BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Metode Pendistribusian Air Di dalam pendistribusian air diperlukan suatu metode pendistribusian agar air dapat mengalir dari sumber air ke semua pemakai air. Adapun metode pendistribusian air terdiri dari tiga tipe sistem yaitu Sistem Gravitasi, Sistem Pemompaan, dan Sistem Gabungan Sistem Gravitasi Metode pendistribusian dengan sistem gravitasi bergantung pada topografi sumber daya air yang ada dan daerah pendistribusiannya. Biasanya sumber air ditempatkan pada daerah yang lebih tinggi dari daerah distribusinya, agar air yang didistribusikan dapat mengalir dengan sendirinya tanpa pompa. Adapun keuntungan dengan sistem ini yaitu energi yang dipakai tidak membutuhkan biaya dan sistem pemeliharaannya murah Sistem Pemompaan Metode ini menggunakan pompa dalam mendistribusikan air menuju lokasi pemakaian air. Pompa langsung dihubungkan dengan pipa yang menangani pendistribusian. Dalam pengoperasiannya pompa terjadwal untuk beroperasi sehingga dapat menghemat pemakaian energi. Keuntungan dari metode ini yaitu tekanan pada daerah distribusi dapat terjaga Sistem gabungan keduanya Metode ini merupakan gabungan antara metode gravitasi dan pemompaan yang biasa digunakan untuk daerah distribusi yang berbukit-bukit dan pendistribusian air di gedung bertingkat. 10

2 Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan di sejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga pengukuran kecepatan merupakan fase yang sangat penting dalam menganalisa suatu aliran fluida. Kecepatan dapat diperoleh dengan melakukan pengukuran terhadap waktu yang dibutuhkan suatu partikel untuk bergerak sepanjang jarak yang telah ditentukan. Besarnya kecepatan aliran fluida pada suatu pipa mendekati nol pada dinding pipa dan mencapai maksimum pada tengah-tengah pipa seperti terlihat pada Gambar 2.1. Kecepatan dipengaruhi oleh penampang aliran. Bentuk kecepatan yang digunakan pada aliran fluida umumnya menunjukkan kecepatan yang sebenarnya jika tidak ada keterangan lain yang disebutkan. Gambar 2.1 Kecepatan Aliran Melalui Saluran Tertutup Gambar 2.2 Kecepatan Melalui Saluran Terbuka Besarnya kecepatan akan mempengaruhi besarnya fluida yang mengalir dalam suatu pipa seperti pada Gambar 2.2. Jumlah dari aliran fluida mungkin dinyatakan sebagai volume, berat atau massa fluida dengan masing-masing laju aliran ditunjukkan sebagai laju aliran volume (m 3 /s), laju aliran berat (N/s) dan laju aliran massa (kg/s).

3 12 Kapasitas aliran (Q) untuk fluida yang inkompresibel (Ihwanda,2000). yaitu: Q = A. v...(2.1) Di mana: Q = laju aliran volume (m 3 /s), A = luas penampang aliran (m 2 ), v = kecepatan aliran fluida (m/s) Untuk nilai kecepatan searah gaya gravitasi, maka kecepatan dihitung berdasarkan tinggi jatuh air atau, maka diperoleh persamaan:...(2.2) Laju aliran berat fluida (W) dirumuskan sebagai: W = γ. A. v...(2.3) Di mana: W = laju aliran berat fluida (N/s), γ = berat jenis fluida (N/m 3 ) Laju aliran massa (M) dinyatakan sebagai: M = ρ. A. v...(2.4) Di mana: M = laju aliran massa fluida (kg/s), ρ = massa jenis fluida (kg/m 3 ) 2.3. Jenis Aliran Fluida Aliran fluida dapat dibedakan atas 3 jenis yaitu aliran laminar, aliran transisi, dan aliran turbulen. Jenis aliran ini didapat dari hasil eksperimen yang dilakukan oleh Osborne Reynold tahun 1883 yang mengklasifikasikan aliran menjadi 3 jenis. Jika air mengalir melalui sebuah pipa berdiameter d dengan kecepatan rata-rata V maka dapat diketahui jenis aliran yang terjadi. Berdasarkan eksperimen tersebut maka didapatkan bilangan Reynold di mana bilangan ini tergantung pada kecepatan fluida, kerapatan, viskositas, dan diameter. Aliran dikatakan laminar jika partikel-partikel fluida yang bergerak teratur mengikuti lintasan yang sejajar pipa dan bergerak dengan kecepatan sama. Aliran ini terjadi apabila kecepatan kecil dan atau kekentalan besar. Aliran disebut turbulen jika

4 13 tiap partikel fluida bergerak mengikuti lintasan sembarang di sepanjang pipa dan hanya gerakan rata-rata saja yang mengikuti sumbu pipa. Aliran ini terjadi apabila kecepatan besar dan kekentalan zat cair kecil. Bilangan Reynold (Re) dapat dihitung dengan menggunakan persamaan: Re.d V.... (2.5) Di mana: ρ = massa jenis fluida (kg/m 3 ), d = diameter pipa (m), V = kecepatan aliran fluida (m/s), μ = viskositas dinamik fluida (Pa.s) Karena viskositas dinamik dibagi dengan massa jenis fluida merupakan viskositas kinematik (v) maka bilangan Reynold dapat juga dinyatakan: v sehingga d.v Re v... (2.6) Nilai viskositas kinematik air (Setiawan,2008) pada temperatur standard (27ºC) adalah m²/s. Berdasarkan percobaan aliran di dalam pipa, Reynolds menetapkan bahwa untuk angka Reynolds di bawah 2000, gangguan aliran dapat diredam oleh kekentalan zat cair maka disebut aliran laminar. Aliran akan menjadi turbulen apabila angka Reynolds lebih besar dari Apabila angka Reynolds berada di antara kedua nilai tersebut (2000 < Re < 4000) disebut aliran transisi. Angka Reynolds pada kedua nilai di atas (Re = 2000 dan Re = 4000) disebut dengan batas kritis bawah dan atas.

5 Energi dan Head Energi biasanya didenefisikan sebagai kemampuan untuk melakukan kerja. Kerja merupakan hasil pemanfaatan tenaga yang dimiliki secara langsung pada suatu jarak tertentu. Energi dan kerja dinyatakan dalam satuan N.m (Joule). Setiap fluida yang sedang bergerak selalu mempunyai energi. Dalam menganalisa masalah aliran fluida yang harus dipertimbangkan adalah mengenai energi potensial, energi kinetik dan energi tekanan. Energi potensial menunjukkan energi yang dimiliki oleh suatu aliran fluida karena adanya perbedaan ketinggian yang dimiliki fluida dengan tempat jatuhnya. Energi potensial (Ep) (Ihwanda,2000) dirumuskan sebagai: Ep = W. z...(2.7) Di mana: W = berat fluida (N), z = beda ketinggian (m) Energi kinetik menunjukkan energi yang dimiliki oleh fluida karena pengaruh kecepatan yang dimilikinya. Energi kinetik dirumuskan sebagai:...(2.8) Di mana: m = massa fluida (kg), v = kecepatan aliran fluida (m/s 2 ) jika:... (2.9) maka:...(2.10) Energi tekanan disebut juga dengan energi aliran yaitu jumlah kerja yang dibutuhkan untuk memaksa elemen fluida bergerak menyilang pada jarak tertentu dan berlawanan dengan tekanan fluida.

6 15 Besarnya energi yang disebabkan tekanan (E f ) dirumuskan sebagai: E f = p. A. L... (2.11) Di mana: p = tekanan fluida (N/m 2 ), A = luas penampang aliran (m 2 ), L = panjang pipa (m) Besarnya energi tekanan menurut dapat juga dirumuskan sebagai berikut: Di mana: γ = berat jenis fluida (N/m 3 ), W = berat fluida (N)... (2.12) Total energi yang terjadi merupakan penjumlahan dari ketiga macam energi diatas dirumuskan sebagai: Ef pw.... (2.13) Persamaan ini dapat dimodifikasi untuk menyatakan total energi dengan head (H) dengan membagi masing-masing variabel di sebelah kanan persamaan dengan W (berat fluida) dirumuskan sebagai:... (2.14) Dengan: z = head elevasi (m), = head kecepatan (m), = head tekanan (m) 2.5. Kerugian Head Kerugian head adalah merupakan kerugian energi dan setiap fluida yang mengalir melalui saluran pipa, total energi yang dimiliki cenderung menurun pada arah aliran kapasitas. Kerugian head umumnya terdiri dari dua tipe yaitu Kerugian Head Minor dan Kerugian Head Mayor.

7 Kerugian Head Minor Pada suatu jalur pipa terjadi kerugian karena kelengkapan pipa seperti belokan, siku, sambungan, katup dan sebagainya yang disebut dengan kerugian kecil (minor losses). Besarnya kerugian minor akibat adanya kelengkapan pipa dirumuskan (Ram S. Gupta,1989) sebagai:... (2.15) Di mana: k = koefisien kerugian (dari lampiran koefisien minor losses peralatan pipa), v = kecepatan aliran fluida dalam pipa (m/s) Besarnya nilai koefisien kerugian minor untuk beberapa kelengkapan pipa dapat dilihat pada Tabel Tabel 2. 1 Nilai koefisien kerugian untuk beberapa kelengkapan pipa Item Loss Coefficient, K Entrance loss from tank to pipe Flush connection 0.5 Projecting connection 1.0 Exit loss from pipe to tank 1.0 Sudden contraction d1/d2 = d1/d2 = d1/d2 = Sudden enlargement d1/d2 = d1/d2 = d1/d2 = Fittings 90º bend screwed º bend flanged Tee Gate valve (open) 0.19 Check valve (open) 3.00 Glove valve (open) Butterfly valve (open) 0.30 Sumber : Ram S. Gupta. Hydrology and Hydraulic Systems. Prentice Hall. London Chapter 11, hal. 559.

8 Kerugian Head Mayor Aliran fluida yang melalui pipa akan selalu mengalami kerugian head. Hal ini disebabkan oleh gesekan yang terjadi antara fluida dengan dinding pipa atau perubahan kecepatan yang dialami oleh aliran fluida (kerugian kecil). Kerugian head akibat gesekan dapat dihitung dengan menggunakan salah satu dari dua rumus berikut, yaitu: 1. Persamaan Darcy Weisbach yaitu:...(2.16) Di mana: h f = kerugian head karena gesekan (m), f = faktor gesekan (diperoleh dari diagram Moody Gambar 2.3), d = diameter pipa (m), L = panjang pipa (m), v = kecepatan aliran fluida dalam pipa (m/s), g = percepatan gravitasi (m/s 2 ) Sumber: Bruce R. Munson, Donald F. Young, Theodore H. Okiishi. Mekanika Fluida. Erlangga. Jakarta. 2005, hal. 45. Gambar 2.3 Diagram Moody

9 18 Tabel 2. 2 Nilai kekasaran dinding untuk berbagai pipa komersil Pipe Material Equivalent Roughness, (ft) Hazen Williams Coefficient, C Brass, copper, aluminium 3.3 x 140 PVC, plastic 5 x 150 Cast Iron New 8.0 x 130 Old Galvanized iron 5.0 x 120 Asphalted iron 4.0 x - Wrought iron 1.5 x - Commercial and welded steel 1.5 x 120 Riveted steel 60.0 x 110 Concrete 40.0 x 130 Wood stave 20.0 x 120 Sumber : Ram S. Gupta. Hydrology and Hydraulic Systems. Prentice Hall. London Chapter 11, hal. 550 Diagram Moody telah digunakan untuk menyelesaikan permasalahan aliran fluida di dalam pipa dengan menggunakan faktor gesekan pipa (f) dari rumus Darcy Weisbach. Untuk dapat menentukan besarnya nilai f dari diagram Moody harus diketahui besarnya bilangan Reynolds dan perbandingan antara kekasaran dinding pipa dengan diameter pipa tersebut ( ). Nilai kekasaran dinding pipa diberikan pada Tabel Untuk aliran laminar dimana bilangan Reynold kurang dari 2000, faktor gesekan dihubungkan dengan bilangan Reynold, dinyatakan dengan rumus:... (2.17) Untuk aliran turbulen dimana bilangan Reynold lebih besar dari 4000, maka hubungan antara bilangan Reynold, faktor gesekan dan kekasaran relative menjadi lebih kompleks.

10 19 Faktor gesekan untuk aliran turbulen dalam pipa didapatkan dari hasil eksperimen, antara lain: 1. Untuk daerah complete roughness, rough pipes yaitu: ( )... (2.18) 2. Untuk pipa halus, hubungan antara bilangan Reynold dan faktor gesekan dirumuskan sebagai: a. Blasius :... (2.19) untuk Re = 4000 < Re < 10 5 b. Von Karman : [ ]... (2.20) untuk Re sampai dengan Untuk pipa kasar yaitu: = ( )... (2.21) Von Karman :... (2.22) dimana harga f tidak tergantung pada bilangan Reynold. 4. Untuk Pipa antara kasar dan halus atau dikenal dengan daerah transisi yaitu: Corelbrook White : [ ]... (2.23) Kehilangan energi pada pipa dihitung menggunakan rumus darcy weisbach. Dimana koefisien gesekan (f ) bergantung pada nilai bilangan Reynolds (Re). Nilai total head diperoleh dari hasil pengurangan nilai head dengan kerugian head....(2.24)

11 20 2. Persamaan Hazen Williams Rumus ini pada umumnya dipakai untuk menghitung kerugian head dalam pipa yang relatif sangat panjang seperti jalur pipa penyalur air minum. Bentuk umum persamaan Hazen Williams yaitu:... (2.25) Di mana: hf = kerugian gesekan dalam pipa (m), Q = laju aliran dalam pipa (m 3 /s), L = panjang pipa (m), C = koefisien kekasaran pipa Hazen Williams (diperoleh dari tabel 2.3), d = diameter pipa (m) Adapun besarnya koefisien kekasaran pipa Hazen-Williams dapat dilihat pada Tabel 2. 3 berikut ini. Tabel 2. 3 Koefisien kekasaran pipa Hazen Williams Material Koefisien Hazen-Williams ( C ) ABS - Styrene Butadiene Acrylonite 130 Aluminium Asbes Semen 140 Lapisan Aspal Kuningan Brick selokan Cast Iron baru tak bergaris (CIP) 130 Cast iron 10 tahun Cast iron 20 tahun Cast iron 30 tahun Cast iron 40 tahun Cast Iron aspal dilapisi 100 Cast Iron semen 140 Cast Iron aspal berjajar 140 Cast Iron laut berlapis 120 Cast Iron tempa polos 100 Semen lapisan Beton Beton berjajar, bentuk-bentuk baja 140 Beton berjajar, bentuk kayu 120 Beton tua Tembaga Corrugated Metal 60 Ulet Pipa Besi (DIP) 140

12 21 Ulet Besi, semen berbaris 120 Serat 140 Pipa Fiber Glass (FRP) 150 Besi berlapis seng 120 Kaca 130 Pipa Metal -sangat halus Plastik Polyethylene, PE, Peh 140 Polivinil klorida, PVC, CPVC 130 Pipa halus 140 Baja baru tak bergaris Baja bergelombang 60 Baja dilas dan mulus 100 Baja membatu, terpaku spiral Timah 130 Vitrifikasi Clay 110 Besi tempa, polos 100 Kayu 120 Kayu Stave Sumber : Http : // Engineering tool box.com/ Hazen William-Cofficients-d798.html Persamaan Bernoulli Penurunan Persamaan Bernoulli untuk aliran sepanjang garis arus didasarkan pada hukum Newton II. Persamaan ini diturunkan dengan anggapan bahwa: a. Zat cair adalah ideal, jadi tidak mempunyai kekentalan (kehilangan energi akibat gesekan adalah nol). b. Zat cair adalah homogen dan tidak termampatkan (rapat massa zat cair adalah konstan). c. Aliran adalah kontiniu dan sepanjang garis arus. d. Kecepatan aliran adalah merata dalam suatu penampang. e. Gaya yang bekerja hanya gaya berat dan tekanan. Energi yang ditunjukkan dari persamaan energi total di atas, atau dikenal sebagai head pada suatu titik dalam aliran steady adalah sama dengan total energi pada titik

13 22 lain sepanjang aliran fluida tersebut. Hal ini berlaku selama tidak ada energi yang ditambahkan ke fluida atau yang diambil dari fluida. Konsep ini dinyatakan ke dalam bentuk persamaan yang disebut dengan persamaan Bernoulli, (Bambang Triatmodjo,1996) yaitu:...(2.26) Di mana: p 1 dan p 2 = tekanan pada titik 1 dan 2, v 1 dan v 2 = kecepatan aliran pada titik 1 dan 2, z 1 dan z 2 = perbedaan ketinggian antara titik 1 dan 2, g = percepatan gravitasi = 9,806 m/s 2, γ = berat jenis fluida. Gambar 2. 4 Ilustrasi Persamaan Bernoulli Persamaan di atas digunakan jika diasumsikan tidak ada kehilangan energi antara dua titik yang terdapat dalam aliran fluida, namun biasanya beberapa head losses terjadi diantara dua titik lihat Gambar Jika head losses ini tidak diperhitungkan maka akan menjadi masalah dalam penerapannya di lapangan. Jika head losses dinotasikan dengan hl maka persamaan Bernoulli di atas dapat ditulis menjadi persamaan baru, dimana dirumuskan sebagai:

14 23...(2.27) Persamaan di atas dapat digunakan untuk menyelesaikan banyak permasalahan tipe aliran, biasanya untuk fluida inkompresibel tanpa adanya penambahan panas atau energi yang diambil dari fluida. Namun, persamaan ini tidak dapat digunakan untuk menyelesaikan aliran fluida yang mengalami penambahan energi untuk menggerakkan fluida oleh peralatan mekanik, misalnya pompa, turbin, dan peralatan lainnya Persamaan Empiris untuk Aliran di dalam Pipa Seperti yang telah diuraikan sebelumnya, bahwa permasalahan aliran fluida dalam pipa dapat diselesaikan dengan menggunakan persamaan Bernoulli, persamaan Darcy dan diagram Moody. Penggunaan rumus empiris juga dapat digunakan untuk menyelesaikan permasalahan aliran. Dalam hal ini digunakan dua model rumus yaitu persamaan Hazen Williams dan persamaan Manning. 1. Persamaan Hazen Williams dengan menggunakan satuan internasional yaitu:...(2.28) Di mana: v = kecepatan aliran (m/s), C = koefisien kekasaran pipa Hazen Williams, R = jari-jari hidrolik untuk pipa bundar, S = slope dari gradient energi (head losses/panjang pipa) = 2. Persamaan Manning dengan satuan internasional yaitu:... (2.29) Di mana: n = koefisien kekasaran pipa Manning

15 24 Persamaan Hazen Williams umumnya digunakan untuk menghitung headloss yang terjadi akibat gesekan. Persamaan ini tidak dapat digunakan untuk liquid lain selain air dan digunakan khusus untuk aliran yang bersifat turbulen. Persamaan Darcy Weisbach secara teoritis tepat digunakan untuk semua rezim aliran semua jenis liquid. Persamaan Manning biasanya digunakan untuk aliran saluran terbuka (open channel flow) Sistem Perpipaan Ganda Analisa suatu sistem perpipaan yang terdiri dari berbagai pipa atau jalur harus mengikuti beberapa aturan dasar. Suatu sistem perpipaan ganda membentuk suatu rangkaian. Berbagai kemungkinan membangun sistem perpipaan ganda yang sederhana terdiri dari: a. Sistem perpipaan susunan seri b. Sistem perpipaan susunan paralel Sistem Pipa Seri Bila dua pipa atau lebih yang ukuran atau kekasarannya berlainan dihubungkan sedemikian rupa seperti Gambar 2.5 sehingga fluida mengalir melalui sebuah pipa dan kemudian melalui pipa yang lain, dikatakan bahwa pipa-pipa itu dihubungkan seri. Gambar 2.5 Pipa Yang Dihubungkan Secara Seri

16 25 Jika dua buah pipa atau lebih dihubungkan secara seri maka pipa akan dialiri oleh aliran yang sama. Total kerugian head pada seluruh sistem adalah jumlah kerugian pada setiap pipa dan perlengkapan pipa dirumuskan sebagai: Q = Q 1 = Q 2 = Q 3...(2.30) Q= A 1 V 1 = A 2 V 2 = A 3 V 3 Σhf = hf1 + hf2 + hf3...(2.31) Persoalan aliran yang menyangkut pipa seri sering dapat diselesaikan dengan mudah dengan menggunakan pipa ekuivalen, yaitu dengan menggantikan pipa seri dengan diameter yang berbeda-beda dengan satu pipa ekuivalen tunggal. Dalam hal ini, pipa tunggal tersebut memiliki kerugian head yang sama dengan system yang digantikannya untuk laju aliran yang spesifik Sistem Pipa Paralel Kombinasi dua atau lebih pipa yang dihubungkan seperti Gambar 2.6, sedemikian rupa sehingga alirannya terbagi antara pipa-pipa itu kemudian berkumpul lagi adalah sistem pipa paralel. Dalam analisa sistem pipa paralel, diasumsikan bahwa kerugian-kerugian kecil ditambahkan pada panjang masing-masing pipa sebagai panjang ekivalen. Gambar 2.6 Pipa Yang Dihubungkan Secara Paralel

17 26 Jika dua buah pipa atau lebih dihubungkan secara paralel, total laju aliran sama dengan jumlah laju aliran yang melalui setiap cabang dan rugi head pada sebuah cabang sama dengan pada yang lain, menurut dirumuskan sebagai: Q 0 = Q 1 + Q 2 + Q 3...(2.32) Q 0 = A 1 V 1 + A 2 V 2 + A 3 V 3 hf = hf 1 = hf 2 = hf 3...(2.33) Hal lain yang perlu diperhatikan adalah bahwa persentase aliran yang melalui setiap cabang adalah sama tanpa memperhitungkan kerugian head pada cabang tersebut. Rugi head pada setiap cabang boleh dianggap sepenuhnya terjadi akibat gesekan atau akibat katup dan perlengkapan pipa, di ekspresi kan menurut panjang pipa atau koefisien losses kali head kecepatan dalam pipa dirumuskan sebagai: ( ) ( ) ( ) Diperoleh hubungan kecepatan : ( ) ( )... (2.34) 2.9. Dasar Perencanaan Pompa Pompa merupakan pesawat konversi energi yang digunakan untuk memindahkan sejumlah fluida tak mampu mampat (inkompresibel) dari suatu tempat yang lebih rendah ke tempat yang lebih tinggi atau dari tempat yang tekanannya lebih rendah ke tempat yang tekanannya lebih tinggi. Pompa tidak dapat bekerja sendiri tanpa fasilitas penunjangnya seperti pipapipa dan katup-katup. Jadi dalam merencanakan peralatan pompa harus diperhatikan benar-benar fasilitas ini. Kapasitas pemompaan dan umur pompa sering kali

18 27 ditentukan oleh kesempurnaan pemipaan. Karena itu pemipaan harus direncanakan untuk mendapatkan performansi pompa yang optimal dan pemasangan harus dilakukan dengan benar. Dalam perencanaan pompa untuk memindahkan fluida dari suatu tempat ke tempat lain dengan head tertentu diperlukan beberapa syarat utama, antara lain: a. Kapasitas Kapasitas pompa adalah jumlah fluida yang dialirkan oleh pompa per satuan waktu. Kapasitas pompa ini tergantung pada kebutuhan yang harus dipenuhi sesuai dengan fungsi pompa yang direncanakan. b. Head Pompa Head pompa adalah ketinggian dimana kolom fluida harus naik untuk memperoleh jumlah yang sama dengan yang dikandung oleh satuan bobot fluida pada kondisi yang sama. Head ini ada dalam tiga bentuk, yaitu Head Potensial, Head Kecepatan dan Head Tekanan....(2.35) - Head Potensial Didasarkan pada ketinggian fluida di atas bidang banding (datum plane). Jadi suatu kolom air setinggi Z mengandung sejumlah energi yang disebabkan oleh posisinya atau disebut fluida mempunyai head sebesar Z kolom air. - Head Kecepatan Head kecepatan atau head kinetik, yaitu suatu ukuran energi kinetik yang dikandung fluida yang disebabkan oleh kecepatannya dan dinyatakan dengan persamaan.

19 28 - Head Tekanan Head tekanan adalah energi yang dikandung fluida akibat tekanannya dan dinyatakan dengan P/γ. Head total pompa diperoleh dengan menjumlahkan head yang disebut di atas dengan kerugiankerugian yang timbul dalam instalasi pompa (Head mayor dan Head minor). c. Sifat Zat Cair Sifat-sifat fluida kerja sangat penting untuk diketahui sebelum perencanaan pompa. Pada perencanaan ini, temperatur air dianggap sama dengan temperatur kamar. d. Unit Penggerak Pompa Pada perancangan ini direncanakan pompa yang mempunyai konstruksi kokoh dan dapat menjamin tidak terjadinya kebocoran sama sekali. Hal ini direncanakan dengan merancang sistem penggerak pompa dan bagian utama poros sebagai satu unit kesatuan. Umumnya unit penggerak pompa yang biasanya dipakai adalah motor bakar, motor listrik dan turbin uap. Bila pipa dipasangkan dengan pompa maka akan ada penambahan energi sebesar Hp. Head pompa itu sendiri merupakan energi yang harus ditambahkan pompa ke dalam fluida untuk memindahkan fluida tersebut dari tempat yang memiliki head rendah ke tempat dengan head yang tinggi. Untuk menyelesaikan persoalan di atas digunakan persamaan Bernoulli, yaitu:...(2.36) Atau

20 29 ( )... (2.37) Di mana : adalah perbedaan head tekanan, adalah perbedaan head kecepatan, Dimana: adalah perbedaan head statis, H f adalah head losses total., sehingga diperoleh persamaan berikut: ( )... (2.38) Untuk menghitung besarnya daya yang dibutuhkan pompa sebagai berikut:... (2.39) dimana: NP = Daya pompa (kw), γ = Berat jenis fluida (N/m 3 ), Q = Laju aliran fluida (m 3 /s), Hp = Head pompa (m), ηp = Efisiensi pompa Penentuan Kapasitas Pompa Dalam menentukan jumlah pompa dan kapasitas pompa, perlu diperhatikan beberapa hal berikut: Kapasitas maksimum pompa yang dapat diproduksi saat ini. Bila kebutuhan air berubah-ubah, sebaiknya dipakai beberapa unit pompa yaitu sebesar konsumsi minimum. Atau dapat juga digunakan beberapa unit pompa dengan kapasitas berbeda. Usahakan pompa bekerja pada titik operasi yang menghasilkan efisiensi terbaik. Bila kapasitas yang akan dipompakan besar, sebaiknya digunakan pompa dengan kapasitas besar. Karena untuk kapasitas besar, umumnya efisiensi pompa menjadi lebih tinggi. Jadi penggunaan daya lebih ekonomis.

21 30 Sebaiknya pompa-pompa yang digunakan sama, agar penyediaan suku cadang lebih mudah. Laju aliran yang menentukan besarnya kapasitas pompa, ditentukan berdasarkan pemakaian air. Kebutuhan pemakaian air ini berbeda di setiap lantai. Hal ini bergantung pada jumlah outlet tiap lantai, jumlah pengguna air dan kebutuhan air pada tiap lantai Pengenalan EPANET 2.0 EPANET adalah program komputer yang menggambarkan simulasi hidrolis dan kecenderungan kualitas air yang mengalir di dalam jaringan pipa. Jaringan itu sendiri terdiri dari pipa, node (titik koneksi pipa), pompa, katub, dan tangki air atau reservoir. EPANET dikembangkan oleh Water Supply and Water Resources Divission USEPA S National Risk Management Research Laboratory dan pertama kali diperkenalkan pada tahun 1993 dan versi yang baru diterbitkan pada tahun EPANET didisain sebagai alat untuk mencapai dan mewujudkan pemahaman tentang pergerakan dan karakteristik kandungan air minum dalam jaringan distribusi. Juga dapat digunakan untuk berbagai analisa berbagai aplikasi jaringan distribusi. Sebagai contoh untuk pembuatan design, kalibrasi model hidrolis, analisa sisa khlor, dan analisa pelanggan. EPANET dapat membantu dalam me - manage strategi untuk merealisasikan kualitas air dalam suatu sistem. Semua itu mencakup: - Alternative penggunaan sumber dalam berbagai sumber dalam suatu sistem. - Alternative pemompaan dalam penjadwalan pengisian atau pengosongan tangki.

22 31 - Penggunaan treatment, misal khlorinasi pada tangki. - Pentargetan pembersihan pipa dan penggantiannya. Dijalankan dalam lingkungan windows, EPANET dapat terintegrasi untuk melakukan editing dalam pemasukan data, running simulasi dan melihat hasil running dalam berbagai bentuk (format), Sudah pula termasuk kode-kode yang berwarna pada peta, tabel data-data, grafik, serta citra kontur. Hasil yang didapat dari simulasi hidrolik dan performansi jaringan menggunakan EPANET yaitu keseimbangan jaringan, arah aliran, head yang terjadi. Selain itu, analisa sebuah jaringan pipa dengan menggunakan EPANET dapat membantu kita untuk memecahkan beberapa masalah diantaranya: - Analisa terhadap jaringan baru - Analisa terhadap energi dan biaya - Optimalisasi dari penggunaan air, kualitas air dan tekanan Setiap formula menggunakan persamaan untuk menghitung kehilangan tekan diantara permulaan dan akhir pada sebuah pipa, yaitu:...(2.40) Dimana hl = headloss (dlm satuan panjang), q = laju aliran (Volume/waktu), A = Koefisien resistan, dan B = Faktor eksponen aliran.

23 32 Gambar 2. 7 Tampilan EPANET Tampilan EPANET 2.0. dapat dilihat pada Gambar Untuk menjalankan program ini diperlukan input data yang mendukung, sehingga dihasilkan output yang menunjukkan performansi jaringan tersebut. Input yang diperlukan pada program ini yaitu: 1. Input komponen yang mendukung sebuah sistem jaringan pipa yang meliputi pipa, pompa dan reservoir. 2. Input berupa node yang menghubungkan masing-masing pipa sehingga membentuk sebuah sistem jaringan pipa. 3. Input berupa nomor masing-masing komponen baik pipa, node, pompa, dan reservoir. 4. Input yang menunjukkan karakteristik masing-masing komponen yang meliputi:

24 33 - Diameter, panjang, kekasaran bahan pipa. - Karakteristik pompa. 5. Input persamaan yang akan digunakan yang merupakan karakteristik dari hidrolik. Dengan menggunakan data yang berupa input seperti diatas maka analisa hidrolik dapat dilakukan. Adapun nilai koreksi epanet dapat dihitung pada masing-masing pipa dengan menggunakan rumus: Dimana : H D = Head dengan rumus Darcy Weisbach (m) He = Head perangkat lunak EPANET (m)... (2.41) Setelah dihitung persen ralat masing-masing pipa maka persen ralat rata-rata dihitung menggunakan rumus:... (2.42)

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan disejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Kecepatan dan Kapasitas Aliran Fluida Setiap fluida yang mengalir dalam sebuah pipa harus memasuki pipa pada suatu lokasi. Daerah aliran di dekat lokasi fluida memasuki pipa tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Kecepatan dan Kapasitas Aliran Fluida. Penentuan kecepatan di sejumlah titik pada suatu penampang

BAB II TINJAUAN PUSTAKA. 2.1 Kecepatan dan Kapasitas Aliran Fluida. Penentuan kecepatan di sejumlah titik pada suatu penampang BAB II TINJAUAN PUSTAKA. Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan di sejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA.1. Konsep Dasar Untuk aliran fluida dalam pipa khususnya untuk air terdapat kondisi yang harus diperhatikan dan menjadi prinsip utama, kondisi fluida tersebut adalah fluida merupakan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 UMUM Suatu penyediaan air bersih yang mampu menyediakan air yang dapat diminum dalam jumlah yang cukup merupakan hal penting bagi suatu kota besar yang modern. Unsur-unsur yang

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HATOP

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontiniu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar

Lebih terperinci

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng ALIRAN PADA PIPA Oleh: Enung, ST.,M.Eng Konsep Aliran Fluida Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa Jenis dan Viskositas. Masalah aliran fluida dalam PIPA : Sistem Terbuka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah peralatan mekanis untuk mengubah energi mekanik dari mesin penggerak pompa menjadi energi tekan fluida yang dapat membantu memindahkan fluida ke tempat yang

Lebih terperinci

ANALISIS KERUGIAN HEAD PADA SISTEM PERPIPAAN BAHAN BAKAR HSD PLTU SICANANG MENGGUNAKAN PROGRAM ANALISIS ALIRAN FLUIDA

ANALISIS KERUGIAN HEAD PADA SISTEM PERPIPAAN BAHAN BAKAR HSD PLTU SICANANG MENGGUNAKAN PROGRAM ANALISIS ALIRAN FLUIDA ANALISIS KERUGIAN HEAD PADA SISTEM PERPIPAAN BAHAN BAKAR HSD PLTU SICANANG MENGGUNAKAN PROGRAM ANALISIS ALIRAN FLUIDA Alexander Nico P Sihite, A. Halim Nasution Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008 TUGAS SARJANA SISTEM PERPIPAAN PERANCANGAN INSTALASI PENDISTRIBUSIAN AIR MINUM PADA PERUMNAS TAMAN PUTRI DELI, NAMORAMBE KABUPATEN DELI SERDANG O L E H : A N T H O N Y S T E R S A G A L A N I M : 0 3 0401

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah peralatan mekanis untuk mengubah energi mekanik dari mesin penggerak pompa menjadi energi tekan fluida yang dapat membantu memindahkan fluida ke tempat yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Metode Pendistribusian Air Didalam pendistribusian air diperlukan suatu metode pendistribusian agar air dapat mengalir dari sumber air ke para pelanggang. Adapun metode pendistribusian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Suatu penyediaan air bersih yang mampu menyediakan air yang dapat

BAB II TINJAUAN PUSTAKA. Suatu penyediaan air bersih yang mampu menyediakan air yang dapat BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu penyediaan air bersih yang mampu menyediakan air yang dapat diminum dalam jumlah yang cukup merupakan hal penting bagi suatu kota besar yang moderen. Unsur-unsur

Lebih terperinci

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Andrea Sebastian Ginting 1, M. Syahril Gultom 2 1,2 Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008 TUGAS SARJANA SISTEM PERPIPAAN PERANCANGAN DISTRIBUSI ALIRAN PADA SETIAP PIPA AIR BERSIH UNTUK KOTA LUBUKPAKAM DARI SISTEM DISTRIBUSI PDAM TIRTANADI CABANG DELI SERDANG O L E H : PARADE BOHAL IMAN SITUMORANG

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

ANALISIS SISTEM PENDISTRIBUSIAN AIR BERSIH PADA BANGUNAN BERTINGKAT DENGAN SOFTWARE EPANET 2.0

ANALISIS SISTEM PENDISTRIBUSIAN AIR BERSIH PADA BANGUNAN BERTINGKAT DENGAN SOFTWARE EPANET 2.0 ANALISIS SISTEM PENDISTRIBUSIAN AIR BERSIH PADA BANGUNAN BERTINGKAT DENGAN SOFTWARE EPANET 2.0 TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian pendidikan sarjana teknik sipil Oleh: PRIHATINNI

Lebih terperinci

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk DAFTAR ISI Halaman Judul... i Lembar Pengesahan Dosen Pembimbing... ii Lembar Pengesahan Dosen Penguji... iii Halaman Persembahan... iv Halaman Motto... v Kata Pengantar... vi Abstrak... ix Abstract...

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Air Bersih Air adalah senyawa kimia yang sangat penting bagi kehidupan makhluk hidup di bumi ini. Fungsi air bagi kehidupan tidak dapat digantikan oleh senyawa lain.

Lebih terperinci

ALIRAN MELALUI PIPA 15:21. Pendahuluan

ALIRAN MELALUI PIPA 15:21. Pendahuluan ALIRAN MELALUI PIPA Ir. Suroso Dipl.HE, M.Eng Dr. Eng. Alwai Pujiraharjo Pendahuluan Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran dan dipergunakan untuk mengalirkan luida dengan penampang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR ISI iv. DAFTAR GAMBAR... ix. DAFTAR TABEL... xii. DAFTAR NOTASI... xiii

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR ISI iv. DAFTAR GAMBAR... ix. DAFTAR TABEL... xii. DAFTAR NOTASI... xiii ABSTRAK Suplai air bersih di Kota Tebing Tinggi dilayani oleh PDAM Tirta Bulian. Namun penambahan jumlah konsumen yang tidak diikuti dengan peningkatan kapasitas jaringan, penyediaan dan pelayanan air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Perpipaan Pipa pada umumnya digunakan sebagai sarana untuk menghantarkan fluida baik berupa gas maupun cairan dari suatu tempat ke tempat yang lain. Adapun sistem pengaliran

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA

STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA Vol. 1, No., Mei 010 ISSN : 085-8817 STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA Helmizar Dosen

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN TELANAI INDAH KOTA JAMBI SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HITLER MARULI SIDABUTAR NIM.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Desain Rehabilitasi Air Baku Sungai Brang Dalap Di Kecamatan Alas 8.1. DATA SISTEM PENYEDIAAN AIR BAKU LAPORAN AKHIR VIII - 1

Desain Rehabilitasi Air Baku Sungai Brang Dalap Di Kecamatan Alas 8.1. DATA SISTEM PENYEDIAAN AIR BAKU LAPORAN AKHIR VIII - 1 8.1. DATA SISTEM PENYEDIAAN AIR BAKU Pada jaringan distribusi air bersih pipa merupakan komponen yang paling utama, pipa berfungsi untuk mengalirkan sarana air dari suatu titik simpul ke titik simpul yang

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

SKRIPSI. ANALISA LAJU ALIRAN AIR BERSIH DENGAN MENGGUNAKAN SOFTWARE PIPE FLOW EXPERT V 6.39 di PERUMAHAN GRAHA INDAH KELAPA GADING.

SKRIPSI. ANALISA LAJU ALIRAN AIR BERSIH DENGAN MENGGUNAKAN SOFTWARE PIPE FLOW EXPERT V 6.39 di PERUMAHAN GRAHA INDAH KELAPA GADING. SKRIPSI ANALISA LAJU ALIRAN AIR BERSIH DENGAN MENGGUNAKAN SOFTWARE PIPE FLOW EXPERT V 6.39 di PERUMAHAN GRAHA INDAH KELAPA GADING. KLAMBIR V, MEDAN Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC Seminar Nasional Peranan Ipteks Menuju Industri Masa Depan (PIMIMD-4) Institut Teknologi Padang (ITP), Padang, 27 Juli 2017 ISBN: 978-602-70570-5-0 http://eproceeding.itp.ac.id/index.php/pimimd2017 Analisa

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Air merupakan kebutuhan pokok bagi kehidupan manusia. Manusia

BAB I PENDAHULUAN Latar Belakang Air merupakan kebutuhan pokok bagi kehidupan manusia. Manusia BAB I PENDAHULUAN 1.1. Latar Belakang Air merupakan kebutuhan pokok bagi kehidupan manusia. Manusia membutuhkan air dalam kuantitas dan kualitas tertentu dalam melakukan aktivitas dan menopang kehidupannya.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah peralatan mekanis untuk mengubah energi mekanik dari mesin penggerak pompa menjadi energi tekan fluida yang dapat membantu memindahkan fluida ke tempat yang

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH PADA PERUMAHAN SETIA BUDI RESIDENCE DARI DISTRIBUSI PDAM MEDAN DENGAN MENGGUNAKAN PIPE FLOW EXPERT SOFTWARE

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH PADA PERUMAHAN SETIA BUDI RESIDENCE DARI DISTRIBUSI PDAM MEDAN DENGAN MENGGUNAKAN PIPE FLOW EXPERT SOFTWARE PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH PADA PERUMAHAN SETIA BUDI RESIDENCE DARI DISTRIBUSI PDAM MEDAN DENGAN MENGGUNAKAN PIPE FLOW EXPERT SOFTWARE SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

BAB IV PERANCANGAN SISTEM PERPIPAAN AIR UNTUK PENYIRAMAN TANAMAN KEBUN VERTIKAL

BAB IV PERANCANGAN SISTEM PERPIPAAN AIR UNTUK PENYIRAMAN TANAMAN KEBUN VERTIKAL BAB IV PERANCANGAN SISTEM PERPIPAAN AIR UNTUK PENYIRAMAN TANAMAN KEBUN VERTIKAL 4.1 Kondisi perancangan Tahap awal perancangan sistem perpipaan air untuk penyiraman kebun vertikal yaitu menentukan kondisi

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISA DATA

BAB IV PERHITUNGAN DAN ANALISA DATA BAB IV PERHITUNGAN DAN ANALISA DATA 4. 1. Perhitungan Pompa yang akan di pilih digunakan untuk memindahkan air bersih dari tangki utama ke reservoar. Dari data survei diketahui : 1. Kapasitas aliran (Q)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI 2.1 Pengairan Tanah Pertambakan Pada daerah perbukitan di Atmasnawi Kecamatan Gunung Sindur., terdapat banyak sekali tambak ikan air tawar yang tidak dapat memelihara ikan pada

Lebih terperinci

Kehilangan Energi Pada Pipa Baja Dan Pipa Pvc

Kehilangan Energi Pada Pipa Baja Dan Pipa Pvc Laporan Penelitian Kehilangan Energi Pada Pipa Baja Dan Pipa Pvc Oleh Ir. Salomo Simanjuntak, MT Dosen Tetap Fakultas Teknik LEMBAGA PENELITIAN UNIVERSITAS HKBP NOMMENSEN MEDAN 2010 KATA PENGANTAR Pertama

Lebih terperinci

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan)

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) Panduan Praktikum Fenomena Dasar 010 A. Tujuan Percobaan: Percobaan 5 Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) 1. Mengamati kerugian tekanan aliran melalui elbow dan sambungan.

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN PT.PERTAMINA PANGKALAN BRANDAN DENGAN KAJIAN PEMBANDING EPANET

PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN PT.PERTAMINA PANGKALAN BRANDAN DENGAN KAJIAN PEMBANDING EPANET 1 PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN PT.PERTAMINA PANGKALAN BRANDAN DENGAN KAJIAN PEMBANDING EPANET SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

BAB IV HASIL DAN ANALISIS Prosedur Perencanaan Sistem Proteksi Kebakaran

BAB IV HASIL DAN ANALISIS Prosedur Perencanaan Sistem Proteksi Kebakaran BAB IV Bab IV Hasil dan Analisis HASIL DAN ANALISIS 4.1. Prosedur Perencanaan Sistem Proteksi Kebakaran Sistem pencegahan dan penanggulangan kebakaran merupakan suatu kombinasi dari berbagai sistem untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

ANALISA PERANCANGAN INSTALASI GAS

ANALISA PERANCANGAN INSTALASI GAS Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2018 ISSN 2085-4218 ANALISA PERANCANGAN INSTALASI GAS UNTUK RUMAH SUSUN PENGGILINGAN JAKARTA TIMUR Surya Bagas Ady Nugroho 1), 2. Ir. Rudi Hermawan,

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL TUGAS AKHIR

ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL TUGAS AKHIR ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL TUGAS AKHIR Disusun oleh : AIDA NURFADILAH 100424005 BIDANG STUDI

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik FRANCISCUS

Lebih terperinci

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES)

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) 4.1 Pendahuluan Kerugian tekan (headloss) adalah salah satu kerugian yang tidak dapat dihindari pada suatu aliran fluida yang

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Suatu sistem transfer fluida dari suatu tempat ke tempat lain biasanya terdiri dari pipa,valve,sambungan (elbow,tee,shock dll ) dan pompa. Jadi pipa memiliki peranan

Lebih terperinci

ANALISIS INSTALASI POMPA PEMADAM KEBAKARAN PADA KOMPLEKS TERMINAL BAHAN BAKAR MINYAK MERAUKE

ANALISIS INSTALASI POMPA PEMADAM KEBAKARAN PADA KOMPLEKS TERMINAL BAHAN BAKAR MINYAK MERAUKE ANALISIS INSTALASI POMPA PEMADAM KEBAKARAN PADA KOMPLEKS TERMINAL BAHAN BAKAR MINYAK MERAUKE Agus Samsul Arifin, Peter Sahupala, Daniel Parenden Email: louissahupala@gmail.com Jurusan Teknik Mesin, Fakultas

Lebih terperinci

Pelatihan Analisa Jaringan menggunakan software EPANET 2.0 dan Pengenalan Aplikasi perangkat lunak WATERCAD

Pelatihan Analisa Jaringan menggunakan software EPANET 2.0 dan Pengenalan Aplikasi perangkat lunak WATERCAD Pelatihan Analisa Jaringan menggunakan software EPANET 2.0 dan Pengenalan Aplikasi perangkat lunak WATERCAD Pelatihan Analisa Jaringan menggunakan software EPANET 2.0 dan Pengenalan Aplikasi perangkat

Lebih terperinci

PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN. Dwi Ermadi 1*,Darmanto 1

PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN. Dwi Ermadi 1*,Darmanto 1 PERANCANGAN ALAT PRAKTIKUM PENGUJIAN HEADLOSS ALIRAN FLUIDA TAK TERMAMPATKAN Dwi Ermadi 1*,Darmanto 1 1 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Wahid Hasyim Semarang Jl. Menoreh Tengah X/22,

Lebih terperinci

BAB I PENDAHULUAN...1

BAB I PENDAHULUAN...1 DAFTAR ISI PERNYATAAN... i KATA PENGANTAR... ii UCAPAN TERIMA KASIH... iii ABSTRAK... iv DAFTAR ISI...v DAFTAR TABEL... viii DAFTAR GAMBAR... ix DAFTAR LAMPIRAN...x BAB I PENDAHULUAN...1 1.1 Latar Belakang...1

Lebih terperinci

BAB IV PERHITUNGAN INSTALASI POMPA HYDRANT. Massa jenis cairan : 1 kg/liter. Kapasitas : liter/menit = (1250 gpm) Kondisi kerja : Tidak kontinyu

BAB IV PERHITUNGAN INSTALASI POMPA HYDRANT. Massa jenis cairan : 1 kg/liter. Kapasitas : liter/menit = (1250 gpm) Kondisi kerja : Tidak kontinyu Tugas Akir BAB IV PERHITUNGAN INSTALASI POMPA HYDRANT 4.1 Data data Perencanaan Jenis cairan : Air Massa jenis cairan : 1 kg/liter Temperatur cairan : 5ºC Kapasitas : 4.731 liter/menit (150 gpm) Kondisi

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

OPTIMASI JARINGAN PIPA DISTRIBUSI AIR BERSIH (STUDI KASUS PDAM MAKASSAR)

OPTIMASI JARINGAN PIPA DISTRIBUSI AIR BERSIH (STUDI KASUS PDAM MAKASSAR) PROS ID I NG 2011 HASIL PENELITIAN FAKULTAS TEKNIK OPTIMASI JARINGAN PIPA DISTRIBUSI AIR BERSIH (STUDI KASUS PDAM MAKASSAR) Jurusan Teknik Sipil Fakultas Teknik Universitas Hasanuddin Jl. Perintis Kemerdekaan

Lebih terperinci

BAB II LANDASAN TEORI 2.1. Kajian Pustaka 2.2. Dasar Teori

BAB II LANDASAN TEORI 2.1. Kajian Pustaka 2.2. Dasar Teori BAB II LANDASAN TEORI.1. Kajian Pustaka Hasbullah (010) melakukan penelitian sling Pump jenis kerucut berskala laboratorium. Dengan pengaruh variasi 6 lilitan selang plastik dan kecepatan putar 40 rpm.

Lebih terperinci

BAB III ANALISA DATA

BAB III ANALISA DATA BAB III ANALISA DATA 3.1 Permasalahan 3.1.1 Penurunan Produksi Untuk memenuhi kebutuhan operasi PLTGU Blok 1 dan diperoleh suplai demin water (air demineralisasi) dari water treatment plant (WTP) PLTGU.

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

SISTEM PENDISTRIBUSIAN DEBIT AIR BERSIH PADA GEDUNG BERTINGKAT

SISTEM PENDISTRIBUSIAN DEBIT AIR BERSIH PADA GEDUNG BERTINGKAT SISTEM PENDISTRIBUSIAN DEBIT AIR BERSIH PADA GEDUNG BERTINGKAT Fadwah Maghfurah 1 Munzir Qadri 2 Sulis Yulianto 3 1 Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Jakarta Jl Cempaka Putih

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik.

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik. BAB III LANDASAN TEORI 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin Pompa air dengan menggunakan tenaga angin merupakan sistem konversi energi untuk mengubah energi angin menjadi putaran rotor

Lebih terperinci

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK ANALISIS FAKTOR GESEKAN PADA PIPA HALUS Juari NRP: 1321025 Pembimbing: Robby Yussac Tallar, Ph.D. ABSTRAK Hidraulika merupakan ilmu dasar dalam bidang teknik sipil yang menjelaskan perilaku fluida atau

Lebih terperinci

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR Oleh : DEKY PUTRA 04 04 22 013 3 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

PADA INSTALASI ALAT PENGUJI ALIRAN FLUIDA CAIR SKRIPSI

PADA INSTALASI ALAT PENGUJI ALIRAN FLUIDA CAIR SKRIPSI ANALISIS LOSSES PADA INSTALASI ALAT PENGUJI ALIRAN FLUIDA CAIR SKRIPSI Diajukan Sebagai Salah satu Syarat Untuk Memperoleh Gelar Sarjana Jenjang Strata Satu (S1) Pada Program Studi Teknik Mesin Fakultas

Lebih terperinci

SIMULASI DAN PERBANDINGAN DISTRIBUSI ALIRAN AIR BERSIH DENGAN MENGGUNAKAN SOFTWAREPIPE FLOW EXPERT PADA PERUMAHAN PT. INALUM POWER PLANT PARITOHAN

SIMULASI DAN PERBANDINGAN DISTRIBUSI ALIRAN AIR BERSIH DENGAN MENGGUNAKAN SOFTWAREPIPE FLOW EXPERT PADA PERUMAHAN PT. INALUM POWER PLANT PARITOHAN SIMULASI DAN PERBANDINGAN DISTRIBUSI ALIRAN AIR BERSIH DENGAN MENGGUNAKAN SOFTWAREPIPE FLOW EXPERT PADA PERUMAHAN PT. INALUM POWER PLANT PARITOHAN SKRIPSI Skripsi ini Diajukan Untuk Melengkapi Syarat Memperoleh

Lebih terperinci

ALIRAN FLUIDA DALAM PIPA TERTUTUP

ALIRAN FLUIDA DALAM PIPA TERTUTUP MAKALAH MEKANIKA FLUIDA ALIRAN FLUIDA DALAM PIPA TERTUTUP Disusun Oleh: Nama : Juventus Victor HS NPM : 3331090796 Jurusan Dosen : Teknik Mesin-Reguler B : Yusvardi Yusuf, ST.,MT JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa 4 BAB II DASAR TEORI 1.1 Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan

Lebih terperinci

Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung

Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Analisa Pengaruh Penambahan Rambut dan Serat Pisang Terhadap Nilai Minor Losses pada Pipa Spiral Lengkung Frans Enriko Siregar dan Andhika Bramida H. Departemen Teknik Mesin, FT UI, Kampus UI Depok 16424

Lebih terperinci

MODUL PRAKTIKUM MEKANIKA FLUIDA

MODUL PRAKTIKUM MEKANIKA FLUIDA MODUL PRAKTIKUM MEKANIKA FLUIDA LABORATORIUM TEKNIK SUMBERDAYA ALAM dan LINGKUNGAN JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2013 MATERI I KALIBRASI SEKAT UKUR

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrodinamika 2.1.1 Definisi Hidrodinamika Hidrodinamika merupakan salah satu cabang ilmu yang berhubungan dengan gerak liquid atau lebih dikhususkan pada gerak air. Skala

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Data Hasil Penelitian Penelitian sling pump jenis kerucut variasi jumlah lilitan selang dengan menggunakan presentase pencelupan 80%, ketinggian pipa delivery 2 meter,

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik I R F A N D I NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik I R F A N D I NIM 1 PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH PADA KOMPLEK PERUMAHAN KARYAWAN PT.PERTAMINA (PERSERO) UP II SEI-PAKNING KABUPATEN BENGKALIS, RIAU DARI RESERVOAR WDcP (Water decolorization Plant) KILANG PERTAMINA

Lebih terperinci

Aliran Melalui Sistem Pipa

Aliran Melalui Sistem Pipa TKS 4005 HIDROLIKA DASAR / sks Aliran Melalui Sistem Pipa Dr. Eng. Alwafi Pujiraharjo University of Brawijaya Pendahuluan Dalam pembahasan yang lalu telah dipelajari perilaku zat cair riil pada aliran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Umum Turbin Tesla Turbin Tesla merupakan salah satu turbin yang memanfaatkan energi fluida dan viskositas fluida untuk menggerakkan turbin. Konsep turbin Tesla ditemukan

Lebih terperinci

STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT

STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT Sarjito, Subroto, Arif Kurniawan Jurusan Teknik Mesin Fakultas Tekknik Universitas Muhammadiyah

Lebih terperinci

BAB IV PERHITUNGAN SISTEM HIDRAULIK

BAB IV PERHITUNGAN SISTEM HIDRAULIK BAB IV PERHITUNGAN SISTEM HIDRAULIK 4.1 Perhitungan Beban Operasi System Gaya yang dibutuhkan untuk mengangkat movable bridge kapasitas 100 ton yang akan diangkat oleh dua buah silinder hidraulik kanan

Lebih terperinci

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL Purnomo 1 Efrita Arfah Z 2 Edi Suryanto 3 Jurusan Teknik Mesin Institut Teknologi Adhi Tama Surabaya Jl.

Lebih terperinci

REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS

REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS REKAYASA INSTALASI POMPA UNTUK MENURUNKAN HEAD LOSS Edi Widodo 1,*, Indah Sulistiyowati 2 1,2, Program Studi Teknik Mesin, Universitas Muhammadiyah Sidoarjo, Jl. Raya Gelam No. 250 Candi Sidoarjo Jawa

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

Analisis Unjuk Kerja pada Air Jenis Pompa Shimizu PS-135E dengan Menggunakan Alat Ukur Flowmeter

Analisis Unjuk Kerja pada Air Jenis Pompa Shimizu PS-135E dengan Menggunakan Alat Ukur Flowmeter Analisis Unjuk Kerja pada Air Jenis Pompa Shimizu PS-135E dengan Menggunakan Alat Ukur Flowmeter Endang Prihastuty 1, Wasiran 2 1,2 Staf Pengajar Program Studi Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

BAB V KESIMPULAN DAN SARAN

BAB V KESIMPULAN DAN SARAN BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Tabel 5.1 Hasil perhitungan data NO Penjelasan Nilai 1 Head kerugian mayor sisi isap 0,14 m 2 Head kerugian mayor sisi tekan 3,423 m 3 Head kerugian minor pada

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN INSTALASI POMPA SENTRIFUGAL DAN ANALISA NUMERIK MENGGUNAKAN PROGRAM KOMPUTER CFD FLUENT 6.1.22 PADA POMPA SENTRIFUGAL DENGAN SUCTION GATE VALVE CLOSED 25 % SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

V. HASIL DAN PEMBAHASAN 5.1 TATA LETAK JARINGAN PIPA

V. HASIL DAN PEMBAHASAN 5.1 TATA LETAK JARINGAN PIPA V. HASIL DAN PEMBAHASAN 5.1 TATA LETAK JARINGAN PIPA Kegiatan perencanaan merupakan hal dasar dalam menentukan sistem distribusi air bersih. Menurut Dharmasetiawan (2004), kegiatan perencanaan terdiri

Lebih terperinci

JURNAL ANALISIS LAJU ALIRAN PADA PIPA BERCABANG DENGAN SUDUT 90 0 ANALYSIS OF THE FLOW RATE IN THE PIPE BRANCHED AT AN ANGLE OF 90 0

JURNAL ANALISIS LAJU ALIRAN PADA PIPA BERCABANG DENGAN SUDUT 90 0 ANALYSIS OF THE FLOW RATE IN THE PIPE BRANCHED AT AN ANGLE OF 90 0 JURNAL ANALISIS LAJU ALIRAN PADA PIPA BERCABANG DENGAN SUDUT 90 0 ANALYSIS OF THE FLOW RATE IN THE PIPE BRANCHED AT AN ANGLE OF 90 0 Oleh: REZA DWI YULIANTORO 12.1.03.01.0073 Dibimbing oleh : 1. Irwan

Lebih terperinci

POWER & STEAM. Nur Istianah,ST.,MT.,M.Eng

POWER & STEAM. Nur Istianah,ST.,MT.,M.Eng POWER & STEAM Nur Istianah,ST.,MT.,M.Eng POWER Jumlah energi yang diperlukan per satuan waktu Energi diperlukan untuk proses, pelengkap (penerangan, komputer, dll), pengolahan limbah dan transportasi bahan

Lebih terperinci