. Komponen inti dari sistem PLTS ini meliputi peralatan : Modul Solar Cell, Regulator / controller,

22 Battery / Aki, Inverter DC to AC, Beban / Load. Secara sederhana solar cell terdiri dari persambungan bahan semikonduktor bertipe p dan n (p-n junction semiconductor) yang jika tertimpa sinar matahari maka akan terjadi aliran electron, nah aliran electron inilah yang disebut sebagai aliran arus listrik. Sedangkan struktur dari solar cell adalah seperti ditunjukkan dalam gambar di bawah ini. Gambar 2.14 Struktur lapisan tipis solar sel secara umum. Bagian utama perubah energi sinar matahari menjadi listrik adalah absorber (penyerap), meskipun demikian, masing-masing lapisan juga sangat berpengaruh terhadap efisiensi dari solar cell. Sinar matahari terdiri dari bermacam-macam jenis gelombang elektromagnetik yang secara spectrum dapat dilihat pada gambar Oleh karena itu absorber disini diharapkan dapat menyerap sebanyak mungkin solar radiation yang berasal dari cahaya matahari.

23 Gambar 2.15 Spektrum radiasi sinar matahari. Lebih detail lagi bisa dijelaskan sinar matahari yang terdiri dari photon-photon, jika menimpa permukaaan bahan solar sel (absorber), akan diserap, dipantulkan atau dilewatkan begitu saja (lihat gambar 2.16), dan hanya foton dengan level energi tertentu yang akan membebaskan electron dari ikatan atomnya, sehingga mengalirlah arus listrik. Level energi tersebut disebut energi band-gap yang didefinisikan sebagai sejumlah energi yang dibutuhkan utk mengeluarkan electron dari ikatan kovalennya sehingga terjadilah aliran arus listrik. Untuk membebaskan electron dari ikatan kovalennya, energi foton (hc/v harus sedikit lebih besar atau diatas daripada energi band-gap. Jika energi foton terlalu besar dari pada energi band-gap, maka extra energi tersebut akan dirubah dalam bentuk panas pada solar sel. Karenanya sangatlah penting pada solar sel untuk mengatur bahan yang dipergunakan, yaitu dengan memodifikasi struktur molekul dari semikonduktor yang dipergunakan.

24 Gambar 2.16 Radiative transition of solar cell. Tentu saja agar efisiensi dari solar cell bisa tinggi maka foton yang berasal dari sinar matahari harus bisa diserap yang sebanyak banyaknya, kemudian memperkecil refleksi dan remombinasi serta memperbesar konduktivitas dari bahannya. Untuk bisa membuat agar foton yang diserap dapat sebanyak banyaknya, maka absorber harus memiliki energi band-gap dengan range yang lebar, sehingga memungkinkan untuk bisa menyerap sinar matahari yang mempunyai energi sangat bermacam-macam tersebut. Salah satu bahan yang sedang banyak diteliti adalah CuInSe 2 yang dikenal merupakan salah satu dari direct semiconductor. Gambar 2.17 direct semiconductor.

25 Dari begitu banyak keuntungan solar cell seperti telah diuraikan diatas ternyata tidak polemik tidak kemudian berhenti begitu saja, masih ada yang mengatakan memang benar solar cell ketika melakukan proses perubahan energi tidak ada polusi yang dihasilkan, tetapi sudahkah kita menghitung berapa besar polusi yang telah dihasilkan dalam proses pembuatannya, dibandingkan kecilnya efisiensi yang dihasilkan. Nah tantangannya disini adalah memang bagaimana untuk menaikkan efisiensi, yang tentunya akan berdampak kepada nilai ekonomisnya. 2.4 Baterai Aki Kering Baterai adalah suatu proses kimia listrik, dimana pada saat pengisian/cas/charge energi listrik diubah menjadi kimia dan saat pengeluaran/discharge energi kimia diubah menjadi energi listrik. Baterai terdiri dari sel-sel dimana tiap sel memiliki tegangan sebesar 2 V, artinya aki mobil dan aki motor yang memiliki tegangan 12 V terdiri dari 6 sel yang dipasang secara seri (12 V = 6 x 2 V) sedangkan aki yang memiliki tegangan 6 V memiliki 3 sel yang dipasang secara seri (6 V = 3 x 2 V). Antara satu sel dengan sel lainnya dipisahkan oleh dinding penyekat yang terdapat dalam bak baterai, artinya tiap ruang pada sel tidak berhubungan karena itu cairan elektrolit pada tiap sel juga tidak berhubungan (dinding pemisah antar sel tidak boleh ada yang bocor/merembes). Di dalam satu sel terdapat susunan pelat pelat yaitu beberapa pelat untuk kutub positif (antar pelat dipisahkan oleh kayu, ebonit atau plastik, tergantung teknologi yang digunakan) dan beberapa pelat untuk kutub negatif. Bahan aktif dari plat positif terbuat dari oksida timah coklat (PbO 2 ) sedangkan bahan aktif dari plat negatif ialah timah (Pb) berpori

26 (seperti bunga karang). Pelat-pelat tersebut terendam oleh cairan elektrolit yaitu asam sulfat (H 2 SO 4 ). A. Saat baterai mengeluarkan arus 1. Oksigen (O) pada pelat positif terlepas karena bereaksi/bersenyawa/bergabung dengan hidrogen (H) pada cairan elektrolit yang secara perlahan-lahan keduanya bergabung/berubah menjadi air (H 2 0). 2. Asam (SO 4 ) pada cairan elektrolit bergabung dengan timah (Pb) di pelat positif maupun pelat negatif sehigga menempel dikedua pelat tersebut. Reaksi ini akan berlangsung terus sampai isi (tenaga baterai) habis alias dalam keadaan discharge. Pada saat baterai dalam keadaan discharge maka hampir semua asam melekat pada pelat-pelat dalam sel sehingga cairan eletrolit konsentrasinya sangat rendah dan hampir melulu hanya terdiri dari air (H 2 O), akibatnya berat jenis cairan menurun menjadi sekitar 1,1 kg/dm 3 dan ini mendekati berat jenis air yang 1 kg/dm 3. Sedangkan baterai yang masih berkapasitas penuh berat jenisnya sekitar 1,285 kg/dm 3. Nah, dengan perbedaan berat jenis inilah kapasitas isi baterai bisa diketahui apakah masih penuh atau sudah berkurang yaitu dengan menggunakan alat hidrometer. Hidrometer ini merupakan salah satu alat yang wajib ada di bengkel aki (bengkel yang menyediakan jasa setrum/cas aki). Selain itu pada saat baterai dalam keadaan discharge maka 85% cairan elektrolit terdiri dari air (H 2 O) dimana air ini bisa membeku, bak baterai pecah dan pelat-pelat menjadi rusak.

27 Ilustrasi baterai dalam keadaan terisi penuh Ilustrasi baterai saat mengeluarkan arus Ilustrasi baterai dalam keadaan tak terisi (discharge) Air memiliki berat jenis 1 kg/dm 3 (1 kg per 1000 cm 3 atau 1 liter) dan asam sulfat memiliki berat jenis 1,285 kg/dm 3 pada suhu 20 derajat Celcius. kg = kilogram. dm 3 = decimeter kubik = liter. cm 3 = centimeter kubik / cc (centimeter cubic). 1 dm = 1 liter = 1000 cm 3 = 1000 cc. B. Saat baterai menerima arus Baterai yang menerima arus adalah baterai yang sedang disetrum/dicas alias sedang diisi dengan cara dialirkan listrik DC, dimana kutup positif baterai dihubungkan dengan arus listrik positif dan kutub negatif dihubungkan dengan arus listrik negatif. Tegangan yang dialiri biasanya sama dengan tegangan total yang dimiliki baterai, artinya baterai 12 V dialiri tegangan 12 V DC, baterai 6 V dialiri tegangan 6 V DC, dan dua baterai 12 V yang dihubungkan secara seri dialiri tegangan

28 24 V DC (baterai yang duhubungkan seri total tegangannya adalah jumlah dari masing-maing tegangan baterai: Voltase 1 + Voltase 2 = Voltase total ). Hal ini bisa ditemukan di bengkel aki dimana ada beberapa baterai yang duhubungkan secara seri dan semuanya disetrum sekaligus. Berapa kuat arus (ampere) yang harus dialiri bergantung juga dari kapasitas yang dimiliki baterai tersebut (penjelasan tentang ini bisa ditemukan di bagian bawah). Konsekuensinya, proses penerimaan arus ini berlawanan dengan proses pengeluaran arus, yaitu : 1. Oksigen (O) dalam air (H 2 O) terlepas karena bereaksi/bersenyawa/bergabung dengan timah (Pb) pada pelat positif dan secara perlahan-lahan kembali menjadi oksida timah colat (PbO 2 ). 2. Asam (SO 4 ) yang menempel pada kedua pelat (pelat positif maupun negatif) terlepas dan bergabung dengan hidrogen (H) pada air (H 2 O) di dalam cairan elektrolit dan kembali terbentuk menjadi asam sulfat (H 2 SO 4 ) sebagai cairan elektrolit. Akibatnya berat jenis cairan elektrolit bertambah menjadi sekitar 1,285 (pada baterai yang terisi penuh). C. Cairan elektrolit Pelat-pelat baterai harus selalu terendam cairan elektrolit, sebaiknya tinggi cairan elektrolit 4-10 mm diatas bagian tertinggi dari pelat. Bila sebagian pelat tidak terendam cairan elektrolit maka bagian pada pelat yang tidak terendam tersebut akan langsung berhubungan dengan udara akibatnya bagian tersebut akan rusak dan tak dapat dipergunakan dalam suatu reaksi kimia yang diharapkan, contoh, sulfat tidak bisa lagi menempel pada bagian dari pelat yang rusak, sebab itu bisa ditemukan

29 konsentrasi sulfat yang sangat tinggi dari ruang sel yang sebagian pelatnya sudah rusak akibat sulfat yang sudah tidak bisa lagi bereaksi dengan bagian yang rusak dari pelat. Oleh karena itu kita harus memeriksa tinggi cairan elektrolit dalam baterai kendaraan bermotor setidaknya 1 bulan sekali (kalau perlu tiap 2 minggu sekali agar lebih aman) karena senyawa dari cairan elektrolit bisa menguap terutama akibat panas yang terjadi pada proses pengisian (charging), misalnya pengisian yang diberikan oleh alternator. Bagaimana jika cairan terlalu tinggi? Ini juga tidak baik karena cairan elektrolit bisa tumpah melalui lubang-lubang sel (misalnya pada saat terjadi pengisian) dan dapat merusak benda-benda yang ada disekitar baterai akibat korosi, misalnya sepatu kabel, penyangga/dudukan baterai, dan bodi kendaraan akan terkorosi, selain itu proses pendinginan dari panasnya cairan elektrolit baterai oleh udara yang ada dalam sel tidak efisien akibat kurangnya udara yang terdapat di dalam sel, dan juga asam sulfat akan berkurang karena tumpah keluar; bila asam sulfat berkurang dari volume yang seharusnya maka kapasitas baterai tidak akan maksimal karena proses kimia yang terjadi tidak dalam keadaan optimal sehingga tenaga/kapasitas yang bisa diberikan akan berkurang, yang sebelumnya bisa menyuplai -katakanlah- 7 ampere dalam satu jam menjadi kurang dari 7 ampere dalam satu jam, yang sebelumnya bisa memberikan pasokan tenaga sampai - katakanlah- 1 jam kini kurang dari 1 jam isi/tenaga baterai sudah habis. D. Kapasitas baterai Kapasitas baterai adalah jumlah ampere jam (Ah = kuat arus/ampere x waktu/hour), artinya baterai dapat memberikan/menyuplai sejumlah isinya secara

30 rata-rata sebelum tiap selnya menyentuh tegangan/voltase turun (drop voltage) yaitu sebesar 1,75 V (ingat, tiap sel memiliki tegangan sebesar 2 V; jika dipakai maka tegangan akan terus turun dan kapasitas efektif dikatakan sudah terpakai semuanya bila tegangan sel telah menyentuh 1,75 V). Misal, baterai 12 V 75 Ah. Baterai ini bisa memberikan kuat arus sebesar 75 Ampere dalam satu jam artinya memberikan daya rata-rata sebesar 900 Watt (Watt = V x I = Voltase x Ampere = 12 V x 75 A). Secara hitungan kasar dapat menyuplai alat berdaya 900 Watt selama satu jam atau alat berdaya 90 Watt selama 10 jam, walaupun pada kenyataannya tidak seperti itu (dijelaskan di bawah ini). Kembali ke kapasitas baterai, pada kendaraan bermotor kapasitas ini bisa dianalogikan sebagai volume maksimal tangki bahan bakar namun yang membuat berbeda adalah kapasitas pada baterai bisa berubah-ubah dari nilai patokannya, jadi mirip tangki bahan bakar mobil yang bahannya terbuat dari karet. Sebagai ilustrasi saya beri contoh balon karet, isinya bisa besar jika terus dimasukkan udara atau bisa juga kecil jika udara yang ditiup sedikit saja. Nah, kapasitas baterai juga tidak tetap, mirip contoh balon karet tadi, dimana ada tiga faktor yang menentukan besar kecilnya kapasitas baterai yaitu : 1. Jumlah bahan aktif Makin besar ukuran pelat yang bersentuhan dengan cairan elektrolit maka makin besar kapasitasnya; makin banyak pelat yang bersentuhan dengan cairan elektrolit maka makin besar kapasitasnya. Jadi untuk mendapatkan kapasitas yang besar luas pelat dan banyaknya pelat haruslah ditingkatkan, dengan catatan bahwa pelat haruslah terendam oleh cairan elektrolit. Dari sini

31 Anda kembali bisa menyadari betapa pentingnya bagi pelat-pelat agar terendam oleh cairan elektrolit karena bagian dari pelat yang tidak terendam sama sekali tidak akan berfungsi bagi peningkatan kapasitas. 2. Temperatur Makin rendah temperatur (makin dingin) maka makin kecil kapasitas baterai saat digunakan karena reaksi kimia pada suhu yang rendah makin lambat tidak peduli apakah arus yang digunakan tinggi atapun rendah. Kapasitas baterai biasanya diukur pada suhu tertentu, biasanya 25 derajat Celcius. 3. Waktu dan arus pengeluaran Pengeluaran lambat (berupa pengeluaran arus yang rendah) mengakibatkan waktu pengeluaran juga diperpanjang alias kapasitas lebih tinggi. Kapasitas yang dinyatakan untuk baterai yang umum pemakaiannya pada pengeluaran tertentu, biasanya 20 jam. Contoh: Baterai 12 V 75 Ah bisa dipakai selama 20 jam jika kuat arus rata-rata yang digunakan dalam 1 jam adalah 3,75 Ampere (75 Ah / 20 h), sedangkan bila digunakan sebesar 5 Ampere maka waktu pemakaian bukannya 15 jam (75 Ah / 5 A) tapi lebih kecil yaitu 14 jam, sedangkan pada penggunaan Ampere yang jauh lebih besar, yaitu 7,5 Ampere maka waktu pemakaian bukan 10 jam (75 A / 7,5 A) tapi hanya 7 jam. Hal ini bisa menjadi jawaban bagi mereka yang menggunakan UPS, misal 500 VA atau 500 Watt.hour, yang mana baterai UPS hanya bertahan lebih kurang 5-15 menit untuk komputer yang memerlukan daya 250 Watt, padahal kalau berdasarkan hitungan kasar seharusnya bisa bertahan selama 2 jam (500

32 Watt.hour / 250 Watt). Saya beri satu contoh nyata, sebuah aki kering 12 V dan 18 Ah mencantumkan nilai spesifikasi sebagai berikut : 20 0,9 A = 18 A. 5 3,06 A = 15,3 A. 1 10,8 A = 10,8 A. 1/2 18 A = 9 A. 2.5 Liquid Crystal Display (LCD) LCD merupakan salah satu komponen penting dalam pembuatan tugas akhir ini karena LCD dapat menampilkan perintah-perintah yang harus dijalankan oleh pemakai.lcd mempunyai kemampuan untuk menampilkan tidak hanya angka, huruf abjad, kata-kata tapi juga simbol-simbol. Jenis dan ukuran LCD bermacam-macam, antara lain 2x16, 2x20, 2x40, dan lain-lain. LCD mempunyai dua bagian penting yaitu backlight yang berguna jika digunakan pada malam hari dan contrast yang berfungsi untuk mempertajam tampilan Gambar 2.18 Bentuk fisik LCD 2x16 karakter

33 Tabel 2.8 Fungsi pin LCD Fungsi dari masing masing pin pada LCD adalah pin pertama dan kedua merupakan pin untuk tegangan suplai sebesar 5 volt, untuk pin ketiga harus ditambahkan resistor variabel 4K7 atau 5K ke pin ini sebagai pengatur kontras tampilan yang diinginkan.

34 Pin keempat berfungsi untuk memasukkan input command atau input data, jika ingin memasukkan input command maka pin 4 diberikan logic low (0), dan jika ingin memasukkan input data maka pin 4 diberikan logic high (1). Fungsi pin kelima untuk read atau write, jika diinginkan untuk membaca karakter data atau status informasi dari register (read) maka harus diberi masukan high (1), begitu pula sebaliknya untuk menuliskan karakter data (write) maka harus diberi masukan low (0). Pada pin ini dapat dihubungkan ke ground bila tidak diinginkan pembacaan dari LCD dan hanya dapat digunakan untuk mentransfer data ke LCD. Pin keenam berfungsi sebagai enable, yaitu sebagai pengatur transfer command atau karakter data ke dalam LCD. Untuk menulis ke dalam LCD data ditransfer waktu terjadi perubahan dari high ke low, untuk membaca dari LCD dapat dilakukan ketika terjadi transisi perubahan dari low ke high. Pin-pin dari nomor 7 sampai 14 merupakan data 8 bit yang dapat ditransfer dalam 2 bentuk yaitu 1 kali 8 bit atau 2 kali 4 bit, pin-pin ini akan langsung terhubung ke pin-pin mikrokontroler sebagai input/output. Untuk pin nomor berfungsi sebagai backlight. 2.6 ADC 0804 ADC (Analog Digital Converter) merupakan pengubah data analog menjadi data digital. Yang mana ADC ini akan sangat berguna apabila kita ingin menggunakan data analog sebagai masukan untuk sistem kita dengan cara mengubahnya terlebih dahulu ke data digital. ADC 0804 merupakan salah satu dari

35 sekian banyak pengubah data analog menjadi data digital. Mungkin ADC ini sudah ketinggalan dibandingkan ADC lainnya yang sudah banyak beredar dipasaran, tetapi maksud saya memposting tulisannya ini hanya untuk berbagi ilmu saya pada saat saya mengerjakan tugas akhir saya beberapa waktu yang lalu. Saya pikir ADC jenis 0804 ini merupakan ADC yang simpel dan mudah digunakan dibandingkan dengan jenis ADC lainnya. ADC 0804 ini mempunyai 20 pin dengan konfigurasi seperti gambar berikut: Gambar 2.19 Gambar skema ADC 0804 Pada ADC 0804, pin merupakan pin keluaran digital yang dapat dihubungkan langsung dengan bus data-alamat. Apabila pin /CS atau pin /RD dalam keadaan tinggi, pin 11 sampai pin 18 akan mengambang. Apabila /CS dan /RD rendah keduanya, keluaran digital akan muncul pada saluran keluaran. Untuk memulai suatu konversi, /CS harus rendah. Bilamana /WR menjadi rendah, konverter akan mengalami reset dan ketika /WR kembali pada keadaan tinggi, konversi segera dimulai. Pin 5 adalah saluran untuk /INTR, sinyal selesai konversi. /INTR akan

36 menjadi tinggi pada saat memulai konversi, dan dibuat aktif rendah bilamana konversi telah selesai. Pin 6 dan 7 adalah masukan diferensial yang membandingkan dua masukan sinyal analog. Jenis masukan ini memungkinkan pemilihan bentuk masukan, yaitu mentanahkan pin 7 untuk masukan positif bersisi-tunggal (singleended positif input), atau mentanahkan pin 6 untuk masukan negatif bersisi-tunggal (single-ended negatif input), atau mengaktifkan kedua pin untuk masukan diferensial. Piranti ini mempunyai 2 ground, A GND dan D GND yang terletak pada pin 8 dan 10. Keduanya harus digroundkan. Pin 20 disambungkan dengan catu tegangan yang sebesar +5V. Dalam ADC 0804, Vref merupakan tegangan masukan analog maksimum, yaitu tegangan yang menghasilkan suatu keluaran digital maksimum FFH. Bila pin 9 tidak dihubungkan (tidak dipakai), VREF berharga sama dengan tegangan catu VCC. Ini berarti bahwa catu tegangan +5V memberikan jangkauan masukan analog dari 0 sampai +5V bagi masukan positif yang bersisi-tunggal. Pada ADC 0804 ini, terdapat dua jenis prinsip didalam melakukan konversi, yaitu free running dan mode control. Pada mode free running, ADC akan mengeluarkan data hasil pembacaan input secara otomatis dan berkelanjutan (continue). Pada mode ini pin INTR akan berlogika rendah setelah ADC selesai melakukan konversi, logika ini dihubungkan kepada masukan WR untuk memerintahkan ADC memulai konversi kembali. Prinsip yang kedua yaitu mode control, pada mode ini ADC baru akan memulai konversi setelah diberi instruksi dari mikrokontroler. Instruksi ini dilakukan dengan memberikan pulsa rendah kepada

37 masukan WR sesaat + 1ms, kemudian membaca keluaran data ADC setelah keluaran INTR berlogika rendah. Untuk sistem pengontrolan level permukaan air ini karena level permukaan air harus terus dimonitor, maka ADC menggunakan prinsip free running sehingga tegangan dari sensor dapat terus dikonversi secara terus menerus. Untuk menerapkan free running mode ini maka pin WR harus dihubungkan dengan pin INTR. ADC 0804 yang penulis gunakan ini memerlukan tegangan referensi sebesar 2,5 V agar dapat bekerja. Maka untuk tegangan referensinya ini dihasilkan dari keluaran dioda referensi LM336. Sedangkan untuk sinyal clocknya dihasilkan dari kapasitor 150 ρf dan resistor 10 KΩ. Rangkaian ini memerlukan tegangan masukan sebesar 5 VDC untuk bekerja, yang mana tegangan ini diambil dari catu daya 5 VDC yang telah dirancang. Adapun rangkaian dari ADC 0804 ini dapat dilihat pada Gambar 2.20 berikut ini : Gambar 2.20 Gambar rangkaian ADC 0804

38 BAB III ANALISIS DAN PERANCANGAN SISTEM Pada bab ini merupakan bagian perencanaan dan bagian pembuatan perangkat lunak (software) dan perangkat keras (hardware), yang akan dibahas tentang langkah-langkah perencanaan dan pembuatan tugas akhir, yang merupakan pokok bahasan utama dalam pembuatan tugas akhir ini. 3.1 Analisis Sistem Pada bab ini, dibuat perancangan dan pembuatan dari alat pembangkit listrik yang menggunakan tenaga matahari yang diujicobakan pada protipe persimpangan traffic light berbasis mikrokontroler dengan menggunakan mikrokontroler AVR ATMega16. Bagian pembuatan perangkat lunak meliputi pemograman pada mikrokontroler, sedangkan untuk bagian pembuatan perangkat keras yang meliputi perangkat mekanik serta perangkat elektronik. Pembuatan perangkat mekanik terdiri dari desain mengenai protipe itu sendiri yaitu pembuatan miniatur persimpangan traffic light berbasis mikrokontroler. Sedangkan pembuatan perangkat keras pembuatan elektronik terdiri dari pembuatan rangkaian sistem mikrokontroler, rangkaian pengisian pada baterai aki melalui solar panel, rangkaian pengaturan waktunya pada traffic light. Pada umumnya di persimpangan traffic light kebanyakan masih menggunakan tenaga listrik yang dimiliki oleh PLN. Dimana disini percobaan pembuatan pembangkit listrik yang menggunakan solar panel atau solar cell berbasis 45

39 46 mikrokontroler, didalam percobaan ini dimana rangkain yang berbasis mikrokontroler dan menggunakan solar panel dan baterai aki yang bertugas sebagai penyimpanan cadangan listrik yang juga akan mengatur jalan lampu pada traffic light dan rangkain ini akan mengatur waktu kapan merah, kuning atau hijau harus menyala. 3.2 Perancangan Sistem Sub bab ini menjelaskan mengenai proses desain perangkat lunak yang akan dibuat dan hardware yang digunakan. Proses desain sistem dalam sub-bab ini akan dibagi menjadi beberapa tahap yaitu: alur umum sistem, spesifikasi kebutuhan sistem, alur umum, flowchart, perancangan data, perancangan antarmuka dan perancangan hardware. Aplikasi ini merupakan sistem yang akan menjalankan rangkain prototipe pembangkit listrik menggunakan tenaga surya yang diujicobakan pada traffic light. Dimana solar panel akan mendapatkan sinar dari matahari yang menghasilkan tegangan listrik fungsinya untuk menghidupkan semua rangkaian dan baterai aki akan menampung tegangan tersebut sebagai tenaga cadangan Alur Umum Sistem Pada rancangan umum dari aplikasi ini adalah memanfaatkan sumber tenaga matahari sebagai pembangkit listrik yang diterapkan pada protipe traffic light. Pembuatan rangkaian prototipe traffic light menggunakan tenaga matahari ini dengan pengoperasian berbasis mikrokontroler Atmega16 terdiri dari 2 bagian yaitu pembuatan perangkat keras (hardware) dan perangkat lunak (software).

40 47 Gambar umum tugas akhir ini dapat dilihat dari gambar 3.1. Solar cell Mikrokontroler ATMega16 Baterai Aki Miniatur Perempatan traffic light Gambar 3.1 Diagram alur prototipe. Cara kerja dari protipe traffic light berbasis mikrokontroler adalah solar panel mengisi tenaga pada baterai aki setelah itu menuju mikrokontroler dan dari mikrokontroler menuju pada miniatur traffic light. Apabila tegangan pada baterai aki telah penuh maka solar panel langsung menuju mikrokontroler untuk memberikan tegangan dan selanjutnya ke miniatur traffic light Blok Diagram Perancangan blok diagram pada rangkain ini untuk memberikan pemberitahuan suply tenaga solar panel, dimana solapr panel sebagai sumber utama dari pemberian tenaga pada rangkain ini. Solar panel akan memberikan tegangan listrik pada baterai, perhatikan pada gambar 3.2 : Solar cell mikro Traffic light baterai Gambar 3.2 Blok Diagram Suply Solar Cell.

41 Flowchart Rangkain Perancangan flowchart digunakan untuk menggambarkan sejumlah proses terstruktur dalam sistem, berorientasikan pada aliran proses yang terjadi. Demi memudahkan pembaca orang awam dalam mengerti isi dari aplikasi ini, seperti gambar 3.3 : Start m1 = 1 h1 = 0 m2 = 0 h2 = 1 k1 = 0 k2 = 0 Delay 5 detik m1 = 1 k2 = 1 m2 = 0 h1 = 0 k1 = 0 h2 = 0 Delay 2 detik m1 = 0 k2 = 0 m2 = 1 h1 = 1 k1 = 0 h2 = 0 Delay 5 detik m1 = 0 k2 = 0 m2 = 1 h1 = 0 k1 = 1 h2 = 0 Delay 2 detik m1 = 1 k2 = 0 m2 = 0 h2 = 0 k1 = 0 h2 = 1 Stop Gambar 3.3 Flowchart Alur Mikrokontrolel.

42 Kebutuhan Perancangan Hardware Dalam pembuatan inkubator ini komponen-komponen yang dibutuhkan adalah sebagai berikut: Mikrokontoler ATmega16 1. Solar panel. 2. Baterai aki kering. 3. Relay. 4. Pararel Port. 3.3 Cara Merancang Alat Cara merancang prototipe traffic light menggunakan tenaga matahari berbasis mikrokontroler bukanlah suatu hal yang mudah dan tidak dapat dilakukan oleh banyak kalangan. Dalam menjalani Tugas Akhir ini penulis ingin memaparkan bagaimana cara merancang alat ini. Pertama, membeli semua komponen-komponen yang diperlukan dalam pembuatan rangakain prototipe ini. Setelah membeli semua komponennya, kemudian mendesign miniaturnya. Kedua, setelah mendesign alat, kemudian merakit komponen-komponen yang sudah ada ke PCB (Printed Circuit Board). Setelah itu untuk menyatukan rangkaian komponen dan motor diperlukan sebuah akrilik sebagai rangka dari mesin ini. Ketiga, untuk menghubungkan Mikrokontroler ke ke komputer maka digunakan pararel port sebagai penghubungnya.

43 50 Keempat, menguji coba hasil keseluruhan rangkaian prototipr traffic light dengan mengoneksikan antara solar panel, baterai aki serta mikro itu sendiri dan menjalankannya.

44 BAB IV IMPLEMENTASI SISTEM DAN ANALISA Pada Bab IV ini akan dibahas mengenai implementasi dari rancangan sistem yang telah dibuat pada bab III. Bagian implementasi sistem kali ini meliputi implementasi hardware, implementasi proses dan uji coba alat. 4.1 Implementasi Hardware Dalam pembuatan perangkat lunak prototipe traffic light menggunakan tenaga surya berbasis mikrokontroler ini, dibutuhkan suatu alat yang berguna sebagai peraga sistem yang telah dibuat agar dapat mengetahui cara kerja sistem secara keseluruhan dan untuk memastikan apakah sistem telah berjalan sesuai perancangan, agar hardware dapat bekerja Rangkaian Mikrokontroler Berikut ini adalah ganbaran rangakain dari mikrokontroler yang terdapat pada protipe traffic light menggunakan tenaga surya berbasis mikrokontroler, dimana pada rangkain terdapat bagian-bagian sebagai berikut : 1. Pembagi tegangan ADC. 2. Terdapat dua riley. 3. Dan mikrokontroler itu sendiri yang akan mengatur pembagian tegangan dari solar panel ke baterai dan rangkain, mengatur pembagian waktu delay pada traffic light dan mengatur arus yang keluar dari solar panel ke baterai dengan 51

45 52 memberikan keterangan persentase kapasitas tenaga dalam baterai, seperti gambar 4.1 : Gambar 4.1 Rangkaian Mikrokontroler Implementasi Miniatur Pembuatan miniatur prototipe traffic light menggunakan tenaga surya berbasis mikrokontroler ini digunakan untuk memberikan simulasi bagaimana cara kerja lampu traffic light pada persimpangan lampu merah, sehingga dapat diketahui bagaimana kinerja dari mesin tersebut jika keadaan yang sebenarnya. Pembuatan miniatur ini sendiri menggunakan vahar dasar dari papan triplek yang sedikit tebal dengan panjang ± 1 m, dan lebar ± 50 cm. Desain dari miniatur ini berbentuk persegi panjang dimana di dalam tersebut terdapat solar panel, baterai aki kering 7 ampere dan rangkaian mikrokontroler yang akan dapat mengatur lampu traffic light yang disumlisasikan pada perempatan jalan dan juga akan menampilkan

46 53 persentase kapasitas jumlah tenaga listrik pada baterai. Berikut ini gambar prototipe traffic light menggunakan tenaga surya : Gambar 4.2 Prototipe Traffic Light Menggunakan Tenaga Matahari. 4.2 Implementasi Proses Bagian implementasi proses ini menjelaskan mengenai implementasi prosesproses sebagaimana rancangan sistem yang telah dibuat pada bab III seperti yang telah digambarkan dalam flowchart.

47 Implementasi Proses Baterai Pada proses aplikasi baterai ini terdapat dua port untuk membagi memberikan tegangan pada kapasitas baterai. Port tersebut untuk memberikan tegangan listrik pada baterai melalui solar panel, apabila baterai berada pada posisi 25% maka sistem akan secara otomatis untuk mengisi kapasitas pada baterai setelah mencapai 100% sistem akan memutus pengisian pada baterai dan solar panel memberikan tegangan langsung ke rangkaian mikrokontroler, seperti contoh coding gambar 4.3 untuk pembagian solar panel ke baterai dan rangkaian mikro : if(prosen<25) { PORTA.2=1; } else { PORTA.2=0; } Gambar 4.3 Source Code Kapasitas Tegangan Dan di bawah ini untuk tampilan pada LCD berapa persen kapasitas tegangan yang terdapat pada baterai, berikut penggalan codingnya : { batt=read_adc(0); flot=batt - 55; prosen=flot / 2; sprintf(buff,"aki= %d %c",prosen,37); lcd_gotoxy(0,0); lcd_puts(buff); Gambar 4.4 Source Code Tampilan Kapasitas Baterai.

48 Implementasi 7 Segment Pada proses 7 segment ini terjadi proses prosedur mengeluarkan 7 segment untuk tampilan waktu, dimana dalam aplikasi ini dideklarasikan menjadi 10 bagian 0 sampai dengan 9 dan pada setiap bagiannya terdapat 9 variabel A sampai H dan satunya lagi adalah.(dot). Dalam bagian tersebut dan variabelnya akan ada bernilai bilangan 1 dan 0 yang berarti jika 1 lampu mati dan 0 lampu hidup. Seperti codingan gambar 4.5 dan 4.6 : void satu() { A=1; B=0; C=0; D=1; E=1; F=1; G=1; DP=1; } void dua() { A=0; B=0; C=1; D=0; E=0; F=1; G=0; DP=1; } void tiga() { A=0; B=0; C=0; D=0; E=1; Gambar 4.5 Source Code Untuk Mengeluarkan 7 Segment.

49 56 Gambar 4.6 Tampilan 7 Segment Implementasi Waktu Bagian proses aplikasi waktu ini menjelaskan mengenai pembagian waktu yang diberikan untuk lampu traffic light perempatan jalan. Diproses ini dibagi menjadi dua jalur jalan yaitu jalur satu dan jalur dua. Pada saat jalur satu lampu traffic light berwarna merah maka lampu traffic light di jalur dua akan berwarna hijau dan selanjutnya akan seperti itu sesuai dengan keadaan pada pembagian waktu jalur satu dan jalur dua. Pada waktunya sendiri terbagi menjadi 10 digit dari 0 sampai 9, jadi batas atas itu adalah 9 dan batas bawah itu adalah 0. Demikian coding pembagian waktu dan gambar lampu traffic light dan waktunya : sembilan(); hijau1=1; kuning1=0; merah1=0; hijau2=0; kuning2=0; merah2=1; delay_ms(500); l () Gambar 4.7 Source Code Untuk Jalur 1 Merah Jalur 2 Hijau.

50 57 sembilan(); hijau1=0; kuning1=0; merah1=1; hijau2=1; kuning2=0; merah2=0; delay_ms(500); lapan(); hijau1=0; kuning1=0; merah1=1; hijau2=1; kuning2=0; merah2=0; Gambar 4.8 Source Code Untuk jalur 1 Hijau Jalur 2 Merah. dua(); hijau1=0; kuning1=1; merah1=0; hijau2=0; kuning2=1; merah2=0; delay_ms(500); satu(); hijau1=0; kuning1=1; merah1=0; hijau2=0; kuning2=1; merah2=0; delay_ms(500); nol(); hijau1=0; kuning1=1; merah1=0; hijau2=0; kuning2=1; merah2=0; dl (500) Gambar 4.9 Source Code Untuk Lampu Warna Kuning.

51 58 Gambar 4.10 Lampu Traffic Light dan Waktu. 4.3 Uji Coba Alat Setelah pembuatan protipe traffic light menggunakan tenaga matahari ini yang menggunakan berbasis mikrokontroler selesai, tahap berikutnya adalah proses pengujian dan pembahasan tentang kinerja dari alat ini. Pengujian ini dilakukan untuk mengetahui cara kerja dan fungsi dari masing-masing komponen utama serta mengetahui cara pengoperasian dari alat ini Pengujian Solar Panel atau Solar Cell Pengujian solar panel sebagai komponen penting pembangkit listrik tenaga surya ini yang mengubah sinar matahari menjadi tenaga listrik. Umumnya menghitung maksimum sinar matahari yang diubah menjadi tenaga listrik sepanjang hari adalah 5 jam. Tenaga listrik pada pagi hari sore disimpan dalam baterai yang telah disiapkan, sehingga listrik dapat digunakan pada malam hari, dimana tanpa sinar matahari. Karena pembangkit listrik tenaga surya sangat tergantung kepada

MENGENAL MIKROKONTROLER AVR ATMega16

MENGENAL MIKROKONTROLER AVR ATMega16 MENGENAL MIKROKONTROLER AVR ATMega16 Mokh. Sholihul Hadi m_sholihul_hadi@yahoo.com Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas untuk tujuan

Lebih terperinci

BAB III TEORI PENUNJANG. arsitektur Reduced Instruction Set Computer (RISC). Hampir semua instruksi

BAB III TEORI PENUNJANG. arsitektur Reduced Instruction Set Computer (RISC). Hampir semua instruksi BAB III TEORI PENUNJANG Pada bab tiga penulis menjelaskan tentang teori penunjang kerja praktek yang telah dikerjakan. 3.1 Mikrokontroler ATMega16 AVR merupakan seri mikrokontroler CMOS 8-bit buatan Atmel,

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari perangkat keras maupun perangkat lunak dari setiap modul yang dipakai pada skripsi ini. 3.1. Perancangan dan

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Jenis Mikrokontroler AVR dan spesifikasinya Flash adalah suatu jenis Read Only Memory yang biasanya diisi dengan program

Lebih terperinci

MENGENAL MIKROKONTROLER ATMEGA-16

MENGENAL MIKROKONTROLER ATMEGA-16 MENGENAL MIKROKONTROLER ATMEGA-16 AVR merupakan seri mikrokontroler CMOS 8-bit buatan Atmel, berbasis arsitektur RISC (Reduced Instruction Set Computer). Hampir semua instruksi dieksekusi dalam satu siklus

Lebih terperinci

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor Sistem Minimum Mikrokontroler TTH2D3 Mikroprosesor MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang memiliki

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 1.1 Penelitian Terdahulu Sebagai bahan pertimbangan dalam penelitian ini akan dicantumkan beberapa hasil penelitian terdahulu : Penelitian yang dilakukan oleh Universitas Islam

Lebih terperinci

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED 3.1. Rancang Bangun Perangkat Keras Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar 3.1. Sistem ini terdiri dari komputer, antarmuka

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Dalam perancangan sistem otomatisasi pemakaian listrik pada ruang belajar berbasis mikrokontroler terdapat beberapa masalah yang harus

Lebih terperinci

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di BAB III TEORI PENUNJANG 3.1. Microcontroller ATmega8 Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di dalamnya terkandung sebuah inti proccesor, memori (sejumlah kecil RAM, memori

Lebih terperinci

Mikrokontroler AVR. Hendawan Soebhakti 2009

Mikrokontroler AVR. Hendawan Soebhakti 2009 Mikrokontroler AVR Hendawan Soebhakti 2009 Tujuan Mampu menjelaskan arsitektur mikrokontroler ATMega 8535 Mampu membuat rangkaian minimum sistem ATMega 8535 Mampu membuat rangkaian downloader ATMega 8535

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)

Lebih terperinci

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 Ringkasan Pendahuluan Mikrokontroler Mikrokontroler = µp + Memori (RAM & ROM) + I/O Port + Programmable IC Mikrokontroler digunakan sebagai komponen pengendali

Lebih terperinci

Sistem Mikrokontroler FE UDINUS

Sistem Mikrokontroler FE UDINUS Minggu ke 2 8 Maret 2013 Sistem Mikrokontroler FE UDINUS 2 Jenis jenis mikrokontroler Jenis-jenis Mikrokontroller Secara teknis, hanya ada 2 macam mikrokontroller. Pembagian ini didasarkan pada kompleksitas

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat

BAB 3 PERANCANGAN SISTEM. Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat BAB 3 PERANCANGAN SISTEM Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat pengukur tinggi bensin pada reservoir SPBU. Dalam membuat suatu sistem harus dilakukan analisa mengenai

Lebih terperinci

RANGKAIAN PROTOTIPE SISTEM PENGATURAN PADA TRAFFIC LIGHT MENGGUNAKAN TENAGA SURYA SEBAGAI PEMBANGKIT LISTRIK. BERBASIS MIKROKONTROLER AVR ATMega16

RANGKAIAN PROTOTIPE SISTEM PENGATURAN PADA TRAFFIC LIGHT MENGGUNAKAN TENAGA SURYA SEBAGAI PEMBANGKIT LISTRIK. BERBASIS MIKROKONTROLER AVR ATMega16 RANGKAIAN PROTOTIPE SISTEM PENGATURAN PADA TRAFFIC LIGHT MENGGUNAKAN TENAGA SURYA SEBAGAI PEMBANGKIT LISTRIK BERBASIS MIKROKONTROLER AVR ATMega16 TUGAS AKHIR Disusun Oleh : CHARLES S YEFTA SOUISA NPM.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Sensor MLX 90614[5]

BAB II DASAR TEORI. Gambar 2.1 Sensor MLX 90614[5] BAB II DASAR TEORI Dalam bab ini dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan skripsi yang dibuat. Teori-teori yang digunakan dalam pembuatan skripsi ini adalah sensor

Lebih terperinci

DAFTAR ISI. Daftar Pustaka P a g e

DAFTAR ISI. Daftar Pustaka P a g e DAFTAR ISI Halaman I. DASAR TEORI Mikrokontroler ATmega16 1. Pengertian Mikrokontroler... 2 2. Arsitektur ATmega16... 2 3. Konfigurasi Pena (PIN) ATmega16... 4 4. Deskripsi PIN Mikrokontroler ATmega16...

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS 3.1. Pendahuluan Perangkat pengolah sinyal yang dikembangkan pada tugas sarjana ini dirancang dengan tiga kanal masukan. Pada perangkat pengolah sinyal

Lebih terperinci

BAB II KONSEP DASAR PERANCANGAN

BAB II KONSEP DASAR PERANCANGAN BAB II KONSEP DASAR PERANCANGAN Pada bab ini akan dijelaskan konsep dasar sistem keamanan rumah nirkabel berbasis mikrokontroler menggunakan modul Xbee Pro. Konsep dasar sistem ini terdiri dari gambaran

Lebih terperinci

BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN

BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN Konsep dasar sistem monitoring tekanan ban pada sepeda motor secara nirkabel ini terdiri dari modul sensor yang terpasang pada tutup pentil ban sepeda

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini membahas perencanaan dan pembuatan dari alat yang akan dibuat yaitu Perencanaan dan Pembuatan Pengendali Suhu Ruangan Berdasarkan Jumlah Orang ini memiliki 4 tahapan

Lebih terperinci

MIKROKONTROLER AT89S52

MIKROKONTROLER AT89S52 MIKROKONTROLER AT89S52 Mikrokontroler adalah mikroprosessor yang dirancang khusus untuk aplikasi kontrol, dan dilengkapi dengan ROM, RAM dan fasilitas I/O pada satu chip. AT89S52 adalah salah satu anggota

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Setelah memahami penjelasan pada bab sebelumnya yang berisi tentang metode pengisian, dasar sistem serta komponen pembentuk sistem. Pada bab ini akan diuraikan mengenai perancangan

Lebih terperinci

Praktikum Mikrokontroler. untuk D4 Lanjut Jenjang. Disiapkan oleh: Hary Oktavianto

Praktikum Mikrokontroler. untuk D4 Lanjut Jenjang. Disiapkan oleh: Hary Oktavianto Praktikum Mikrokontroler untuk D4 Lanjut Jenjang Disiapkan oleh: Hary Oktavianto Politeknik Elektronika Negeri Surabaya 2010 Aturan Praktikum Agar praktikum dapat berjalan dengan lancar dan tertib, praktikan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari perangkat keras maupun perangkat lunak dari setiap modul yang dipakai pada skripsi ini. 3.1. Perancangan dan

Lebih terperinci

Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol)

Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol) BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler Mikrokontroler merupakan keseluruhan sistem komputer yang dikemas menjadi sebuah chip di mana di dalamnya sudah terdapat Mikroprosesor, I/O Pendukung, Memori

Lebih terperinci

BAB II LANDASAN TEORI Defenisi Umum Solar Cell

BAB II LANDASAN TEORI Defenisi Umum Solar Cell 4 BAB II LANDASAN TEORI 2.1. Defenisi Umum Solar Cell Photovoltaic adalah teknologi yang berfungsi untuk mengubah atau mengkonversi radiasi matahari menjadi energi listrik secara langsung. Photovoltaic

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C.

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C. BAB II DASAR TEORI 2.1 ARDUINO Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai bidang.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Mikrokontroler Atmega8535 Mikrokontroler adalah IC yang dapat diprogram berulang kali, baik ditulis atau dihapus (Agus Bejo, 2007). Biasanya digunakan untuk pengontrolan otomatis

Lebih terperinci

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. secara otomatis. Sistem ini dibuat untuk mempermudah user dalam memilih

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. secara otomatis. Sistem ini dibuat untuk mempermudah user dalam memilih BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM 3.1 Model Penelitian Pada perancangan tugas akhir ini menggunakan metode pemilihan locker secara otomatis. Sistem ini dibuat untuk mempermudah user dalam

Lebih terperinci

BAB III DESKRIPSI MASALAH

BAB III DESKRIPSI MASALAH BAB III DESKRIPSI MASALAH 3.1 Perancangan Hardware Perancangan hardware ini meliputi keseluruhan perancangan, artinya dari masukan sampai keluaran dengan menghasilkan energi panas. Dibawah ini adalah diagram

Lebih terperinci

BAB II DASAR TEORI 2.1. Mikrokontroler AVR ATmega32

BAB II DASAR TEORI 2.1. Mikrokontroler AVR ATmega32 BAB II DASAR TEORI Pada bab ini akan menerangkan beberapa teori dasar yang mendukung terciptanya skripsi ini. Teori-teori tersebut antara lain mikrokontroler AVR ATmega32, RTC (Real Time Clock) DS1307,

Lebih terperinci

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut.

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut. Arsitektur mikrokontroler MCS-51 diotaki oleh CPU 8 bit yang terhubung melalui satu jalur bus dengan memori penyimpanan berupa RAM dan ROM serta jalur I/O berupa port bit I/O dan port serial. Selain itu

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 dilakukan di Laboratorium Konversi Energi Elektrik dan Laboratorium

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1PHOTODIODA Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan

BAB II TINJAUAN PUSTAKA. 2.1PHOTODIODA Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan 4 BAB II TINJAUAN PUSTAKA 2.1PHOTODIODA Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan dioda biasa, komponen elektronika ini akan mengubah cahaya menjadi arus listrik. Cahaya

Lebih terperinci

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 21 BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 3.1 Gambaran umum Perancangan sistem pada Odometer digital terbagi dua yaitu perancangan perangkat keras (hardware) dan perangkat lunak (software). Perancangan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan BAB 3 PERANCANGAN SISTEM Konsep dasar mengendalikan lampu dan komponen komponen yang digunakan pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan perancangan sistem

Lebih terperinci

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu BAB II LANDASAN TEORI 2.1. Perangkat Keras Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu perangkat keras (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil pilihan.

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari alat akuisisi data termokopel 8 kanal. 3.1. Gambaran Sistem Alat yang direalisasikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Karbon Monoksida (CO) Karbon monoksida merupakan gas yang tidak berwarna, tidak berbau, tidak berasa, tidak mudah larut dalam air, tidak menyebabkan iritasi, beracun dan berbahaya

Lebih terperinci

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, dimana

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, dimana BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino Uno R3 adalah papan pengembangan mikrokontroler yang berbasis chip ATmega328P. Arduino Uno memiliki 14 digital pin input / output (atau biasa ditulis I/O,

Lebih terperinci

BAB III PERENCANAAN DAN REALISASI

BAB III PERENCANAAN DAN REALISASI BAB III PERENCANAAN DAN REALISASI 3.1 Perancangan Blok Diaram Metode untuk pelaksanaan Program dimulai dengan mempelajari sistem pendeteksi kebocoran gas pada rumah yang akan digunakan. Dari sini dikembangkan

Lebih terperinci

BAB IV PEMBAHASAN. waktu tertentu. Dimana alat tersebut dapat dioperasikan melalui komputer serta

BAB IV PEMBAHASAN. waktu tertentu. Dimana alat tersebut dapat dioperasikan melalui komputer serta 41 BAB IV PEMBAHASAN 4.1 Proses Kerja Sistem Pencacah Nuklir Sistem Pencacah Nuklir adalah sebuah alat yang digunakan untuk mencacah intensitas radiasi yang ditangkap oleh detektor nuklir dalam selang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Minimum AVR USB Sistem minimum ATMega 8535 yang didesain sesederhana mungkin yang memudahkan dalam belajar mikrokontroller AVR tipe 8535, dilengkapi internal downloader

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Sensor TGS 2610 merupakan sensor yang umum digunakan untuk mendeteksi adanya

BAB 2 TINJAUAN TEORITIS. Sensor TGS 2610 merupakan sensor yang umum digunakan untuk mendeteksi adanya 10 BAB 2 TINJAUAN TEORITIS 2.1 Sensor TGS 2610 2.1.1 Gambaran umum Sensor TGS 2610 merupakan sensor yang umum digunakan untuk mendeteksi adanya kebocoran gas. Sensor ini merupakan suatu semikonduktor oksida-logam,

Lebih terperinci

Mikrokontroler 89C51 Bagian II :

Mikrokontroler 89C51 Bagian II : Mikrokontroler 89C51 Bagian II : Mikrokontroler 89C51 Mikrokontroler 89C51 merupakan mikrokomputer CMOS 8 bit dengan 4 Kbytes Flash Programmable Memory. Arsitektur 89C51 ditunjukkan pada gambar 2. Accumulator

Lebih terperinci

BAB II DASAR TEORI. Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang algoritma.

BAB II DASAR TEORI. Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang algoritma. BAB II DASAR TEORI Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang algoritma. 2.1. Mikrokontroler ATMega 128 Mikrokontroler merupakan sebuah sistem komputer

Lebih terperinci

ARSITEKTUR MIKROKONTROLER AT89C51/52/55

ARSITEKTUR MIKROKONTROLER AT89C51/52/55 ARSITEKTUR MIKROKONTROLER AT89C51/52/55 A. Pendahuluan Mikrokontroler merupakan lompatan teknologi mikroprosesor dan mikrokomputer. Mikrokontroler diciptakan tidak semata-mata hanya memenuhi kebutuhan

Lebih terperinci

BAB IV HASIL PENGUKURAN DAN PENGUJIAN ALAT SISTEM PENGONTROL BEBAN DAYA LISTRIK

BAB IV HASIL PENGUKURAN DAN PENGUJIAN ALAT SISTEM PENGONTROL BEBAN DAYA LISTRIK BAB IV HASIL PENGUKURAN DAN PENGUJIAN ALAT SISTEM PENGONTROL BEBAN DAYA LISTRIK 4.1 Pengukuran Alat Pengukuran dilakukan untuk melihat apakah rangkaian dalam sistem yang diukur sesuai dengan spesifikasi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Ethanol

BAB II DASAR TEORI. 2.1 Ethanol BAB II DASAR TEORI 2.1 Ethanol Ethanol yang kita kenal dengan sebutan alkohol adalah hasil fermentasi dari tetes tebu. Dari proses fermentasi akan menghasilkan ethanol dengan kadar 11 12 %. Dan untuk menghasilkan

Lebih terperinci

ABSTRAK. Kata kunci: Solar Cell, Media pembelajaran berbasis web, Intensitas Cahaya, Beban, Sensor Arus dan Tegangan PENDAHULUAN

ABSTRAK. Kata kunci: Solar Cell, Media pembelajaran berbasis web, Intensitas Cahaya, Beban, Sensor Arus dan Tegangan PENDAHULUAN Rancang Bangun Sistem Kontrol dan Monitoring Sel Surya dengan Raspberry Pi Berbasis Web Sebagai Sarana Pembelajaran di Akademi Teknik dan Penerbangan Surabaya Hartono Indah Masluchah Program Studi Diploma

Lebih terperinci

TUGAS AKHIR SIMULATOR PENGHITUNG JUMLAH ORANG PADA PINTU MASUK DAN KELUAR GEDUNG

TUGAS AKHIR SIMULATOR PENGHITUNG JUMLAH ORANG PADA PINTU MASUK DAN KELUAR GEDUNG TUGAS AKHIR SIMULATOR PENGHITUNG JUMLAH ORANG PADA PINTU MASUK DAN KELUAR GEDUNG Diajukan Guna Melengkapi Sebagian Syarat Dalam mencapai gelar Sarjana Strata Satu (S1) Disusun Oleh : Nama : Dian Kardianto

Lebih terperinci

DAFTAR ISI LEMBAR PENGESAHAN... LEMBAR PERSETUJUAN... PERNYATAAN KEASLIAN... ABSTRAK... ABSTRACT... KATA PENGANTAR... vii DAFTAR ISI...

DAFTAR ISI LEMBAR PENGESAHAN... LEMBAR PERSETUJUAN... PERNYATAAN KEASLIAN... ABSTRAK... ABSTRACT... KATA PENGANTAR... vii DAFTAR ISI... DAFTAR ISI LEMBAR PENGESAHAN... LEMBAR PERSETUJUAN... PERNYATAAN KEASLIAN... ABSTRAK... ABSTRACT... i ii iv v vi KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR GAMBAR... xii DAFTAR TABEL... xiv DAFTAR SINGKATAN...

Lebih terperinci

Sistem Tertanam. Pengantar Atmega328 dan Arduino Uno. Dennis Christie - Universitas Gunadarma

Sistem Tertanam. Pengantar Atmega328 dan Arduino Uno. Dennis Christie - Universitas Gunadarma Sistem Tertanam Pengantar Atmega328 dan Arduino Uno 1 Arsitektur Atmega328 Prosesor atau mikroprosesor adalah suatu perangkat digital berupa Chip atau IC (Integrated Circuit) yang digunakan untuk memproses

Lebih terperinci

ADC (Analog to Digital Converter)

ADC (Analog to Digital Converter) ADC (Analog to Digital Converter) Analog to Digital Converter (ADC) adalah sebuah piranti yang dirancang untuk mengubah sinyal-sinyal analog menjadi sinyal sinyal digital. IC ADC 0804 dianggap dapat memenuhi

Lebih terperinci

BAB III PERENCANAAN DAN PEMBUATAN ALAT

BAB III PERENCANAAN DAN PEMBUATAN ALAT BAB III PERENCANAAN DAN PEMBUATAN ALAT 3.1. Gambaran Umum Merupakan alat elektronika yang memiliki peranan penting dalam memudahkan pengendalian peralatan elektronik di rumah, kantor dan tempat lainnya.

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR II. TINJAUAN PUSTAKA A. Mikrokontroler ATmega8535 Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR (Alf and Vegard s Risc Processor) yang diproduksi oleh Atmel Corporation.

Lebih terperinci

BAB III PERANCANGAN PERANGKAT KERAS MOBILE-ROBOT

BAB III PERANCANGAN PERANGKAT KERAS MOBILE-ROBOT BAB III PERANCANGAN PERANGKAT KERAS MOBILE-ROBOT 3.1. Perancangan Sistem Secara Umum bawah ini. Diagram blok dari sistem yang dibuat ditunjukan pada Gambar 3.1 di u(t) + e(t) c(t) r(t) Pengontrol Plant

Lebih terperinci

BAB III LANDASAN TEORI. digunakan seperti MCS51 adalah pada AVR tidak perlu menggunakan oscillator

BAB III LANDASAN TEORI. digunakan seperti MCS51 adalah pada AVR tidak perlu menggunakan oscillator BAB III LANDASAN TEORI 3.1 Microcontroller Atmega 8 AVR merupakan salah satu jenis mikrokontroler yang di dalamnya terdapat berbagai macam fungsi. Perbedaannya pada mikro yang pada umumnya digunakan seperti

Lebih terperinci

BAB III PERENCANAAN DAN REALISASI

BAB III PERENCANAAN DAN REALISASI BAB III PERENCANAAN DAN REALISASI 3.1 PERANCANGAN UMUM SISTEM Metode untuk pelaksanaan Program dimulai dengan mempelajari system pengukuran tangki air yang akan digunakan. Dari sini dikembangkan apa saja

Lebih terperinci

BAB II TINJAUAN PUSTAKA. [10]. Dengan pengujian hanya terbatas pada remaja dan didapatkan hasil rata-rata

BAB II TINJAUAN PUSTAKA. [10]. Dengan pengujian hanya terbatas pada remaja dan didapatkan hasil rata-rata BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Sebelumnya pernah dilakukan penelitian terkait dengan alat uji kekuatan gigit oleh Noviyani Agus dari Poltekkes Surabaya pada tahun 2006 dengan judul penelitian

Lebih terperinci

Analisa Kinerja Sensor Suhu NTC dan LM35 Dalam Sistem Pendeteksian Suhu Ruangan Berbasis Mikrokontroler AVR ATmega 16

Analisa Kinerja Sensor Suhu NTC dan LM35 Dalam Sistem Pendeteksian Suhu Ruangan Berbasis Mikrokontroler AVR ATmega 16 Analisa Kinerja Sensor Suhu NTC dan LM35 Dalam Sistem Pendeteksian Suhu Ruangan Berbasis Mikrokontroler AVR ATmega 16 Yunidar 1 *, Alfisyahrin 2 dan Yuli Rahmad 3 1 Program Studi Teknik Elektro Universitas

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Bab ini menguraikan perancangan mekanik, perangkat elektronik dan perangkat lunak untuk membangun Pematrian komponen SMD dengan menggunakan conveyor untuk indutri kecil dengan

Lebih terperinci

TAKARIR. Akumulator Register yang digunakan untuk menyimpan semua proses aritmatika

TAKARIR. Akumulator Register yang digunakan untuk menyimpan semua proses aritmatika TAKARIR AC (Alternating Current) Adalah sistem arus listrik. Sistem AC adalah cara bekerjanya arus bolakbalik. Dimana arus yang berskala dengan harga rata-rata selama satu periode atau satu masa kerjanya

Lebih terperinci

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah BAB IV CARA KERJA DAN PERANCANGAN SISTEM 4.1 Diagram Blok Sistem Blok diagram dibawah ini menjelaskan bahwa ketika juri dari salah satu bahkan ketiga juri diarea pertandingan menekan keypad pada alat pencatat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 16 BAB II LANDASAN TEORI 2.1. Sensor Optocoupler Optocoupler adalah suatu piranti yang terdiri dari 2 bagian yaitu transmitter dan receiver, yaitu antara bagian cahaya dengan bagian deteksi sumber cahaya

Lebih terperinci

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan BAB III PERANCANGAN ALAT 3.1 PERANCANGAN PERANGKAT KERAS Setelah mempelajari teori yang menunjang dalam pembuatan alat, maka langkah berikutnya adalah membuat suatu rancangan dengan tujuan untuk mempermudah

Lebih terperinci

III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar

III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar 28 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar dan Laboratorium Pemodelan Jurusan Fisika Universitas Lampung. Penelitian

Lebih terperinci

BAB III PEMBUATAN ALAT Tujuan Pembuatan Tujuan dari pembuatan alat ini yaitu untuk mewujudkan gagasan dan

BAB III PEMBUATAN ALAT Tujuan Pembuatan Tujuan dari pembuatan alat ini yaitu untuk mewujudkan gagasan dan BAB III PEMBUATAN ALAT 3.. Pembuatan Dalam pembuatan suatu alat atau produk perlu adanya sebuah rancangan yang menjadi acuan dalam proses pembuatanya, sehingga kesalahan yang mungkin timbul dapat ditekan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Produk yang Sejenis 2.1.1 Produk Sejenis Alat ukur tekanan ban yang banyak ditemukan dipasaran dan paling banyak digunakan adalah manometer. Manometer adalah alat ukur tekanan

Lebih terperinci

LAPORAN PRAKTIKUM MIKROKONTROLLER UNIVERSAL SYNCHRONOUS AND ASYNCHRONOUS SERIAL RECEIVER TRANSMITTER (USART)

LAPORAN PRAKTIKUM MIKROKONTROLLER UNIVERSAL SYNCHRONOUS AND ASYNCHRONOUS SERIAL RECEIVER TRANSMITTER (USART) LAPORAN PRAKTIKUM MIKROKONTROLLER UNIVERSAL SYNCHRONOUS AND ASYNCHRONOUS SERIAL RECEIVER TRANSMITTER (USART) Oleh : Mei Rahayu Puspitasari 1541160040 JTD 2B JARINGAN TELEKOMUNIKASI DIGITAL JURUSAN TEKNIK

Lebih terperinci

BAB III LANDASAN TEORI. Kinerja tinggi, rendah daya Atmel AVR 8-bit Microcontroller Instruksi Powerfull - Kebanyakan Single-jam Siklus Eksekusi

BAB III LANDASAN TEORI. Kinerja tinggi, rendah daya Atmel AVR 8-bit Microcontroller Instruksi Powerfull - Kebanyakan Single-jam Siklus Eksekusi BAB III LANDASAN TEORI 3.1 Microcontroller ATMega32 Fitur Kinerja tinggi, rendah daya Atmel AVR 8-bit Microcontroller Advanced RISC Arsitektur - 131 Instruksi Powerfull - Kebanyakan Single-jam Siklus Eksekusi

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI ALAT

BAB III PERANCANGAN DAN REALISASI ALAT BAB III PERANCANGAN DAN REALISASI ALAT Pada bab ini akan dibahas mengenai perancangan sistem dan realisasi perangkat keras dan perangkat lunak dari setiap modul yang mendukung alat secara keseluruhan.

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM 22 BAB 3 PERANCANGAN SISTEM Pada bab ini akan dijelaskan keseluruhan dari sistem atau alat yang dibuat. Secara keseluruhan sistem ini dibagi menjadi dua bagian yaitu perangkat keras yang meliputi komponen

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PEANCANGAN DAN PEMBUATAN ALAT 3.1. Pendahuluan Dalam Bab ini akan dibahas pembuatan seluruh sistem perangkat yang ada pada Perancangan Dan Pembuatan Alat Aplikasi pengendalian motor DC menggunakan

Lebih terperinci

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O,

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino Uno R3 adalah papan pengembangan mikrokontroler yang berbasis chip ATmega328P. Arduino Uno memiliki 14 digital pin input / output (atau biasa ditulis I/O,

Lebih terperinci

oleh : Syaifullah Agus Setyo Nugroho Dosen Pembimbing : 1. Dr.Ir Achmad Affandi, DEA 2. Ir. Gatot Kusrahardjo, MT

oleh : Syaifullah Agus Setyo Nugroho Dosen Pembimbing : 1. Dr.Ir Achmad Affandi, DEA 2. Ir. Gatot Kusrahardjo, MT RANCANG BANGUN SISTEM PEMANTAUAN POSISI PADA BAND ISM oleh : Syaifullah Agus Setyo Nugroho 2206 100 613 Dosen Pembimbing : 1. Dr.Ir Achmad Affandi, DEA 2. Ir. Gatot Kusrahardjo, MT Latar Belakang Perkembangan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Pengertian Umum Sistem yang dirancang adalah sistem yang berbasiskan mikrokontroller dengan menggunakan smart card yang diaplikasikan pada Stasiun Kereta Api sebagai tanda

Lebih terperinci

BAB III MIKROKONTROLER

BAB III MIKROKONTROLER BAB III MIKROKONTROLER Mikrokontroler merupakan sebuah sistem yang seluruh atau sebagian besar elemennya dikemas dalam satu chip IC, sehingga sering disebut single chip microcomputer. Mikrokontroler merupakan

Lebih terperinci

BAB III PERENCANAAN. 3.1 Perencanaan Secara Blok Diagram

BAB III PERENCANAAN. 3.1 Perencanaan Secara Blok Diagram BAB III PERENCANAAN Pada bab ini penulis akan menjelaskan lebih rinci mengenai perencanaan dalam pembuatan alat. Penulis membuat rancangan secara blok diagram sebagai pembahasan awal. 3.1 Perencanaan Secara

Lebih terperinci

3.2. Tempat Penelitian Penelitian dan pengujian alat dilakukan di lokasi permainan game PT. EMI (Elektronik Megaindo) Plaza Medan Fair.

3.2. Tempat Penelitian Penelitian dan pengujian alat dilakukan di lokasi permainan game PT. EMI (Elektronik Megaindo) Plaza Medan Fair. BAB III METODOLOGI PENELITIAN 3.1. Metode Penelitian Dalam penulisan tugas akhir ini metode yang digunakan dalam penelitian adalah : 1. Metode Perancangan Metode yang digunakan untuk membuat rancangan

Lebih terperinci

Gambar 3.1. Diagram alir metodologi perancangan

Gambar 3.1. Diagram alir metodologi perancangan 19 BAB 3 METODOLOGI PERANCANGAN 3.1. Metode Perancangan Berikut merupakan diagram alur kerja yang menggambarkan tahapantahapan dalam proses rancang bangun alat pemutus daya siaga otomatis pada Peralatan

Lebih terperinci

BAB V PENGUJIAN DAN ANALISIS. dapat berjalan sesuai perancangan pada bab sebelumnya, selanjutnya akan dilakukan

BAB V PENGUJIAN DAN ANALISIS. dapat berjalan sesuai perancangan pada bab sebelumnya, selanjutnya akan dilakukan BAB V PENGUJIAN DAN ANALISIS Pada bab ini akan diuraikan tentang proses pengujian sistem yang meliputi pengukuran terhadap parameter-parameter dari setiap komponen per blok maupun secara keseluruhan, dan

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan dan implementasi timbangan digital daging ayam beserta harga berbasis mikrokontroler ini terdapat beberapa masalah yang harus

Lebih terperinci

BAB III PERANCANGAN SISTEM. sebuah alat pemroses data yang sama, ruang kerja yang sama sehingga

BAB III PERANCANGAN SISTEM. sebuah alat pemroses data yang sama, ruang kerja yang sama sehingga BAB III PERANCANGAN SISTEM 3.1. Blok Diagram Sistem Untuk dapat membandingkan LM35DZ dengan DS18B20 digunakan sebuah alat pemroses data yang sama, ruang kerja yang sama sehingga perbandinganya dapat lebih

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM 3.1 RANCANGAN PERANGKAT KERAS 3.1.1. DIAGRAM BLOK SISTEM Gambar 3.1 Diagram Blok Sistem Thermal Chamber Mikrokontroler AT16 berfungsi sebagai penerima input analog dari sensor

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR...

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR... ABSTRAKSI... TAKARIR... DAFTAR ISI... DAFTAR TABEL...

Lebih terperinci

BAB III DESKRIPSI DAN PERANCANGAN SISTEM

BAB III DESKRIPSI DAN PERANCANGAN SISTEM BAB III DESKRIPSI DAN PERANCANGAN SISTEM 3.1. DESKRIPSI KERJA SISTEM Gambar 3.1. Blok diagram sistem Satelit-satelit GPS akan mengirimkan sinyal-sinyal secara kontinyu setiap detiknya. GPS receiver akan

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN APLIKASI

BAB III PERANCANGAN DAN PEMBUATAN APLIKASI BAB III PERANCANGAN DAN PEMBUATAN APLIKASI Dalam bab ini akan dibahas mengenai perancangan dan pembuatan aplikasi dengan menggunakan metodologi perancangan prototyping, prinsip kerja rangkaian berdasarkan

Lebih terperinci

SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535

SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535 3 PENERAPAN FILM Ba 0,55 Sr 0,45 TiO 3 (BST) SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535 23 Pendahuluan Indonesia sebagai negara agraris

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilakukan pada bulan Maret 2015 sampai dengan Agustus

BAB III METODE PENELITIAN. Penelitian ini dilakukan pada bulan Maret 2015 sampai dengan Agustus 37 BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Maret 2015 sampai dengan Agustus 2015. Perancangan dan pembuatan dilaksanakan di laboratorium Elektronika

Lebih terperinci

BAB III PERENCANAAN DAN PEMBUATAN ALAT

BAB III PERENCANAAN DAN PEMBUATAN ALAT BAB III PERENCANAAN DAN PEMBUATAN ALAT 1.1 Skema Alat Pengukur Laju Kendaraan Sumber Tegangan Power Supply Arduino ATMega8 Proses Modul Bluetooth Output Bluetooth S1 S2 Komputer Lampu Indikator Input 2

Lebih terperinci

BAB IV PEMBAHASAN Rancangan alat Pengukur panjang Terpal. Push Button. Gambar 4.1 Diagram Pengukur Panjang Terpal

BAB IV PEMBAHASAN Rancangan alat Pengukur panjang Terpal. Push Button. Gambar 4.1 Diagram Pengukur Panjang Terpal 34 BAB IV PEMBAHASAN 4.1 Identifikasi Masalah Dalam proses produksi hal yang paling menonjol untuk menghasilkan suatu barang produksi yang memiliki kualitas yang bagus ialah bahan dan mesin yang digunakan.

Lebih terperinci

DAFTAR PUSTAKA.

DAFTAR PUSTAKA. 66 DAFTAR PUSTAKA http://www.scientificpsychic.com/fitness/diet-kalkulator-id.html http://www.dennysantoso.com/pengukur-lemak-tubuh-ultimategear.html http://haninmauladin.blogspot.com/2011/05/cara-menghitung-lemak-badan.html

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Setelah pembuatan modul maka perlu dilakukan pendataan melalui proses

BAB IV HASIL DAN PEMBAHASAN. Setelah pembuatan modul maka perlu dilakukan pendataan melalui proses BAB IV HASIL DAN PEMBAHASAN 4.1 Pengujian Dan Pengukuran Setelah pembuatan modul maka perlu dilakukan pendataan melalui proses pengujian dan pengukuran. Tujuan dari pengujian dan pengukuran yaitu mengetahui

Lebih terperinci

BAB III PERANCANGAN ALAT DAN PROGRAM MIKROKONTROLER. program pada software Code Vision AVR dan penanaman listing program pada

BAB III PERANCANGAN ALAT DAN PROGRAM MIKROKONTROLER. program pada software Code Vision AVR dan penanaman listing program pada BAB III PERANCANGAN ALAT DAN PROGRAM MIKROKONTROLER Pada tahap perancangan ini dibagi menjadi 2 tahap perancangan. Tahap pertama adalah perancangan perangkat keras (hardware), yang meliputi rangkaian rangkaian

Lebih terperinci