PEREKAYASAAN KETEL UAP UTILITAS PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe

Ukuran: px
Mulai penontonan dengan halaman:

Download "PEREKAYASAAN KETEL UAP UTILITAS PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe"

Transkripsi

1 PEREKAYASAAN KETEL UAP UTILITAS PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe Bandi Parapak PRPN BATAN, Kawasan Puspiptek, Gedung 71, Tangerang Selatan, ABSTRAK PEREKAYASAAN KETEL UAP UTILITAS PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe. Telah direncanakan sistem ketel uap yang terdiri dari tiga komponen utama dalam rangka untuk memproduksi uap yang dibutuhkan untuk pemanasan Pabrik Elemen Bakar Nuklir PLTN-PWR1000 Mwe Komponen utama tersebut terdiri dari sistem air umpan, sistem uap, dan sistem bahan bakar. Sistem air umpan terdiri dari sistem air penambah dan sistem air kondensat, sedangkan sistem uap terdiri dari sistem pembangkit uap dan distribusi uap ke fasilitas pabrik, sementara sistem bahan bakar terdiri dari sistem burner dan sistem pembakaran. Semua sistem didukung oleh tangkitangki utama dan pompa distribusi air maupun uap. Uap yang dihasilkan digunakan untuk pemanasan fluida pada peralatan R-0101, HE-0101 dan HE Laju produksi uap yang dibutuhkan sebesar 612,43 kg/jam dengan temperatur C, tekanan 2,1 bar. Perencanaan produksi uap dimulai dari analisis keseimbangan produksi uap dan air umpan, energi panas yang dibutuhkan untuk pembangkitan uap, dan jumlah bahan bakar yang diperlukan untuk pembakaran. Hasil analisis untuk kebutuhan air umpan 638 kg/jam, kebutuhan energi panas untuk pembangkitan 418,85 KW, kebutuhan bahan bakar adalah 12,8 gallon/jam dan untuk kebutuhan energi panas superheater adalah 40 KW. Kata kunci: air umpan, bahan bakar, uap, ketel uap, pabrik elemen bakar nuklir ABSTRACT SCHEMING OF STEAM BOILER SYSTEM FOR NUCLEAR FUEL ELEMENT PLANT PWR 1000 MWe TYPE. Boiler design has been planned consisting of three major components in order to produce the steam needed for heating Nuclear Fuel Element Plant PWR1000 MWe NPP. The main components consist of a feedwater system, steam systems and fuel systems. Feedwater system consists of make up water system and condensate return system, while the steam system consists of steam generator and steam distribution to manufacturing facilities. Fuel system consists of burner system and combustion system. All systems are supported by the main tanks and pump water or steam distribution. The resulting steam iare used for heating the fluid in the apparatus R , HE and HE Steam production rate required is kg/hour, temperature of C, pressure of 2.1 bar. Steam production planning starts from the analysis of the balance of the production of steam and feed water, heat energy required for steam generation, and the amount of fuel required for combustion. Results of analysis for the feed water is 638 kg/hour, the energy needed for heating is 418,85 KW, fuel consumed is 12,8 gallon/hour and the heat energy requirement of superheater is 40 KW. Keywords: feedwater, fuel, steam, steam boiler, nuclear fuel element plant

2 1. PENDAHULUAN Instalasi tenaga uap dikenal dengan sebutan ketel uap yang berfungsi sebagai sarana untuk mengubah air menjadi uap bertekanan. Ketel uap dalam bahasa inggris disebut dengan nama boiler berasal dari kata boil yang berarti mendidihkan atau menguapkan,sehingga boiler dapat diartikan sebagai alat pembentukan uap yang mampu mengkonversikan energi kimia dari bahan bakar padat, bahan bakar cair, maupun bahan bakar gas yang menjadi energi panas [1]. Energi kalor yang dibangkitkan dalam ketel uap (steam boiler) memiliki nilai tekanan, temperatur, dan laju aliran yang menentukan pemanfaatan uap yang akan digunakan. Berdasarkan ketiga hal tersebut sistem ketel uap mengenal keadaan tekanan temperatur rendah, dan tekanan-temperatur tinggi, dengan perbedaan itu pemanfaatan uap yang keluar dari ketel uap dimanfaatkan dalam suatu proses untuk memanaskan cairan dan menjalankan suatu mesin, atau membangkitkan energi listrik dengan merubah energi kalor menjadi energi mekanik kemudian memutar generator sehingga menghasilkan energi listrik. Sistem ketel uap terdiri dari sistem air umpan, sistem uap, dan sistem bahan bakar. Sistem air umpan menyediakan air untuk boiler secara otomatis sesuai dengan kebutuhan uap. Berbagai kran ( valve) disediakan untuk keperluan perawatan dan perbaikan dari sistem air umpan, penanganan air umpan diperlukan sebagai bentuk pemeliharaan untuk mencegah terjadi kerusakan dari sistem uap. Sistem uap mengumpulkan dan mengontrol produksi uap dalam ketel uap. Uap dialirkan melalui sistem perpipaan ke titik pengguna. Pada keseluruhan sistem, tekanan uap diatur menggunakan valve dan dipantau dengan alat pemantau tekanan. Sistem bahan bakar adalah semua perlatan yang digunakan untuk menyediakan bahan bakar untuk menghasilkan panas yang dibutuhkan. Peralatan yang diperlukan pada sistem bahan bakar tergantung pada jenis bahan bakar yang digunakan pada sistem itu sendiri. Secara umum ketel uap dibagi kedalam dua jenis yaitu : a. Ketel pipa api Pada ketel, gas panas melewati pipa-pipa dan air umpan boiler ada didalam shell untuk dirubah menjadi steam. ketel pipa api biasanya digunakan untuk kapasitas steam yang relatif kecil dengan tekanan uap rendah sampai sedang. Sebagai pedoman, ketel pipa api kompetitif untuk kecepatan uap sampai kg/jam dengan tekanan sampai 18 kg/cm2. ketel pipa api dapat menggunakan bahan bakar minyak bakar, gas atau bahan bakar padat dalam operasinya. Untuk alasan ekonomis, sebagian besar ketel pipa api dikonstruksi sebagai paket boiler (dirakit oleh pabrik)

3 untuk semua bahan bakar. Gambar 1a, 1b dan 1c menunjukkan sistem kerja ketel uap pipa api 2 pass dan 3 pass [2]. Gambar 1a. Ketel uap pipa api 2 pass [2] Gambar 1b. Ketel uap pipa api 3 pass [2] b. Ketel pipa air Pada ketel pipa air proses pengapian terjadi diluar pipa, kemudian panas yang dihasilkan memanaskan pipa yang berisi air dan sebelumnya air tersebut dikondisikan terlebih dahulu melalui economizer, kemudian uap yang dihasilkan terlebih dahulu dikumpulkan di dalam sebuah tangki uap. Sampai tekanan dan temperatur sesuai, melalui tahap secondary superheater sekunder dan superheater primer baru uap dilepaskan ke pipa utama distribusi. Didalam pipa air, air yang mengalir harus dikondisikan terhadap mineral atau kandungan lainnya yang larut di dalam air tesebut. Hal ini merupakan faktor utama yang harus diperhatikan terhadap tipe ini. Gambar 2 menunjukkan sistem kerja ketel uap pipa air [2]. Gambar 2. Ketel uap pipa air [2]

