BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Pengertian Citra Secara harfiah, citra (image) adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus (continue) dari intensitas cahaya pada bidang 2 dimensi. Citra yang terlihat merupakan cahaya yang direfleksikan dari sebuah objek. Sumber cahaya menerangi objek, objek memantulkan kembali sebagian dari berkas cahaya tersebut dan pantulan cahaya ditangkap oleh alatalat optik, misal mata manusia, kamera, scanner, sensor satelit, dsb, kemudian direkam. Citra sebagai keluaran dari suatu sistem perekaman data dapat bersifat : 1. Optik berupa foto 2. Analog berupa sinyal video seperti gambar pada monitor televise 3. digital yang dapat langsung disimpan pada suatu pita magnetic Citra juga dapat dikelompokkan menjadi 2 yaitu : 1. Citra tampak, misalnya foto, gambar, lukisan, apa yang nampak di layer monitor/televisi, hologram,dll. 2. Citra tidak tampak, misalnya data foto / gambar dalam file, citra yang direppresentasikan dalam fungsi matematis (Munir,2004) Digitalisasi Citra Citra digital adalah suatu citra f(x,y) yang memiliki koordinat spatial, dan tingkat kecerahan yang diskrit. Citra yang terlihat merupakan cahaya yang direfleksikan dari sebuah objek. Fungsi f(x,y) dapat dilihat sebagai fungsi dengan dua unsur. Unsur yang pertama adalah kekuatan sumber cahaya yang melingkupi pandangan kita terhadap objek

2 (illumination), sedangkan unsur yang kedua adalah besarnya cahaya yang direfleksikan oleh objek ke dalam pandangan kita (reflectance components). Keduanya dapat dituliskan sebagai fungsi i(x,y) dan r(x,y) yang digabungkan sebagai perkalian fungsi untuk membentuk fungsi f(x,y). Adapun fungsi tersebut dapat dituliskan sebagai : f(x,y) = i(x,y) * r(x,y dimana 0 < i(x, y) < dan 0 < r(x, y) < 1 Suatu citra agar bisa diolah komputer digital, maka harus dipresentasikan secara numerik dengan nilai-nilai diskrit. Digitalisasi merupakan representasi citra dari fungsi kontinu menjadi nilai-nilai diskrit. Suatu citra digital berukuran N(tinggi)x M (lebar) dapat dinyatakan sebagai matriks dengan ukuran N x M. Indeks baris (i) dan indeks kolom (j) menyatakan suatu koordinat titik pada citra, sedangkan f(i,j) merupakan intensitas (derajat keabuan ) pada titik (i,j). Masing-masing elemen pada citra digital disebut image elemen, atau picture elemen (pixel). Maka dapat dikatakan citra yang mempunyai ukuran N x M mempunyai NM pixel. Misalkan suatu citra mempunyai ukuran 256 x 256 pixel, maka apabila direpresentasikan secara numerik melalui suatu matriks yang terdiri dari 256 baris ( indeks 0 sampai 255) dan 256 kolom (indeks dari 0 sampai 255), maka matriksnya dapat diperlihatkan sebagai berikut : Pixel pertama pada koordinat (0,0) mempunyai nilai intensitas 0, maka warna pixel tersebut adalah hitam, sedangkan pixel kedua pada koordinat (0,1) mempunyai nilai intensitas 124 berarti warnanya antara hitam dan putih.

3 Untuk memudahkan implementasi, jumlah terokan biasanya diasumsikan perpangkatan dari dua, N = 2 n Dimana, N = jumlah penerokan pada suatu baris / kolom, n = bilangan bulat positif. Misalnya ukuran penerokan 256x256 pixel,128x256 pixel. Pembagian gambar menjadi ukuran tertentu menentukan resolusi (yaitu derajat rincian yang dapat dilihat) spasial yang diperoleh. Semakin tinggi resolusinya yang berarti semakin kecil ukuran pixel (atau semakin banyak jumlah pixelnya), semakin halus gambar yang diperoleh karena informasi yang hilang akibat pengelompokkan derajat keabuan pada penerokan semakin kecil. Langkah selanjutnya setelah proses penerokan adalah kuantisasi. Proses kuantisasi membagi skala keabuan (0,L) menjadi G buah level yang dinyatakan dengan suatu harga bilangan bulat (integer), biasanya G diambil perpangkatan dari 2. G = 2 m Dimana, G = derajat keabuan m = bilangan bulat positif Tabel 2.1 Skala Keabuan Skala keabuan Nilai keabuan Pixel Depth 2 1 ( 2 nilai ) 0,1 1 bit 2 2 ( 4 nilai ) 0 sampai 3 2 bit 2 4 ( 16 nilai ) 0 sampai 15 4 bit 2 8 (256 nilai ) 0 sampai bit Penyimpanan citra digital yang diterok menjadi NxM pixel dan dikuantisasi menjadi G=2 m memerlukan memori sebanyak B = N x M x m. Contoh 512x512x8 = bit (Hestiningsih, 2005) Pembentukan Citra Digital

4 Komputer merupakan alat yang beroperasi dalam sistem digital yang menggunakan bit atau byte dalam pengukuran datanya, dan yang terpenting dalam sistem digital adalah sifatnya yang diskrit, bukan kontinu. Hal ini berlawanan dengan citra digital yang sebenarnya merupakan representasi citra asal yang bersifat kontinu. Untuk mengubah citra yang bersifat kontinu diperlukan sebuah cara untuk mengubahnya dalam bentuk data digital. Komputer menggunakan sistem bilangan biner dalam pemecahan masalah ini. Dengan penggunaan sistem bilangan biner ini, citra dapat diproses dalam komputer dengan sebelumnya mengekstrak informasi citra analog asli dan mengirimkannya ke komputer dalam bentuk biner. Proses ini disebut dengan digitisasi. Digitisasi dapat dilakukan oleh alat seperti kamera digital atau scanner. Kedua alat ini selain dapat mengambil atau menangkap sebuah citra, juga dapat bertindak sebagai alat input (masukan) bagi komputer. Alat penangkap citra digital ini dapat menyediakan aliran data biner bagi komputer yang didapatkan dari pembacaan tingkat kecerahan pada sebuah citra asli dalam interval sumbu x dan sumbu y. Citra digital merupakan citra yang tersusun dari piksel diskrit dari tingkat kecerahan dan warna yang telah terkuantisasi. Jadi, pada dasarnya adalah sebuah citra yang memiliki warna dan tingkat kecerahan yang kontinu perlu diubah dalam bentuk informasi warna, tingkat kecerahan, dan sebagainya yang bersifat diskrit untuk dapat menjadi sebuah citra digital. Pada Gambar 2.1 diperlihatkan kurva tingkat kecerahan yang kontinu dengan nilai hitam dan putih yang tidak terbatas (a) dan kurva tingkat kecerahan setelah mengalami kuantisasi dalam 16 tingkatan diskrit (b). Tingkat kecerahan pada Gambar 2.1 (a) yang bersifat kontinu dapat diubah menjadi tingkat kecerahan seperti Gambar 2.1 (b) dengan pembacaan tingkat kecerahan menggunakan interval tertentu pada sumbu x dan y seperti yang telah disebutkan di atas. Pembagian seperti pada pembagian tingkat kecerahan ini juga berlaku untuk warna agar nilai warna dapat menjadi diskrit. (Gonzalez,Woods,1993)

5 (a) (b) Gambar 2.1. Pembentukan citra digital (a) Tingkat kecerahan yang kontinu, (b) tingkat kecerahan setelah mengalami kuantisasi 16 tingkatan diskrit.sumbu f merupakan ukuran frekuensi, dan sumbu t merupakan waktu Elemen Citra Digital Citra digital mengandung sejumlah elemen- elemen dasar. Elemen elemen dasar tersebut dimanipulasi dalam pengolahan citra dan dieksploitasi lebih lanjut dalam computer vision. Elemen elemen dasar yang penting antaranya adalah : 1. Kecerahan (brightness) Kecerahan adalah kata lain untuk intensitas cahaya. Kecerahan pada sebuah titik (pixel) di dalam citra bukanlah intensitas yang riil, tetapi sebenarnya adalah intensitas rata rata dari suatu area yang melingkupinya. Sistem visual manusia mampu menyesuaikan dirinya dengan tingkat kecerahan (brightness level) mulai dari yang paling rendah sampai yang paling tinggi dengan jangkauan sebesar Kontras (contras)

6 Kontras menyatakan sebaran terang (lighteness) dan gelap (darkness) di dalam sebuah gambar. Citra dengan kontras rendah dicirikan oleh sebagian besar komposisi citranya adalah terang atau sebagian besar gelap. Pada citra dengan kontras yang baik, komposisi gelap dan terang tersebar secara merata. 3. Kontur (contour) Kontur adalah keadaan yang ditimbulkan oleh perubahan intensitas pada pixel pixel yang bertetangga. Karena adanya perubahan intensitas inilah mata kita mampu mendeteksi tepi tepi (edge) objek di dalam citra. 4. Warna (color) Warna adalah persepsi yang dirasakan oleh sistem visual manusia terhadap panjang gelombang cahaya yang dipantulkan oleh objek. Setiap warna mempunyai panjang gelombang (λ) yang berbeda. Warna merah mempunyai panjang gelombang paling tinggi, sedangkan warna ungu (violet) mempunyai panjang gelombang paling rendah. Warna warna yang diterima oleh mata (sistem visual manusia) merupakan hasil kombinasi cahaya dengan panjang gelombang berbeda. Penelitian memperlihatkan bahwa kombinasi warna yang memberikan rentang warna yang paling lebar adalah red (R), green (G), dan blue (B). Persepsi sistem visual manusia terhadap warna sangat relatif sebab dipengaruhi oleh banyak kriteria, salah satunya disebabkan oleh adaptasi yang menimbulkan distorsi. Misalnya bercak abu abu di sekitar warna hijau akan tampak keungu unguan (distorsi terhadap ruang), atau jika mata melihat warna hijau lalu langsung dengan cepat melihat warna abu abu, maka mata menangkap kesan warna abu abu tersebut sebagai warna ungu (distorsi terhadap waktu). 5. Bentuk (shape)

