BAB II TINJAUAN PUSTAKA. Suatu penyediaan air bersih yang mampu menyediakan air yang dapat

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. Suatu penyediaan air bersih yang mampu menyediakan air yang dapat"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu penyediaan air bersih yang mampu menyediakan air yang dapat diminum dalam jumlah yang cukup merupakan hal penting bagi suatu kota besar yang moderen. Unsur-unsur yang membentuk suatu sistem penyediaan air yang moderen meliputi (Djoko, 1986): 1. Sumber-sumber penyediaan; 2. Sarana-sarana penampungan; 3. Sarana-sarana penyaluran; 4. Sarana-sarana pengolahan; 5. Sarana-sarana penyaluran (dari pengolahan) tampungan sementara; 6. Sarana-sarana distribusi. Dalam hal ini pembahasan lebih dipusatkan pada hal sistem distribusi jaringan pipa air bersih. Sistem distribusi yang ekstensif diperlukan untuk menyalurkan air ke masing-masing langganan dalam jumlah yang dibutuhkan dengan tekanan yang diharapkan. Sistem distribusi seringkali merupakan investasi utama dalam jaringan air kota. Suatu sistem distribusi seperti pohon dengan banyak titik-titik ujung yang mati tidaklah baik, karena air dapat berhenti di ujung-ujung sistem itu. Lebih dari itu bila diperlukan perbaikan, suatu daerah yang luas harus ditutup penyaluran airnya. Akhirnya dengan kebutuhan lokal yang besar pada waktu terjadinya kebakaran, kehilangan tinggi tekanan dapat besar sekali, kecuali jika pipanya cukup besar.

2 Suatu sistem pipa tunggal adalah sistem dengan sebuah pipa yang melayani kedua sisi suatu jalan. Suatu sistem pipa rangkap mempunyai sebuah jaringan pada masing-masing sisi jalan. Keuntungan utama dari sistem dua pipa ini adalah bahwa perbaikan dapat dikerjakan tanpa mengganggu lalu lintas dan tanpa merusak lapis penutup jalan. Dalam perencanaan sistem jaringan distribusi pipa air bersih kebutuhan tekanan haruslah dipertimbangkan. Perencanaan suatu sistem jaringan pendistribusian air bersih menuntut adanya peta detail dari kota yang bersangkutan, yang memuat garis-garis kontur (semua elevasi yang menentukan) serta jalan-jalan dan petak-petak yang ada sekarang maupun yang ada dibangun di masa depan. Setelah menelaah kondisi topografi dan menetapkan sumber air bersih untuk distribusi, kota itu dapat dibagi atas daerah-daerah yang masing-masing harus dilayani oleh sistem distribusi yang terpisah. Pipa-pipa penyalur haruslah cukup besar mengalirkan kebutuhan yang diperkirakan dengan tekanan yang memadai. Program-program komputer yang mempergunakan metode Hardy-Cross atau teknik-teknik matriks yang lebih efisien dipergunakan untuk menetapkan besarnya debit dan kehilangan tinggi tekanan di masing-masing pipa dalam jaringan yang bersangkutan. Pengaruh aliran dalam pipa-pipa pelengkap pada awalnya diabaikan, tetapi dapat dihitung kemudian. Aliran di dalam jaringan pipa penyalur dianalisis untuk memenuhi kebutuhan diberbagai wilayah yang berbeda. Dalam memilih pipa-pipa penyalur, kebutuhan kapasitas masa depan haruslah dipertimbangkan. Setelah jaringan pipa penyalur ditetapkan, pipa-pipa distribusi ditambahkan ke sistem yang bersangkutan. Perhitungan hidrolik hanyalah akan merupakan perkiraan,

3 karena semua faktor yang mempengaruhi aliran barangkali tidak dapat di perhitungkan. 2.2 Kebutuhan Konsumsi Air Bersih Kebutuhan Air Domestik Pemenuhan kebutuhan air untuk domestik memiliki bagian terbesar dalam kebutuhan dasar perencanaan unit pengolahan. Faktor kebiasaan, pola dan tingkat kehidupan yang didukung oleh adanya perkembangan sosial ekonomi memberikan pengaruh terhadap peningkatan kebutuhan dasar air. Dikenal ada 2 (dua) kategori fasilitas penyediaan air bersih/minum, yaitu : a. Fasilitas Perpipaan, terdiri dari : Sambungan Rumah (SR), Sambungan Halaman, dan Sambungan Umum. b. Fasilitas Non Perpipaan, terdiri dari : Sumur Umum, Hidran Umum/Kran. Perlu diketahui pula adalah jumlah kebutuhan rata-rata air bersih per orang per hari, dimana dibedakan atas kategori kota dan perdesaan. Tingkat pemakaian air bersih secara umum ditentukan berdasarkan kebutuhan manusia untuk kehidupan sehari-hari. Kebutuhan air menurut jenis kota: Tabel 2.1 Standar Kebutuhan Air Bersih (Dep. PU, 2007) Kategori Kota Jumlah Penduduk Penyediaan air (liter/orang/hari) Kehilangan Air (%) SR HU Metropolitan > Besar Sedang Kecil IKK <

4 2.2.2 Kebutuhan Non Domestik Kebutuhan air non domestik merupakan tahap berikutnya dalam perhitungan kebutuhan air bersih, besaran pemakaiannya ditentukan oleh jumlah konsumen non domestik yang terdiri dari fasilitas-fasilitas yang telah disebutkan. Sebagaimana penjelasan sebelumnya bahwa ada beberapa faktor yang dapat menentukan perkembangan jumlah fasilitas tersebut, yaitu pertambahan penduduk, jenis dan perluasan fasilitas serta perkembangan sosial ekonomi. Perhitungan proyeksi fasilitas dapat dilakukan dengan pendekatan perbandingan jumlah penduduk. Tabel 2.2 Rata-Rata Kebutuhan Air Per Orang Per Hari (Ikhwanul, 2011) Pemakaian Jangka waktu Perbandingan air Pemakaian air luas lantai No Jenis gedung rata-rata Keterangan rata-rata sehari efektif total sehari (jam) (%) (liter) Perumahan Setiap mewah Rumah biasa Apartemen Asrama Sendiri 5 Rumah Sakit SD SLTP SLTA dan lebih tinggi 80 6 penghuni Setiap penghuni Mewah: 250 liter Menengah: 180 liter Sendiri: 120 liter Pasien: 500 liter Staf/Pegawai: 120 liter Kel. Pasien: 160 liter Guru: 100 liter Guru: 100 liter Guru/dosen: 100 liter

5 No Jenis gedung Rumah Toko Gedung Kantor Toko Serba Ada/Depart emen Store Pabrik/Indu stri Stasiun/Ter minal Pemakaian air rata-rata sehari (liter) Jangka waktu Pemakaian air rata-rata sehari (jam) Perbandingan luas lantai efektif total (%) Buruh Pria: 60 Wanita: Restoran Restoran Umum Gedung pertujukan Keterangan Penghuninya: 160 Liter Setiap Pegawai Per orang, setiap giliran (kalau kerja lebih dari 8 jam) Setiap penumpang (yang tiba maupun berangkat) Untuk penghuni: 160 liter Untuk penghuni: 160 liter, pelayan: 100 liter, 70% dari jumlah tamu perlu 15 liter/orang untuk kakus, cuci tangan, dll Kalau digunakan siang dan malam, pemakaian air dihitung per penonton, jam pemakaian air dalam tabel adalah untuk satu kali pertunjukkan

6 No Jenis gedung Gedung Bioskop Toko Pengecer Hotel/Pengi napan Gedung peribadatan Perpusta Kaan Pemakaian air rata-rata sehari (liter) Jangka waktu Pemakaian air rata-rata sehari (jam) Perbandingan luas lantai efektif total (%) Keterangan Pedagang besar: 30 liter/tamu, 10 liter/staf, atau 5 liter/hari setiap m 2 luas lantai Untuk setiap tamu, untuk staf liter, penginapan 200 liter Berdasarkan jumlah jemaah Untuk setiap pembaca yang tinggal 22 Bar 30 6 Setiap Tamu Perkum pulan Sosial Kelab Malam Gedung Perkumpu Lan Laborato Rium 30 Setiap Tamu Setia Tempat Duduk Setiap Tamu Setiap Staff 2.3 Kapasitas dan Kebutuhan Fluktuasi Air Bersih Penentuan kebutuhan air mengacu kepada kebutuhan air harian maksimum (Q maks ) serta kebutuhan air jam maksimum (Q peak ) dengan referensi kebutuhan air rata-rata.