4 Berkaitan dengan tujuan perekayasaan ini, maka sistem ketel uap yang direncanakan adalah sistem ketel uap yang dapat memproduksi uap sebesar 612,43 kg/jam, temperatur C dan tekanan 2,1 bar [3]. 2. DASAR TEORI Uap yang dihasilkan dari sistem ketel uap merupakan gas yang timbul akibat perubahan fase cairan menjadi uap atau gas melalui cara pendidihan yang memerlukan sejumlah energi dalam pembentukannya. Zat cair yang dipanaskan akan mengakibatkan pergerakan moleku-molekul menjadi cepat, sehingga melepas diri dari lingkungannya dan berubah menjadi uap. Air yang berdekatan dengan bidang pemanas akan memiliki temperatur yang lebih tinggi (berat jenis yang lebih rendah) dibandingkan dengan air yang bertemperatur rendah, sehingga air yang bertemperatur tinggi akan naik kepermukaan dan air yang bertemperatur rendah akan turun. Peristiwa ini akan terjadi secara terus menerus (sirkulasi) hingga berbentuk uap. Uap yang dihasikan oleh ketel uap dapat dimanfaatkan untuk berbagai keperluan antara lain sebagai utilitas suatu daya pembangkit tenaga listrik dan untuk keperluan industri. Dalam menentukan sizing sistem ketel uap sesuai dengan kapasitas uap yang direncanakan maka perhitungan dilakukan dengan perkiraan kapasitas air umpan, kebutuhan panas dan kebutuhan bahan bakar. 2.1 Kebutuhan Air Umpan Kapasitas air umpan yang diperlukan sebagai air pengisi boiler dihitung berdasarkan laju blowdown yang diperlukan dan air kondensat yang dikembalikan ke tangki air umpan serta air penambah atau makeup water. Ke tiga komponen air umpan pengisi boiler tersebut ditentukan dengan menghitung : a. Laju Blowdown Untuk menghindari masalah boiler, air harus dibuang secara berkala atau "blowdown" dari boiler untuk mengendalikan konsentrasi padatan terlarut/tds dan total padatan tersuspensi dalam boiler. Blowdown dapat ditentukan dengan menghitung prosentase berdasarkan data tabel 1 dan rumus empiris [4]: Blow Down (%) = Feedwater TDS x % MakeUp Water Feedwater TDS yang diizinkan Jadi laju blowdown yang diperlukan, Q BD = kapasitas uap x % blowdown, (kg/jam)

5 Tabel 1. TDS air boiler yang dizinkan [5] Boiler Operating Pressure (bar) Total Dissolved Solids(ppm) 0 50 psig atau 0 3,5 bar 2500 b. Air Kondensat dan Air Penambah Air Kondensat adalah air yang diembunkan oleh kondensor dan ditampung di dalam tangki kondensat yang selanjutnya disirkulasikan kembali ke boiler. Prosentase air kondensat ditentukan dengan kandungan silica dalam air umpan dan air penambah sebagai berikut: Dengan silica % Condensate Return, CR = 1- feedwater silica / Makeup silica [6] atau dengan conductivity : % Condensate Return, CR = 1- feedwater conductivity / Makeup conductivity [6] Jadi laju aliran kondensat, Q CR = % x kapasitas uap masuk kondensor, (kg/jam). Tabel 2 menunjukkan data tentang kandungan silica dan coduktivitas makeup dan feedwater. Tabel 2. Kandungan Silica pada Makeup Water dan Feedwater Boiler [7] Location Silica (ppm) Coductivity (micromhos) Boiler Makeup Boiler Feedwater Untuk air penambah dapat ditentukan sebagai berikut : Q MU = Q FW Q CR (kg/jam) [8] Maka kapasitas air umpan yang diperlukan sebagai air pengisi boiler adalah: Q FW = Q MU + Q CR (kg/jam) [8] dimana : Q MU = kapasitas air penambah, kg/jam Q CR = kapasitas air kondensat, kg/jam Q FW =kapasitas air umpan, kg/jam 2.2 Kebutuhan Energi Panas dan Boiler Horse Power Panas yang dibutuhkan untuk menghasilkan uap sebesar 612,43 kg/jam dapat dihitung dengan formula : Q 1 = q U (h u h a ) (kj/jam) [9] Q 2 = m x Cp x.t (kj/jam) [10]

6 Untuk Boiler Horse Power dihitung dengan formula empiris : BHP = Kilowatt /9,809 [11] dimana : q U h u h a C p = m = kapasitas produksi uap dari boiler, kg/jam = enthalpy uap (kj/kg) pada suhu C, tekanan 2,1 bar = enthalpy air (kj/kg) pada suhu C, tekanan 2,1 bar = panas spesifik air pada suhu 60 0 C, tekanan 1 bar T = selisih temperatur uap dan air umpan pengisi boiler, 0 C Q 1 Q 2 = panas yang dibutuhkan untuk penguapan, kj/jam = panas yang dibutuhkan untuk pemanasan, kj/jam BHP = Boiler Horse Power 2.3 Kebutuhan Bahan Bakar Bahan bakar yang dibutuhkan untuk memanaskan air dalam ketel dapat dihitung dengan persamaan sebagai berikut : F C = S p (h S h W ) / BE.VHI (gallon/jam) [12] dimana : F C = kebutuhan bahan bakar (kg/jam) H s = enthalpy air (Btu/lb) pada suhu 269,60 0 F, tekanan 41.6 psig h W = enthalpy air umpan (Btu/lb) pada suhu F, tekanan 14,5 psig S p = kapasitas produksi uap (kg/jam) BE = efisiensi boiler (%) biasanya antara % VHI = Nilai pembakaran bahan bakar minyak solar = btu/gallon [13] 2.4 Kebutuhan Energi Panas Superheater Superheater adalah komponen atau alat yang digunakan untuk menaikkan uap jenuh menjadi uap kering atau uap panas lanjut. Uap yang masuk ke superheater berasal dari pipa header. Dari header uap masuk superheater dan dari suoerheater uap digunakan untuk memanaskan fluida pada HE Selanjutnya uap dari HE-0102 dialirkan ke kondensor untuk dikondensasikan menjadi air condensate. Energi panas yang dibutuhkan untuk superheater dihitung dengan formula : Q = m. C p. T (kj/jam) [10] dimana : m = laju aliran uap superheated keluar superheater, kg/jam C p = panas spesifik uap, kj/kg.k ρ = kerapatan uap, kg/m 3 T = temperatur uap keluar superheater temperatur uap masuk superheater,

7 3. TATA KERJA Perekayasaan ketel uap utilitas Pabrik Elemen Bakar Nuklir Tipe PWR1000 MWe dilakukan dengan langkah-langkah sebagai berikut : 3.1 Membuat sketsa diagram alir proses sistem steam boiler seperti yang ditunjukkan pada gambar 3. Gambar 3. Diagram alir proses sistem ketel uap 3.2 Menghitung kapasitas air umpan dan air penambah Kapasitas air umpan dihitung berdasarkan prosentase laju blowdown dan air kondensat (return condensate), sebagai betrikut: a. Untuk prosentase blowdown : BD = TDS Feedawater x % Make Up Water / TDS Air Boiler yang diizinkan = 250 x 10%/2500 = 1 %, diambil 4% untuk faktor keamanan akibat losses, maka laju blowdown yang diperlukan adalah: Q BD = kapasitas uap x % blowdown, (kg/jam) Q BD = 612,43 x 4 % = 24,5 kg/jam. b. Untuk prosentase air kondensat dihitung berdasarkan kandungan silica atau koduktivitas air kondensat sebagai berikut:

8 Dengan Silica : CR = 1-20/40 x 100 % = 50 % Dengan Coductivity : CR = 1-525/265 x 100 % = 49,524 = 50 % Jadi flow rate condensate Q CR = % x kapasitas uap keluar dari HE-0101 = 411,56 kg/jam dan HE-0102 = 147,94 kg/jam Q CR = 50 % x (411, ,94) = 279,75 = 280 kg/jam Maka kapasitas air umpan ( feedwater) maksimum yang tersedia dalam tangki feedwater adalah : Q FW = 612, ,5 = 638 kg/jam Kapasitas air penambah (make up water ) : Q MU = = 357,43 kg/jam = 358 kg/jam 3.3 Menghitung energi panas yang dibutuhkan untuk mengubah air menjadi uap Energi panas yang dibutuhkan untuk menghasilkan uap sebesar 612,43 kg/jam dihitung sebagai berikut : Q 1 Q 2 = q U (h s h w ) (kj/jam) = 612,43 (2722, ,932) kj/jam = ,47 kj/jam = m x Cp x T (kj/jam) = 612,43 x 4,182 (132 60) = ,12 kj/jam Jadi panas yang dibutuhkan, Q = , ,12 = ,59 kj/jam Maka untuk boiler horse power = ,59 kj/jam x = 418,85 KW / 9,809 = 42,7 3.4 Menghitung kebutuhan bahan bakar Bahan bakar yang dibutuhkan untuk memanaskan air dalam ketel adalah : F C = S p (h s - h w )/BE.VHI (gallon/jam) = 1350,177 ( 1170, ) 0,80 x = 12,8 gallon/jam 3.5 Menghitung panas yang diperlukan pada superheater Kapasitas uap superheated, m : 411, 56 kg/jam Temperatur uap superheated, T u : C = K Panas spesifik uap, C p : 2,027 kj/kg.k Density, ρ : 0,7923 kg/m

9 Q = m. C p. T (kj/jam) = 411,56 x 2,027 x ( ) kj/jam = ,924 kj/jam x 0, = 39.7 KW = 40 KW Pada tabel 3 ditunjukkan spesifikasi boiler yang dipilih dari produksi Hurst Boiler & Welding Company. Inc. series 200, 2 pass, Fire Tube Boiler. Tabel 3. Spesifikasi Teknis Boiler [13] Boiler Horse Power 40 Heating surface Fireside (Sisi api) ft 2 (m 2 ) 200 (18,6) Steam output - Lbs/jam (kg/jam) 1380 (627) Firing rate oil # 2 140,000 BTU GPH (L/min) 12 (45) Steam outlet size psi In (m) 4 1,5 (0,1 0,04) Water supply size 30 psi In (m) 4 (0.1) Ukuran air kembali 30 psi In (m) 3 (0,076) Feedwater connection - In (m) 1 (0,025) Blowdown connection Bottom In (m) 1 ¼ (0,032) Stack outlet size O.D. - In (m) 12 (0,305) Furnace O.D - In (m) 20 (0,508) Shell ID - In (m) 48 (1,219) With without trim - In (m) 56 (1,422) With width trim - In (m) 61 (1,549) Length, front to rear - In (m) 99 (2,514) Length overall - In (m) 134 (3,403) Skid length - In (m) 102 (2,591) Skid width - In (m) 40 (1,016) Steam supply location - In (m) 40 (1,016) Water supply location - In (m) 30 (0,762) Water return location - In (m) 68 (1,727) Blowdown location 15 psi an up In (m) 23 (0,584) Surface blow off connection - In (m) 25 13/16 (0,6556) Stack outlet location - In (m) 25 (0,635) Supply height - In (m) 63 (1,6) Stack height - In (m) (1,692)

10 Shell to floor height - In (m) 12 (0,305) Burner projection - In (m) 32 (0,813) Door swing - In (m) 28 (0,711) Skid to front plate - In (m) (0,590) Tube removal Rear In (m) 64 (1,625) Tube removal Front In (m) 71 (1,803) 3.6 Mengevaluasi daya boiler Evaluasi daya boiler 40 bhp dengan hasil kalkulasi manual feedwater dan bahan bakar dengan mengggunakan program excel [14]. Hasil evaluasi dapat dilihat pada lampiran HASIL DAN PEMBAHASAN Hasil perhitungan sistem air umpan, didasarkan pada kapasitas uap yang direncanakan sebesar 612,43 kg/jam dengan keseimbangan anatara flow rate blowdow, return air kondensat dan air penambah, dimana flow rate blowdown dihitung berdasarkan prosentase blowdown dari perbandingan kandungan total padatan terlarut feedwater dikalikan dengan prosentase dengan total padatan terlarut air ketel yang diizinkan pada tekanan 0 3,5 bar. Untuk return air kondensat dihitung berdasarkan kandungan silica atau koduktivitas air umpan. Untuk sistem uap, hasil perhitungan didasarkan pada dua metode perhitungan, yang pertama didasarkan pada selisih antara entalpi spesifik uap pada temperatur C dan entalpi spesifik air pada temperature C dikalikan dengan kapasitas uap yang direncanakan, sehingga diperoleh energi panas sebesar ,47 kj/jam, sedang metode yang ke dua didasarkan pada panas spesifik uap dikalikan dengan selisih temperatur air boiler C dengan temperatur air umpan 60 0 C, sehingga diperoleh energi panas sebesar ,12 kj/jam. Besarnya energi panas dari ke dua metode ini dijumlahkan sehingga diperoleh panas sebesar ,59 kj/jam atau sama dengan 418,85 KW atau sama dengan 42,7 bhp ( boiler horse power= daya boiler). Untuk daya boiler 42,7 bhp spesifikasi teknis boiler belum ada pabrikan yang membuat, oleh karena itu dipilih daya boiler 40 bhp dengan kapasitas uap 627 kg/jam atau 1380 lb/jam, sedang kapasitas produksi uap yang dibutuhkan 612,43 kg/jam, jadi untuk daya boiler 40 bhp cukup untuk memproduksi kapasitas uap yang diperlukan tersebut

11 Kemudian hasil perhitungan untuk mendapatkan uap panas lanjut atau uap kering digunakan superheater yang berfungsi menaikkan temperatur uap jenuh C menjadi uap kering C. besarnya energi panas yang diperlukan dihitung berdasarkan kapasitas uap jenuh yang disuplai ke dalam superheater dikalikan dengan panas spesifik uap dan dikalikan lagi dengan selisih antara temperatur uap kering C dan temperatur jenuh C, maka diperoleh energi panas sebesar ,924 kj/jam atau 40 KW. Untuk Sistem bahan bakar, hasil perhitungan jumlah bahan bakar yang diperlukan untuk memanaskan air dalam boiler didasarkan pada kapasitas uap yang direncanakan dikalikan dengan selisih antara entalpi spesifik uap pada temperatur 269,60 0 F dan entalpi spesifik air umpan pada temperatur 269,60 0 F, dan selisih antara entalpi spesifik uap 269,60 0 F dengan enthalpy air umpan pada temperatur F dibagi dengan perkalian efisiensi boiler dengan nilai pembakaran bahan bakar solar. Hasil perhitungan ini dapat digunalkan untuk memilih tipe dan kapasitas burner yang sesuai. Evaluasi kebutuhan feedwater dan bahan bakar terhadap spesifikasi 40 bhp yang dipilh dilakukan dengan cara menginput data ke dalam program exel yaitu : 40 bhp, efisiensi boiler 80%, tekanan 30 psig, temperatur feedwater F dan panas sensible feedwater 108 btu/lb. Hasil evaluasi dapat dilihat pada tabel 4. Tabel 4. Evaluasi daya boiler dengan kebutuhan feedwater dan bahan bakar Jenis Fluida Kalkulasi Evaluasi Spesifikasi 40 BHP Bahan bakar (gallon/jam) Feedwater (kg/jam) 638 max Steam output (kg/jam) 612, KESIMPULAN Dari uraian hasil perhitungan evaluasi dan pembahasan dapat disimpulkan bahwa perekayasaan steam boiler ini, dipilih ketel uap pipa api (fire tube boiler) dengan daya 40 boiler horse power, karena kapasitas uap yang direncanakan relatif kecil dengan tekanan uap rendah. Selain dengan hal tersebut kebutuhan feedwater dan bahan bakar hasil evaluasi terhadap daya boiler yang dipilih hampir sama, sehingga dengan spesifikasi daya boiler 40 bhp cukup untuk memproduksi uap sesuai dengan kebutuhan. Kemudian untuk superheater digunakan superheater listrik, akan tetapi bisa diganti bila ada pengembangan desain lebih lanjut dengan menggunakan gas yang keluar dari boiler

12 6. DAFTAR PUSTAKA 1. Muin, Syamsir A., Pesawat-Pesawat Konversi Energi I : Ketel Uap, Jakarta, Anonym, Spiraxsarco Limited, First for Steam solution, UK, Copyrigt 2013 ( 3. Prayitno, dkk. Basic Engineering Desain Data Desain Pabrik Elemen Bakar Nuklir Type PWR 1000 MW, April 2013, DOK.: RPN.DK Anonym, Energy Equipment, Assessment of boilers and thermic fluid heaters, Copyright United Nations Environment Programme, Anonym, Steam Boiler and ABMA recommended Feed Water Chemestry Limits, The Engineering Toolbook, diunduh Juli 2013 dari com/feedwater-chemistry-limits. 6. Anonym, Chem-Agua,Inc. Calculating and Monitoring Percentage Condensate Return, Technical Bulletin 1-021, Boiler System, Updated 10/21/ Anonym, Boiler Water Problem and solution, diunduh Juli 2013 dari 8. James MacDonald, PE, CWT, Boiler Feedwater, Originaly Published, Januari Djokosetyardjo, MJ. Ketel Uap, Pradnya Paramitha, Jakarta, Anonym, Menghitung panas spesifik, Rumus Fisika Lengkap/Kalor, diunduh Oktober 2013 dari Anonym, Steam Boiler Sizing Guidelines, Lattner Boiler Company, diunduh Agustus 2013 dari Anonym, Johnston Boiler Company, Common Boiler Formula, 2006, diunduh dari Anonym, Hurst Performance Series Boilers, Series 200, Hurst Boiler & Welding Company, Inc., diunduh Agustus 2013 dari hurstboiler.com. 14. Anonym, Calculating Boiler or Fuel Calculating Cost, S.P. Thermal System Inc., diunduh Oktober 2013 dari

13 7. LAMPIRAN A. Lampiran Evaluasi Kebutuhan Bahan Bakar Dan Feedwater dengan BHP 40 TANYA JAWAB Pertanyaan: 1. Pada abstrak belum terlihat spesifikasi akhir perencanaan boiler? (Maradu) 2. Desain belum menghitung: dimensi boiler, konfigurasi tube, support, lug, baffle, dll. (Petrus) Jawaban: 1. Spesifikasi boiler adalah dengan BHP 40 hasil perhitungan dapat diperoleh spesifikasi Boiler yang lebih lengkap dan sudah ada dalam makalah ini 2. Dimensi boiler sudah ada untuk hasil dalam perhitungan. Konfigurasi tidak ditampilkan dalam makalah ini karena belum menghitung secara detail. Untuk support. Lug, baffle juga belum dilakukan secara detail

TUGAS I MENGHITUNG KAPASITAS BOILER

TUGAS I MENGHITUNG KAPASITAS BOILER TUGAS I MENGHITUNG KAPASITAS BOILER Oleh : Mohammad Choirul Anam 4213 105 021 Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember 2014 BOILER 1. Dasar Teori

Lebih terperinci

PEREKA YASAAN KETEL UAP UTI LIT AS PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe. Sandi Parapak

PEREKA YASAAN KETEL UAP UTI LIT AS PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe. Sandi Parapak PRPN-BATAN, 14 November 2013 PEREKA YASAAN KETEL UAP UTI LIT AS PABRIK ELEMEN BAKAR NUKLIR TIPE PWR 1000 MWe Sandi Parapak PRPN - SATAN, Kawasan Puspiptek, Gedung 71, Tangerang Selatan, 15310 ABSTRAK PEREKA

Lebih terperinci

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012 Hasil Penelitian dan Kegiatan PTLR Tahun 202 ISSN 0852-2979 PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 202 Heri Witono, Ahmad Nurjana

Lebih terperinci

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN Ilham Bayu Tiasmoro. 1), Dedy Zulhidayat Noor 2) Jurusan D III Teknik Mesin Fakultas

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3

ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 EKSERGI Jurnal Teknik Energi Vol 10 No. 3 September 2014; 72-77 ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 Bachrudin Azis Mustofa, Sunarwo, Supriyo (1) Mahasiswa

Lebih terperinci

ANALISA BAHAN BAKAR KETEL UAP PIPA AIR KAPASITAS 20 TON UAP/JAM PADA PTPN II PKS PAGAR MERBAU

ANALISA BAHAN BAKAR KETEL UAP PIPA AIR KAPASITAS 20 TON UAP/JAM PADA PTPN II PKS PAGAR MERBAU ANALISA BAHAN BAKAR KETEL UAP PIPA AIR KAPASITAS 20 TON UAP/JAM PADA PTPN II PKS PAGAR MERBAU LAPORAN TUGAS AKHIR Diajukan Untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma

Lebih terperinci

PERHITUNGAN EFISIENSI BOILER

PERHITUNGAN EFISIENSI BOILER 1 of 10 12/22/2013 8:36 AM PERHITUNGAN EFISIENSI BOILER PERHITUNGAN EFISIENSI BOILER Efisiensi adalah suatu tingkatan kemampuan kerja dari suatu alat. Sedangkan efisiensi pada boiler adalah prestasi kerja

Lebih terperinci

BAB III ANALISA DAN PEMBAHASAN DATA

BAB III ANALISA DAN PEMBAHASAN DATA BAB III ANALISA DAN PEMBAHASAN DATA 3.1 Analisis dan Pembahasan Kehilangan panas atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU Bambang Setyoko * ) Abstracts Heat Recovery Steam Generator ( HRSG ) is a construction in combine cycle with gas turbine and

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR Jamaludin, Iwan Kurniawan Program Studi Teknik mesin, Fakultas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori PLTGU atau combine cycle power plant (CCPP) adalah suatu unit pembangkit yang memanfaatkan siklus gabungan antara turbin uap dan turbin gas. Gagasan awal untuk

Lebih terperinci

ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK

ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK Wahana Teknik Vol 02, Nomor 02, Desember 2013 Jurnal Keilmuan dan Terapan teknik Hal 70-80 ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP ( PLTU ) UNIT 3 DAN 4 GRESIK Wardjito, Sugiyanto

Lebih terperinci

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C

PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL. 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C NASKAH PUBLIKASI PERENCANAAN KETEL UAP PIPA AIR SEBAGAI PENGGERAK TURBIN DENGAN KAPASITAS UAP HASIL 40 TON/JAM, TEKANAN KERJA 17 ATM DAN SUHU UAP 350 o C Makalah Seminar Tugas Akhir ini disusun sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. listrik dimana generator atau pembangkit digerakkan oleh turbin dengan

BAB II TINJAUAN PUSTAKA. listrik dimana generator atau pembangkit digerakkan oleh turbin dengan BAB II TINJAUAN PUSTAKA 2.1 Defenisi Sistem Pembangkit Listrik Tenaga Uap Pembangkit listrik tenaga uap adalah sistem yang dapat membangkitkan tenaga listrik dimana generator atau pembangkit digerakkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel

BAB II TINJAUAN PUSTAKA. tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel BAB II TINJAUAN PUSTAKA 2.1 Boiler Salah satu peralatan yang sangat penting di dalam suatu pembangkit tenaga listrik adalah Boiler (Steam Generator) atau yang biasanya disebut ketel uap. Alat ini merupakan

Lebih terperinci

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dunia industri dewasa ini mengalami perkembangan pesat. Perkembangan itu ditandai dengan berkembangnya ilmu dan teknologi yang akhirnya akan mengakibatkan

Lebih terperinci

SISTEM PEMANFAATAN PANAS TERBUANG PADA PROSES BLOWDOWN DI BOILER

SISTEM PEMANFAATAN PANAS TERBUANG PADA PROSES BLOWDOWN DI BOILER SISTEM PEMANFAATAN PANAS TERBUANG PADA PROSES BLOWDOWN DI BOILER Tri Istanto * Abstrack : The boiler blowdown process involves the periodic or continuous removal of water from a boiler to remove accumulated

Lebih terperinci

Steam Power Plant. Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU

Steam Power Plant. Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU Steam Power Plant Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU Siklus dasar yang digunakan pada Steam Power Plant adalah siklus Rankine, dengan komponen utama boiler, turbin

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

PENGOLAHAN AIR SUNGAI UNTUK BOILER

PENGOLAHAN AIR SUNGAI UNTUK BOILER PENGOLAHAN AIR SUNGAI UNTUK BOILER Oleh Denni Alfiansyah 1031210146-3A JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MALANG MALANG 2012 PENGOLAHAN AIR SUNGAI UNTUK BOILER Air yang digunakan pada proses pengolahan

Lebih terperinci

ANALISIS KEBUTUHAN BAHAN BAKAR TERHADAP PERUBAHAN TEKANAN UAP

ANALISIS KEBUTUHAN BAHAN BAKAR TERHADAP PERUBAHAN TEKANAN UAP ANALISIS KEBUTUHAN BAHAN BAKAR TERHADAP PERUBAHAN TEKANAN UAP Qamaruddin 1) Muhammad Ilyas Sikki 2) 1) Fakultas Teknik, Universitas Islam "45" Bekasi, Email :Qomarudin.q@gmail.com 2) Fakultas Teknik, Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1.1 Boiler. Pada bab ini dijelaskan mengenai gambaran tentang boiler secara umum serta fungsi komponen - komponen utama dan fungsi komponen - komponen pendukung bahan boiler.boiler

Lebih terperinci

AUDIT ENERGI PADA WHB (WASTE HEAT BOILER) UNTUK PEMENUHAN KEBUTUHAN PADA PROSES UREA (STUDI KASUS PADA PT PETROKIMIA GRESIK-JAWA TIMUR).

AUDIT ENERGI PADA WHB (WASTE HEAT BOILER) UNTUK PEMENUHAN KEBUTUHAN PADA PROSES UREA (STUDI KASUS PADA PT PETROKIMIA GRESIK-JAWA TIMUR). AUDIT ENERGI PADA WHB (WASTE HEAT BOILER) UNTUK PEMENUHAN KEBUTUHAN PADA PROSES UREA (STUDI KASUS PADA PT PETROKIMIA GRESIK-JAWA TIMUR). Mohammad khatib..2411106002 Dosen pembimbing: Dr. Ridho Hantoro,

Lebih terperinci

BAB IV ANALISIS DAN PENGOLAHAN DATA

BAB IV ANALISIS DAN PENGOLAHAN DATA BAB IV ANALISIS DAN PENGOLAHAN DATA 4.1 Pengamatan Data Dari data pengamatan yang dilakukan meliputi : 4.1.1 Data Primer Observasi dan wawancara dilakukan dilapangan dengan pejabat yang kompeten yang meliputi

Lebih terperinci

ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 ABSTRAK

ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 ABSTRAK ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 Anwar Ilmar,ST,MT 1,.Ali Sandra 2 Lecture 1,College student 2,Departement of machine, Faculty of Engineering, University

Lebih terperinci

PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI

PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI Kode Unit : JPI.KE01.001.01 STANDAR KOMPETENSI Judul Unit: Menerapkan prinsip-prinsip

Lebih terperinci

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-137 Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure Ryan Hidayat dan Bambang

Lebih terperinci

Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo

Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo B117 Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo Raditya Satrio Wibowo dan Prabowo Departemen Teknik Mesin, Fakultas Teknologi

Lebih terperinci

ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT

ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT Anwar Ilmar Ramadhan 1,*, Ery Diniardi 1, Hasan Basri 2, Dhian Trisnadi Setyawan 1 1 Jurusan

Lebih terperinci

Bab I Pendahuluan Latar Belakang

Bab I Pendahuluan Latar Belakang Bab I Pendahuluan I.1 Latar Belakang Pada dasarnya Boiler adalah suatu wadah yang berfungsi sebagai pemanas air, panas pembakaran dialirkan ke air sampai terbentuk air panas atau steam. Steam pada tekanan

Lebih terperinci

PRARANCANGAN PABRIK UREA FORMALDEHID PROSES FORMOX KAPASITAS TON / TAHUN

PRARANCANGAN PABRIK UREA FORMALDEHID PROSES FORMOX KAPASITAS TON / TAHUN EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA PRARANCANGAN PABRIK UREA FORMALDEHID PROSES FORMOX KAPASITAS 44.000 TON / TAHUN MURTIHASTUTI Oleh: SHINTA NOOR RAHAYU L2C008084 L2C008104 JURUSAN TEKNIK

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Pembangkit Listrik Tenaga Uap (PLTU) Energi Alamraya Semesta adalah PLTU yang menggunakan batubara sebagai bahan bakar. Batubara yang digunakan adalah batubara jenis bituminus

Lebih terperinci

EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA

EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA PRARANCANGAN PABRIK ETIL ASETAT PROSES ESTERIFIKASI DENGAN KATALIS H 2 SO 4 KAPASITAS 18.000 TON/TAHUN Oleh : EKO AGUS PRASETYO 21030110151124 DIANA CATUR

Lebih terperinci

PENCEGAHAN KERAK DAN KOROSI PADA AIR ISIAN KETEL UAP. Rusnoto. Abstrak

PENCEGAHAN KERAK DAN KOROSI PADA AIR ISIAN KETEL UAP. Rusnoto. Abstrak PENCEGAHAN KERAK DAN KOROSI PADA AIR ISIAN KETEL UAP Rusnoto Abstrak Ketel uap adalah suatu pesawat yang fungsinya mengubah air menjadi uap dengan proses pemanasan melalui pembakaran bahan bakar di dalam

Lebih terperinci

ANALISA PERFORMANSI KETEL UAP DENGAN KAPASITAS 260 TON/JAM DAN TEKANAN 86 BAR DI UNIT 3 PADA PLTU SEKTOR PEMBANGKIT BELAWAN

ANALISA PERFORMANSI KETEL UAP DENGAN KAPASITAS 260 TON/JAM DAN TEKANAN 86 BAR DI UNIT 3 PADA PLTU SEKTOR PEMBANGKIT BELAWAN ANALISA PERFORMANSI KETEL UAP DENGAN KAPASITAS 260 TON/JAM DAN TEKANAN 86 BAR DI UNIT 3 PADA PLTU SEKTOR PEMBANGKIT BELAWAN LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan

Lebih terperinci

PEMANFAATAN PANAS TERBUANG

PEMANFAATAN PANAS TERBUANG 2002 Belyamin Posted 29 December 2002 Makalah Pengantar Falsafah Sains (PPS702) Program Pasca Sarjana / S3 Institut Pertanian Bogor Desember 2002 Dosen : Prof Dr. Ir. Rudy C Tarumingkeng (Penanggung Jawab)

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 36 BAB III METODOLOGI PENELITIAN 3.1 PENDAHULUAN Materi penelitian dalam Tugas Akhir ini adalah analisis proses konversi energi pada PLTU Suralaya Unit 5 mulai dari energi pada batubara hingga menjadi

Lebih terperinci

TUGAS PERANCANGAN PABRIK FORMALDEHID PROSES HALDOR TOPSOE KAPASITAS TON / TAHUN

TUGAS PERANCANGAN PABRIK FORMALDEHID PROSES HALDOR TOPSOE KAPASITAS TON / TAHUN XECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PERANCANGAN PABRIK FORMALDEHID PROSES HALDOR TOPSOE KAPASITAS 100.000 TON / TAHUN Oleh: Dewi Riana Sari 21030110151042 Anggun Pangesti P. P. 21030110151114

Lebih terperinci

PENYIAPAN LARUTAN URANIL NITRAT UNTUK PROSES KONVERSI KIMIA MELALUI EVAPORASI

PENYIAPAN LARUTAN URANIL NITRAT UNTUK PROSES KONVERSI KIMIA MELALUI EVAPORASI PENYIAPAN LARUTAN URANIL NITRAT UNTUK PROSES KONVERSI KIMIA MELALUI EVAPORASI S u n a r d i Pusat Teknologi Bahan Bakar Nuklir - BATAN ABSTRAK PENYIAPAN LARUTAN URANIL NITRAT UNTUK PROSES KONVERSI KIMIA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 8 BAB I PENDAHULUAN 11 Latar Belakang Energi memiliki peranan penting dalam menunjang kehidupan manusia Seiring dengan perkembangan zaman kebutuhan akan energi pun terus meningkat Untuk dapat memenuhi

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1 Waktu dan tempat Penelitian ini dilaksanakan di PT Energi Alamraya Semesta, Desa Kuta Makmue, kecamatan Kuala, kab Nagan Raya- NAD. Penelitian akan dilaksanakan pada bulan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

PERFORMANSI KETEL UAP PIPA AIR KAPASITAS 18 TON/JAM DI PKS MERBAUJAYA INDAHRAYA

PERFORMANSI KETEL UAP PIPA AIR KAPASITAS 18 TON/JAM DI PKS MERBAUJAYA INDAHRAYA PERFORMANSI KETEL UAP PIPA AIR KAPASITAS 18 TON/JAM DI PKS MERBAUJAYA INDAHRAYA LAPORAN TUGAS AKHIR Diajukan Untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma III PROGRAM

Lebih terperinci

BOILER / KETEL UAP. 1. Pengertian Ketel Uap

BOILER / KETEL UAP. 1. Pengertian Ketel Uap BOILER / KETEL UAP 1. Pengertian Ketel Uap Ketel uap merupakan gabungan yang kompleks dari pipa-pipa penguapan (evaporator), pemanas lanjut (superheater), pemanas air (ekonomiser) dan pemanas udara (air

Lebih terperinci

ANALISA EFISIENSI KETEL UAP PIPA AIR KAPASITAS 20 TON/JAM TEKANAN KERJA 20 BAR DI PABRIK KELAPA SAWIT

ANALISA EFISIENSI KETEL UAP PIPA AIR KAPASITAS 20 TON/JAM TEKANAN KERJA 20 BAR DI PABRIK KELAPA SAWIT ANALISA EFISIENSI KETEL UAP PIPA AIR KAPASITAS 20 TON/JAM TEKANAN KERJA 20 BAR DI PABRIK KELAPA SAWIT LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN Dalam pengamatan awal dilihat tiap seksi atau tahapan proses dengan memperhatikan kondisi produksi pada saat dilakukan audit energi. Dari kondisi produksi tersebut selanjutnya

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PRARANCANGAN PABRIK SIRUP MALTOSA BERBAHAN DASAR TAPIOKA KAPASITAS TON PER TAHUN

EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PRARANCANGAN PABRIK SIRUP MALTOSA BERBAHAN DASAR TAPIOKA KAPASITAS TON PER TAHUN EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PRARANCANGAN PABRIK SIRUP MALTOSA BERBAHAN DASAR TAPIOKA KAPASITAS 30000 TON PER TAHUN Disusun Oleh : Gita Lokapuspita NIM L2C 008 049 Mirza Hayati

Lebih terperinci

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS Pratama Akbar 4206 100 001 Jurusan Teknik Sistem Perkapalan FTK ITS PT. Indonesia Power sebagai salah satu pembangkit listrik di Indonesia Rencana untuk membangun PLTD Tenaga Power Plant: MAN 3 x 18.900

Lebih terperinci

ANALISA TEKNIS EVALUASI KINERJA BOILER TYPE IHI FW SR SINGLE DRUM AKIBAT KEHILANGAN PANAS DI PLTU PT. PJB UNIT PEMBANGKITAN GRESIK

ANALISA TEKNIS EVALUASI KINERJA BOILER TYPE IHI FW SR SINGLE DRUM AKIBAT KEHILANGAN PANAS DI PLTU PT. PJB UNIT PEMBANGKITAN GRESIK ANALISA TEKNIS EVALUASI KINERJA BOILER TYPE IHI FW SR SINGLE DRUM AKIBAT KEHILANGAN PANAS DI PLTU PT. PJB UNIT PEMBANGKITAN GRESIK Putra Is Dewata (Mahasiswa) I Made Ariana, ST.,MT.,Dr.MarSc. (Dosen pembimbing

Lebih terperinci

Konservasi Energi di Kilang Gas Alam Cair/LNG Melalui Peningkatan Efisiensi Pembakaran pada Boiler

Konservasi Energi di Kilang Gas Alam Cair/LNG Melalui Peningkatan Efisiensi Pembakaran pada Boiler 159 Iriany / Jurnal Teknologi Proses 5( Juli 006: 151 155 Jurnal Teknologi Proses Media Publikasi Karya Ilmiah Teknik Kimia 5( Juli 006: 156 16 ISSN 141-7814 Konservasi Energi di Kilang Gas Alam Cair/LNG

Lebih terperinci

BAB III METODOLOGI STUDI KASUS. Bahan yang digunakan dalam penelitian ini adalah sebagai berikut :

BAB III METODOLOGI STUDI KASUS. Bahan yang digunakan dalam penelitian ini adalah sebagai berikut : BAB III METODOLOGI STUDI KASUS 3.1 Bahan Studi Kasus Bahan yang digunakan dalam penelitian ini adalah sebagai berikut : a. Data pengukuran pompa sirkulasi minyak sawit pada Concentrated Solar Power selama

Lebih terperinci

PRARANCANGAN PABRIK SIRUP MALTOSA BERBAHAN DASAR TAPIOKA KAPASITAS TON/TAHUN

PRARANCANGAN PABRIK SIRUP MALTOSA BERBAHAN DASAR TAPIOKA KAPASITAS TON/TAHUN 1 PRARANCANGAN PABRIK SIRUP MALTOSA BERBAHAN DASAR TAPIOKA KAPASITAS 25000 TON/TAHUN O l e h : Anita Hadi Saputri NIM. L2C 007 009 Ima Winaningsih NIM. L2C 007 050 JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

1. Bagian Utama Boiler

1. Bagian Utama Boiler 1. Bagian Utama Boiler Boiler atau ketel uap terdiri dari berbagai komponen yang membentuk satu kesatuan sehingga dapat menjalankan operasinya, diantaranya: 1. Furnace Komponen ini merupakan tempat pembakaran

Lebih terperinci

EXECUTIVE SUMMARY TUGAS PRA-RANCANGAN PABRIK KIMIA

EXECUTIVE SUMMARY TUGAS PRA-RANCANGAN PABRIK KIMIA EXECUTIVE SUMMARY TUGAS PRA-RANCANGAN PABRIK KIMIA PERANCANGAN PABRIK ETANOL FUEL GRADE DENGAN KAPASITAS 1000 L/HARI Oleh : Babar Priyadi Mugi H. Ganang Dwi Harjanto L2C008020 L2C008047 JURUSAN TEKNIK

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Boiler Menurut Djokosetyardjo (2003), boiler atau ketel uap adalah bejana tertutup dimana panas pembakaran dialirkan ke air sampai terbentuk air panas atau steam.

Lebih terperinci

ANALISA PEMAKAIAN BAHAN BAKAR DENGAN MELAKUKAN PENGUJIAN NILAI KALOR TERHADAP PERFOMANSI KETEL UAP TIPE PIPA AIR DENGAN KAPASITAS UAP 60 TON/JAM

ANALISA PEMAKAIAN BAHAN BAKAR DENGAN MELAKUKAN PENGUJIAN NILAI KALOR TERHADAP PERFOMANSI KETEL UAP TIPE PIPA AIR DENGAN KAPASITAS UAP 60 TON/JAM ANALISA PEMAKAIAN BAHAN BAKAR DENGAN MELAKUKAN PENGUJIAN NILAI KALOR TERHADAP PERFOMANSI KETEL UAP TIPE PIPA AIR DENGAN KAPASITAS UAP 60 TON/JAM Harry Christian Hasibuan 1, Farel H. Napitupulu 2 1,2 Departemen

Lebih terperinci

TUGAS PRA PERANCANGAN PABRIK BIODIESEL DARI DISTILAT ASAM LEMAK MINYAK SAWIT (DALMS) DENGAN PROSES ESTERIFIKASI KAPASITAS 100.

TUGAS PRA PERANCANGAN PABRIK BIODIESEL DARI DISTILAT ASAM LEMAK MINYAK SAWIT (DALMS) DENGAN PROSES ESTERIFIKASI KAPASITAS 100. EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PRA PERANCANGAN PABRIK BIODIESEL DARI DISTILAT ASAM LEMAK MINYAK SAWIT (DALMS) DENGAN PROSES ESTERIFIKASI KAPASITAS 100.000 TON/TAHUN Oleh: RUBEN

Lebih terperinci

ANALISIS EFISIENSI TURBIN GAS TERHADAP BEBAN OPERASI PLTGU MUARA TAWAR BLOK 1

ANALISIS EFISIENSI TURBIN GAS TERHADAP BEBAN OPERASI PLTGU MUARA TAWAR BLOK 1 ANALISIS EFISIENSI TURBIN GAS TERHADAP BEBAN OPERASI PLTGU MUARA TAWAR BLOK 1 Ir Naryono 1, Lukman budiono 2 Lecture 1,College student 2,Departement of machine, Faculty of Engineering, University Muhammadiyah

Lebih terperinci

BAB III ANALISA DAN PERHITUNGAN COGENERATION PLANT. oleh Gas turbin yang juga terhubung pada HRSG. Tabel 3.1. Sample Parameter Gas Turbine

BAB III ANALISA DAN PERHITUNGAN COGENERATION PLANT. oleh Gas turbin yang juga terhubung pada HRSG. Tabel 3.1. Sample Parameter Gas Turbine 48 BAB III ANALISA DAN PERHITUNGAN COGENERATION PLANT 3.1. Sampel data Perhitungan Heat Balance Cogeneration plant di PT X saya ambil data selama 1 bulan pada bulan desember 2012 sebagai referensi, dengan

Lebih terperinci

PENGOPERASIAN COOLING WATER SYSTEM UNTUK PENURUNAN TEMPERATUR MEDIA PENDINGIN EVAPORATOR. Ahmad Nurjana Pusat Teknologi Limbah Radioaktif-BATAN

PENGOPERASIAN COOLING WATER SYSTEM UNTUK PENURUNAN TEMPERATUR MEDIA PENDINGIN EVAPORATOR. Ahmad Nurjana Pusat Teknologi Limbah Radioaktif-BATAN PENGOPERASIAN COOLING WATER SYSTEM UNTUK PENURUNAN TEMPERATUR MEDIA PENDINGIN EVAPORATOR ABSTRAK Ahmad Nurjana Pusat Teknologi Limbah Radioaktif-BATAN PENGOPERASIAN COOLING WATER SYTEM UNTUK PENURUNAN

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES digilib.uns.ac.id BAB III SPESIFIKASI ALAT PROSES 3.1. Spesifikasi Alat Utama 3.1.1 Mixer (NH 4 ) 2 SO 4 Kode : (M-01) : Tempat mencampurkan Ammonium Sulfate dengan air : Silinder vertical dengan head

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES 34 BAB III SPESIFIKASI PERALATAN PROSES 3.1. Tangki Tangki Bahan Baku (T-01) Tangki Produk (T-02) Menyimpan kebutuhan Menyimpan Produk Isobutylene selama 30 hari. Methacrolein selama 15 hari. Spherical

Lebih terperinci

MENAIKKAN EFISIENSI BOILER DENGAN MEMANFAATKAN GAS BUANG UNTUK PEMANAS EKONOMISER

MENAIKKAN EFISIENSI BOILER DENGAN MEMANFAATKAN GAS BUANG UNTUK PEMANAS EKONOMISER MENAIKKAN EFISIENSI BOILER DENGAN MEMANFAATKAN GAS BUANG UNTUK PEMANAS EKONOMISER Murni D III Teknik Mesin Universitas Diponegoro Jl. Prof. Soedarto, SH. Tembalang Semarang e-mail: mochmurni@yahoo.com

Lebih terperinci

PERENCANAAN KETEL UAP TEKANAN 6 ATM DENGAN BAHAN BAKAR KAYU UNTUK INDUSTRI SEDERHANA RUSNOTO

PERENCANAAN KETEL UAP TEKANAN 6 ATM DENGAN BAHAN BAKAR KAYU UNTUK INDUSTRI SEDERHANA RUSNOTO PERENCANAAN KETEL UAP TEKANAN 6 ATM DENGAN BAHAN BAKAR KAYU UNTUK INDUSTRI SEDERHANA RUSNOTO ABSTRAK Ketel uap/boiler adalah suatu pesawat yang mengubah air menjadi uap dengan jalan pemanasan dan uap tersebut

Lebih terperinci

BOILER MINI TEKANAN RENDAH BERBAHAN BAKAR SAMPAH PERKEBUNAN UNTUK PEMBANGKIT LISTRIK

BOILER MINI TEKANAN RENDAH BERBAHAN BAKAR SAMPAH PERKEBUNAN UNTUK PEMBANGKIT LISTRIK Ketenagaan Dan Energi Terbarukan, ISSN 1978-2365 BOILER MINI TEKANAN RENDAH BERBAHAN BAKAR SAMPAH PERKEBUNAN UNTUK PEMBANGKIT LISTRIK Dedi Suntoro, Paber Parluhutan Sinaga, Tri Anggono dan Endang Lestari

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

Studi Pemanfaatan Condensate Outlet Steam Trap Sebagai Air Umpan Boiler di Pabrik Amoniak Pusri-IB

Studi Pemanfaatan Condensate Outlet Steam Trap Sebagai Air Umpan Boiler di Pabrik Amoniak Pusri-IB 20 Jurnal Rekayasa Proses, Vol. 7, No. 1, 2013 Studi Pemanfaatan Condensate Outlet Steam Trap Sebagai Air Umpan Boiler di Pabrik Amoniak Pusri-IB Alfa Widyawan* dan Ferlyn Fachlevie PT. Pupuk Sriwidjaja

Lebih terperinci

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA BAB I PENDAHULUAN I.1. Latar Belakang Alat penukar kalor (Heat Exchanger) merupakan suatu peralatan yang digunakan untuk menukarkan energi dalam bentuk panas antara fluida yang berbeda temperatur yang

Lebih terperinci

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB IV PEMILIHAN SISTEM PEMANASAN AIR 27 BAB IV PEMILIHAN SISTEM PEMANASAN AIR 4.1 Pemilihan Sistem Pemanasan Air Terdapat beberapa alternatif sistem pemanasan air yang dapat dilakukan, seperti yang telah dijelaskan dalam subbab 2.2.1 mengenai

Lebih terperinci

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air BAB 1 PENDAHULUAN 1.1 Latar Belakang Pembangkit Listrik Tenaga Uap (PLTU) adalah pembangkit listrik yang memanfaatkan energi panas dari uap kering (steam) untuk memutar turbin sehingga dapat digunakan

Lebih terperinci

MAKALAH UTILITAS FIRE TUBE BOILER. Disusun oleh : Irfan Arfian Maulana ( ) Sintani Nursabila ( )

MAKALAH UTILITAS FIRE TUBE BOILER. Disusun oleh : Irfan Arfian Maulana ( ) Sintani Nursabila ( ) MAKALAH UTILITAS FIRE TUBE BOILER Disusun oleh : Irfan Arfian Maulana (2014710450002) Sintani Nursabila (2013710450009) Kevin Andreas (2013710450010) JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS

Lebih terperinci

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi Jurnal FEMA, Volume 1, Nomor 3, Juli 2013 Kajian Analitis Sistem Pembangkit Uap Kogenerasi Lamsihar S. Tamba 1), Harmen 2) dan A. Yudi Eka Risano 2) 1) Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Larutan benzene sebanyak 1.257,019 kg/jam pada kondisi 30 o C, 1 atm dari tangki penyimpan (T-01) dipompakan untuk dicampur dengan arus recycle dari menara

Lebih terperinci

Diajukan Untuk Memenuhi Sebagian Persyaratan Dalam Menyelesaikan Program Pendidikan Diploma 3 PROGRAM STUDI TEKNIK KONVERSI ENERGI

Diajukan Untuk Memenuhi Sebagian Persyaratan Dalam Menyelesaikan Program Pendidikan Diploma 3 PROGRAM STUDI TEKNIK KONVERSI ENERGI ANALISA PERFORMANSI KETEL PIPA AIR KAPASITAS 45 TON UAP/JAM, TEKANAN 30 kg/cm 2 DENGAN TEMPERATUR 270 0 C DI PABRIK KELAPA SAWIT SEI MANGKEI LAPORAN TUGAS AKHIR Diajukan Untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

EXECUTIVE SUMMARY TUGAS PRAPERANCANGAN PABRIK KIMIA

EXECUTIVE SUMMARY TUGAS PRAPERANCANGAN PABRIK KIMIA EXECUTIVE SUMMARY TUGAS PRAPERANCANGAN PABRIK KIMIA PRAPERANCANGAN PABRIK BIOETANOL BERBAHAN BAKU NIRA BATANG SORGUM DENGAN KAPASITAS 50.000 KL/TAHUN Oleh : Galih Prihasetya Hermawan Hendrawan Laksono

Lebih terperinci

ANALISA BESAR PERPINDAHAN KALOR PADA SISTEM PEMBANGKIT LISTRIK TENAGA UAP INDUSTRI BIODIESEL PT. CILIANDRA PERKASA, DUMAI

ANALISA BESAR PERPINDAHAN KALOR PADA SISTEM PEMBANGKIT LISTRIK TENAGA UAP INDUSTRI BIODIESEL PT. CILIANDRA PERKASA, DUMAI ANALISA BESAR PERPINDAHAN KALOR PADA SISTEM PEMBANGKIT LISTRIK TENAGA UAP INDUSTRI BIODIESEL PT. CILIANDRA PERKASA, DUMAI Anggita Oktimalia 1, Maksi Ginting 2, Riad Syech 3 1 Mahasiswa Jurusan Fisika 2

Lebih terperinci

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK GLOSSARY GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK Ash Handling Adalah penanganan bahan sisa pembakaran dan terutama abu dasar yang

Lebih terperinci

PRA RANCANGAN PABRIK UREA FORMALDEHIDPROSES D. B WESTERN KAPASITAS TON/TAHUN

PRA RANCANGAN PABRIK UREA FORMALDEHIDPROSES D. B WESTERN KAPASITAS TON/TAHUN PRA RANCANGAN PABRIK UREA FORMALDEHIDPROSES D. B WESTERN KAPASITAS 19.000 TON/TAHUN Di susun Oleh: Agung Nur Hananto Putro L2C6 06 002 Moch. Radhitya Sabeth Taufan L2C6 06 030 Zulfahmi L2C6 06 051 JURUSAN

Lebih terperinci

Analisa Teknis Evaluasi Kinerja Boiler Type IHI FW SR Single Drum Akibat Kehilangan Panas di PLTU PT. PJB Unit Pembangkitan Gresik

Analisa Teknis Evaluasi Kinerja Boiler Type IHI FW SR Single Drum Akibat Kehilangan Panas di PLTU PT. PJB Unit Pembangkitan Gresik SKRIPSI LOGO Januari 2011 Analisa Teknis Evaluasi Kinerja Boiler Type IHI FW SR Single Drum Akibat Kehilangan Panas di PLTU PT. PJB Unit Pembangkitan Gresik PUTRA IS DEWATA 4206.100.061 Contents BAB I

Lebih terperinci

Evaporasi S A T U A N O P E R A S I D A N P R O S E S T I P F T P UB

Evaporasi S A T U A N O P E R A S I D A N P R O S E S T I P F T P UB Evaporasi S A T U A N O P E R A S I D A N P R O S E S T I P F T P UB M A S U D E F F E N D I Pendahuluan Evaporasi bertujuan untuk memekatkan atau menaikkan konsentrasi zat padat dari bahan yang berupa

Lebih terperinci

EXECUTIVE SUMMARY TUGAS PRA PERANCANGAN PABRIK KIMIA

EXECUTIVE SUMMARY TUGAS PRA PERANCANGAN PABRIK KIMIA EXECUTIVE SUMMARY TUGAS PRA PERANCANGAN PABRIK KIMIA PRA PERANCANGAN PABRIK BIODIESEL DARI MIKROALGA CHORELLA SP DENGAN PROSES ESTERIFIKASI DAN TRANSESTERIFIKASI KAPASITAS PRODUKSI 100.000 TON/TAHUN Oleh

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Sistem kerja PLTU Sistem PLTU merupakan sistem pembangkit energi listrik yang memiliki empat komponen utama, yaitu : ketel, turbin, kondensor dan pompa. Ketel berfungsi sebagai

Lebih terperinci

TUGAS PERANCANGAN PABRIK METHANOL DARI GAS ALAM DENGAN PROSES LURGI KAPASITAS TON PER TAHUN

TUGAS PERANCANGAN PABRIK METHANOL DARI GAS ALAM DENGAN PROSES LURGI KAPASITAS TON PER TAHUN EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PERANCANGAN PABRIK METHANOL DARI GAS ALAM DENGAN PROSES LURGI KAPASITAS 230000 TON PER TAHUN Oleh: ISNANI SA DIYAH L2C 008 064 MUHAMAD ZAINUDIN L2C

Lebih terperinci

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68 EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68 ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 Sunarwo, Supriyo Program Studi Teknik Konversi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat besar. Hampir 27.000 MWe potensi panas bumi tersimpan di perut bumi Indonesia. Hal ini dikarenakan

Lebih terperinci

BAB IV PEMBAHASAN KINERJA BOILER

BAB IV PEMBAHASAN KINERJA BOILER BAB IV PEMBAHASAN KINERJA BOILER 4.1 Spesifikasi boiler di PT. Kartika Eka Dharma Spesifikasi boiler yang digunakan oleh PT. Kartika Eka Dharma adalah boiler jenis pipa air dengan kapasitas 1 ton/ jam,

Lebih terperinci

atm dengan menggunakan steam dengan suhu K sebagai pemanas.

atm dengan menggunakan steam dengan suhu K sebagai pemanas. Pra (Rancangan PabrikjEthanoldan Ethylene danflir ' BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Langkah proses Pada proses pembuatan etanol dari etilen yang merupakan proses hidrasi etilen fase

Lebih terperinci

PEMANFAATAN BOIL-OFF GAS (BOG) PADA COMBINED CYCLE PROPULSION PLANT UNTUK LNG CRRIER

PEMANFAATAN BOIL-OFF GAS (BOG) PADA COMBINED CYCLE PROPULSION PLANT UNTUK LNG CRRIER PEMANFAATAN BOIL-OFF GAS (BOG) PADA COMBINED CYCLE PROPULSION PLANT UNTUK LNG CRRIER Tugas Akhir Ini Didedikasikan Untuk Pengembangan Teknologi LNG di Indonesia TRANSPORT Disusun oleh : PRATAMA NOTARIZA

Lebih terperinci

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System 32 BAB IV HASIL ANALISA DAN PEMBAHASAN 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System PLTP Gunung Salak merupakan PLTP yang berjenis single flash steam system. Oleh karena itu, seperti yang

Lebih terperinci

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT KONVERSI ENERGI PANAS BUMI HASBULLAH, MT TEKNIK ELEKTRO FPTK UPI, 2009 POTENSI ENERGI PANAS BUMI Indonesia dilewati 20% panjang dari sabuk api "ring of fire 50.000 MW potensi panas bumi dunia, 27.000 MW

Lebih terperinci

LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION

LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION (Interpretasi Saturated Burning Zone ditinjau dari Flame Temperatur pada Steam Power Generation Closed Cycle System) Diajukan Untuk Memenuhi Syarat Menyelesaikan

Lebih terperinci

ANALISA PERFORMANSI BOILER DENGAN TYPE DG693/ PADA PLTU PANGKALAN SUSU LAPORAN TUGAS AKHIR PROGRAM STUDI TEKNIK KONVERSI ENERGI MEKANIK

ANALISA PERFORMANSI BOILER DENGAN TYPE DG693/ PADA PLTU PANGKALAN SUSU LAPORAN TUGAS AKHIR PROGRAM STUDI TEKNIK KONVERSI ENERGI MEKANIK ANALISA PERFORMANSI BOILER DENGAN TYPE DG693/13.43-22 PADA PLTU PANGKALAN SUSU LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma III PROGRAM

Lebih terperinci

Dosen Pembimbing : Ir. Teguh Yuwono Ir. Syariffuddin M, M.Eng. Oleh : ADITASA PRATAMA NRP :

Dosen Pembimbing : Ir. Teguh Yuwono Ir. Syariffuddin M, M.Eng. Oleh : ADITASA PRATAMA NRP : STUDI PENENTUAN KAPASITAS MOTOR LISTRIK UNTUK PENDINGIN DAN PENGGERAK POMPA AIR HIGH PRESSURE PENGISI BOILER UNTUK MELAYANI KEBUTUHAN AIR PADA PLTGU BLOK III (PLTG 3x112 MW & PLTU 189 MW) UNIT PEMBANGKITAN

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci