Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc"

Transkripsi

1 Pertemuan 3 Perbaikan Citra pada Domain Spasial (1), S.Kom, M.Comp.Sc

2 Tujuan Memberikan pemahaman kepada mahasiswa mengenai berbagai teknik perbaikan citra pada domain spasial, antara lain : Transformasi negatif/identitas, log/inverse log, pangkat/akar Transformasi linier sepotong-sepotong untuk contrast stretching Gray-level slicing Bit-plane slicing Histogram Equalization Penggunaan nilai statistik dari histogram 2

3 Gambaran Umum Tujuan perbaikan adalah memproses citra sehingga didapatkan hasil yang lebih sesuai dibandingkan citra aslinya, untuk dipergunakan pada aplikasi tertentu. Metode-metode perbaikan citra dikelompokkan menjadi dua, yaitu: Metode-metode pada domain spasial Metode-metode pada domain frekuensi 3

4 Gambaran Umum Teknik pemrosesan pada domain spasial didasarkan pada manipulasi piksel dalam citra secara langsung. Teknik pemrosesan pada domain frekuensi didasarkan pada manipulasi terhadap transformasi Fourier dari suatu citra. 4

5 Gambaran Umum Proses-proses pada domain spasial dinyatakan dengan ekspresi berikut: g(x,y) = T [ f(x,y) ] f(x,y) adalah citra input g(x,y) adalah citra output T adalah operator terhadap f, yang didefinisikan pada ketetanggaan (neighborhood) dari (x,y). 5

6 Gambaran Umum Tetangga di sekitar titik (x,y) didefinisikan sebagai sub citra berupa segi empat dengan titik pusat pada (x,y). Pusat dari sub citra dipindahkan piksel demi piksel, mulai dari sudut kiri atas citra. Operator T diaplikasikan pada setiap lokasi (x,y) untuk menghasilkan output g pada lokasi tersebut. Perhitungan hanya menggunakan piksel-piksel pada area citra yang direntang oleh neighborhood. 6

7 Gambaran Umum 7

8 Gambaran Umum Bentuk paling sederhana dari T adalah ketika ukuran neighborhood 1x1 (piksel tunggal). Dalam kasus tersebut, g hanya tergantung pada nilai f pada (x,y), dan T menjadi fungsi transformasi tingkat keabuan (atau intensitas) berbentuk: s = T(r) r dan s adalah variabel yang menyatakan tingkat keabuan dari f(x,y) dan g(x,y) pada sembarang titik (x,y). 8

9 Gambaran Umum Efek dari transformasi (a) akan menghasilkan citra dengan kekontrasan yang lebih tinggi dibandingkan citra asal. Hal ini dilakukan dengan cara menggelapkan intensitas di bawah m dan memperterang intensitas di atas m. Teknik seperti ini disebut contrast stretching. Transformasi (b) akan menghasilkan citra dua level (biner). Pemetaan semacam ini disebut fungsi thresholding. Dua teknik di atas termasuk kategori point processing, yaitu teknik perbaikan di mana intensitas sembarang piksel pada citra output hanya tergantung pada intensitas piksel pada citra input pada lokasi yang sama. 9

10 Gambaran Umum Jika ukuran neighborhood lebih besar dari 1x1, biasanya digunakan filter (disebut juga kernel atau window). Filter biasanya berukuran kecil (mis, 3x3). Setiap elemen dari filter memiliki koefisien tertentu. Intensitas dari sembarang piksel pada citra output tergantung pada intensitas dari piksel-piksel pada citra input dalam neighborhood yang direntang oleh filter, dengan bobot seperti koefisien yang tercantum pada filter. Teknik perbaikan dengan model seperti ini disebut mask processing atau filtering. 10

11 Transformasi Tingkat Keabuan Dasar Tiga tipe transformasi tingkat keabuan dasar yang sering digunakan untuk perbaikan citra adalah: Linear (transformasi negatif dan identitas) Logaritmik (transformasi log dan inverse-log) Pangkat (transformasi pangkat n dan akar n) 11

12 Transformasi Tingkat Keabuan Dasar 12

13 Negatif dari Citra Negatif dari suatu citra dengan tingkat keabuan antara [0, L-1] dapat dihitung menggunakan transformasi negatif dengan rumus berikut: s=l 1 r L adalah jumlah intensitas citra r adalah nilai intensitas input s adalah nilai intensitas output Contoh sederhana: L = 2 (citra hitam putih), jika inputnya: r = 0 maka outputnya: s = = 1. Membalik intensitas citra dengan rumus seperti di atas akan menghasilkan negatif dari photo. Pencarian negatif dari suatu citra cocok untuk memperbaiki gambar yang memiliki rincian sub citra terang pada area yang gelap, khususnya jika ukuran dari area gelap cukup dominan. 13

14 Negatif dari Citra 14

15 Transformasi Log Bentuk umum dari transformasi log adalah: s = c log (1+r) dengan c adalah konstanta, dan diasumsikan bahwa r 0. Transformasi log memetakan rentang yang sempit dari nilai-nilai tingkat keabuan gelap pada citra input ke dalam rentang yang lebih luas pada citra output. Kebalikannya berlaku untuk tingkat keabuan terang. Transformasi inverse log memperbanyak jumlah piksel bernilai gelap dan mengurangi jumlah piksel bernilai terang. Pada transformasi log, yang terjadi adalah kebalikannya. 15

16 Transformasi Log 16

17 Transformasi Pangkat Transformasi pangkat dirumuskan sbb: s = crγ dengan c dan γ adalah konstanta positif. 17

18 Transformasi Pangkat 18

19 Transformasi Pangkat 19

20 Fungsi Transformasi Linier Sepotongsepotong Selain tiga fungsi transformasi dasar yang dibahas sebelumnya, fungsi transformasi linear sepotong-sepotong juga biasa digunakan. Keuntungannya, bentuk dari fungsi sepotongsepotong bisa lebih kompleks dibandingkan fungsi transformasi dasar. 20

21 Contrast stretching Salah satu di antara fungsi linier sepotong-sepotong yang paling sederhana adalah transformasi contrast stretching. Citra dengan kekontrasan rendah bisa disebabkan oleh kurangnya pencahayaan, kurangnya rentang dinamis dari peralatan sensor citra, atau setting lensa yang salah pada saat pengambilan citra. Ide dibalik contrast stretching adalah meningkatkan rentang dinamis tingkat keabuan dari citra. 21

22 Contrast stretching Lokasi titik-titik (r1,s1) dan (r2,s2) mengontrol bentuk dari fungsi transformasi. 255 Jika r1=s1 dan r2=s2, transformasi adalah fungsi linear yang tidak mengubah tingkat keabuan. (r2,s2) Jika r1=r2, s1=0 dan s2=l-1, transformasi menjadi s fungsi thresholding yang akan menghasilkan citra biner. Nilai-nilai di antara (r1,s1) dan (r2,s2) menghasilkan berbagai derajat penyebaran tingkat keabuan dari citra output, sehingga mempengaruhi kekontrasan citra. T(r) (r1,s1) 0 r 255 Secara umum, r1 r2 dan s1 s2 diasumsikan sedemikian sehingga fungsi bernilai tunggal dan monotonically increasing. 22

23 Contrast stretching 23

24 Contrast stretching Gambar (c) menunjukkan hasil contrast stretching yang didapat dengan men-set (r1,s1)=(rmin,0) dan (r2,s2)=(rmax,l-1) dengan rmin dan rmax menyatakan tingkat keabuan minimum dan maksimum pada citra asal. Jadi, fungsi transformasi menarik tingkat keabuan secara linier dari rentang asal ke rentang penuh [0, L-1]. Gambar (d) menunjukkan hasil penggunaan fungsi thresholding dengan r1 = r2 = m, m adalah tingkat keabuan rata-rata dari citra. 24

25 Gray-level slicing Terkadang diperlukan untuk menonjolkan rentang tertentu dari tingkat keabuan yang ada dalam citra. Misalnya, menonjolkan gumpalan air yang ada pada citra satelit dan menonjolkan cacat yang ada pada citra sinar X. Salah satu cara yang bisa dilakukan adalah dengan menampilkan secara lebih terang semua tingkat keabuan dalam range yang ingin ditonjolkan, dan menampilkan secara lebih gelap semua tingkat keabuan lainnya. Cara lain adalah dengan menampilkan secara lebih terang semua tingkat keabuan dalam range yang ingin ditonjolkan, dengan tetap mempertahankan proporsi tingkat keabuan lainnya. 25

26 Gray-level slicing 26

27 Bit-plane slicing Selain menonjolkan range tingkat keabuan tertentu, menonjolkan kontribusi dari bit tertentu pada kemunculan citra, terkadang juga dilakukan. Misalkan intensitas tiap piksel dalam citra dinyatakan dengan 8 bit. Sehingga citra tersusun atas 8 bidang 1-bit, mulai dari bidang bit 0 untuk least significant bit sampai bidang bit 7 untuk the most significant bit. 27

28 Bit-plane slicing 28

29 Bit-plane slicing 29

30 Bit-plane slicing 30

31 Pemrosesan Histogram Histogram dari suatu citra digital dengan range tingkat [0 L-1] adalah sebuah fungsi diskrit h(rk)=nk, dengan rk adalah tingkat keabuan ke-k dan nk adalah jumlah piksel dalam citra yang memiliki tingkat keabuan rk. Histogram: diagram yang menunjukkan jumlah kemunculan grey level (0-255) pada suatu citra Normalisasi histrogram dilakukan dengan membagi setiap nilai nk dengan total jumlah piksel dalam citra, yang dinyatakan dengan n. Histogram yang sudah dinormalisasi dinyatakan dengan p(rk)= nk/n, untuk k=0,1,,l-1. p(rk) menyatakan estimasi probabilitas kemunculan tingkat keabuan rk. Jumlah dari semua komponen normalized histogram sama dengan 1. 31

32 Pemrosesan Histogram Empat tipe citra: gelap, terang, kekontrasan rendah dan kekontrasan tinggi, beserta histogramnya. 32

33 Pemrosesan Histogram Sumbu horisontal dari histogram menyatakan nilai tingkat keabuan rk. Sumbu vertikal menyatakan nilai dari h(rk)=nk atau p(rk) = nk/n (jika nilainya dinormalisasi). Histogram adalah dasar dari sejumlah teknik pemrosesan citra pada domain spasial, seperti perbaikan, kompresi dan segmentasi citra. 33

34 Histogram Equalization Histogram equalization digunakan untuk memperlebar range tingkat keabuan, sehingga akan meningkatkan kekontrasan citra. Transformation berikut: sk = T ( rk ) = = k j=0 nj k j= 0 pr ( r j ) n untuk k=0,1,2,,l-1 disebut histogram equalization atau histogram linearization. 34

35 Histogram Equalization Ide: mengubah pemetaan greylevel agar sebarannya (kontrasnya) lebih menyebar pada kisaran Sifat: Grey level yang sering muncul lebih dijarangkan jaraknya dengan grey level sebelumnya Grey level yang jarang muncul bisa lebih dirapatkan jaraknya dengan grey level sebelumnya Histogram baru pasti mencapai nilai maksimal keabuan (contoh: 255) 35

36 Histogram Equalization 36

37 Contoh Citra Akhir: Citra awal: Contoh : citra dengan derajat keabuan hanya berkisar 0-10 Derajat Keabuan Kemunculan Probabilitas Kemunculan Sk SK * Derajat keabuan baru

38 Perbaikan Lokal Metode pemrosesan histogram yang sudah dibahas, yaitu histogram equalization bersifat global, karena piksel-piksel dimodifikasi menggunakan fungsi transformasi berbasis pada intensitas seluruh piksel pada citra. Seringkali diperlukan perbaikan pada suatu daerah yang kecil pada di dalam citra. 38

39 Perbaikan Lokal Teknik histogram equalization bisa diterapkan untuk perbaikan lokal. Caranya, definisikan daerah ketetanggaan (neighborhood), dan pindahkan pusat neighborhood piksel demi piksel pada keseluruhan citra. Pada setiap lokasi piksel, histogram dari piksel-piksel dalam neighborhood dihitung. Selanjutnya dispesifikasikan fungsi transformasi histogram equalization dan fungsi ini digunakan untuk memetakan intensitas piksel pada pusat neighborhood. Ulangi langkah tersebut pada seluruh piksel dalam citra. 39

40 Perbaikan Lokal 40

41 Perbaikan Lokal 41

42 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Selain menggunakan histogram secara langsung untuk perbaikan citra, dapat pula digunakan parameter-parameter statistik yang didapat dari histogram. Untuk keperluan perbaikan citra, parameter statistik yang bisa digunakan adalah mean, yaitu rata-rata tingkat keabuan dalam citra, dan variance (atau deviasi standard), yaitu rata-rata kekontrasan citra. Deviasi standard didefinisikan sebagai akar dari variance. 42

43 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Misalkan r adalah variabel random diskrit yang menyatakan tingkat keabuan diskrit dalam range [0, L-1], dan p(ri) adalah komponen normalized histogram pada nilai ke-i dari ri. Bisa diasumsikan bahwa p(ri) adalah estimasi probabilitas kemunculan tingkat keabuan ri. Mean dari r bisa dihitung dengan: L 1 m= i= 0 ri p( ri ) Variance dari r bisa dihitung dengan: σ 2 L 1 2 ( r ) = ( ri m ) p( ri ) i= 0 43

44 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Mean dan variance global diukur terhadap seluruh citra dan digunakan untuk menilai intensitas dan kekontrasan citra secara keseluruhan. Mean dan variance lokal digunakan sebagai dasar untuk membuat perubahan di dalam citra, dimana perubahan tersebut tergantung pada karakteristik di suatu sub daerah di dalam citra. 44

45 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Misalkan (x, y) adalah koordinat piksel, dan Sxy menyatakan neighborhood (subimage) dengan ukuran tertentu serta berpusat di (x, y). Mean msxy dari piksel-piksel dalam Sxy dapat dihitung sebagai berikut: ms xy = ) rs,t p ( rs,t ) ( s,t S xy rs,t adalah tingkat keabuan pada koordinat (s,t) dalam neighborhood, dan p(rs,t) adalah komponen normalized histogram pada neighborhood untuk tingkat keabuan rs,t. 45

46 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Variance dari piksel-piksel pada daerah Sxy dapat dihitung dengan: σ 2 S xy = ) [r ( s,t S xy s,t ] ms xy p ( rs,t ) 2 Mean lokal adalah ukuran tingkat keabuan rata-rata dalam neighborhood Sxy dan variance adalah ukuran kekontrasan dalam neighborhood. 46

47 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Permasalahan adalah bagaimana mempertajam daerah gelap dengan tetap mempertahankan daerah terang. 47

48 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Misalkan f(x,y) menyatakan intensitas piksel pada koordinat (x,y), dan g(x,y) menyatakan piksel yang sudah diperbaiki pada koordinat yang sama. Maka: E. f ( x, y ) jika ms xy k0 M G dan k1dg σ g ( x, y ) = f ( x, y ) lainnya S xy k 2 DG E, k0, k1, k2 adalah parameter-parameter yang harus ditentukan. MG adalah mean global dan DG adalah deviasi standard global. 48

49 Penggunaan Nilai Statistik dari Histogram untuk Perbaikan Citra Citra yang sudah diperbaiki dengan pemilihan parameter E=4.0, k0=0.4, k1=0.02, k0 k2=0.4 dan daerah lokal berukuran (3x3). 49

50 Referensi Bab 3, Image Enhancement in Spatial Domain, Digital Image Processing, edisi 2, Rafael C. Gonzales dan Richard E. Woods, Prentice Hall, 2002 Nanik Suciati, S.Kom, M.Kom, Slide kuliah PCD Teknik Informatika ITS. 50

Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial

Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial Dr. Aniati Murni (R.1202) Dina Chahyati, M.Kom (R.1226) Universitas Indonesia DC - OKT 2003 1 Tujuan Peningkatan Mutu Citra Sumber Pustaka:

Lebih terperinci

Peningkatan Kualitas Citra. Domain Spasial

Peningkatan Kualitas Citra. Domain Spasial Peningkatan Kualitas Citra Domain Spasial 2 Tujuan Perbaikan Citra Tujuan dari teknik peningkatan mutu citra adalah untuk melakukan pemrosesan terhadap citra agar hasilnya mempunyai kwalitas relatif lebih

Lebih terperinci

STMIK AMIKOM PURWOKERTO PENGOLAHAN CITRA ABDUL AZIS, M.KOM

STMIK AMIKOM PURWOKERTO PENGOLAHAN CITRA ABDUL AZIS, M.KOM PENGOLAHAN CITRA 1 Prinsip Enhancement Pemrosesan sebuah image sehingga hasil yang didapat bersifat lebih sesuai untuk digunakan pada aplikasi tertentu dibandingkan dengan image a s l i n y a. Kesesuaian

Lebih terperinci

(IMAGE ENHANCEMENT) Peningkatan kualitas citra di bagi menjadi dua kategori yaitu :

(IMAGE ENHANCEMENT) Peningkatan kualitas citra di bagi menjadi dua kategori yaitu : (IMAGE ENHANCEMENT) Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagi cara. Tujuannya adalah untuk memproses citra yang dihasilkan lebih baik daripada

Lebih terperinci

Kuantisasi Gray Level untuk Enhancement Citra

Kuantisasi Gray Level untuk Enhancement Citra Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Kuantisasi Gray Level untuk Enhancement Citra Content: 1. Definisi 2. Ketetanggaan Citra 3. Operator T 4. Transformasi Gray Level

Lebih terperinci

Pertemuan 2 Dasar Citra Digital. Anny Yuniarti, S.Kom, M.Comp.Sc

Pertemuan 2 Dasar Citra Digital. Anny Yuniarti, S.Kom, M.Comp.Sc Pertemuan 2 Dasar Citra Digital Anny Yuniarti, S.Kom, M.Comp.Sc Tujuan Memberikan pemahaman tentang konsep-konsep dasar dalam pengolahan citra digital, a.l.: Apakah pengolahan citra digital? Sampling dan

Lebih terperinci

Simulasi Teknik Image Enhancement Menggunakan Matlab Yustina Retno Wahyu Utami 3)

Simulasi Teknik Image Enhancement Menggunakan Matlab Yustina Retno Wahyu Utami 3) Simulasi Teknik Image Enhancement Menggunakan Matlab Yustina Retno Wahyu Utami 3) ISSN : 1693 1173 Abstrak Penelitian ini menekankan pada pentingnya teknik simuasi pada pengolahan citra digital. Simulasi

Lebih terperinci

PENGOLAHAN CITRA DIGITAL

PENGOLAHAN CITRA DIGITAL PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama mahas@ukdw.ac.id Histogram dan Operasi Dasar Pengolahan Citra Digital 3 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 MAMPIR SEB EN TAR Histogram Histogram citra

Lebih terperinci

SAMPLING DAN KUANTISASI

SAMPLING DAN KUANTISASI SAMPLING DAN KUANTISASI Budi Setiyono 1 3/14/2013 Citra Suatu citra adalah fungsi intensitas 2 dimensi f(x, y), dimana x dan y adalahkoordinat spasial dan f pada titik (x, y) merupakan tingkat kecerahan

Lebih terperinci

Operasi Titik Kartika Firdausy

Operasi Titik Kartika Firdausy Operasi Titik Kartika Firdausy tpcitra@ee.uad.ac.id blog.uad.ac.id/kartikaf 2262230 Setelah mempelajari materi ini, mahasiswa diharapkan mampu: mengidentifikasi Fungsi Transformasi Skala Keabuan menjelaskan

Lebih terperinci

Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching)

Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching) Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching) Nur Wakhidah Fakultas Teknologi Informasi dan Komunikasi Universitas Semarang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra merupakan salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun sebuah citra kaya akan informasi, namun sering

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 4 Pengolahan Titik (2) Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 4 Pengolahan Titik (2) Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 4 Pengolahan Titik (2) Indah Susilawati, S.T., M.Eng. Program Studi Teknik Informatika Program Studi Sistem Informasi Fakultas Teknologi Informasi Universitas Mercu Buana

Lebih terperinci

Modifikasi Histogram

Modifikasi Histogram Modifikasi Histogram Ekualisasi histogram Nilai-nilai intensitas di dalam citra diubah sehingga penyebarannya seragam Tujuannya untuk memperoleh penyebaran histogram yang merata sehingga setiap derajat

Lebih terperinci

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Nurul Fuad 1, Yuliana Melita 2 Magister Teknologi Informasi Institut Saint Terapan & Teknologi

Lebih terperinci

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram Shabrina Mardhi Dalila (5109100049) Dosen Pembimbing 1 Prof. Ir. Handayani Tjandrasa, M.Sc., Ph.D. Dosen

Lebih terperinci

PERBAIKAN CITRA DENGAN MENGGUNAKAN METODE PROBABILITY DISTRIBUTION HISTOGRAM EQUALIZATION (PDHE)

PERBAIKAN CITRA DENGAN MENGGUNAKAN METODE PROBABILITY DISTRIBUTION HISTOGRAM EQUALIZATION (PDHE) PERBAIKAN CITRA DENGAN MENGGUNAKAN METODE PROBABILITY DISTRIBUTION HISTOGRAM EQUALIZATION (PDHE) ANDRI andriecitra@yahoo.com Program Studi Teknik Informatika Fakultas Teknik, Matematika dan Ilmu Pengetahuan

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN Rudy Adipranata 1, Liliana 2, Gunawan Iteh Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas Kristen Petra Jl. Siwalankerto

Lebih terperinci

BAB II TI JAUA PUSTAKA

BAB II TI JAUA PUSTAKA BAB II TI JAUA PUSTAKA Pada bab ini akan dibahas mengenai teori-teori yang menunjang tugas akhir ini. Antara lain yaitu pengertian citra, pengertian dari impulse noise, dan pengertian dari reduksi noise.

Lebih terperinci

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-5 1 Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram Shabrina Mardhi Dalila, Handayani Tjandrasa, dan Nanik

Lebih terperinci

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK Rinaldi Munir Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 E-mail: rinaldi@informatika.org Abstrak

Lebih terperinci

Histogram. Peningkatan Kualitas Citra

Histogram. Peningkatan Kualitas Citra Histogram Peningkatan Kualitas Citra Representasi Image 1 bit 8 bits 24 bits Apakah itu histogram? (3, 8, 5) Histogram memberikan deskripsi global dari penampakan sebuah image. Histogram dari image digital

Lebih terperinci

Pendekatan Statistik Pada Domain Spasial dan Frekuensi untuk Mengetahui Tampilan Citra Yustina Retno Wahyu Utami 1)

Pendekatan Statistik Pada Domain Spasial dan Frekuensi untuk Mengetahui Tampilan Citra Yustina Retno Wahyu Utami 1) ISSN : 1693 1173 Pendekatan Statistik Pada Domain Spasial dan Frekuensi untuk Mengetahui Tampilan Citra Yustina Retno Wahyu Utami 1) Abstrak Mean, standard deviasi dan skewness dari citra domain spasial

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan teori-teori yang akan digunakan pada saat penelitian. Teori yang dibahas meliputi teori-teori tentang bagaimana menggabungkan beberapa citra dan pengertian

Lebih terperinci

Image Enhancement by webmaster - Thursday, December 31, 2015 http://suyatno.dosen.akademitelkom.ac.id/index.php/2015/12/31/image-enhancement/ Definisi Perbaikan citra merupakan proses yang dilakukan untuk

Lebih terperinci

Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt

Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt Ardi Satrya Afandi Fakultas Teknologi Industri Universitas Gunadarma Depok, Indonesia art_dhi@yahoo.com Prihandoko,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Citra menurut kamus Webster adalah suatu representasi atau gambaran, kemiripan, atau imitasi dari suatu objek atau benda, contohnya yaitu foto seseorang dari kamera yang

Lebih terperinci

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK

APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK Rinaldi Munir Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 E-mail: rinaldi@informatika.org ABSTRAKSI

Lebih terperinci

Perbaikan Citra dengan Menggunakan Metode Histogram Equalization

Perbaikan Citra dengan Menggunakan Metode Histogram Equalization Prosiding Seminar Nasional Teknoin 212 Perbaikan Citra dengan Menggunakan Metode Histogram Equalization Muhammad Kusban Jurusan Teknik Elektro Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengenalan Citra Citra adalah suatu representasi (gambaran), kemiripan atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

PENINGKATAN MUTU CITRA (IMAGE ENHANCEMENT) PADA DOMAIN SPATIAL

PENINGKATAN MUTU CITRA (IMAGE ENHANCEMENT) PADA DOMAIN SPATIAL PENINGKATAN MUTU CITRA (IMAGE ENHANCEMENT) PADA DOMAIN SPATIAL Copyright @ 27 by Emy 2 Kompetensi Mampu mengimplementasikan teknik-teknik untuk memperbaiki kualitas citra sehingga citra yang dihasilkan

Lebih terperinci

ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA

ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA Nurliadi 1 *, Poltak Sihombing 2 & Marwan Ramli 3 1,2,3 Magister Teknik Informatika, Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi di bidang informasi spasial dan fotogrametri menuntut sumber data yang berbentuk digital, baik berformat vektor maupun raster. Hal ini dapat

Lebih terperinci

Konvolusi. Esther Wibowo Erick Kurniawan

Konvolusi. Esther Wibowo Erick Kurniawan Konvolusi Esther Wibowo esther.visual@gmail.com Erick Kurniawan erick.kurniawan@gmail.com Filter / Penapis Digunakan untuk proses pengolahan citra: Perbaikan kualitas citra (image enhancement) Penghilangan

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 5 Neighboorhood Processing. Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 5 Neighboorhood Processing. Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 5 Neighboorhood Processing Indah Susilawati, S.T., M.Eng. Program Studi Teknik Informatika/Sistem Informasi Fakultas Teknologi Informasi Universitas Mercu Buana Yogyakarta

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra (image) atau yang secara umum disebut gambar merupakan representasi spasial dari suatu objek yang sebenarnya dalam bidang dua dimensi yang biasanya ditulis dalam

Lebih terperinci

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Citra dapat didefinisikan sebagai sebuah fungsi dua dimensi, f(x,y) dimana x dan y merupakan koordinat bidang datar, dan harga fungsi f disetiap

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 4 Neighborhood Processing. Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 4 Neighborhood Processing. Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 4 Neighborhood Processing Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas Mercu

Lebih terperinci

Peningkatan Mutu Citra (Image Enhancement) pada Domain Spasial

Peningkatan Mutu Citra (Image Enhancement) pada Domain Spasial Peningkatan Mutu Citra (Image Enhancement) pada Domain Spasial Kuliah ke-3 Program Studi S Reguler Departemen Teknik Elektro, FTUI Slides 29 Tujuan Peningkatan Mutu Citra (image enhancement) Tujuan: melakukan

Lebih terperinci

MAKALAH PENGOLAHAN CITRA DIGITAL. ( Histogram Citra ) Disusun Oleh : : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 )

MAKALAH PENGOLAHAN CITRA DIGITAL. ( Histogram Citra ) Disusun Oleh : : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 ) MAKALAH PENGOLAHAN CITRA DIGITAL ( Histogram Citra ) Disusun Oleh : Nama : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 ) Jurusan : Tehnik Informatika ( Semester VI ) Kampus : STIMIK HIMSYA

Lebih terperinci

PENAJAMAN DAN SEGMENTASI CITRA PADA PENGOLAHAN CITRA DIGITAL. Moehammad Awaluddin, Bambang Darmo Y *)

PENAJAMAN DAN SEGMENTASI CITRA PADA PENGOLAHAN CITRA DIGITAL. Moehammad Awaluddin, Bambang Darmo Y *) PENAJAMAN DAN SEGMENTASI CITRA PADA PENGOLAHAN CITRA DIGITAL Moehammad Awaluddin, Bambang Darmo Y *) Abstract Image processing takes an image to produce a modified image for better viewing or some other

Lebih terperinci

KOMPRESI CITRA (2) & SEGEMENTASI CITRA. Pertemuan 13 Mata Kuliah Pengolahan Citra

KOMPRESI CITRA (2) & SEGEMENTASI CITRA. Pertemuan 13 Mata Kuliah Pengolahan Citra KOMPRESI CITRA (2) & SEGEMENTASI CITRA Pertemuan 13 Mata Kuliah Pengolahan Citra SPATIAL COMPRESSION (Metode Run Length Encoding / RLE) Cocok digunakan untuk memampatkan citra yang memiliki kelompok-kelompok

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Digital Citra digital adalah citra yang bersifat diskrit yang dapat diolah oleh computer. Citra ini dapat dihasilkan melalui kamera digital dan scanner ataupun citra yang

Lebih terperinci

PERBAIKAN CITRA DENGAN METODE POWER LAW TRANSFORMATION

PERBAIKAN CITRA DENGAN METODE POWER LAW TRANSFORMATION PERBAIKAN CITRA DENGAN METODE POWER LAW TRANSFORMATION KARYA ILMIAH Disusun sebagai salah satu syarat menyelesaikan Jenjang Strata I Pada Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 2 Point Processing. Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 2 Point Processing. Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 2 Point Processing Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu system perekaman data dapat bersifat optik berupa foto,

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MEMPERBAIKI CITRA DIGITAL

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MEMPERBAIKI CITRA DIGITAL PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MEMPERBAIKI CITRA DIGITAL 1. Pendahuluan Citra / gambar merupakan hal yang vital dan menjadi bagian integral dari kehidupan sehari-hari. Pada kepentingan tertentu,

Lebih terperinci

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner Dosen Pengampu: Muhammad Zidny Naf an, M.Kom. Genap 2016/2017 Definisi Citra biner (binary image) adalah citra yang hanya mempunyai dua nilai derajat

Lebih terperinci

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra

Lebih terperinci

Perbaikan Citra X-ray Gigi Menggunakan Contrast Stretching

Perbaikan Citra X-ray Gigi Menggunakan Contrast Stretching Perbaikan Citra X-ray Gigi Menggunakan Contrast Stretching Ima Kurniastuti 1, Tri Deviasari Wulan 1, I Ketut Eddy Purnama 2, Mauridhi Hery Purnomo 2, Margareta Rinastiti 3, Fatmala Agustina 1 1 Sistem

Lebih terperinci

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC Naser Jawas STMIK STIKOM BALI naser.jawas@stikom-bali.ac.id Abstrak Binerisasi citra dokumen adalah sebuah langkah awal yang sangat penting dalam

Lebih terperinci

Sesi 3 Operasi Pixel dan Histogram. : M. Miftakul Amin, S. Kom., M. Eng.

Sesi 3 Operasi Pixel dan Histogram. : M. Miftakul Amin, S. Kom., M. Eng. Sesi 3 Operasi Pixel dan Histogram Materi Kuliah Dosen : Pengolahan Citra Digital : M. Miftakul Amin, S. Kom., M. Eng. Pokok Bahasan Konversi RGB ke Gray Scale Konversi Gray Scale ke Biner Konversi Gray

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Citra Citra (image) atau istilah lain untuk gambar sebagai salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun

Lebih terperinci

BAB III PENGOLAHAN DATA

BAB III PENGOLAHAN DATA BAB III PENGOLAHAN DATA Tahap pengolahan data pada penelitian ini meliputi pemilihan data penelitian, penentuan titik pengamatan pada area homogen dan heterogen, penentuan ukuran Sub Citra Acuan (SCA)

Lebih terperinci

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara.

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Image Enhancement Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Cara-cara yang bisa dilakukan misalnya dengan fungsi transformasi, operasi matematis,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengolahan Citra Pengolahan citra adalah kegiatan memanipulasi citra yang telah ada menjadi gambar lain dengan menggunakan suatu algoritma atau metode tertentu. Proses ini mempunyai

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( SAP )

SATUAN ACARA PERKULIAHAN ( SAP ) SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Waktu : 1 x 3x 50 Menit Pertemuan : 6 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem

Lebih terperinci

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus BAB II DASAR TEORI 2.1 Meter Air Gambar 2.1 Meter Air Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus menerus melalui sistem kerja peralatan yang dilengkapi dengan unit sensor,

Lebih terperinci

PERBAIKAN CITRA MELALUI PROSES PENGOLAHAN PIKSEL

PERBAIKAN CITRA MELALUI PROSES PENGOLAHAN PIKSEL PERBAIKAN CITRA MELALUI PROSES PENGOLAHAN PIKSEL Muhammad Kusban Jurusan Teknik Elektro Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos 1, Pabelan 57102 Surakarta. E-mail: muhammadkusban@gmail.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 6 Restorasi Citra (Image Restoration) Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 6 Restorasi Citra (Image Restoration) Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 6 Restorasi Citra (Image Restoration) Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas

Lebih terperinci

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA HASNAH(12110738) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja No. 338

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Digital Istilah citra biasanya digunakan dalam bidang pengolahan citra yang berarti gambar. Suatu citra dapat didefinisikan sebagai fungsi dua dimensi, di mana dan adalah

Lebih terperinci

PERBANDINGAN METODE ROBERTS DAN SOBEL DALAM MENDETEKSI TEPI SUATU CITRA DIGITAL. Lia Amelia (1) Rini Marwati (2) ABSTRAK

PERBANDINGAN METODE ROBERTS DAN SOBEL DALAM MENDETEKSI TEPI SUATU CITRA DIGITAL. Lia Amelia (1) Rini Marwati (2) ABSTRAK PERBANDINGAN METODE ROBERTS DAN SOBEL DALAM MENDETEKSI TEPI SUATU CITRA DIGITAL Lia Amelia (1) Rini Marwati (2) ABSTRAK Pengolahan citra digital merupakan proses yang bertujuan untuk memanipulasi dan menganalisis

Lebih terperinci

Representasi Citra. Bertalya. Universitas Gunadarma

Representasi Citra. Bertalya. Universitas Gunadarma Representasi Citra Bertalya Universitas Gunadarma 2005 Pengertian Citra Digital Ada 2 citra, yakni : citra kontinu dan citra diskrit (citra digital) Citra kontinu diperoleh dari sistem optik yg menerima

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Penelitian mengenai pengenalan wajah termotivasi oleh banyaknya aplikasi praktis yang diperlukan dalam identifikasi wajah. Pengenalan wajah sebagai salah satu dari teknologi

Lebih terperinci

Muhammad Zidny Naf an, Lc., S.Kom., M.Kom. Genap 2015/2016

Muhammad Zidny Naf an, Lc., S.Kom., M.Kom. Genap 2015/2016 MKB3383 - Teknik Pengolahan Citra Operasi Ketetanggaan Piksel Muhammad Zidny Naf an, Lc., S.Kom., M.Kom. Genap 2015/2016 Outline Konsep Operasi Ketetanggaan Aplikasi Operasi Ketetanggaan pada Filtering

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Computer Vision Computer vision dapat diartikan sebagai suatu proses pengenalan objek-objek berdasarkan ciri khas dari sebuah gambar dan dapat juga digambarkan sebagai suatu deduksi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah

Lebih terperinci

BAB II LANDASAN TEORI. perangkat komputer digital (Jain, 1989, p1). Ada pun menurut Gonzalez dan Woods

BAB II LANDASAN TEORI. perangkat komputer digital (Jain, 1989, p1). Ada pun menurut Gonzalez dan Woods BAB II LANDASAN TEORI 2.1 Definisi Digital Image Processing Digital Image Processing adalah proses pengolahan gambar dua dimensi oleh perangkat komputer digital (Jain, 1989, p1). Ada pun menurut Gonzalez

Lebih terperinci

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi Nur Nafi iyah 1, Yuliana Melita, S.Kom, M.Kom 2 Program Pascasarjana Sekolah Tinggi Teknik Surabaya Email: nafik_unisla26@yahoo.co.id 1, ymp@stts.edu

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG 2.1 Computer Vision Komputerisasi memiliki ketelitian yang jauh lebih tinggi bila dibandingkan dengan cara manual yang dilakukan oleh mata manusia, komputer dapat melakukan berbagai

Lebih terperinci

A. Aras Komputasi. 1. Aras Titik. 1. Aras Titik. 1. Aras Titik. 1. Aras Titik 3/18/2017

A. Aras Komputasi. 1. Aras Titik. 1. Aras Titik. 1. Aras Titik. 1. Aras Titik 3/18/2017 A. Aras Komputasi Kuliah Ke 4 dan Ke 5 Ada empat aras (level) komputasi pada pengolahan citra, yaitu : 1. Aras titik 2. Aras lokal 3. Aras global 4. Aras Objek 1. Aras Titik Operasi pada aras titik hanya

Lebih terperinci

Konsep Dasar Pengolahan Citra. Pertemuan ke-2 Boldson H. Situmorang, S.Kom., MMSI

Konsep Dasar Pengolahan Citra. Pertemuan ke-2 Boldson H. Situmorang, S.Kom., MMSI Konsep Dasar Pengolahan Citra Pertemuan ke-2 Boldson H. Situmorang, S.Kom., MMSI Definisi Citra digital: kumpulan piksel-piksel yang disusun dalam larik (array) dua-dimensi yang berisi nilai-nilai real

Lebih terperinci

Operasi Bertetangga (1)

Operasi Bertetangga (1) Operasi Bertetangga () Kartika Firdausy - UAD kartika@ee.uad.ac.id blog.uad.ac.id/kartikaf Setelah mempelajari materi ini, mahasiswa diharapkan mampu: menjelaskan alasan diperlukannya operasi bertetangga

Lebih terperinci

PENGOLAHAN CITRA DIGITAL

PENGOLAHAN CITRA DIGITAL PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama mahas@ukdw.ac.id Sistem Optik dan Proses Akuisisi Citra Digital 2 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 Bisa dilihat pada slide berikut. SISTEM OPTIK MANUSIA

Lebih terperinci

Operasi-Operasi Dasar pada Pengolahan Citra. Bertalya Universitas Gunadarma

Operasi-Operasi Dasar pada Pengolahan Citra. Bertalya Universitas Gunadarma Operasi-Operasi Dasar pada Pengolahan Citra Bertalya Universitas Gunadarma 1 Operasi2 Dasar Merupakan manipulasi elemen matriks : elemen tunggal (piksel), sekumpulan elemen yang berdekatan, keseluruhan

Lebih terperinci

IMPLEMENTASI METODE HISTOGRAM EQUALIZATION UNTUK MENINGKATKAN KUALITAS CITRA DIGITAL

IMPLEMENTASI METODE HISTOGRAM EQUALIZATION UNTUK MENINGKATKAN KUALITAS CITRA DIGITAL 70 Isa Akhlis, Implementasi Metode Histogram IMPLEMENTASI METODE HISTOGRAM EQUALIZATION UNTUK MENINGKATKAN KUALITAS CITRA DIGITAL Isa Akhlis dan Sugiyanto 1, * 1 Jurusan Fisika, Universitas Negeri Semarang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Citra (image) sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik yang tidak dimiliki oleh

Lebih terperinci

Rika Oktaviani

Rika Oktaviani Operasi Operasi Dasar Pengolahan Citra Digital Rika Oktaviani rika.jtk11@gmail.com Lisensi Dokumen: Copyright 2003 IlmuKomputer.Com Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pendeteksi senyum pada skripsi ini, meliputi metode Viola Jones, konversi citra RGB ke grayscale,

Lebih terperinci

ANALISA PERBANDINGAN METODE VEKTOR MEDIAN FILTERING DAN ADAPTIVE MEDIAN FILTER UNTUK PERBAIKAN CITRA DIGITAL

ANALISA PERBANDINGAN METODE VEKTOR MEDIAN FILTERING DAN ADAPTIVE MEDIAN FILTER UNTUK PERBAIKAN CITRA DIGITAL ANALISA PERBANDINGAN METODE VEKTOR MEDIAN FILTERING DAN ADAPTIVE MEDIAN FILTER UNTUK PERBAIKAN CITRA DIGITAL Nur hajizah (13111171) Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi tersebut pada setiap titik (x,y) merupakan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Pemrosesan citra adalah ilmu untuk memanipulasi gambar, yang melingkupi teknikteknik untuk memperbaiki atau mengurangi kualitas gambar, menampilkan bagian tertentu

Lebih terperinci

PEMBIMBING : Dr. Cut Maisyarah Karyati, SKom, MM, DSER.

PEMBIMBING : Dr. Cut Maisyarah Karyati, SKom, MM, DSER. APLIKASI PERBAIKAN CITRA DENGAN MENGGUNAKAN METODE HISTOGRAM EQUALIZATION DAN CONTRAST STRECHING NAMA : DONI KURNIA SURYANA NPM : 12112254 PEMBIMBING : Dr. Cut Maisyarah Karyati, SKom, MM, DSER. LATAR

Lebih terperinci

PRAPROSES CITRA MENGGUNAKAN KOMPRESI CITRA, PERBAIKAN KONTRAS, DAN KUANTISASI PIKSEL

PRAPROSES CITRA MENGGUNAKAN KOMPRESI CITRA, PERBAIKAN KONTRAS, DAN KUANTISASI PIKSEL PRAPROSES CITRA MENGGUNAKAN KOMPRESI CITRA, PERBAIKAN KONTRAS, DAN KUANTISASI PIKSEL Veronica Lusiana 1, Budi Hartono 2 1,2 Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Stikubank

Lebih terperinci

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.9, No.2, Agustus 2015 ISSN: 0852-730X Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Nur Nafi'iyah Prodi Teknik Informatika

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 7 Restorasi Citra (Image Restoration) Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 7 Restorasi Citra (Image Restoration) Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 7 Restorasi Citra (Image Restoration) Indah Susilawati, S.T., M.Eng. Program Studi Teknik Informatika/Studi Sistem Informasi Fakultas Tekniknologi Informasi Universitas Mercu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra 2.1.1 Pengertian Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek[11]. Suatu citra diperoleh dari penangkapan kekuatan sinar yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan sistem pendeteksi orang tergeletak mulai dari : pembentukan citra digital, background subtraction, binerisasi, median filtering,

Lebih terperinci

Implementasi Image Enhancement Menggunakan Homomorphic Filtering

Implementasi Image Enhancement Menggunakan Homomorphic Filtering Implementasi Image Enhancement Menggunakan Homomorphic Filtering Rudy Adipranata 1, Cherry Galatia Ballangan 2, William Susanto Teknik Informatika, Fakultas Teknologi Industri, Universitas Kristen Petra

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengenalan Wajah Pengenalan wajah adalah salah satu teknologi biometrik yang telah banyak diaplikasikan dalam sistem keamanan selain pengenalan retina mata, pengenalan sidik jari

Lebih terperinci

NORMALISASI DAN PEMBOBOTAN UNTUK KLONING MULUS PADA PENCAMPURAN CITRA MENGGUNAKAN METODE POISSON

NORMALISASI DAN PEMBOBOTAN UNTUK KLONING MULUS PADA PENCAMPURAN CITRA MENGGUNAKAN METODE POISSON NORMALISASI DAN PEMBOBOTAN UNTUK KLONING MULUS PADA PENCAMPURAN CITRA MENGGUNAKAN METODE POISSON Ratna Shofiati, Binti Solihah, Sari Irmadani Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas

Lebih terperinci

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING )

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 1 Konsep Dasar Pengolahan Citra Pengertian Citra Citra atau Image merupakan istilah lain dari gambar, yang merupakan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Pada saat ini penggunaan citra digital semakin meningkat karena kelebihan-kelebihan yang dimiliki oleh citra digital tersebut, di antaranya adalah kemudahan dalam mendapatkan

Lebih terperinci

IMPLEMENTASI SEGMENTASI PEMBULUH DARAH RETINA PADA CITRA FUNDUS MATA BERWARNA MENGGUNAKAN PENDEKATAN MORFOLOGI ADAPTIF

IMPLEMENTASI SEGMENTASI PEMBULUH DARAH RETINA PADA CITRA FUNDUS MATA BERWARNA MENGGUNAKAN PENDEKATAN MORFOLOGI ADAPTIF IMPLEMENTASI SEGMENTASI PEMBULUH DARAH RETINA PADA CITRA FUNDUS MATA BERWARNA MENGGUNAKAN PENDEKATAN MORFOLOGI ADAPTIF Dini Nuzulia Rahmah 1, Handayani Tjandrasa 2, Anny Yuniarti 3 Teknik Informatika,

Lebih terperinci

BAB IV UJI COBA DAN ANALISIS

BAB IV UJI COBA DAN ANALISIS BAB IV UJI COBA DAN ANALISIS Bab ini tersusun atas penjelasan hasil uji coba terhadap Sistem Pencocokan Dental yang dikembangkan beserta analisis hasil uji coba. Pengujian dan analisis dilakukan untuk

Lebih terperinci