7 a. Kebutuhan air rata-rata harian (Q Av ) adalah jumlah air yang diperlukan untuk memenuhi kebutuhan domestik, non domestik dan kehilangan air. b. Kebutuhan air harian maksimum merupakan jumlah air terbanyak yang diperlukan pada satu hari dalam kurun waktu satu tahun berdasarkan nilai Q rata-rata harian. Diperlukan faktor fluktuasi kebutuhan harian maksimum dalam perhitungannya. Q maks = f maks x Q Av... (2.1) Dimana : Q maks = Kebutuhan air harian maksimum (ltr/det) f maks = Faktor harian maksimum (1 < f maks < 1,5 ) Q Av = Kebutuhan air rata-rata harian (ltr/det) c. Kebutuhan air jam maksimum adalah jumlah air terbesar yang diperlukan pada jam-jam tertentu. Faktor fluktuasi kebutuhan jam maksimum (f peak ) diperlukan dalam perhitungannya. Q peak = f peak x Q maks... (2.2) Dimana : Q peak = Kebutuhan air jam maksimum (ltr/detik) f peak = Faktor fluktuasi jam maksimum ( 1,5-2,5 ) Q max = Kebutuhan air harian maksimum (ltr/detik) Banyak faktor yang mempengaruhi fluktuasi pemakaian air per jam, dan untuk mendapatkan data ini diperlukan survei dan penelitian terhadap aktivitas, kebiasaan serta kebutuhan air konsumen. Selain kapasitas produksi pada unit pengolahan, perlu diperhitungkan juga faktor-faktor lain yang berpengaruh terhadap perencanaan unit pengolahan. d. Kehilangan air yaitu selisih antara jumlah air yang diproduksi di unit pengolahan dengan jumlah air yang dikonsumsi dari jaringan distribusi.

8 Berdasarkan kenyataan di lapangan, kejadian akan kehilangan air dapat bersifat teknis dan non teknis. 2.4 Debit Aliran Jumlah zat cair yang mengalir melalui tampang lintang aliran tiap satu satuan waktu disebut debit aliran dan diberi notasi Q (Bambang, 1993). Debit aliran biasanya diukur dalam volume zat cair tiap satuan waktu, sehingga satuannya adalah meter kubik per detik (m 3 /detik) atau satuan yang lain (liter/detik, liter/menit). Di dalam zat cair ideal, dimana tidak terjadi gesekan. Kecepatan aliran V adalah sama di setiap titik pada tampang lintang. Apabila tampang aliran tegak lurus pada arah aliran adalah A, maka debit aliran diberikan oleh bentuk berikut: Q = V x A... (2.3) Dimana : Q = Debit aliran (m 3 /det) V = Kecepatan aliran (m/det) A = luas penampang aliran (m 2 ) Dalam persamaan kontinuitas zat cair yang tak kompresibel mengalir secara kontiniu melalui pipa atau saluran terbuka, dengan tampang aliran konstan ataupun tidak konstan maka volume zat cair yang lewat tiap satuan waktu adalah semua tampang (Bambang, 1993). Dipandang dari tabung aliran seperti gambar 2.1 untuk aliran satu dimensi dan mantap, kecepatan rata dan tampang lintang titik 1 dan 2 adalah V 1 dan V 2. Sehingga persamaan kontinuitas melalui medan aliran adalah sebagai berikut: Q 1 = Q 2... (2.4) Dimana : Q 1 dan Q 2 = Debit aliran pada penampang 1 dan 2 (m 3 /det)

9 Gambar 2.1 Aliran dengan Persamaan Kontinuitas 2.5 Persamaan Bernoulli Penurunan persamaan Bernoulli untuk aliran sepanjang garis arus didasarkan pada hukum Newton II tentang gerak (F=ma). Persamaan ini diturunkan dengan anggapan bahwa (Bambang, 1993): 1. Zat cair adalah ideal, jadi tidak mempunyai kekentalan (kehilangan energi akibat gesekan adalah nol); 2. Zat cair adalah homogen dan tidak termampatkan (rapat massa zat cair adalah konstan); 3. Aliran adalah kontiniu dan sepanjang garis arus; 4. Kecepatan aliran adalah merata dalam suatu penampang; 5. Gaya yang bekerja hanya gaya berat dan tekanan. Persamaan Bernoulli dapat digunakan untuk menentukan garis tekanan dan tenaga (gambar 2.2). Garis tenaga dapat ditunjukkan oleh elevasi muka air pada tabung pitot yang besarnya sama dengan tinggi total dari konstanta Bernoulli. Sedang garis tekanan dapat ditunjukkan oleh elevasi muka air di dalam tabung vertikal yang disambung pada pipa (Bambang, 1993).

10 H = z (2.5) Dimana: p = tekanan pada titik A dan B (kn/m 2 ) V = kecepatan aliran pada titik A dan B (m/det) z = perbedaan ketinggian antara titik A dan B (m) γ = berat jenis fluida (kn/m 3 ) g = percepatan gravitasi = 9,81 m/det 2 Pada aliran zat cair ideal, garis tenaga mempunyai tinggi tetap yang menunjukkan jumlah dari tinggi elevasi, tinggi tekanan dan tinggi kecepatan. Garis tekanan menunjukkan jumlah dari tinggi elevasi dan tinggi tekanan z + p/ yang bisa naik atau turun pada arah aliran dan tergantung pada luas tampang aliran. Di titik A dimana tampang aliran lebih kecil dari titik B, mengingat V A lebih besar daripada V B. Akibatnya tinggi tekanan di A lebih kecil daripada di B. Gambar 2.2 Garis Tenaga dan Tekanan Pada Zat Cair Ideal Aplikasi persamaan Bernoulli untuk kedua titik di dalam medan aliran adalah: Z A + + = Z B (2.6) Dimana: p A dan p B = tekanan pada titik A dan B (kn/m 2 ) V A dan V B = kecepatan aliran pada titik A dan B (m/det)

11 z A dan z B = perbedaan ketinggian antara titik A dan B (m) γ = berat jenis fluida (kn/m 3 ) g = percepatan gravitasi = 9,81 m/det 2 Persamaan di atas digunakan jika diasumsikan bahwa jumlah tinggi elevasi, tinggi tekanan dan tinggi kecepatan di kedua titik adalah sama. Dengan demikian garis tenaga pada aliran zat cair ideal adalah konstan.untuk zat cair riil (viskos), dalam aliran zat cair akan terjadi kehilangan tenaga yang harus diperhitungkan dalam aplikasi persamaan Bernoulli. Kehilangan tenaga hanya dapat terjadi karena adanya gesekan antara zat cair dan dinding batas (h f ) atau karena adanya perubahan tampang lintang aliran (h e ). Kehilangan tenaga biasanya dinyatakan dalam tinggi zat cair. Maka persamaan Bernoulli di atas dapat ditulis menjadi persamaan baru, dimana dirumuskan sebagai: Z A + + = Z B hf... ( 2.7) Dimana: hf = kehilangan tekanan (m) p A dan p B = tekanan pada titik A dan B (kn/m 2 ) V A dan V B = kecepatan aliran pada titik A dan B (m/det) z A dan z B = perbedaan ketinggian antara titik A dan B (m) γ = berat jenis fluida (kn/m 3 ) g = percepatan gravitasi = 9,81 m/det Aliran Laminar dan Turbulen Aliran viskos dapat dibedakan menjadi dua tipe yaitu aliran laminer dan turbulen. Dalam aliran laminer partikel-partikel zat cair bergerak teratur mengikuti lintasan yang saling sejajar. Aliran ini terjadi apabila kecepatan kecil dan kekentalan besar. Pengaruh kekentalan adalah sangat besar sehingga dapat meredam gangguan yang dapat menyebabkan aliran menjadi turbulen. Dengan berkurangnya kekentalan dan bertambahnya kecepatan aliran maka daya redam