7 Shape adalah properti intrinsik dari objek tiga dimensi, dengan pengertian bahwa shape merupakan properti intrinsik utama untuk sistem visual manusia. Manusia lebih sering mengasosiasikan objek dengan bentuk ketimbang elemen lainnya (warna misalnya). Pada umumnya, citra yang dibentuk oleh mata merupakan citra dwimatra (2 dimensi), sedangkan objek yang dilihat umumnya berbentuk trimatra (3 dimensi). Informasi bentuk objek dapat diekstraksi dari citra pada permulaan pra-pengolaha dan segmentasi citra. Salah satu tantangan utama pada computer vision adalah merepresentasikan bentuk, atau aspek aspek penting dari bentuk. 6. Tekstur (textur) Textur dicirikan sebagai distribusi spasial dari derajat keabuan di dalam sekumpulan pixel pixel yang bertetangga. Jadi, tekstur tidak dapat didefinisikan untuk pixel. Sistem visual manusia pada hakikatnya tidak menerima informasi citra secara independen pada setiap pixel, melainkan suatu citra dianggap sebagai suatu kesatuan. Resolusi citra yang diamati ditentukan oleh skala pada mana tekstur tersebut dipresepsi. Sebagai contoh, jika kita mengamati citra lantai bertubin dari jarak jauh, maka kita mengamati bahwa tekstur terbentuk oleh penempatan ubin ubin secara keseluruhan, bukan dari presepsi pola di dalam ubin itu sendiri. Tetapi, jika kita mengamati citra yang sama dari jarak yang dekan, maka hanya beberapa ubin yang tampak dalam bidang pengamatan sehingga kita mempresepsikan bahwa tekstur terbentuk oleh penempatan pola pola rinci yang menyusun tiap ubin (Munir,2004). 2.2 Format Berkas Bitmap Citra disimpan di dalam berkas (file) dengan format tertentu. Format citra yang baku di lingkungan sistem operasi Microsoft Windows dan IBM OS/2 adalah berkas bitmap (BMP). Saat ini format BMP memang kalah populer dibaningkan format JPG atau GIF.

8 Hal ini karena berkas BMP pada umumnya tidak dimampatkan, sehingga ukuran berkasnya relatif lebih besar daripada berkas JPG maupun GIF. Hal ini juga menyebabkan format BMP sudah jarang digunakan. Meskipun format BMP tidak mangkus dari segi ukuran berkas, namun format BMP mempunyai kelebihan dari segi kualitas gambar. Citra dalam format BMP lebih bagus daripada citra dalam format yang lainnya, karena citra dalam format BMP umumnya tidak dimampatkan sehingga tidak ada informasi yang hilang. Terjemahan bebas bitmap adalah pemetaan bit. Artinya, nilai intensitas pixel di dalam citra dipetakan ke sejumlah bit tertentu. Peta bit yang umum adalah 8, artinya setiap pixel panjangnya 8 bit. Delapan bit ini merepresentasikan nilai intensitas pixel. Dengan demikian ada sebanyak 2 8 = 256 derajat keabuan, mulai dari 0 sampai 255. Citra dalam format BMP ada 3 macam diantaranya citra biner, citra berwarna, dan citra hitam-putih (grayscale). 1. Format Pixel 1 Bit (Citra Biner/Monokrom) Pada citra biner, setiap titik bernilai 0 dan 1, masing-masing merepresentasikan warna tertentu. Contoh yang paling lazim: warna hitam bernilai 0 dan warna putih bernilai 1. Pada standar citra untuk ditampilkan di layar komputer, nilai biner ini berhubungan dengan ada tidaknya cahaya yang ditembakkan oleh electron gun yang terdapat di dalam monitor komputer. Angka 0 menyatakan tidak ada cahaya, dengan demikian warna yang direpresentasikan adalah hitam. Untuk angka 1 terdapat cahaya, sehingga warna yang direpresentasikan adalah putih. Standar tersebut disebut sebagai standar citra cahaya, sedangkan standar citra tinta/cat adalah berkebalikan, karena biner tersebut menyatakan ada tidaknya tinta. Setiap titik pada citra hanya membutuhkan 1 bit, sehingga setiap byte dapat menampung informasi 8 titik ( Bono,2008). 2. Format Pixel 8 Bit (Citra Skala Keabuan/Grayscale) Citra skala keabuan memberi kemungkinan warna yang lebih banyak daripada citra biner, karena ada nilai-nilai lain di antara nilai minimum (biasanya = 0) dan nilai

9 maksimum. Banyaknya kemungkinan nilai minimum dan nilai maksimumnya bergantung pada jumlah bit yang digunakan. Mata manusia pada umumnya hanya mempunyai kemampuan untuk membedakan maksimal 40 tingkat skala keabuan. Untuk citra tampak (visible image) dipilih skala keabuan lebih dari 40. pada umumnya citra skala keabuan menggunakan jumlah bit 8, sesuai dengan satuan memori komputer. Contohnya untuk skala keabuan 4 bit, maka jumlah kemungkinan nilainya adalah 2 4 = 16, dan nilai maksimumnya adalah 24-1 = 15, sedangkan untuk skala keabuan 8 bit, maka jumlah kemungkinan nilainya adalah 2 8 = 256, dan nilai maksimumnya adalah = 255. Format citra ini disebut skala keabuan karena pada umumnya warna yang dipakai adalah antara warna hitam sebagai warna minimal dan warna putih sebagai warna maksimalnya, sehingga warna antaranya abu-abu. Namun pada prakteknya warna yang dipakai tidak terbatas pada warna abu-abu, sebagai contoh dipilih warna minimalnya adalah putih dan warna maksimalnya adalah merah, maka semakin besar nilainya semakin besar pula intensitas warna merahnya. Beberapa buku menyebut format citra ini sebagai citra intensitas. 3. Format Pixel 24 Bit (Citra Warna/True Color) Pada citra warna, setiap titik mempuyai warna yang paling spesifik yang merupakan kombinasi dari 3 warna dasar, yaitu: merah, hijau, dan biru. Ada perbedaan warna dasar untuk cahaya (misalnya display di monitor komputer) dan untuk cat (misalnya cetakan di atas kertas). Untuk cahaya, warna dasarnya adalah merah-hijau-biru (red-green-blue,rgb), sedangkan untuk untuk cat, warna dasarnya adalah sian-magentakuning (cyan-magenta-yellow, CMY). Keduanya saling berkomplemen. Format citra ini sering disebut sebagai citra RGB (red-green-blue). Setiap warna dasar mempunyai intensitas sendiri dengan nilai maksimum 255 (8 bit), misalnya warna kuning merupakan kombinasi warna merah dan hijau sehingga nilai RGB-nya adalah ; sedangkan warna ungu muda nilai RGB-nya adalah , dengan demikian setiap titik pada citra warna membutuhkan data 3 byte. Jumlah kombinasi warna yang mungkin untuk format citra ini adalah 224 atau lebih dari 16 juta warna, dengan demikian bisa dianggap mencakup semua warna yang ada, inilah sebabnya format ini dinamakan true color (Bono, 2008).

10 Citra yang lebih kaya warna adalah citra 24 bit. Setiap pixel panjangnya 24 bit, karena setiap pixel langsung menyatakan komponen warna merah, komponen warna hijau, dan komponen warna biru. Masing maing komponen panjangnya 8 bit. Citra 24 bit disebut juga citra 16 juta warna, karena ia mampu menghasilkan 2 24 = kombinasi warna. Saat ini beredar tiga versi berkas bitmap, (i) berkas bitmap versi lama dari Microsoft Windows atau IBM OS/2, (ii) berkas bitmap versi baru dari Microsoft Windows, dan (iii) berkas bitmap versi baru dari IBM OS/2. Yang membedakan ketiga versi berkas tersebut adalah panjang header-nya. Header adalah data yang terdapat pada bagian awal berkas citra. Data di dalam header berguna untuk mengetahui bagaimana citra dalam format bitmap dikodekan dan disimpan. Data di dalam header misalnya ukuran citra, kedalaman pixel, ofset ke data bitmap, dan sebagainya. Setiap berkas bitmap terdiri atas header berkas, header bitmap, informasi palet, dan data bitmap. Tabel 2.2 Format Berkas Bitmap Header berkas Header bitmap Informasi palet Data bitmap 14 byte 12 s/d 64 byte 0 s/d 1024 byte N byte Ukuran header berkas sama untuk semua versi, yaitu 14 byte. Tabel 2.3 memperlihatkan field-field penyusun header berkas. Ukuran header bitmap berbeda beda untuk setiap versi. Untuk berkas bitmap versi lama, header bitmap berukuran 12 byte (Tabel 2.4), untuk berkas bitmap versi baru dari Microsoft Windows, header bitmap berukuran 40 (Tabel 2.5), dan untuk berkas bitmap versi baru dari IBM OS/2, header bitmap berukuran 64 byte (Tabel 2.6).

11 Tabel 2.3 Header berkas bitmap (panjang = 14 byte) Byte ke- Panjang Nama Keterangan (byte) Bmp Type Tipe berkas bitmap : BA = bitmap array, CI = icon BM = bitmap, CP = color pointer PT = Pointer BmpSize Ukuran berkas bitmap XotSpot X hotspot untuk kursor YhotSpot Y hotspot untuk kursor OffBits Ofset ke awal data bitmap (dalam byte) Tabel 2.4 Header bitmap versi lama dari Microsoft Windows (12 byte) Byte ke- Panjang Nama Keterangan (byte) HdrSize Ukuran header dalam satuan byte Width Lebar bitmap dalam satuan pixel Height Tinggi bitmap dalam satuan pixel Planes Jumlah plane (umum-nya selalu satu) BitCount Jumlah bit per pixel

12 Tabel 2.5 Header bitmap versi baru dari Microsoft Windows (40 byte) Byte ke- Panjang Nama Keterangan (byte) HdrSize Ukuran header dalam satuan byte Width Lebar bitmap dalam satuan pixel Height Tinggi bitmap dalam satuan pixel Planes Jumlah plane (umum-nya selalu satu) BitCount Jumlah bit per pixel Compression 0 = tak dimampatkan, 1= dimampatkan ImgSize Ukuran bitmap dalam byte HorzRes Resolusi horizontal VertRes Relolusi vertikal ClrUsed Jumlah warna yang digunakan ClrImportant Jumlah warna yang penting Tabel 2.6 Header bitmap versi baru dari IBM OS/2 (64 byte) Byte ke- Panjang Nama Keterangan (byte) HdrSize Ukuran header dalam satuan byte Width Lebar bitmap dalam satuan pixel Height Tinggi bitmap dalam satuan pixel Planes Jumlah plane (umum-nya selalu satu) BitCount Jumlah bit per pixel Compression 0 = tak dimampatkan, 1= dimampatkan ImgSize Ukuran bitmap dalam byte HorzRes Resolusi horizontal VertRes Relolusi vertikal

13 ClrUsed Jumlah warna yang digunakan ClrImportant Jumlah warna yang penting Units Satuan pengukuran yang dipakai Reserved Field Cadangan Recording Algoritma Perekaman Rendering Algoritma halftoning Size 1 Nilai ukuran Size 2 Nilai ukuran ClrEncoding Pengkodean warna Identifier Kode yang digunakan aplikasi Informasi palet warna terletak sesudah header bitmap. Informasi palet warna dinyatakan dalam suatu tabel RGB. Setiap entry pada tabel terdiri atas tiga buah field, yaitu R (red), G (green), dan B (blue). Data bitmap diletakkan sesudah informasi palet. Penyimpanan data bitmap di dalam berkas disusun terbalik dari bawah ke atas dalam bentuk matriks yang berukuran Height X Width. Baris ke-0 pada matriks data bitmap menyatakan data pixel di citra baris terbawah, sedangkan baris terakhir pada matriks menyatakan data pixel di citra baris teratas. ( Munir,2004) Contoh format citra 8-bit kira kira seperti Gambar 2.2. Format citra 4-bit (16 warna) serupa dengan format citra 8-bit. Pada citra 4-bit dan citra 8-bit, warna suatu pixel diacu dari tabel informasi palet pada entry ke-k (k merupakan nilai dengan rentang 0 15 untuk citra 16 warna dan untuk citra 256 warna). Sebagai contoh pada Gambar 2.2, pixel pertama bernilai 2; warna pixel pertama ini ditentukan oleh komponen RGB pada tabel palet warna entry ke-2, yaitu R = 14, G = 13, B = 16. Pixel kedua serupa denga pixel pertama. Pixel ketiga bernilai 1, warnanya ditentukan oleh komponen RGB pada tabel warna entry ke-1, yaitu R = 20, G = 45, dan B = 24. Dengan demikian setersnya untuk pixel pixel lainnya. Khusus untuk citra hitam putih (8bit), komponen R, G, dan B suatu pixel bernuilai sama dengan data bitmap pixel tersebut. Jadi, pixel dengan nilai data bitmap 129, memiliki R = 129, G = 129, dan B = 129.

14 <headr berkas> <header berkas> <palet warna RGB> R G B Gambar 2.2 Format citra 8-bit (256 warna) Berkas citra 24-bit (16,7 juta warna) tidak mempunyai palet RGB, karena nilai RGB langsung diuraikan dalam data bitmap. Setiap elemen data bitmap panjangnya 3 byte, masing masing byte menyatakan komponen R, G, dan B. Contoh format citra 24- bit (16 juta warna) kira kira seperti pada Gambar 2.2. Pada contoh format citra 24-bit tersebut pixel pertama mempunyai R = 20, G = 19, B = 21, pixel kedua mempunyair = 24, G = 24, B = 23. Demikian seterusnya. <headr berkas> <header berkas> <data bitmap> Gambar 2.3 Format Citra 24-bit (16,7 juta warna) Tabel 2.7 memperlihatkan panjang informasi palet untuk setiap vesi bitmap masing masing untuk citra 16 warna, 256 warna, dan 16,7 juta warna. Tabel 2.7 Panjang informasi palet untuk setiap versi berkas bitmap Citra m warna Versi Lama Versi baru Versi baru (Windows) (Windows) (OS/2) Citra 16 warna 48 byte 64 byte 64 byte Citra 256 warna 768 byte 1024 byte 1024 byte

15 Citra 16,7 juta warna 0 byte 0 byte 0 byte Struktur File Bitmap Struktur bitmap terdiri dari Header, Info Header dan Color Tabel. Header adalah bagian dari file bitmap yang berisi informasi header dari file gambar bitmap. Ukuran dari header ini 14 byte, masing-masing terdiri dari signature 2 bytes (sebagai tanda gambar mempunyai format bmp), FileSize 4 bytes (besarnya ukuran gambar mempunyai satuan bytes), Reserved 4 bytes (tidak digunakan atau sama diisi dengan nilai nol) dan DataOffset 4 bytes (file offset untuk raster data).info header adalah bagian dari header yang berisi informasi lebih detail dari file gambar bitmap. Letaknya setelah bagian header. Info header mempunyai besar 40 bytes, terdiri dari size 4 bytes (ukuran infoheader dan isinya adalah nilai 40), width 4 bytes (lebar gambar bitmap dalam satu pixel), Height 4 bytes (tinggi gambar bitmap dalam satuan pixel), planes 2 bytes (jumlah warna dalam plane, isinya selalu sama dengan satu), BitCount 2 bytes (Bits per pixel, jika bernilai 1= monochome palete, banyaknya warna =2, jika bernilai 4= 4 bit pallete, banyaknya warna = 16, jika bernilai 8 = 8 bit pallete, banyaknya warna = 256, jika bernilai 16 = 16 bit RGB, banyaknya warna = 65536, jika bernilai 24 = 24 bit RGB, banyaknya warna = 16M), Compression 4 bytes (jenis kompresi yang digunakan, jika bernilai 0, gambar tidak terkompresi, jika bernilai 1 gambar terkompresi 8 bit RLE-run length encoding, jika bernilai 2, gambar terkompresi 4 bit RLE encoding), ImageSize 4 bytes (ukuran gambar dalam bytes atas perkalian dari width dikalikan dengan height), XpixelPerM 4 bytes (resolusi horizontal dalam satuan pixel), YpixelxPerM 4 bytes (resolusi vertikal dalam satuan pixel), ColorUsed 4 bytes (banyaknya warna dalam color table), ColorImportant 4 bytes (banyaknya warna utama).

16 Color table adalah table yang berisi warna-warna yang ada pada gambar bitmap. Ukurannya adalah 4 dikalikan dengan ukuran banyakanya warna. Color table berisi RGBred green blue. Strukturnya teriri dari 1 bytes untuk bagian Rgbblue yang berisi intensitas warna biru , 1 bytes untuk bagian RgbGreen yang berisi intensitas warna hijau , 1 bytes untuk bagian RgbRed yang berisi intensitas warna merah , 1 bytes untuk bagian RgbReserved yang selalu di set sama dengan 0. (Aribi, 2007) Jenis Gambar Bitmap 1. Line Art Merupakan gambar yang hanya terdiri dari dua warna, biasanya hitam dan putih.biasanya gambar jenis ini dijadikan gambar bitmap karena komputer hanya menggunakan 1 bit (warna hitam yang membentuk gambar, warna putih sebagai latar) untuk mendefinisikan masing-masing pixel-nya. 2. Grayscale Images putih. Yang terdiri dari bermacam warna abu-abu dalam menghasilkan warna hitam dan 3. Multitones

17 Terdiri dari dua warna atau lebih. Gambar multitones yang biasa digunakan adalah duotones, yang biasanya terdiri dari paduan warna hitam dengan warna khusus (Pantone colour). Warna yang digunakan pada gambar di atas adalah paduan dari warna hitam dengan Pantone Warm Red. 4. Full Colour Images Merupakan gambar yang memiliki warna yang tampak realistis. Informasi warna dijelaskan menggunakan jenis-jenis standar warna seperti RGB, CMYK atau Lab Karakteristik Data Bitmap Gambar yang menggunakan data bitmap akan menghasilkan bobot file yang besar. Sebagai contoh, sebuah gambar dengan standar warna CMYK berukuran A4 yang memiliki kualitas cetak menengah (medium) menghasilkan bobot file sebesar 40 MB. Dengan menggunakan kompresi dapat memperkecil bobot sebuah file. Perbesaran dimensi gambar merupakan salah satu kekurangan jenis gambar bitmap ini. Begitu sebuah gambar diperbesar terlalu banyak, akan terlihat tidak natural dan pecah. Begitu juga dengan memperkecil sebuah gambar, akan memberikan dampak buruk seperti berkurangnya ketajaman gambar tersebut.

18 Bitmap cukup simpel untuk pencetakan selama printer yang digunakan memiliki memory yang cukup. Mesin cetak PostScript level 1 jaman dulu akan mengalami masalah ketika mendapatkan sebuah gambar (khususnya Line-art) yang dirotasi, tapi hardware dan software jaman sekarang dapat menangani berbagai efek manipulasi gambar apapun tanpa masalah.(mahendra, 2008) 2.3 Pixel (Picture Element) Gambar yang bertipe bitmap tersusun dari pixel-pixel. Pixel disebut juga dengan dot. Pixel berbentuk bujur sangkar dengan ukuran relatif kecil yang merupakan penyusun/pembentuk gambar bitmap. Banyaknya pixel tiap satuan luas tergantung pada resolusi yang digunakan. Keanekaragaman warna pixel tergantung pada bit depth yang dipakai. Semakin banyak jumlah pixel tiap satu satuan luas, semakin baik kualitas gambar yang dihasilkan dan ukuran file akan semakin besar. Pixel adalah representasi sebuah titik terkecil dalam citra grafis. Monitor atau layar datar yang sering kita temui terdiri dari ribuan pixel yang terbagi dalam baris-baris dan kolom-kolom. Jumlah pixel yang terdapat dalam sebuah monitor dapat kita ketahui dari resolusinya. Resolusi maksimum yang disediakan oleh monitor adalah 1024x768, maka jumlah pixel yang ada dalam layar monitor tersebut adalah pixel. Semakin tinggi jumlah pixel yang tersedia dalam monitor, semakin tajam gambar yang mampu ditampilkan oleh monitor tersebut. Jika suatu gambar mempunyai resolusi 20x30, maka jumlah pixel yang terdapat dalam file tersebut adalah 600 pixel. 2.4 Byte dan Bit Sampai saat ini, belum ada persetujuan atas lambang resmi yang dapat digunakan untuk bit dan byte. Patokan yang sering dikutip, IEC oleh International Electrotechnical Commission, menetapkan bahwa "bit" adalah lambang untuk satuan bit, sebagai contoh

19 "kbit" untuk merujuk pada kilobit. Akan tetapi, patokan tersebut tidak menetapkan lambang apa yang dapat digunakan untuk byte. Patokan lain yang juga sering dikutip, IEEE 1541 oleh Institute of Electrical and Electronics Engineers menetapkan "b" sebagai lambang untuk bit, dan "B" untuk byte. Konvensi ini banyak dipakai dalam ilmu komputer, tetapi belum diterima secara internasional, karena beberapa halangan berikut: a. kedua simbol ini sudah dipakai untuk satuan lain: "b" untuk barn dan "B" untuk bel b. "bit" adalah singkatan dari "binary digit", jadi tidak ada alasan untuk menyingkatnya lagi c. biasanya lambang untuk sebuah satuan hanya menggunakan huruf besar jika satuan tersebut dinamakan untuk menghormati seseorang d. istilah byte tidak digunakan di negara-negara berbahasa Perancis, negara-negara ini menggunakan istilah octet (lambang: "o"), sehingga sulit untuk membuat persetujuan secara internasional. e. "b" kadang-kadang digunakan sebagai lambang untuk byte, dan "bit" untuk bit. Claude E. Shannon pertama kali menggunakan kata bit dalam sebuah karya ilmiah pada tahun Beliau menjelaskan bahwa kata tersebut berasal dari John W. Tukey, yang pada tanggal 9 Januari 1947 menulis sebuah memo kepada Bell Labs. Di dalam memo tersebut, beliau memendekkan kata "binary digit" (digit biner) menjadi "bit". Byte adalah sebuah kumpulan bit. Saat pertama kali digunakan, byte mempunyai panjang yang tidak tetap. Sekarang, byte umumnya mempunyai panjang sebesar delapan bit. Byte yang mempunyai panjang delapan bit juga dikenal sebagai octet. Sebuah byte bisa mempunyai 256 nilai yang berbeda (2 8 nilai, 0 255).

20 2.5 Perbaikan Kualitas Citra ( Image Enhancement) Perbaikan kualitas citra (image enhancement) merupakan salah satu proses awal dalam pengolahan citra (image preprocessing). Perbaikan kualitas diperlukan karena seringkali citra yang diuji mempunyai kualitas yang buruk, misalnya citra mengalami derau (noise) pada saat pengiriman melalui saluran transmisi, citra terlalu terang/gelap, citra kurang tajam, kabur, dan sebagainya. Melalui operasi pemrosesan awal inilah kualitas citra diperbaiki sehingga citra dapat digunakan untuk aplikasi lebih lanjut, misalnya untuk aplikasi pengenalan (recognition) objek di dalam citra. Yang dimaksud dengan perbaikan kualitas citra adalah proses memperjelas dan mempertajam ciri/fitur tertentu dari citra agar citra lebih mudah dipersepsi maupun dianalisis secara lebih teliti. Secara matematis, image enhancement dapat diartikan sebagai proses mengubah citra f(x, y) menjadi f (x, y) sehingga ciri-ciri yang dilihat pada f(x, y) lebih ditonjolkan. Image enhancement tidak meningkatkan kandungan informasi, melainkan jangkauan dinamis dari ciri agar bisa dideteksi lebih mudah dan tepat. Operasi-operasi yang digolongkan sebagai perbaikan kualitas citra cukup beragam antara lain, pengubahan kecerahan gambar (image brightness), peregangan kontras (contrast stretching), perataan histogram (histogram equalization), pelembutan citra (image smoothing), penajaman (sharpening) tepi (edge), pewarnaan semu (pseudocolouring), pengubahan geometrik, dan sebagainya. (Munir, 2004) Metode metode perbaikan citra dapat dikategorikan menjadi dua bagian, yakni metode metode yang bekerja pada domain spatial dan metode metode yang bekerja pada domain frekuensi Metode yang bekerja pada Domain Spatial Metode ini bekerja pada keseluruhan pixel dan dapat dituliskan dalam bentuk : Dimana : ( x y) T[ f ( x y) ] g, =, (1)

21 f(x,y) = citra yang diolah g(x,y) = citra hasil pengolahan T = operator yang bekerja pada f Metode spatial juga dapat bekerja pada sub citra yang didefenisikan pada suatu daerah ketetanggaan tertentu. Pada implementasinya sering digunakan window atau mask. Pengertian dari mask adalah larikan dua dimensi dengan nilai elemen dipilih sesuai dengan feature yang akan dideteksi pada suatu citra. Salah satu jenis pengolahan citra dalam domain spatial tersebut adalah peregangan kontras ( contrast stretching) Metode yang bekerja pada Domain Frekuensi Metode ini berbasis pada teori konvolusi. Andaikan g(x,y) adalah image yang diperoleh dari konvolusi image f(x,y) dengan position invariant operator h(x,y) yaitu : ( x y) h( x, y) * f ( x y) g, =, (2) Maka dari teori konvolusi didapat: ( u v) H ( u, v) F( u v) G, =, (3) Dimana G,H,F adalah transformasi Fourier dari g,h,f. Tujuan dari pengolahan adalah untuk memilih H(u,v) sedemikian sehingga image yang diinginkan g(x,y) = F -1 [H(u,v) F(u,v)], menunjukkan feature f(x,y). ( Murinto, 2004) 2.6 Peregangan Kontras ( Contrast Stretching) Kontras menyatakan sebaran terang (lightness) dan gelap (darkness) di dalam sebuah gambar. Citra dikelompokkan ke dalam tiga kategori kontras : citra kontras-rendah (low contrast), citra kontras-bagus (good contrast atau normal contrast), dan kontras-tinggi (high contrast). Ketiga kategori ini umumnya dibedakan secara intuitif. Citra dengan kontras rendah ditandai dengan sebagian besar komposisi citranya terang atau sebagian besar gelap. Histogramnya memperlihatkan sebagian derajat

22 keabuannya berkelompok bersama. Jika pengelompokkan pixelnya dibagian kiri, maka citranya cenderung gelap. Begitu juga sebaliknya jika pengelolmpokkan pixelnya dibagian kanan, maka citra akan cenderung terang.citra yang memiliki kontras rendah dapat terjadi karena kurangnya pencahayaan, kurangnya bidang dinamika dari sensor citra, atau kesalahan setting pembuka lensa pada saat pengambilan citra. Citra dengan kualitas rendah dapat diperbaiki kualitasnya dengan operasi contrast stretching (Murinto,2004). Proses contrast stretching termasuk proses perbaikan citra yang bersifat point processing, yang artinya proses ini hanya tergantung dari nilai intensitas (gray level) satu pixel, tidak tergantung dari pixel lain yang ada disekitarnya. Cara kerja dari proses peregangan kontras (contrast stretching) ini adalah : 1. Cari batas bawah pengelompokkan pixel dengan cara memindai (scan) histogram dari nilai keabuan terkecil ke nilai keabuan terbesar (0 sampai 255) untuk menemukan pixel pertama yang melebihi nilai ambang pertama yang telah dispesifikasikan. 2. Cari batas atas pengelompokkan pixel dengan cara memindai histogram dari nilai keabuan tertinggi ke nilai keabuan terendah ( 255 sampai 0) untuk menemukan pixel perama yang lebih kecil dari nilai ambang kedua yang dispesifikasikan. 3. Pixel pixel yang berada di bawah nilai ambang pertama di set sama dengan 0, sedangkan pixel pixel yang berada di atas nilai ambang kedua di-set sama dengan Pixel pixel yang berada di antara nilai ambang pertama dan nilai ambang kedua dipetakan (diskalakan) untuk memenuhi rentang nilai nilai keabuan yang lengkap ( 0 sampai 255) dengan persamaan : r r max (4) S = x 255 r min - r max yang dalam hal ini, r adalah nilai keabuan dalam citra semula, s adalah nilai keabuan yang baru, r min adalah nilai keabuan terendah dari kelompok pixel, dan r max adalah nilai keabuan tertinggi dari kelompok pixel. (Nugroho, 2005) Transformasi dasar ditunjukkan pada gambar 2.4 dibawah ini. Dalam gambar, c sumbu horizontal mewakili nilai pixel input, dan sumbu vertikal d mewakili nilai pixel

23 output. Seperti yang terlihat, ada tiga segmen garis lurus digunakan untuk mengubah sebuah input pixel ke nilai pixel output yang dihasilkan. Pada gambar dapat dilihat titik dari (c1,d1) dan (c2,d2) akan menentukan bentuk dari fungsi transformasinya dan dapat diatur untuk menentukan tingkat penyebaran graylevel dari citra yang dihasilkan. Jika c1 = d1 dan c2 = d2 maka transformasinya adalah linear yang hasil transformasinya akan sama dengan gambar awal. Jika c1= c2, d1 = d2 maka transformasinya akan menjadi thresholding function. Nilai c1,c2,d1,d2 akan menghasilkan berbagai derajat penyebaran pada grey level dari gambar keluaran, yang akan mempunyai pengaruh pada contrastnya. Secara umum diasumsikan c1<= c2 dan d1 <= d2 sehingga fungsi akan menghasilkan nilai tunggal dan nilainya akan selalu naik. Untuk menghitung nilai hasil trensformasi tersebut, kita dapat membuat 3 fungsi sebagai berikut : a. Untuk c <= 0 < c1, maka d = c. (d1/c1) b. Untuk c1 <= c < c2, maka d = d1 + ( (c c1). ( (d2 d1) / (c2 c1) ) ). c. Untuk c2 <= c <= 255, maka d = d2 + ( (c c2). (255 d2) / (255 c2) ) Contrast stretching ini adalah teknik yang digunakan untuk mendapatkan citra baru dengan kontras yang lebih baik daripada kontras dari citra asalnya. Ide dari contrast stretching adalah untuk meningkatkan dynamic range dari grey level dalam gambar yang sedang diproses. (Amarnath, 2009) d 255 d2 Output Image d1 0 c1 c2 255 Input Image c

24 Gambar 2.4 Fungsi Transformasi Contrast Stretching 2.7 Histogram Citra Informasi penting mengenai isi citra digital dapat diketahui dengan membuat histogram citra. Histogram citra adalah grafik yang menggambarkan penyebaran nilai-nilai intensitas pixel dari suatu citra atau bagian tertentu di dalam citra. Dari sebuah histogram dapat diketahui frekuensi kemunculan nisbi (relative) dari intensitas pada citra tersebut. Histogram juga dapat menunjukkan banyak hal tentang kecerahan ( brightness) dan kontras (contrast) dari sebuah gambar. Karena itu, histogram adalah alat bantu yang berharga dalam pengerjaan pengolahan citra baik secara kualitatif maupun kuantitatif. (Suhendra, 2004) Agar kita memperoleh citra yang baik, maka penyebaran nilai intensitas harus diubah. Teknik yang lazim dipakai adalah perataan histogram (histogram equalization). Tujuan dari perataan histogram adalah untuk memperoleh penyebaran histogram yang merata, sedemikian sehingga setiap derajat keabuan memiliki jumlah pixel yang relative sama. Karena histogram menyatakan peluang pixel dengan derajat keabuan tertentu, maka rumus menghitung histogram ditulis kembali sebagai fungsi peluang. P r (r k ) = n k n yang dalam hal ini, k (5) r k =, 0 k L 1 L 1 Yang artinya, derajat keabuan (k) dinormalkan terhadap derajat keabuan terbesar ( L - 1). Nilai rk = 0 menyatakan hitam, dan rk = 1 menyatakan putih dalam skala keabuan yang didefenisikan.( Uyun, 2008)

25 Jika fungsi ini digambarkan dengan grafik maka akan memberikan deskripsi secara global dari penampakan citra. Gambar 2.5menunjukkan histogram dari empat jenis citra secara umum. Gambar 2.5 Histogram dari berbagai jenis citra digital Dari gambar diatas terlihat jika citra gelap gray level terkonsentrasi di bagian kiri atau bagian gelap dari range gray scale. Dan sebaliknya jika citra terang gray level terkonsentrasi di bagian kanan atau bagian terang dari range gray scale.jika citra berkontras rendah histogram memiliki bentuk yang sempit yang menunjukkan bahwa citra memiliki dynamic range rendah yang berarti berkontras rendah..citra berkontras tinggi menunjukkan bahwa histogram gray level tersebar luas yang menunjukkan bahwa citra berkontras tinggi. Meskipun histogram hanya menunjukkan sifat-sifat umum dari citra dan tidak memberikan informasi apa-apa tentang isi citra, namun bentuk dari histogram dapat memberikan informasi mengenai kemungkinan untuk melakukan perbaikan kontras citra tersebut Hubungan Histogram dengan Contrast Stretching Histogram merupakan grafik yang menggambarkan penyebaran nilai nilai intensitas pixel dari suatu citra atau bagian tertentu di dalam citra. Histogram dapat juga

26 digunakan untuk membantu sebuah tingkat kecerahan ( brightness) dan kekontrasan ( contrast ) dari sebuah gambar. Hubungan antara histogram dengan contrast stretching dapat dilihat dari contoh berikut. (a) Original image (b) Contrast Stretching image Gambar 2.6 Contrast Stretching dan Histogramnya Dari gambar diatas terlihat, pada gambar (a) sebelum dilakukannya proses contrast stretching, gambar terlihat gelap atau berkontras rendah dan histogramnya terlihat sebagian besar derajat keabuannya terkelompok (clustered) bersama atau hanya menempati sebagian kecil dari rentang nilai nilai keabuan yang mungkin. Dan pada gambar (b) terlihat citra berkontras bagus dan histogram citranya memperlihatkan sebaran nilai keabuannya yang relatif seragam. Dari penjelasan diatas, jika dihubungkan antara histogram dengan contrast stretching yaitu dalam melakukan proses contrast stretching histogram sangat berperan penting sebagai alat bantu untuk menentukan langkah perbaikan kualitas citra selanjutnya. 2.8 Pemrograman Borland Delphi Sekilas Borland Delphi

27 Borland Delphi atau yang biasa disebut Delphi saja merupakan sarana pemrograman aplikasi visual. Bahasa pemrograman yang digunakan adalah bahasa pemrograman Pascal atau yang kemudian disebut bahasa pemrograman Delphi. Delphi merupakan generasi penerus dari Turbo Pascal. Turbo Pascal yang diluncurkan pada tahun 1983 dirancang untuk dijalankan pada sistem operasi DOS (yang merupakan sistem operasi yang paling banyak digunakan pada saat itu). Sedangkan Delphi yang diluncurkan pertama kali tahun 1995 dirancang untuk beroperasi dibawah sistem operasi Windows. Kebutuhan akan adanya program aplikasi yang bekerja di bawah sistem operasi Windows serta memiliki antarmuka visual yang userfriendly telah memancing minat banyak orang menggunakan bahasa pemrograman yang mampu menyediakan antarmuka grafis (Graphical User Interface, GUI). Borland Delphi merupakan salah satu bahasa pemrograman yang semenjak diluncurkan pertama kali, langsung dilirik dan diminati oleh para programmer komputer. Hal ini disebabkan karena Delphi menyediakan fasilitas untuk pembuatan aplikasi dengan antarmuka visual secara mudah dan dapat memberikan hasil yang memuaskan. Delphi memiliki sarana yang tangguh untuk pembuatan aplikasi, mulai dari sarana pembuatan form, menu, toolbar, hingga kemampuan untuk menangani pengelolaan basis data yang besar. Kelebihan kelebihan yang dimiliki Delphi antara lain karena pada Delphi, form dan komponen komponennya dapat dipakai ulang dan dikembangkan, mampu mengakses VBX, tersedia template aplikasi dan template form, memiliki lingkungan pengembangan visual. tetapi, tyang dapat diatur sesuai kebutuhan, menghasilkan file terkompilasi yang berjalan lebih cepat, serta kemampuan mengakses data dari bermacam macam format. Delphi menerapkan konsep aplikasi yang digerakkan oleh event (event driven). Pemrograman event driven mencoba melengkapi kekurangan pemrograman prosedural dengan kerangka yang membedakan antara antarmuka pemakai dengan proses tertentu dalam aplikasi. Dengan adanya sarana pemrograman visual yang event-driven, para pembuat aplikasi sangat terbantu ketika menyediakan sarana antarmuka bagi pemakai. Di samping menggunakan konsep event-driven, Delphi juga menggunakan bahasa objek Pascal di dalam lingkungan pemrograman visual. Kombinasi ini menghasilkan sebuah lingkungan pengembangan aplikasi yang berorientasi objek (Object Oriented

28 Programming). Dengan konsep seperti ini, maka pembuatan aplikasi menggunakan Delphi dapat dilakukan dengan cepat dan menghasilkan aplikasi yang tangguh. (Kusuma, 2003) Delphi memiliki beberapa keuntungan diantarnya : 1. IDE yang berkualitas. Delphi memiliki lingkungan pengembangan yang lengkap. Terdapat menu-menu yang memudahkan untuk mengatur proyek pengembangan software. 2. Proses kompilasi yang cepat. Saat aplikasi dijalankan di lingkungan Delphi, aplikasi tersebut otomatis di compile, sehingga dapat menjalankan aplikasi tanpa harus meng compile secara terpisah. 3. Mudah digunakan. 4. Delphi bersifat multi-purpose, dapat digunakan untuk berbagai keperluan pengembangan aplikasi, mulai perhitungan sederhana sampai aplikasi multimedia bahkan yang terkoneksi internet. (Kadir, 2001) Tampilan Delphi Secara Umum Tampilan Delphi secara umum berbeda dengan tampilan bahasa pemprograman lain. Delphi tidak memiliki form utama atau form induk. Sehingga pembuatan program dengan software ini, wallpaper desktop akan terlihat lebih jelas. Semua fasilitas toolbox dan tool window pada Delphi terpisah dari menu utama. Tampilan software ini hampir sama dengan beberapa software yang ada di Linux. Hal ini dapat dilihat dari tampilan program The Gimp yang ada di Linux.

29 2.8.3 Delphi Object Pascal Gambar 2.7 Tampilan Umum Delphi Sejak pertama komputer diketemukan hingga sekarang, telah terjadi evaluasi bahasa pemrograman. Penggerak evolusinya adalah keinginan untuk mendapatkan sebanyak mungkin dengan usaha dan sumber daya sedikit mungkin. Dengan demikian program dipecah menjadi objek yang berkembang dan disebut dengan konsep Object Oriented Programming (OOP). Keuntungan bahasa pemrograman OOP dibandingkan bahasa pendahulunya yaitu: 1. Lebih terstruktur. 2. Lebih modular, serta mudah digunakan kembali. 3. Lebih tahan terhadap perubahan. 4. Lebih mudah dikembangkan. 5. Lebih alami.

Pembentukan Citra. Bab Model Citra

Pembentukan Citra. Bab Model Citra Bab 2 Pembentukan Citra C itra ada dua macam: citra kontinu dan citra diskrit. Citra kontinu dihasilkan dari sistem optik yang menerima sinyal analog, misalnya mata manusia dan kamera analog. Citra diskrit

Lebih terperinci

PENGOLAHAN CITRA DIGITAL

PENGOLAHAN CITRA DIGITAL PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama mahas@ukdw.ac.id Sistem Optik dan Proses Akuisisi Citra Digital 2 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 Bisa dilihat pada slide berikut. SISTEM OPTIK MANUSIA

Lebih terperinci

GRAFIK KOMPUTER DAN PENGOLAHAN CITRA. WAHYU PRATAMA, S.Kom., MMSI.

GRAFIK KOMPUTER DAN PENGOLAHAN CITRA. WAHYU PRATAMA, S.Kom., MMSI. GRAFIK KOMPUTER DAN PENGOLAHAN CITRA WAHYU PRATAMA, S.Kom., MMSI. PERTEMUAN 8 - GRAFKOM DAN PENGOLAHAN CITRA Konsep Dasar Pengolahan Citra Pengertian Citra Analog/Continue dan Digital. Elemen-elemen Citra

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi tersebut pada setiap titik (x,y) merupakan

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL 2.1 Citra Secara harafiah, citra adalah representasi (gambaran), kemiripan, atau imitasi pada bidang dari suatu objek. Ditinjau dari sudut pandang matematis,

Lebih terperinci

Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer

Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer Pengolahan Citra / Image Processing : Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer Teknik pengolahan citra dengan mentrasformasikan citra menjadi citra lain, contoh

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Citra menurut kamus Webster adalah suatu representasi atau gambaran, kemiripan, atau imitasi dari suatu objek atau benda, contohnya yaitu foto seseorang dari kamera yang

Lebih terperinci

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya 5 BAB 2 LANDASAN TEORI 2.1 Citra Secara harfiah citra atau image adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya pada

Lebih terperinci

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo Citra Digital Petrus Paryono Erick Kurniawan erick.kurniawan@gmail.com Esther Wibowo esther.visual@gmail.com Studi Tentang Pencitraan Raster dan Pixel Citra Digital tersusun dalam bentuk raster (grid atau

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( SAP )

SATUAN ACARA PERKULIAHAN ( SAP ) SATUAN ACARA PERKUIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Waktu : 2 x 3x 5 Menit Pertemuan : 2&3 A. Kompetensi. Utama Mahasiswa dapat memahami tentang sistem

Lebih terperinci

BAB II Tinjauan Pustaka

BAB II Tinjauan Pustaka 23 BAB II Tinjauan Pustaka II.1. Pengolahan Citra Digital Citra yang diperoleh dari lingkungan masih terdiri dari warna yang sangat komplek sehingga masih diperlukan proses lebih lanjut agar image tersebut

Lebih terperinci

BAB 2 TINJAUAN TEORETIS

BAB 2 TINJAUAN TEORETIS BAB 2 TINJAUAN TEORETIS 2. Citra Digital Menurut kamus Webster, citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda. Citra digital adalah representasi dari citra dua dimensi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengenalan Citra Citra adalah suatu representasi (gambaran), kemiripan atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

Model Citra (bag. 2)

Model Citra (bag. 2) Model Citra (bag. 2) Ade Sarah H., M. Kom Resolusi Resolusi terdiri dari 2 jenis yaitu: 1. Resolusi spasial 2. Resolusi kecemerlangan Resolusi spasial adalah ukuran halus atau kasarnya pembagian kisi-kisi

Lebih terperinci

BAB II CITRA DIGITAL

BAB II CITRA DIGITAL BAB II CITRA DIGITAL DEFINISI CITRA Citra adalah suatu representasi(gambaran),kemiripan,atau imitasi dari suatu objek. DEFINISI CITRA ANALOG Citra analog adalahcitra yang bersifat kontinu,seperti gambar

Lebih terperinci

Pengolahan Citra : Konsep Dasar

Pengolahan Citra : Konsep Dasar Pengolahan Citra Konsep Dasar Universitas Gunadarma 2006 Pengolahan Citra Konsep Dasar 1/14 Definisi dan Tujuan Pengolahan Citra Pengolahan Citra / Image Processing Proses memperbaiki kualitas citra agar

Lebih terperinci

Mengapa menggunakan format image BITMAP & VECTOR?

Mengapa menggunakan format image BITMAP & VECTOR? Mengapa menggunakan format image BITMAP & VECTOR? Gambar-gambar grafis yang diproses menggunakan komputer terbagi menjadi dua jenis, yaitu bitmap dan vektor. Jika ingin mendapatkan sebuah hasil cetak yang

Lebih terperinci

ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA

ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA Nurliadi 1 *, Poltak Sihombing 2 & Marwan Ramli 3 1,2,3 Magister Teknik Informatika, Universitas

Lebih terperinci

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK Rinaldi Munir Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 E-mail: rinaldi@informatika.org Abstrak

Lebih terperinci

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara.

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Image Enhancement Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Cara-cara yang bisa dilakukan misalnya dengan fungsi transformasi, operasi matematis,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

SAMPLING DAN KUANTISASI

SAMPLING DAN KUANTISASI SAMPLING DAN KUANTISASI Budi Setiyono 1 3/14/2013 Citra Suatu citra adalah fungsi intensitas 2 dimensi f(x, y), dimana x dan y adalahkoordinat spasial dan f pada titik (x, y) merupakan tingkat kecerahan

Lebih terperinci

Pengolahan citra. Materi 3

Pengolahan citra. Materi 3 Pengolahan citra Materi 3 Citra biner, citra grayscale dan citra warna Citra warna berindeks Subject Elemen-elemen Citra Digital reflectance MODEL WARNA Citra Biner Citra Biner Banyaknya warna hanya 2

Lebih terperinci

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK Rinaldi Munir Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 E-mail: rinaldi@informatika.org ABSTRAKSI

Lebih terperinci

Digitalisasi Citra. Digitalisasi. Citra analog / objek / scene. Citra digital

Digitalisasi Citra. Digitalisasi. Citra analog / objek / scene. Citra digital Digitalisasi Citra Digitalisasi Citra analog / objek / scene Citra digital Proses utama konversi analog ke digital Sampling digitalisasi koordinat spatial Nilai-nilai dalam citra kontinyu f(x,y) didekati

Lebih terperinci

Representasi Citra. Bertalya. Universitas Gunadarma

Representasi Citra. Bertalya. Universitas Gunadarma Representasi Citra Bertalya Universitas Gunadarma 2005 Pengertian Citra Digital Ada 2 citra, yakni : citra kontinu dan citra diskrit (citra digital) Citra kontinu diperoleh dari sistem optik yg menerima

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra 2.1.1 Definisi Citra Secara harfiah, citra adalah gambar pada bidang dwimatra (dua dimensi). Jika dipandang dari sudut pandang matematis, citra merupakan hasil pemantulan

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG 2.1 Computer Vision Komputerisasi memiliki ketelitian yang jauh lebih tinggi bila dibandingkan dengan cara manual yang dilakukan oleh mata manusia, komputer dapat melakukan berbagai

Lebih terperinci

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Citra dapat didefinisikan sebagai sebuah fungsi dua dimensi, f(x,y) dimana x dan y merupakan koordinat bidang datar, dan harga fungsi f disetiap

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Digital Citra digital adalah citra yang dapat diolah oleh komputer (Sutoyo & Mulyanto, 2009). Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra

Lebih terperinci

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Nurul Fuad 1, Yuliana Melita 2 Magister Teknologi Informasi Institut Saint Terapan & Teknologi

Lebih terperinci

Pengolahan Citra (Image Processing)

Pengolahan Citra (Image Processing) BAB II TINJAUAN TEORITIS 2.1 Citra (Image) Processing Secara harfiah, citra (image) adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus

Lebih terperinci

IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH

IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH Fitri Afriani Lubis 1, Hery Sunandar 2, Guidio Leonarde Ginting 3, Lince Tomoria Sianturi 4 1 Mahasiswa Teknik Informatika, STMIK Budi Darma

Lebih terperinci

Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016

Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016 MKB3383 - Teknik Pengolahan Citra Pengolahan Citra Digital Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016 CITRA Citra (image) = gambar pada bidang 2 dimensi. Citra (ditinjau dari sudut pandang matematis)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Computer Vision Computer vision dapat diartikan sebagai suatu proses pengenalan objek-objek berdasarkan ciri khas dari sebuah gambar dan dapat juga digambarkan sebagai suatu deduksi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra merupakan salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun sebuah citra kaya akan informasi, namun sering

Lebih terperinci

BAB II TI JAUA PUSTAKA

BAB II TI JAUA PUSTAKA BAB II TI JAUA PUSTAKA Pada bab ini akan dibahas mengenai teori-teori yang menunjang tugas akhir ini. Antara lain yaitu pengertian citra, pengertian dari impulse noise, dan pengertian dari reduksi noise.

Lebih terperinci

MAKALAH PENGOLAHAN CITRA DIGITAL. ( Histogram Citra ) Disusun Oleh : : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 )

MAKALAH PENGOLAHAN CITRA DIGITAL. ( Histogram Citra ) Disusun Oleh : : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 ) MAKALAH PENGOLAHAN CITRA DIGITAL ( Histogram Citra ) Disusun Oleh : Nama : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 ) Jurusan : Tehnik Informatika ( Semester VI ) Kampus : STIMIK HIMSYA

Lebih terperinci

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1 BAB II LANDASAN TEORI Computer vision adalah bagian dari ilmu pengetahuan dan teknologi yang membuat mesin seolah-olah dapat melihat. Komponen dari Computer Vision tentunya adalah gambar atau citra, dengan

Lebih terperinci

Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc

Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc Pertemuan 3 Perbaikan Citra pada Domain Spasial (1), S.Kom, M.Comp.Sc Tujuan Memberikan pemahaman kepada mahasiswa mengenai berbagai teknik perbaikan citra pada domain spasial, antara lain : Transformasi

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Pembentukan Citra Citra ada 2 macam : 1. Citra Kontinu Dihasilkan dari sistem optik yang menerima

Lebih terperinci

PERANGKAT LUNAK PERBAIKAN KUALITAS CITRA DIGITAL MODEL RGB DAN IHS DENGAN OPERASI PENINGKATAN KONTRAS

PERANGKAT LUNAK PERBAIKAN KUALITAS CITRA DIGITAL MODEL RGB DAN IHS DENGAN OPERASI PENINGKATAN KONTRAS PERANGKAT LUNAK PERBAIKAN KUALITAS CITRA DIGITAL MODEL RGB DAN IHS DENGAN OPERASI PENINGKATAN KONTRAS Tole Sutikno, Kartika Firdausy, Eko Prasetyo Center for Electrical Engineering Research and Solutions

Lebih terperinci

Intensitas cahaya ditangkap oleh diagram iris dan diteruskan ke bagian retina mata.

Intensitas cahaya ditangkap oleh diagram iris dan diteruskan ke bagian retina mata. Pembentukan Citra oleh Sensor Mata Intensitas cahaya ditangkap oleh diagram iris dan diteruskan ke bagian retina mata. Bayangan obyek pada retina mata dibentuk dengan mengikuti konsep sistem optik dimana

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra 2.1.1 Pengertian Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek[11]. Suatu citra diperoleh dari penangkapan kekuatan sinar yang

Lebih terperinci

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness 753 GLOSARIUM Adaptive thresholding (lihat Peng-ambangan adaptif). Additive noise (lihat Derau tambahan). Algoritma Moore : Algoritma untuk memperoleh kontur internal. Array. Suatu wadah yang dapat digunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Digital Istilah citra biasanya digunakan dalam bidang pengolahan citra yang berarti gambar. Suatu citra dapat didefinisikan sebagai fungsi dua dimensi, di mana dan adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Citra Citra (image) atau istilah lain untuk gambar sebagai salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra (image) atau yang secara umum disebut gambar merupakan representasi spasial dari suatu objek yang sebenarnya dalam bidang dua dimensi yang biasanya ditulis dalam

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Digital Citra digital dapat didefinisikan sebagai fungsi dua variabel, f(x,y), dimana x dan y adalah koordinat spasial dan nilai f(x,y) adalah intensitas citra pada koordinat

Lebih terperinci

Grafik Komputer dan Pengolahan Citra. Pengolahan Citra : Representasi Citra. Universitas Gunadarma Pengolahan Citra : Representasi Citra 1/16

Grafik Komputer dan Pengolahan Citra. Pengolahan Citra : Representasi Citra. Universitas Gunadarma Pengolahan Citra : Representasi Citra 1/16 Pengolahan Citra : Representasi Citra Universitas Gunadarma 006 Pengolahan Citra : Representasi Citra /6 Representasi Citra dalam File (/3) Pertama-tama seperti halnya jika kita ingin melukis sebuah gambar,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dengan perkembangan komputer dan alat pengambilan gambar secara digital yang semakin berkembang saat ini, sehingga menghasilkan banyak fasilitas untuk melakukan proses

Lebih terperinci

10/11/2014. CIG4E3 / Pengolahan Citra Digital BAB 3. Pembentukan Citra Digital. Digitalisasi Citra. Yang dipengaruhi N,M, & q

10/11/2014. CIG4E3 / Pengolahan Citra Digital BAB 3. Pembentukan Citra Digital. Digitalisasi Citra. Yang dipengaruhi N,M, & q 5 8 9 //4 CIG4E / Pengolahan Citra Digital BAB. Pembentukan Citra Digital Digitalisasi Citra Intelligent Computing and Multimedia (ICM) Digitalisasi Citra analog / objek / scene Citra digital //4 //4 Proses

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN Rudy Adipranata 1, Liliana 2, Gunawan Iteh Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas Kristen Petra Jl. Siwalankerto

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Citra 2.1.1 Definisi Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra digital adalah citra yang dapat diolah oleh komputer. Citra

Lebih terperinci

BAB II LANDASAN TEORI. mesin atau robot untuk melihat (http://en.wikipedia.org/wiki/computer_vision).

BAB II LANDASAN TEORI. mesin atau robot untuk melihat (http://en.wikipedia.org/wiki/computer_vision). BAB II LANDASAN TEORI Computer vision adalah suatu ilmu di bidang komputer yang dapat membuat mesin atau robot untuk melihat (http://en.wikipedia.org/wiki/computer_vision). Terdapat beberapa klasifikasi

Lebih terperinci

MAKALAH APLIKASI KOMPUTER 1 SISTEM APLIKASI KOMPUTER GRAFIK KOMPUTER DAN KONSEP DASAR OLAH CITRA. Diajukan sebagai Tugas Mandiri Mata Kuliah NTM

MAKALAH APLIKASI KOMPUTER 1 SISTEM APLIKASI KOMPUTER GRAFIK KOMPUTER DAN KONSEP DASAR OLAH CITRA. Diajukan sebagai Tugas Mandiri Mata Kuliah NTM MAKALAH APLIKASI KOMPUTER 1 SISTEM APLIKASI KOMPUTER GRAFIK KOMPUTER DAN KONSEP DASAR OLAH CITRA Diajukan sebagai Tugas Mandiri Mata Kuliah NTM Semester Genap Tahun Akademik 2014 / 2015 Angkatan XIII Disusun

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan teori-teori yang akan digunakan pada saat penelitian. Teori yang dibahas meliputi teori-teori tentang bagaimana menggabungkan beberapa citra dan pengertian

Lebih terperinci

Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching)

Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching) Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching) Nur Wakhidah Fakultas Teknologi Informasi dan Komunikasi Universitas Semarang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini penggunaan citra digital semakin meningkat karena kelebihan-kelebihan yang dimiliki oleh citra digital tersebut, antara lain kemudahan dalam mendapatkan

Lebih terperinci

Peningkatan Kualitas Citra. Domain Spasial

Peningkatan Kualitas Citra. Domain Spasial Peningkatan Kualitas Citra Domain Spasial 2 Tujuan Perbaikan Citra Tujuan dari teknik peningkatan mutu citra adalah untuk melakukan pemrosesan terhadap citra agar hasilnya mempunyai kwalitas relatif lebih

Lebih terperinci

1. Grafis Bitmap Dan Vektor 2. Konsep Warna Digital 3. Gambar Digital 4. Editing Gambar Photoshop 5. Membuat Kop Web

1. Grafis Bitmap Dan Vektor 2. Konsep Warna Digital 3. Gambar Digital 4. Editing Gambar Photoshop 5. Membuat Kop Web 4/7/2010 Pelatihan Kopertis VI 6 s.d 8 April 2010 1 1. Grafis Bitmap Dan Vektor 2. Konsep Warna Digital 3. Gambar Digital 4. Editing Gambar Photoshop 5. Membuat Kop Web 4/7/2010 Pelatihan Kopertis VI 6

Lebih terperinci

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING )

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 1 Konsep Dasar Pengolahan Citra Pengertian Citra Citra atau Image merupakan istilah lain dari gambar, yang merupakan

Lebih terperinci

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner Dosen Pengampu: Muhammad Zidny Naf an, M.Kom. Genap 2016/2017 Definisi Citra biner (binary image) adalah citra yang hanya mempunyai dua nilai derajat

Lebih terperinci

BAB II LANDASAN TEORI. Citra digital sebenarnya bukanlah sebuah data digital yang normal,

BAB II LANDASAN TEORI. Citra digital sebenarnya bukanlah sebuah data digital yang normal, BAB II LANDASAN TEORI II.1 Citra Digital Citra digital sebenarnya bukanlah sebuah data digital yang normal, melainkan sebuah representasi dari citra asal yang bersifat analog [3]. Citra digital ditampilkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Citra (image) sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik yang tidak dimiliki oleh

Lebih terperinci

Implementasi Metode Run Length Encoding (RLE) untuk Kompresi Citra

Implementasi Metode Run Length Encoding (RLE) untuk Kompresi Citra 249 Implementasi Metode Run Length Encoding (RLE) untuk Kompresi Citra Ahmad Jalaluddin 1, Yuliana Melita 2 1) Univers itas Islam Lamongan 2) Sekolah Tinggi Teknik Surabaya Odden.85@gmail.com, ymp@stts.edu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengolahan Citra Pengolahan citra (image processing) merupakan proses untuk mengolah pixel-pixel dalam citra digital untuk tujuan tertentu. Beberapa alasan dilakukan pengolahan

Lebih terperinci

Model Citra (bag. I)

Model Citra (bag. I) Model Citra (bag. I) Ade Sarah H., M. Kom Defenisi Citra Citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek. Jenis dari citra ada 2, yaitu: 1. Citra analog (kontinu) : Dihasilkan

Lebih terperinci

PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN

PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN Dolly Indra dolly.indra@umi.ac.id Teknik Informatika Universitas Muslim Indonesia Abstrak Pada tahap melakukan ekstraksi ciri (feature extraction) faktor

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Steganografi Kata steganografi berasal dari bahasa yunani yang terdiri dari steganos (tersembunyi) graphen (menulis), sehingga bisa diartikan sebagai tulisan yang tersembunyi.

Lebih terperinci

(IMAGE ENHANCEMENT) Peningkatan kualitas citra di bagi menjadi dua kategori yaitu :

(IMAGE ENHANCEMENT) Peningkatan kualitas citra di bagi menjadi dua kategori yaitu : (IMAGE ENHANCEMENT) Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagi cara. Tujuannya adalah untuk memproses citra yang dihasilkan lebih baik daripada

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Uang Kertas Rupiah Uang Rupiah Kertas adalah Uang Rupiah dalam bentuk lembaran yang terbuat dari Kertas Uang yang dikeluarkan oleh Bank Indonesia, dimana penggunaannya dilindungi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu system perekaman data dapat bersifat optik berupa foto,

Lebih terperinci

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA HASNAH(12110738) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja No. 338

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini membahas landasan teori yang bersifat ilmiah untuk mendukung penulisan penelitian ini. Teori-teori yang dibahas mengenai pengertian citra, jenis-jenis citra digital, metode

Lebih terperinci

BAB II LANDASAN TEORI. dimensi yang dinotasikan dengan f(x,y), dimana nilai x dan y menyatakan

BAB II LANDASAN TEORI. dimensi yang dinotasikan dengan f(x,y), dimana nilai x dan y menyatakan BAB II LANDASAN TEORI 2.1 Citra Citra merupakan suatu fungsi dari intensitas cahaya dalam bidang dua dimensi yang dinotasikan dengan f(x,y), dimana nilai x dan y menyatakan koordinat citra dan nilai f

Lebih terperinci

Aplikasi Pembesaran Citra Menggunakan Metode Nearest Neighbour Interpolation

Aplikasi Pembesaran Citra Menggunakan Metode Nearest Neighbour Interpolation Aplikasi Pembesaran Citra Menggunakan Metode Nearest Neighbour Interpolation Daryanto 1) 1) Prodi Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Jember Email: 1) daryanto@unmuhjember.ac.id

Lebih terperinci

KOMPRESI CITRA DIGITAL MENGGUNAKAN METODE STATISTICAL CODING

KOMPRESI CITRA DIGITAL MENGGUNAKAN METODE STATISTICAL CODING KOMPRESI CITRA DIGITAL MENGGUNAKAN METODE STATISTICAL CODING Abdul Halim Hasugian Dosen Tetap Program Studi Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Simpang Limun Medan www.stmik-budidarma.ac.id//email:abdulhasugian@gmail.co.id

Lebih terperinci

TEKNIK PENGOLAHAN CITRA MENGGUNAKAN METODE KECERAHAN CITRA KONTRAS DAN PENAJAMAN CITRA DALAM MENGHASILKAN KUALITAS GAMBAR

TEKNIK PENGOLAHAN CITRA MENGGUNAKAN METODE KECERAHAN CITRA KONTRAS DAN PENAJAMAN CITRA DALAM MENGHASILKAN KUALITAS GAMBAR TEKNIK PENGOLAHAN CITRA MENGGUNAKAN METODE KECERAHAN CITRA KONTRAS DAN PENAJAMAN CITRA DALAM MENGHASILKAN KUALITAS GAMBAR Zulkifli Dosen Tetap Fakultas Ilmu Komputer Universitas Almuslim Email : Zulladasicupak@gmail.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pendeteksi senyum pada skripsi ini, meliputi metode Viola Jones, konversi citra RGB ke grayscale,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Steganografi Steganografi adalah seni komunikasi dengan menyembunyikan atau menyamarkan keberadaan pesan rahasia dalam suatu media penampungnya sehingga orang lain tidak menyadari

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengolahan Citra Pengolahan citra adalah kegiatan memanipulasi citra yang telah ada menjadi gambar lain dengan menggunakan suatu algoritma atau metode tertentu. Proses ini mempunyai

Lebih terperinci

LAPORAN PEMROSESAN CITRA DIGITAL

LAPORAN PEMROSESAN CITRA DIGITAL Tugas Mata Kuliah LAPORAN PEMROSESAN CITRA DIGITAL ANDI DANIAH PAHRANY H11113303 JURUSAN MATEMATIKA PRODI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN MAKASSAR 2015 PEMROSESAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1. Steganografi Steganografi adalah mekanisme penanaman atau penyisipan pesan (m) kedalam sebuah cover objek (c) menggunakan kunci (k) untuk berbagi rahasia kepada orang lain,

Lebih terperinci

Gambar (image) merupakan suatu representasi spatial dari suatu obyek, dalam pandangan 2D atau 3D.

Gambar (image) merupakan suatu representasi spatial dari suatu obyek, dalam pandangan 2D atau 3D. MULTIMEDIA IMAGE ARIF BUDIANTO H1L012074 GANANG NUGROHO AJI H1L012035 HADI PURNOMO H1L013007 DITA ZENITHA ZAIN H1L013031 MUTHIA ATHAYA H1L013030 SARDO SAMUEL ERICK LIMBONG H1L013041 AISYAH FATHIA P H1L014002

Lebih terperinci

PENERAPAN METODE CONTRAST STRETCHING UNTUK PENINGKATAN KUALITAS CITRA BIDANG BIOMEDIS

PENERAPAN METODE CONTRAST STRETCHING UNTUK PENINGKATAN KUALITAS CITRA BIDANG BIOMEDIS PENERAPAN METODE CONTRAST STRETCHING UNTUK PENINGKATAN KUALITAS CITRA BIDANG BIOMEDIS Fricles Ariwisanto Sianturi Program Studi Teknik Informatika STMIK Pelita Nusantara Medan, Jl. Iskandar Muda No 1 Medan-Sumatera

Lebih terperinci

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL. foto, bersifat analog berupa sinyal sinyal video seperti gambar pada monitor

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL. foto, bersifat analog berupa sinyal sinyal video seperti gambar pada monitor BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL 2.1 Pendahuluan Citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat

Lebih terperinci

Pengantar Pengolahan Citra. Ade Sarah H., M. Kom

Pengantar Pengolahan Citra. Ade Sarah H., M. Kom Pengantar Pengolahan Citra Ade Sarah H., M. Kom Pendahuluan Data atau Informasi terdiri dari: teks, gambar, audio, dan video. Citra = gambar adalah salah satu komponen multimedia yang memegang peranan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengantar Pengolahan Citra Data atau informasi tidak hanya disajikan dalam bentuk teks, tetapi juga dalam bentuk gambar, audio (seperti bunyi, suara, musik), dan video. Keempat

Lebih terperinci

Operasi-operasi Dasar Pengolahan Citra Digital

Operasi-operasi Dasar Pengolahan Citra Digital Operasi-operasi Dasar Pengolahan Citra Digital Pendahuluan Citra digital direpresentasikan dengan matriks. Operasi pada citra digital pada dasarnya adalah memanipulasi elemen- elemen matriks. Elemen matriks

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian citra Secara umum pengertian citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dan suatu obyek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa foto,

Lebih terperinci

Drawing, Viewport, dan Transformasi. Pertemuan - 02

Drawing, Viewport, dan Transformasi. Pertemuan - 02 Drawing, Viewport, dan Transformasi Pertemuan - 02 Ruang Lingkup Definisi Drawing Viewport Transfomasi Definisi Bagian dari grafik komputer meliputi: 1. Citra (Imaging) : mempelajari cara pengambilan dan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 7 BAB III LANDASAN TEORI 3.1 Metode Penelitian Metode penelitian merupakan cara teknis yang bersifat ilmiah yang menggunakan metode yang memiliki sistematika dan prosedur yang harus ditempuh dengan tidak

Lebih terperinci

Judul : APLIKASI PERBAIKAN KUALITAS CITRA DIGITAL MENGGUNAKAN MATLAB 7. 1 Nama : MELISA NPM :

Judul : APLIKASI PERBAIKAN KUALITAS CITRA DIGITAL MENGGUNAKAN MATLAB 7. 1 Nama : MELISA NPM : Judul : APLIKASI PERBAIKAN KUALITAS CITRA DIGITAL MENGGUNAKAN MATLAB 7. 1 Nama : MELISA NPM : 50403778 Email : reval_lauren@yahoo.com ABSTRAK Citra yang dimiliki pengguna seringkali mengalami gangguan

Lebih terperinci

PERTEMUAN - 2 PENGOLAHAN CITRA

PERTEMUAN - 2 PENGOLAHAN CITRA PERTEMUAN - 2 PENGOLAHAN CITRA EDY WINARNO fti-unisbank-smg 24 maret 2009 Citra = gambar = image Citra, menurut kamus Webster, adalah suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda

Lebih terperinci