12 terhadap gangguan akan berkurang, yang sampai pada suatu batas tertentu akan menyebabkan terjadi perubahan aliran dari laminer ke turbulen. Pada aliran turbulen gerak partikel-partikel zat cair tidak teratur. Aliran ini terjadi apabila kecepatan besar dan kekentalan zat cair kecil (Bambang, 1993). Menurut Reynolds, ada tiga faktor yang mempengaruhi keadaan aliran yaitu kekentalan zat cair (mu), rapat massa zat cair (rho), dan diameter pipa D. Hubungan antara,, dan D yang mempunyai dimensi sama dengan kecepatan adalah /. Reynolds menunjukkan bahwa aliran dapat diklasifikasikan berdasarkan suatu angka tertentu. Angka tersebut diturunkan dengan membagi kecepatan aliran di dalam pipa dengan nilai /, yang disebut dengan angka Reynolds (Bambang, 1993). Angka Reynolds mempunyai bentuk berikut: Re = = atau Re =... (2.8) Dimana : Re = Reynolds number µ = viskositas dinamik (Pa.det) = rapat massa zat cair (kg/m 3 ) D = diameter dalam pipa (m) v = kecepatan aliran dalam fluida (m/det) Berdasarkan pada percobaan aliran di dalam pipa, Reynolds menetapkan bahwa untuk angka Reynolds di bawah 2.000, gangguan aliran dapat diredam oleh kekentalan zat cair dan aliran dalam kondisi tersebut adalah laminer. Aliran akan turbulen apabila angka Reynolds lebih besar Apabila angka Reynolds berada diantara kedua nilai tersebut (2000<Re<4000) aliran adalah transisi. Angka Reynolds pada kedua nilai di atas (Re = 2000 dan Re = 4000) disebut dengan batas kritis bawah dan kritis atas.

13 2.7 Metode Pendistribusian Air Cara Gravitasi Cara gravitasi dapat digunakan apabila elevasi sumber air mempunyai perbedaan cukup besar dengan elevasi daerah pelayanan, sehingga tekanan yang diperlukan dapat dipertahankan. Cara ini diangga cukup ekonomis, karena hanya memanfaatkan beda ketinggian lokasi (Lelly, 2008) Cara Pemompaan Pada cara ini pompa digunakan untuk meningkatkan head (tekanan) yang diperlukan untuk mendistribusikan air dari reservoir distribusi ke konsumen. Cara ini digunakan jika daerah pelayanan merupakan daerah yang datar, dan tidak ada daerah yang berbukit (Lelly, 2008) Cara Gabungan Pada cara gabungan, reservoir digunakan untuk mempertahankan tekanan yang diperlukan selama periode pemakaian tinggi dan pada kondisi darurat, misalnya pada saat terjadi kebakaran atau tidak adanya energi. Selama periode pemakaian rendah, sisa air dipompakan dan disimpan dalam reservoir distribusi. Karena reservoir distribusi digunakan sebagai cadangan air selama periode pemakaian tinggi atau pemakaian puncak, maka pompa dapat dioperasikan pada kapasitas debit rata-rata (Lelly, 2008). 2.8 Kehilangan Tinggi Tekanan Kehilangan tinggi tekanan dapat berupa kehilangan mayor (mayor losses) dan kehilangan minor (minor losses).

14 2.8.1 Kehilangan Tinggi Tekanan Mayor Mayor losses terjadi sebagai akibat gesekan air dengan pipa. Kerugian head akibat gesekan dapat dihitung dengan menggunakan dari beberapa rumus berikut, yaitu: Persamaan Darcy Weisbach Dalam dinamika fluida, persamaan Darcy-Weisbach adalah persamaan fenomenologika yang berkaitan dengan head loss, atau kehilangan tekanan akibat gesekan sepanjang pipa terhadap kecepatan aliran rata-rata. Persamaan ini terbentuk atas kontribusi Henry Darcy dan Julius Weisbach. Rumus Darcy-Weisbach merupakan dasar menghitung head turun untuk aliran fluida dalam pipa-pipa dan saluran (Herman, 1984). Persamaannya adalah: h f = f... (2.9) Dimana: h f = kerugian head karena gesekan (m) f = faktor gesekan (diperoleh dari diagram Moody) D = diameter pipa (m) L = panjang pipa (m) V = kecepatan aliran fluida dalam pipa (m/det) g = percepatan gravitasi = 9,81 m/det 2

15 Tabel 2.3 Kekasaran Rata-Rata Pipa-Pipa Komersil (Frank, 1986) Kekasaran (ε) Bahan (dalam keadaan baru) ft mm Baja Keling 0,003 0,03 0,9-9,0 Beton Bilah tahang kayu Besi Cor 0,001-0,01 0,0006-0,003 0, ,3-3,0 0,18-0,9 0,26 Besi bersalut-seng 0,0005 0,15 Besi-cor beraspal 0,0004 0,12 Baja komersial atau besi tempa 0, ,046 Tabung/pipa tarik 0, ,0015 Kaca halus halus Gambar 2.3 Diagram Moody

16 Diagram Moody telah digunakan untuk menyelesaikan permasalahan aliran fluida di dalam pipa dengan menggunakan faktor gesekan pipa (f) dari rumus Darcy Weisbach. Untuk aliran laminar dimana bilangan Reynolds kurang dari 2000, faktor gesekan dihubungkan dengan bilangan Reynolds, dinyatakan dengan rumus: f =... (2.10) Untuk aliran turbulen dimana bilangan Reynolds lebih besar dari 4000, maka hubungan antara bilangan Reynolds, faktor gesekan dan kekasaran relatif menjadi lebih kompleks. Faktor gesekan untuk aliran turbulen dalam pipa didapatkan dari hasil eksperimen antara lain (Herman, 1986) : 1. Untuk daerah complete roughness, rough pipes yaitu :...(2.11) 2. Untuk pipa sangat halus seperti gelas dan plastik, hubungan antara bilangan Reynolds dan faktor gesekan yaitu : a. Blasius : f=... (2.12) untuk Re = b. Von Karman :... (2.13) = 2,0 log,untuk Re sampai dengan 3, Untuk pipa kasar, yaitu : Von Karman : 1,74... (2.14) Dimana harga f tidak tergantung pada bilangan Reynolds. 4. Untuk pipa antara kasar dan halus atau dikenal dengan daerah transisi yaitu :

17 Corelbrook White :... (2.15) Dimana: Re = Bilangan Reynolds f = faktor gesekan = kekasaran pipa d = diameter pipa Persamaan Hazen Williams Rumus ini pada umumnya dipakai untuk menghitung kerugian head dalam pipa yang relatif sangat panjang seperti jalur pipa penyalur air minum. Bentuk umum persamaan Hazen Williams, yaitu: h f = L... (2.16) Dimana: h f = kerugian gesekan dalam pipa (m) Q = laju aliran dalam pipa (m 3 /det) L = panjang pipa (m) C = koefisien kekasaran pipa Hazen Williams d = diameter pipa (m) Tabel 2.4 : Koefisien Kekasaran Hazen Wiliam, C (Bambang,1993) Jenis Pipa Koefisien C Pipa sangat halus 140 Pipa halus, semen, besi tuang 130 Pipa baja dilas halus 120 Pipa baja dikeling halus 110 Pipa besi tuang tua 100 Pia baja dikeling tua 95 Pipa tua 60-80

18 2.8.2 Kehilangan Tinggi Tekan Minor Rerugi kecil disebabkan (Frank, 1986) oleh: 1. Lubang masuk atau lubang keluar pipa; 2. Pemuaian atau penyusutan tiba-tiba; 3. Kelokan, siku, sambungan T, dan piting lain; 4. Katup yang terbuka atau sebagian tertutup; 5. Pemuaian atau penyusutan berangsur. Rerugi di atas mungkin tidak begitu kecil, misalnya katup yang tertutupsebagian dapat menyebabkan penurunan tekanan yang lebih besar daripada pipa yang panjang. Karena pola aliran dalam piting dan katup cukup rumit, teorinya sangat lemah. Rerugi ini biasanya diukur secara eksperimental dan dikorelasikan dengan parameter-parameter aliran pipa. Besarnya kerugian minor dirumuskan sebagai berikut: hm = k... (2.17) Dimana: g = percepatan gravitasi (9,81 m/det 2 ) v = kecepatan aliran fluida dalam pipa (m/det) k = koefisien kerugian

19 Tabel 2.5 Kehilangan Tinggi Tekanan pada Katup, Alat Penyesuaian dan Pipa yang Digunakan (J.M.K Dake, 1985) Harga K dalam h= K 1.Katup pintu - Terbuka penuh - ¾ terbuka - ½ terbuka - ¼ terbuka Katup bola, terbuka Katup sudut, terbuka 5 4. Bengkokan 90 o, - Jari-jari pendek - Jari-jari pertengahan - Jari-jari panjang Lengkungan pengembalian 180 o Bengkokan 45 o Bengkokan 22 ½ o (45cm) Sambungan T Sambungan pengecil (katup pada ujung yang keci) Sambungan pembesar 0.25 ( 11. Sambungan pengecil mulut lonceng lubang terbuka Persamaan Empiris Untuk Aliran Di Dalam Pipa Seperti yang diuraikan sebelumnya bahwa permasalahan aliran fluida dalam pipa dapat diselesaikan dengan menggunakan persamaan Darcy-Weisbach dan Diagram Moody. Penggunaan rumus empiris juga dapat digunakan untuk

20 menyelesaikan permasalahan aliran. Dalam hal ini digunakan dua model rumus yaitu persamaan Hazen Williams dan persamaan Manning. 1. Persamaan Hazen-Williams dengan menggunakan satuan international yaitu (Robert, 2002): V=... (2.18) Dimana : v = kecepatan aliran (m/det) C = koefisien kekasaran pipa Hazen-Williams R = jari-jari hidrolis ; d/4 untuk pipa bundar s = slope dari gradient energi (H l /L) 2. Persamaan Manning dengan satuan international yaitu (Robert, 2002): V =... (2.19) Dimana : n = koefisien kekasaran pipa Manning R = jari-jari hidrolis ; d/4 untuk pipa bundar s = slope dari gradient energi (H l /L) Persamaan Hazen-Williams umumnya digunakan untuk menghitung head loss dalam pipa yang sangat panjang seperti jalur pipa penyedia air minum. Persamaan ini tidak dapat digunakan untuk zat cair lain selain air dan digunakan khusus untuk aliran yang bersifat turbulen. Persamaan Darcy-Weisbach secara teoritis tepat digunakan untuk semua rezim aliran dan semua jenis zat cair. Persamaan Manning biasanya digunakan untuk saluran terbuka (open channel flow).

21 2.10 Mekanisme Aliran Pada Pipa Pipa Hubungan Seri Gambar 2.4 Pipa Hubungan Seri Jika dua buah pipa atau lebih dihubungkan secara seri maka semua pipa akan dialiri oleh aliran yang sama (Bambang, 1993). Total kerugian head pada seluruh sistem adalah jumlah kerugian pada setiap pipa dan perlengkapan pipa yang dirumuskan sebagai : Pada gambar 2.4, jika H diketahui, Q dapat dihitung dengan persamaan 2 energi (Bernoulli) Q = Q 1 = Q 2 = Q 3 Persamaan Bernoulli pada titik 1 dan 2 : Z = Z hf 1 + hf 2 + hf 3... (2.20) Tinggi tekanan di 1, H 1, di 2,H 2 :V 1 = V 2 = 0 Z 1 + H 1 = Z 2 + H 2 + hf 1 + hf 2 + hf 3 (Z 1 + H 1 ) (Z 2 + H 2 ) = hf 1 + hf 2 + hf 3

22 H= hf 1 + hf 2 + hf 3... (2.21) Dengan menggunakan persamaan Darcy Weisbach persamaan tersebut menjadi: H = f 1 +f 2 +f 3... (2.22) V 1 = ; V 2 = ; V 3 = H = ( Maka Q=...(2.23) Keterangan : H = besarnya head (m) Q = debit (m 3 /det) V = kecepatan aliran (m/det) Z = elevasi (m) D = diameter pipa (m) L = panjang pipa (m) g = percepatan gravitasi (m/det 2 ) hf = kerugian head f = faktor gesekan Pipa Hubungan Paralel Gambar 2.5 Pipa Hubungan Paralel

23 Jika ada dua buah pipa atau lebih yang dihubungkan secara pararel, total laju aliran sama dengan jumlah laju aliran yang melalui setiap cabang dan rugi head pada sebuah cabang sama dengan yang lain yang dirumuskan sebagai (Bambang, 1993): Q 0 = Q 1 + Q 2 + Q 3... (2.24) Q 0 = A 1 V 1 + A 2 V 2 + A 3 V 3 Q = π/4 ( V 1 + V 1 + V 1 )... (2.25) H = hf 1 = hf 2 = hf 3 H = f 1 = f 2 = f 3... (2.26) V 1 = ; V 2 = ; V 3 = karena H untuk masing-masing pipa adalah sama maka: H =.... (2.27) Maka untuk mencari Q ekivalen: Qe =.... (2.28) Keterangan : H = besarnya head (m) Qe = debit ekivalen (m 3 /det) V = kecepatan aliran (m/det) Z = elevasi (m) De = diameter ekivalen (m) Le = panjang pipa ekivalen (m) g = percepatan gravitasi (m/det 2 ) hf = kerugian head f = faktor gesekan Pipa Bercabang Sering suatu pipa menghubungkan tiga atau lebih kolam. Gambar 2.6 menunjukkan suatu sistem pompa bercabang yang menguhungkan tiga buah

24 kolam. Akan dicari debit aliran melalui tiap-tiap pipa yang menghubungkan ketiga kolam tersebut apabila panjang, diameter, macam pipa (kekasaran k), diberikan dan rapat massa serta kekentalan zat cair diketahui. Garis tekanan akan berada pada muka air di tiap-tiap kolam, dan akan bertemu pada satu titik di atas titik cabang T. Debit aliran melalui tiap pipa ditentukan oleh kemiringan garis tekanan masing-masing. Arah aliran sama dengan arah kemiringan (penurunan) garis tenaga (Bambang, 1993). Gambar 2.6 Pipa Bercabang Persamaan kontinuitas pada titik cabang, yaitu aliran menuju titik cabang T harus sama dengan yang meninggalkan T. Pada gambar tersebut terlihat bahwa aliran akan keluar dari kolam A dan masuk ke kolam C. Aliran keluar atau masuk ke dalam kolam B tergantung pada sifat pipa 1 dan 2 serta elevasi muka air kolam A, B, dan C. Persamaan kontinuitas adalah salah satu dari kedua bentuk berikut: Q 1 = Q 2 + Q 3 atau Q 1 + Q 2 = Q 3... (2.29) Yang tergantung apakah elevasi garis tekanan di titik cabang lebih besar atau lebih kecil dari pada elevasi muka air kolam B. Persamaan (2.27) berlaku apabila elevasi

25 garis tekanan di T lebih tinggi dari elevasi muka air kolam B, dan sebaliknya. Prosedur hitungan adalah sebagai berikut : 1. Anggap garis tekanan di titik T mempunyai elevasi h T ; 2. Hitung Q 1, Q 2, dan Q 3 untuk keadaan tersebut; 3. Jika persamaan kontinuitas dipenuhi, maka nilai Q 1, Q 2, dan Q 3 adalah benar; 4. Jika aliran menuju T tidak sama dengan aliran meninggalkan T, di buat anggapan baru elevasi garis tekanan di T, yaitu dengan menaikkan garis tekanan di T apabila aliran masuk lebih besar daripada aliran keluar dan menurunkannya apabila aliran masuk lebih kecil dari aliran keluar. 5. Ulangi prosedur tersebut sampai dipenuhinya persamaan kontinuitas. Pada keadaan seperti yang ditunjukkan dalam gambar 2.6 dengan menganggap bahwa elevasi muka air kolam C sebagai bidang referensi dan dianggap bahwa elevasi garis tekanan di T di bawah elevasi muka air kolam B (h T < z B ) maka persamaan aliran mempunyai hubungan sebagai berikut ini. Persamaan energi : z A h T = h f1 = f 1... (2.30) z B h T = h f2 = f 2... (2.31) h T = h f3 = f 3... (2.32) Dimana: h T = besarnya head total (m) V = kecepatan aliran (m/det) Z = elevasi (m) D = diameter pipa (m) L = panjang pipa (m) g = percepatan gravitasi (m/det 2 ) hf = kerugian head f = faktor gesekan

26 Persamaan kontinuitas : Q 1 + Q 2 = Q 3... (2.33) Dimana: Q = debit (m 3 /det) Dari persamaan di atas, jika z A, z B, dan sifat-sifat pipa diketahui maka h T, Q 1, Q 2, dan Q 3 dapat dihitung Analisa Sistem Jaringan Pipa Pemakaian jaringan pipa dalam bidang teknik sipil terdapat pada sistem jaringan distribusi air minum. Sistem jaringan ini merupakan bagian yang paling mahal dari suatu perusahaan air minum. Oleh karena itu harus dibuat perencanaan yang teliti untuk mendapatkan sistem distribusi yang efisien. Jumlah atau debit air yang disediakan tergantung pada jumlah penduduk dan macam industri yang dilayani. Analisis jaringan pipa ini cukup rumit dan memerlukan perhitungan yang besar, oleh karena itu pemakaian komputer untuk analisis ini akan mengurangi kesulitan. Untuk jaringan kecil, pemakaian kalkulator untuk hitungan masih dilakukan. Ada beberapa metode untuk menyelesaikan perhitungan sistem jaringan pipa, diantaranya adalah metode Hardy-Cross dan metode matriks. Aliran keluar dari sistem biasanya dianggap terjadi pada titik-titik simpul. Metode Hardy-Cross ini dilakukan secara iteratif. Pada awal hitungan ditetapkan debit aliran melalui masing-masing pipa secara sembarang. Kemudian dihitung debit aliran di semua pipa berdasarkan nilai awal tersebut. Prosedur hitungan diulangi lagi sampai persamaan kontinuitas di setiap titik simpul dipenuhi. Pada jaringan pipa harus dipenuhi persamaan kontinuitas dan tenaga (Bambang Triatmodjo, 1993: 91-92) yaitu :

27 1. Aliran di dalam pipa harus memenuhi hukum-hukum gesekan pipa untuk aliran dalam pipa tunggal. h f = Q 2... (2.34) 2. Aliran masuk ke dalam tiap-tiap simpul harus sama dengan aliran yang keluar. Q i = 0... (2.35) 3. Jumlah aljabar dari kehilangan tenaga dalam satu jaringan tertutup harus sama dengan nol h f = 0... (2.36) 2.12 Prosedur Hitungan Metode Hardy Cross Gambar 2.7 Skema Jaringan Perpipaan yang Dianalisa Prosedur perhitungan dengan metode Hardy-Cross adalah sebagai berikut (Bambang, 1993): 1. Pilih pembagian debit melalui tiap-tiap pipa Qo hingga terpenuhi kontinuitas; 2. Hitung hf pada tiap pipa, hf = k.q 2

28 3. Jaringan pipa dibagi menjadi sejumlah jaringan tertutup (tiap pipa minimal masuk dalam satu jaringan); 4. Hitung hf tiap jaringan, jika pengaliran seimbang, hf = 0 5. Hitung nilai 2kQ untuk tiap jaringan 6. Hitung koreksi debit... (2.37) Dimana : Qo = debit permisalan 7. Koreksi debit, Q = Qo + Q, prosedur 1 6 diulangi hingga diperoleh 0 Pada suatu jaringan perpipaan harus dipenuhi ketentuan berikut: Perjumlahan tekanan disetiap circuit = 0 (nol) Aliran yang masuk pada setiap titik simpul = aliran keluar Persamaan Darcy Weisbach atau rumus eksponensial berlaku untuk masing-masing pipa. Analisis jaringan pipa ini cukup rumit dan memerlukan perhitungan yang besar, oleh karena itu pemakaian komputer untuk analisis ini akan mengurangi kesulitan. Untuk jaringan kecil, pemakaian kalkulator untuk hitungan masih bisa dilakukan. Perhitungan analisa ini menggunakan program Microsoft Office Excel 2007.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Air Bersih Air adalah senyawa kimia yang sangat penting bagi kehidupan makhluk hidup di bumi ini. Fungsi air bagi kehidupan tidak dapat digantikan oleh senyawa lain.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan disejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL TUGAS AKHIR

ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL TUGAS AKHIR ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL TUGAS AKHIR Disusun oleh : AIDA NURFADILAH 100424005 BIDANG STUDI

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Kecepatan dan Kapasitas Aliran Fluida Setiap fluida yang mengalir dalam sebuah pipa harus memasuki pipa pada suatu lokasi. Daerah aliran di dekat lokasi fluida memasuki pipa tersebut

Lebih terperinci

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng ALIRAN PADA PIPA Oleh: Enung, ST.,M.Eng Konsep Aliran Fluida Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa Jenis dan Viskositas. Masalah aliran fluida dalam PIPA : Sistem Terbuka

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 UMUM Suatu penyediaan air bersih yang mampu menyediakan air yang dapat diminum dalam jumlah yang cukup merupakan hal penting bagi suatu kota besar yang modern. Unsur-unsur yang

Lebih terperinci

HIDRODINAMIKA BAB I PENDAHULUAN

HIDRODINAMIKA BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Kinematika adalah tinjauan gerak partikel zat cair tanpa memperhatikan gaya yang menyebabkan gerak tersebut. Kinematika mempelajari kecepatan disetiap titik dalam medan

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Kecepatan dan Kapasitas Aliran Fluida. Penentuan kecepatan di sejumlah titik pada suatu penampang

BAB II TINJAUAN PUSTAKA. 2.1 Kecepatan dan Kapasitas Aliran Fluida. Penentuan kecepatan di sejumlah titik pada suatu penampang BAB II TINJAUAN PUSTAKA. Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan di sejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR ISI iv. DAFTAR GAMBAR... ix. DAFTAR TABEL... xii. DAFTAR NOTASI... xiii

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR ISI iv. DAFTAR GAMBAR... ix. DAFTAR TABEL... xii. DAFTAR NOTASI... xiii ABSTRAK Suplai air bersih di Kota Tebing Tinggi dilayani oleh PDAM Tirta Bulian. Namun penambahan jumlah konsumen yang tidak diikuti dengan peningkatan kapasitas jaringan, penyediaan dan pelayanan air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA.1. Konsep Dasar Untuk aliran fluida dalam pipa khususnya untuk air terdapat kondisi yang harus diperhatikan dan menjadi prinsip utama, kondisi fluida tersebut adalah fluida merupakan

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Ground Tank Ground tank atau dalam bahasa Indonesia lebih sering disebut Tangki bawah tanah, merupakan salah satu bentuk bak penampungan air yang dibangun atau diletakkan

Lebih terperinci

ALIRAN MELALUI PIPA 15:21. Pendahuluan

ALIRAN MELALUI PIPA 15:21. Pendahuluan ALIRAN MELALUI PIPA Ir. Suroso Dipl.HE, M.Eng Dr. Eng. Alwai Pujiraharjo Pendahuluan Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran dan dipergunakan untuk mengalirkan luida dengan penampang

Lebih terperinci

PERTEMUAN VII KINEMATIKA ZAT CAIR

PERTEMUAN VII KINEMATIKA ZAT CAIR PERTEMUAN VII KINEMATIKA ZAT CAIR PENGERTIAN Kinematika aliran mempelajari gerak partikel zat cair tanpa meninjau gaya yang menyebabkan gerak tersebut. Macam Aliran 1. Invisid dan viskos 2. Kompresibel

Lebih terperinci

Aliran Melalui Sistem Pipa

Aliran Melalui Sistem Pipa TKS 4005 HIDROLIKA DASAR / sks Aliran Melalui Sistem Pipa Dr. Eng. Alwafi Pujiraharjo University of Brawijaya Pendahuluan Dalam pembahasan yang lalu telah dipelajari perilaku zat cair riil pada aliran

Lebih terperinci

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik.

BAB III LANDASAN TEORI. 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin. sebagai penggerak mekanik melalui unit transmisi mekanik. BAB III LANDASAN TEORI 3.1 Sistem Kerja Pompa Torak Menggunakan Tenaga Angin Pompa air dengan menggunakan tenaga angin merupakan sistem konversi energi untuk mengubah energi angin menjadi putaran rotor

Lebih terperinci

Desain Rehabilitasi Air Baku Sungai Brang Dalap Di Kecamatan Alas 8.1. DATA SISTEM PENYEDIAAN AIR BAKU LAPORAN AKHIR VIII - 1

Desain Rehabilitasi Air Baku Sungai Brang Dalap Di Kecamatan Alas 8.1. DATA SISTEM PENYEDIAAN AIR BAKU LAPORAN AKHIR VIII - 1 8.1. DATA SISTEM PENYEDIAAN AIR BAKU Pada jaringan distribusi air bersih pipa merupakan komponen yang paling utama, pipa berfungsi untuk mengalirkan sarana air dari suatu titik simpul ke titik simpul yang

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Tinjauan Pustaka 2.1.1. Analisis Kebutuhan Air Bersih Air sebagai kebutuhan dasar manusia memiliki peranan penting dalam menunjang kehidupan manusia. Ketersediaan air minum adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Metode Pendistribusian Air Di dalam pendistribusian air diperlukan suatu metode pendistribusian agar air dapat mengalir dari sumber air ke semua pemakai air. Adapun metode

Lebih terperinci

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair :

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair : Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak tersebut.

Lebih terperinci

ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL

ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL ANALISA PERHITUNGAN DEBIT DAN KEHILANGAN TINGGI TEKANAN (HEAD LOSS) PADA SISTEM JARINGAN PIPA DAERAH LAYANAN PDAM TIRTANADI CABANG SUNGGAL Aida Nurfadilah 1 dan Terunajaya 2 1 Departemen Teknik Sipil,

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta FLUIDA DINAMIS Ada tiga persamaan dasar dalam hidraulika, yaitu persamaan kontinuitas energi dan momentum. Untuk aliran mantap dan satu dimensi persamaan energi dapat disederhanakan menjadi persamaan Bernoulli

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN

PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN PERANCANGAN SISTEM DISTRIBUSI AIR BERSIH DINGIN DARI TANGKI ATAS MENUJU HOTEL PADA THE ARYA DUTA HOTEL MEDAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HATOP

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perencanaan Sistem Distribusi Air Bersih. Kategori kegiatan perencanaan untuk system distribusi air bersih/minum menurut Martin,D., (2004) ada dua kategori yaitu: 1. Perencanaan

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

EVALUASI DEBIT AIR DAN DIAMETER PIPA DISTRIBUSI AIR BERSIH DI PERUMAHAN KAMPUNG NELAYAN KELURAHAN NELAYAN INDAH BELAWAN SEPTIAN PRATAMA

EVALUASI DEBIT AIR DAN DIAMETER PIPA DISTRIBUSI AIR BERSIH DI PERUMAHAN KAMPUNG NELAYAN KELURAHAN NELAYAN INDAH BELAWAN SEPTIAN PRATAMA EVALUASI DEBIT AIR DAN DIAMETER PIPA DISTRIBUSI AIR BERSIH DI PERUMAHAN KAMPUNG NELAYAN KELURAHAN NELAYAN INDAH BELAWAN TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh

Lebih terperinci

Kehilangan Energi Pada Pipa Baja Dan Pipa Pvc

Kehilangan Energi Pada Pipa Baja Dan Pipa Pvc Laporan Penelitian Kehilangan Energi Pada Pipa Baja Dan Pipa Pvc Oleh Ir. Salomo Simanjuntak, MT Dosen Tetap Fakultas Teknik LEMBAGA PENELITIAN UNIVERSITAS HKBP NOMMENSEN MEDAN 2010 KATA PENGANTAR Pertama

Lebih terperinci

BAB I PENDAHULUAN. seluruh mahluk hidup yang ada di bumi ini. Dalam pemenuhan air tersebut

BAB I PENDAHULUAN. seluruh mahluk hidup yang ada di bumi ini. Dalam pemenuhan air tersebut BAB I PENDAHULUAN 1.1 Latar Belakang Air menjadi kebutuhan manusia yang sangat penting, begitu juga dengan seluruh mahluk hidup yang ada di bumi ini. Dalam pemenuhan air tersebut manusia melakukan berbagai

Lebih terperinci

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK ANALISIS FAKTOR GESEKAN PADA PIPA HALUS Juari NRP: 1321025 Pembimbing: Robby Yussac Tallar, Ph.D. ABSTRAK Hidraulika merupakan ilmu dasar dalam bidang teknik sipil yang menjelaskan perilaku fluida atau

Lebih terperinci

PERHITUNGAN DEBIT PADA SISTEM JARINGAN PIPA DENGAN METODA HARDY-CROSS MENGGUNAKAN RUMUS HAZEN-WILLIAMS DAN RUMUS MANNING

PERHITUNGAN DEBIT PADA SISTEM JARINGAN PIPA DENGAN METODA HARDY-CROSS MENGGUNAKAN RUMUS HAZEN-WILLIAMS DAN RUMUS MANNING PERHITUNGAN DEBIT PADA SISTEM JARINGAN PIPA DENGAN METODA HARDY-CROSS MENGGUNAKAN RUMUS HAZEN-WILLIAMS DAN RUMUS MANNING Disusun oleh : Agus Susanto NRP : 9621003 NIRM : 41077011960282 Pembimbing : Kanjalia

Lebih terperinci

Persamaan Chezy. Pada aliran turbulen gaya gesek sebanding dengan kuadrat kecepatan. Persamaan Chezy, dengan C dikenal sebagai C Chezy

Persamaan Chezy. Pada aliran turbulen gaya gesek sebanding dengan kuadrat kecepatan. Persamaan Chezy, dengan C dikenal sebagai C Chezy Saluran Terbuka Persamaan Manning Persamaan yang paling umum digunakan untuk menganalisis aliran air dalam saluran terbuka. Persamaan empiris untuk mensimulasikan aliran air dalam saluran dimana air terbuka

Lebih terperinci

PERENCANAAN SISTEM PENYEDIAAN AIR BERSIH DI DESA TANDENGAN, KECAMATAN ERIS, KABUPATEN MINAHASA

PERENCANAAN SISTEM PENYEDIAAN AIR BERSIH DI DESA TANDENGAN, KECAMATAN ERIS, KABUPATEN MINAHASA PERENCANAAN SISTEM PENYEDIAAN AIR BERSIH DI DESA TANDENGAN, KECAMATAN ERIS, KABUPATEN MINAHASA Priskila Perez Mosesa Liany A. Hendratta, Tiny Mananoma Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi

Lebih terperinci

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC

Analisa Rugi Aliran (Head Losses) pada Belokan Pipa PVC Seminar Nasional Peranan Ipteks Menuju Industri Masa Depan (PIMIMD-4) Institut Teknologi Padang (ITP), Padang, 27 Juli 2017 ISBN: 978-602-70570-5-0 http://eproceeding.itp.ac.id/index.php/pimimd2017 Analisa

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Saluran Terbuka Saluran terbuka adalah salah satu aliran yang mana tidak semua dinding saluran bergesekan dengan fluida yang mengalir, oleh karena itu terdapat ruang bebas dimana

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy. SOAL HIDRO 1. Saluran drainase berbentuk empat persegi panjang dengan kemiringan dasar saluran 0,015, mempunyai kedalaman air 0,45 meter dan lebar dasar saluran 0,50 meter, koefisien kekasaran Manning

Lebih terperinci

Bab III HIDROLIKA. Sub Kompetensi. Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase

Bab III HIDROLIKA. Sub Kompetensi. Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase Bab III HIDROLIKA Sub Kompetensi Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase 1 Analisis Hidraulika Perencanaan Hidraulika pada drainase perkotaan adalah untuk

Lebih terperinci

STUDI PENGEMBANGAN JARINGAN PIPA INDUK AIR BERSIH PDAM WILAYAH SOREANG DENGAN PROGRAM EPANET

STUDI PENGEMBANGAN JARINGAN PIPA INDUK AIR BERSIH PDAM WILAYAH SOREANG DENGAN PROGRAM EPANET STUDI PENGEMBANGAN JARINGAN PIPA INDUK AIR BERSIH PDAM WILAYAH SOREANG DENGAN PROGRAM EPANET Tria Amiarsa NRP : 0521049 Pembimbing : Ir. Kanjalia Rusli, MT. FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

Kehilangan tenaga sekunder dalam pipa terjadi karena adanya perubahan penampang pipa, sambungan, belokan dan katup. Pada pipa panjang, kehilangan

Kehilangan tenaga sekunder dalam pipa terjadi karena adanya perubahan penampang pipa, sambungan, belokan dan katup. Pada pipa panjang, kehilangan Kehilangan tenaga sekunder dalam pipa terjadi karena adanya perubahan penampang pipa, sambungan, belokan dan katup. Pada pipa panjang, kehilangan tenaga sekunder jauh lebih kecil daripada kehilangan tenaga

Lebih terperinci

BAB II LANDASAN TEORI. ketersediaan air dengan tingkat pemenuhan yang dapat ditelorir di daerah yang

BAB II LANDASAN TEORI. ketersediaan air dengan tingkat pemenuhan yang dapat ditelorir di daerah yang 4 BAB II LANDASAN TEORI Penyediaan air bersih di Desa Kanigoro Kecamatan Saptosari Kabupaten Gunungkidul diharapkan dapat meningkatkan kesejahteraan masyarakat, yang kemudian dapat berdampak pada perkembangan

Lebih terperinci

V 1,2 = kecepatan aliran fluida dititik 1 dan 2 (m/det)

V 1,2 = kecepatan aliran fluida dititik 1 dan 2 (m/det) BAB IV HASIL PENELITAN DAN PEMBAHASAN 4.1 Performance Alat Penjernih Air Sistem Gravitasi Penelitian ini menitikberatkan pada parameter-parameter yang diperlukan dalam perencanaan sistem distribusi air

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI 2.1 Pengairan Tanah Pertambakan Pada daerah perbukitan di Atmasnawi Kecamatan Gunung Sindur., terdapat banyak sekali tambak ikan air tawar yang tidak dapat memelihara ikan pada

Lebih terperinci

IV. PERSAMAAN TAHANAN GESEK

IV. PERSAMAAN TAHANAN GESEK /9/06 Persamaan kehilangan tenaga pada aliran laminer: 3L h gd Persamaan tsb dapat ditulis dalam bentuk: Dengan 64 L 64 L h D D g Re D g 64 Re.. (5).... (6) Dengan demikian, untuk aliran laminer koeisien

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Air merupakan kebutuhan pokok bagi kehidupan manusia. Manusia

BAB I PENDAHULUAN Latar Belakang Air merupakan kebutuhan pokok bagi kehidupan manusia. Manusia BAB I PENDAHULUAN 1.1. Latar Belakang Air merupakan kebutuhan pokok bagi kehidupan manusia. Manusia membutuhkan air dalam kuantitas dan kualitas tertentu dalam melakukan aktivitas dan menopang kehidupannya.

Lebih terperinci

RANCANG BANGUN PERANGKAT UJI RUGI-RUGI HEAD DENGAN FLUIDA KERJA AIR (H 2 O) DAN ANALISISNYA. Oleh : Tris Sugiarto ABSTAK

RANCANG BANGUN PERANGKAT UJI RUGI-RUGI HEAD DENGAN FLUIDA KERJA AIR (H 2 O) DAN ANALISISNYA. Oleh : Tris Sugiarto ABSTAK ISSN 1978-497 RANCANG BANGUN PERANGKAT UJI RUGI-RUGI HEAD DENGAN FLUIDA KERJA AIR (H O) DAN ANALISISNYA Oleh : Tris Sugiarto ABSTAK Aliran fluida yang mengalir dalam instalasi saluran pipa akan mengalami

Lebih terperinci

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline.

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. FLUIDA BERGERAK ALIRAN FLUIDA Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. Aliran turbulen Suatu aliran dikatakan laminar / stasioner / streamline

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN TELANAI INDAH KOTA JAMBI SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik HITLER MARULI SIDABUTAR NIM.

Lebih terperinci

Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan

Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan J. of Math. and Its Appl. ISSN: 189-605X Vol. 1, No. 1 004, 63 68 Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan Basuki Widodo Jurusan Matematika Institut

Lebih terperinci

ANALISIS SISTEM PENDISTRIBUSIAN AIR BERSIH PADA BANGUNAN BERTINGKAT DENGAN SOFTWARE EPANET 2.0

ANALISIS SISTEM PENDISTRIBUSIAN AIR BERSIH PADA BANGUNAN BERTINGKAT DENGAN SOFTWARE EPANET 2.0 ANALISIS SISTEM PENDISTRIBUSIAN AIR BERSIH PADA BANGUNAN BERTINGKAT DENGAN SOFTWARE EPANET 2.0 TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian pendidikan sarjana teknik sipil Oleh: PRIHATINNI

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

BAB IV HASIL DAN ANALISIS Prosedur Perencanaan Sistem Proteksi Kebakaran

BAB IV HASIL DAN ANALISIS Prosedur Perencanaan Sistem Proteksi Kebakaran BAB IV Bab IV Hasil dan Analisis HASIL DAN ANALISIS 4.1. Prosedur Perencanaan Sistem Proteksi Kebakaran Sistem pencegahan dan penanggulangan kebakaran merupakan suatu kombinasi dari berbagai sistem untuk

Lebih terperinci

PENGEMBANGAN SISTIM PELAYANAN AIR BERSIH

PENGEMBANGAN SISTIM PELAYANAN AIR BERSIH PENGEMBANGAN SISTIM PELAYANAN AIR BERSIH Ridwan Naway F. Halim, M. I. Jasin, L. Kawet Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi email: Ridwannaway@ymail.com ABSTRAK Kawasan Perumahan

Lebih terperinci

BAB II LANDASAN TEORI. pelayanannya dapat menggunakan Sambungan Rumah (SR), Sambungan Halaman

BAB II LANDASAN TEORI. pelayanannya dapat menggunakan Sambungan Rumah (SR), Sambungan Halaman BAB II LANDASAN TEORI 2.1 Sistem Penyediaan Air Bersih 2.1.1 Sistem perpipaan Sistem ini menggunakan pipa sebagai sarana pendistribusian air. Unit pelayanannya dapat menggunakan Sambungan Rumah (SR), Sambungan

Lebih terperinci

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Beberapa topik tegangan permukaan

Lebih terperinci

MODUL PRAKTIKUM MEKANIKA FLUIDA

MODUL PRAKTIKUM MEKANIKA FLUIDA MODUL PRAKTIKUM MEKANIKA FLUIDA LABORATORIUM TEKNIK SUMBERDAYA ALAM dan LINGKUNGAN JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2013 MATERI I KALIBRASI SEKAT UKUR

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

Aliran pada Saluran Tertutup (Pipa)

Aliran pada Saluran Tertutup (Pipa) Aliran pada Saluran Tertutup (Pipa) Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran yang digunakan untuk mengalirkan fluida dengan tampang aliran penuh (Triatmojo 1996 : 25). Fluida yang

Lebih terperinci

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. 24 Bandung 022. 4214714 Fax. 022. 4222587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id MODUL

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR Oleh : DEKY PUTRA 04 04 22 013 3 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk

Gambar 3-15 Selang output Gambar 3-16 Skema penelitian dengan sudut pipa masuk Gambar 3-17 Skema penelitian dengan sudut pipa masuk DAFTAR ISI Halaman Judul... i Lembar Pengesahan Dosen Pembimbing... ii Lembar Pengesahan Dosen Penguji... iii Halaman Persembahan... iv Halaman Motto... v Kata Pengantar... vi Abstrak... ix Abstract...

Lebih terperinci

PERENCANAAN JARINGAN AIR BERSIH DESA KIMA BAJO KECAMATAN WORI

PERENCANAAN JARINGAN AIR BERSIH DESA KIMA BAJO KECAMATAN WORI PERENCANAAN JARINGAN AIR BERSIH DESA KIMA BAJO KECAMATAN WORI Fenny Nelwan E. M. Wuisan, L. Tanudjaja Fakultas Teknik, Jurusan Sipil, Universitas Sam Ratulangi Email: nelwanfenny@ymail.com ABSTRAK Air

Lebih terperinci

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Andrea Sebastian Ginting 1, M. Syahril Gultom 2 1,2 Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut.

Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut. KINEMATIKA ZAT CAIR Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut. Jenis aliran. Aliran inisid dan iskos Aliran inisid aliran dengan kekentalan zat cair μ 0 (zat

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN ABSTRAK ABSTRACT KATA PENGANTAR HALAMAN PERSEMBAHAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN ABSTRAK ABSTRACT KATA PENGANTAR HALAMAN PERSEMBAHAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN DAFTAR ISI Halaman HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN JUDUL ABSTRAK ABSTRACT KATA PENGANTAR HALAMAN PERSEMBAHAN MOTTO DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dan tumbuhan memerlukan air untuk keberlangsungan kehidupanya. Air juga

BAB II TINJAUAN PUSTAKA. dan tumbuhan memerlukan air untuk keberlangsungan kehidupanya. Air juga BAB II TINJAUAN PUSTAKA 2.1. Umum Air adalah suatu kebutuhan utama dalam kehidupan Manusia, hewan, dan tumbuhan memerlukan air untuk keberlangsungan kehidupanya. Air juga dapat digunakan sebagai pelarut,

Lebih terperinci

PERENCANAAN SISTEM PENYEDIAAN AIR BERSIH DI DESA RANOLAMBOT KECAMATAN KAWANGKOAN BARAT KABUPATEN MINAHASA

PERENCANAAN SISTEM PENYEDIAAN AIR BERSIH DI DESA RANOLAMBOT KECAMATAN KAWANGKOAN BARAT KABUPATEN MINAHASA Jurnal Sipil Statik Vol.4 No.6 Juni 2016 (357-366) ISSN: 2337-6732 PERENCANAAN SISTEM PENYEDIAAN AIR BERSIH DI DESA RANOLAMBOT KECAMATAN KAWANGKOAN BARAT KABUPATEN MINAHASA Dianty Elisa Umboh Eveline M.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi.

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi. BAB II TINJAUAN PUSTAKA 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi Sosrodarsono, (1978) dalam perencanaan saluran irigasi harus memperhatikan beberapa aspek yang mempengaruhi proses irigasi diantaranya

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

ANALISA POMPA AIR PADA GEDUNG BERTINGKAT

ANALISA POMPA AIR PADA GEDUNG BERTINGKAT ANALISA POMPA AIR PADA GEDUNG BERTINGKAT Nama : Aldian Sya Ban NPM : 20411550 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Ridwan, ST., MT. Latar Belakang 1. Perkembangan Kota

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Teori Pipa Sistem perpipaan dapat ditemukan pada hampir semua jenis industri, dari sistem pipa tunggal yang sederhana sampai sistem pipa bercabang yang sangat kompleks. 1. Sistem

Lebih terperinci

Sub Kompetensi. Bab III HIDROLIKA. Analisis Hidraulika. Saluran. Aliran Permukaan Bebas. Aliran Permukaan Tertekan

Sub Kompetensi. Bab III HIDROLIKA. Analisis Hidraulika. Saluran. Aliran Permukaan Bebas. Aliran Permukaan Tertekan Bab III HIDROLIKA Sub Kompetensi Memberikan pengetauan tentang ubungan analisis idrolika dalam perencanaan drainase Analisis Hidraulika Perencanaan Hidrolika pada drainase perkotaan adala untuk menentukan

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Suatu sistem transfer fluida dari suatu tempat ke tempat lain biasanya terdiri dari pipa,valve,sambungan (elbow,tee,shock dll ) dan pompa. Jadi pipa memiliki peranan

Lebih terperinci

I Putu Gustave Suryantara Pariartha

I Putu Gustave Suryantara Pariartha I Putu Gustave Suryantara Pariartha Open Channel Saluran terbuka Aliran dengan permukaan bebas Mengalir dibawah gaya gravitasi, dibawah tekanan udara atmosfir. - Mengalir karena adanya slope dasar saluran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Metode Pendistribusian Air Didalam pendistribusian air diperlukan suatu metode pendistribusian agar air dapat mengalir dari sumber air ke para pelanggang. Adapun metode pendistribusian

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA M E D A N 2008 TUGAS SARJANA SISTEM PERPIPAAN PERANCANGAN INSTALASI PENDISTRIBUSIAN AIR MINUM PADA PERUMNAS TAMAN PUTRI DELI, NAMORAMBE KABUPATEN DELI SERDANG O L E H : A N T H O N Y S T E R S A G A L A N I M : 0 3 0401

Lebih terperinci

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada BAB II ALIRAN FLUIDA DALAM PIPA.1 Sifat-Sifat Fluida Fluida merupakan suatu zat yang berupa cairan dan gas. Fluida memiliki beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

Lebih terperinci

Mekanika Fluida II. Tipe Saluran Terbuka Penampang Hidrolis Terbaik

Mekanika Fluida II. Tipe Saluran Terbuka Penampang Hidrolis Terbaik Mekanika Fluida II Tipe Saluran Terbuka Penampang Hidrolis Terbaik Review Rumus S adalah slope energi dan S= hf /L dimana hf adalah energy (head) loss dan L adalah panjang saluran. Untuk aliran uniform

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pompa Pompa adalah peralatan mekanis untuk mengubah energi mekanik dari mesin penggerak pompa menjadi energi tekan fluida yang dapat membantu memindahkan fluida ke tempat yang

Lebih terperinci

PENGEMBANGAN SISTEM PENYEDIAAN AIR BERSIH DI DESA SEA KECAMATAN PINELENG KABUPATEN MINAHASA

PENGEMBANGAN SISTEM PENYEDIAAN AIR BERSIH DI DESA SEA KECAMATAN PINELENG KABUPATEN MINAHASA PENGEMBANGAN SISTEM PENYEDIAAN AIR BERSIH DI DESA SEA KECAMATAN PINELENG KABUPATEN MINAHASA Risky Yohanes Rottie Tiny Mananoma, Hanny Tangkudung Universitas Sam Ratulangi Fakultas Teknik Jurusan Sipil

Lebih terperinci

DAFTAR ISI Novie Rofiul Jamiah, 2013

DAFTAR ISI Novie Rofiul Jamiah, 2013 DAFTAR ISI ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR GAMBAR... vii DAFTAR TABEL... ix DAFTAR NOTASI... xi BAB I PENDAHULUAN 1.1 Latar Belakang... 1 1.2 Batasan

Lebih terperinci

F = M a Oleh karena diameter pipa adalah konstan, maka kecepatan aliran di sepanjang pipa adalah konstan, sehingga percepatan adalah nol, d dr.

F = M a Oleh karena diameter pipa adalah konstan, maka kecepatan aliran di sepanjang pipa adalah konstan, sehingga percepatan adalah nol, d dr. Hukum Newton II : F = M a Oleh karena iameter pipa aalah konstan, maka kecepatan aliran i sepanjang pipa aalah konstan, sehingga percepatan aalah nol, rr rr( s) rs rs( r r) rrs sin o Bentuk tersebut apat

Lebih terperinci

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml KERUGIAN JATUH TEKAN (PRESSURE DROP) PIPA MULUS ACRYLIC Ø 10MM Muhammmad Haikal Jurusan Teknik Mesin Universitas Gunadarma ABSTRAK Kerugian jatuh tekanan (pressure drop) memiliki kaitan dengan koefisien

Lebih terperinci

PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN PT.PERTAMINA PANGKALAN BRANDAN DENGAN KAJIAN PEMBANDING EPANET

PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN PT.PERTAMINA PANGKALAN BRANDAN DENGAN KAJIAN PEMBANDING EPANET 1 PERANCANGAN SISTEM DISTRIBUSI ALIRAN AIR BERSIH PADA PERUMAHAN PT.PERTAMINA PANGKALAN BRANDAN DENGAN KAJIAN PEMBANDING EPANET SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci