RANCANG BANGUN LENGAN ROBOT (ROBOTIC ARM ) DENGAN PENGENDALIAN SECARA MANUAL. Oleh Annur Solichin C

Ukuran: px
Mulai penontonan dengan halaman:

Download "RANCANG BANGUN LENGAN ROBOT (ROBOTIC ARM ) DENGAN PENGENDALIAN SECARA MANUAL. Oleh Annur Solichin C"

Transkripsi

1 RANCANG BANGUN LENGAN ROBOT (ROBOTIC ARM ) DENGAN PENGENDALIAN SECARA MANUAL Oleh Annur Solichin C PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR 2009

2 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa skripsi yang berjudul RANCANG BANGUN LENGAN ROBOT ( ROBOTIC ARM ) DENGAN PENGENDALIAN SECARA MANUAL adalah benar merupakan hasil karya sendiri dan belum diajukan dalam b entuk apa pun kepada perguruan tinggi manapun. Semua sumber data dan informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka dibagian akhir skripsi ini. Bogor, Juli 2009 Annur Solichin C

3 RINGKASAN ANNUR SOLICHIN. Rancang Bangun Lengan Robot (Robotic Arm) dengan Pengendalian Secara Manual. Dibimbing oleh SRI PUJIYATI dan INDRA JAYA. Negara Indonesia merupakan negara kepulauan yang memiliki bentangan lautan dari Sabang hingga Merauke. Kondisi ini menuntut kita untuk bisa menciptakan wahana laut yang mampu menggantikan manusia dalam melakukan kegiatan eksplorasi bawah laut. Mikrokontroler merupakan teknol ogi terbaru yang mempermudah pengendalian rumit menjadi lebih sederhana. Saat ini teknologi berukuran mikro telah mengeser penggunaan perangkat konvensional yang membutuhkan biaya tinggi. Pemanfaatan mikrokontroler ini akan menghemat bahan, biaya dan memiliki fungsi yang banyak dibandingkan alat konvensional. Pelaksanaan penelitian ini dilakukan dengan 2 tahap, yaitu pembuatan alat dan pengujian alat. Pada tahap pembuatan alat, penulis menggunakan bahan arkilik sebagai bahan utama rancang bangun lengan robot. Bahan ini digunakan karena bahannya mudah didapat, memiliki kekakuan dan mudah dipotong. Tahap pengujian alat dilakukan 2 jenis pengujian, yaitu pada sensor gerak dan motorik lengan robot. Pengujian dilakukan dengan kondisi yang berbeda untuk me ncatat perubahan yang terjadi. Desain lengan robot yang dibuat harus memenuhi fungsi dari lengan robot, yaitu mampu mengambil obyek dalam ruang tiga dimensi (panjang lebar dan tinggi). Gaya grafitasi bumi yang mengenai robot di seimbangkan dengan pemberian pemberat penyeimbang. Penyatuan bagian -bagian arkrilik penulis menggunakan lem alteco dan arkrilik siku. Deteksi gerakan sendi -sendi tangan manusia digunakan perangkat sensor gerak yang terbuat dari potensio meter putar. Penulis melakukan penelitian ini bertujuan untuk menciptakan alat instrument untuk keperluan pengambilan obyek benda yang dikendalikan secara manual melalui sensor lengan manusia. Alat ini berguna untuk menggantikan fungsi tangan manusia dalam mengambil obyek benda berbahaya sehingga t idak beresiko bagi keselamatan penggunanya. Pada pengujian potensio meter dengan pemberian sudut tertentu menghasilkan nilai rasio tegangan per satuan derajat yang berbeda -beda disetiap sensor gerak. Perbedaan nilai ini terjadi karena menggunakan gear penghubung yang berbeda di setiap sendi putar. Masalah ini dapat diatasi dengan melakukan kalibrasi nilai dalam program. Pengujian sensor motorik lengan robot dilakukan dengan memberikan lebar pulsa yang berbeda dan mengukur besarnya sudut putar serta arah gerakan servo. Hasil pengukuran diperoleh hasil servo fingger dan arm akan berputar dengan besar sudut positif apabila diberikan lebar pulsa yang besar sedangkan untuk servo wrist, elbow, dan shoulder melakukan kondisi sebaliknya. Pengujian kemampuan cengkraman dan gerakan lengan robot dilakukan sebanyak sepuluh kali. Pengujian ini dilakukan dengan cara mengambil obyek yang berbeda ukuran, bentuk, dan bobotnya. Hasil percobaan ini diketahui bahwa lengan robot mampu mengambil obyek dengan permukaan data r dengan baik dan stabil.

4 RANCANG BANGUN LENGAN ROBOT ( ROBOTIC ARM ) DENGAN PENGENDALIAN SECARA MANUAL Skripsi Sebagai salah satu syarat untuk memperoleh gelar sarjana perikanan Pada Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor Oleh: Annur Solichin C PROGRAM STUDI ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR 2009

5 Hak cipta milik Annur Solichin tahun 2009 Hak cipta dilindungi Dilarang mangutip dan memperbanyak tanpa izin tertulis dari Institut Pertanian Bogor, sebagian atau seluruhnya dalam bentuk apa pun, baik cetak, fotocopy, microfilm, dan sebagainya

6 SKRIPSI Judul Nama NRP Departemen : RANCANG BANGUN LENGAN ROBO T (ROBOTIC ARM) DENGAN PENGENDALIAN SECARA MANUAL : Annur Solichin : C : Ilmu dan Teknologi Kelautan Disetujui Pembimbing 1 Pembimbing 2 Dr. Ir. Sri Pujiyati Prof. Dr. Indra Jaya NIP NIP Mengetahui Dekan Fakultas Perikanan dan Ilmu Kelautan Prof. Dr. Indra Jaya NIP Tanggal Lulus: 5 Juni 2009

7 KATA PENGANTAR Penulis mengucapkan syukur alhamdulillah kehadirat Illahi Robbi atas semua rahmat dan karunia-nya yang telah memberikan jalan kemudahan kepada penulis sehingga tugas akhir penelitian ini dapat terselesaikan. Penelitian yang berjudul Rancang Bangun Lengan Robot (Robotic Arm) dengan Pengendalian Secara Manual dilakukan oleh penulis sebagai salah satu syarat untuk dapat gelar sarjana S1. Dalam kesempatan ini penulis me ngucapkan terima kasih yang sebesar - besarnya kepada Ibu Dr. Ir. Sri Pujiyati, M.Si, selaku dosen Pembimbing Utama, Bapak Prof. Dr. Indra Jaya, M.Sc, selaku dosen Pembimbing Anggota dan yang telah membantu sebagian dana untuk melakukan penelitian ini. Tak lupa saya ucapkan terimakasih kepada Abang Iqbal yang telah bersedia membantu memberikan bimbingan dalam ilmu program pada alat yang dibuat oleh penulis. Tak lupa ucapan terima kasih ditujukan kepada Bapak Sukirno dan Ibu Kundrini selaku orang tua penulis yang selalu memberi nasehat terbaik bagi anaknya serta kepada semua dosen dan teman-teman yang telah memberikan dorongan dan bantuan dalam penyusunan tugas akhir penelitian ini. Penulis menyadari setiap insan manusia selalu diliputi dengan kesalahan dan kekurangan maka dari itu penulis memohon maaf yang besar apabila terdapat perbuatan yang kurang berkenan. Penulis berharap tugas akhir ini dapat memperkaya wawasan akan terknologi robotika untuk bidang kelautan baik bagi mahasiswa kelautan maupun orang lai n. Bogor, Juli 2009 Annur Solichin

8 DAFTAR ISI DAFTAR TABEL... x DAFTAR GAMBAR... xi Halaman DAFTAR LAMPIRAN... xiii 1. PENDAHULUAN Latar Belakang Tujuan Penelitian TINJAUAN PUSTAKA Model lengan robot (robotic arm) Mikrokoprosesor Mikrokontroler ATMEL Mikrokontroler ATMega Board mikrokontroler ATMega ADC PWM (Pulse Width Modulation) Motor servo lengan robot (robotic arm) Program lengan robot (robotic arm) Bahasa program lengan robot (robotic arm) Perangkat penginderaan (sensor) Sejarah perkembangan lengan robot METODE PENELITIAN Tempat dan waktu penelitian Alat bantu Alat ukur dan peralatan pembuatan lengan robot Software pembuatan lengan robot Bahan untuk membuat lengan robot, kontroler, dan sensor Proses pembuatan lengan robot (robotic arm) Unit motor servo lengan robot (robotic arm) Unit motor sensor lengan robot (robotic arm) Unit catu daya mikrokontroler lengan robot ( robotic arm) Unit catu daya motor servo lengan robot (robotic arm) Mikrokontroler lengan robot (robotic arm) Proses berjalannnya program lengan robot (robotic arm) Pengunjian lengan robot (robotic arm) Pengujian sensor lengan robot (robotic arm) Pengujian besar sudut servo dengan perbedaan

9 lebar pulsa Pengujian daya cengkram gripper lengan robot (robotic arm) HASIL DAN PEMBAHASAN Hasil rangkaian lengan robot (robotic arm) Desain pelindung motor servo RAMCES Desain motor servo fingger Desain motor servo wrist dan arm Desain motor servo elbow Desain motor servo shoulder Desain persambungan sendi RAMCES Desain beban penyeimbang motor servo RAMCES Desain penyeimbang servo Desain penyeimbang servo Desain penyeimbang servo Desain penyeimbang servo Desain sensor pengendali RAMCES Desain sensor fingger Desain sensor wrist Desain sensor arm Desain motor servo elbow Desain motor servo shoulder Rangkaian kontroler RAMCES Hasil perhitungan perangkat keras RAMCES Tegangan keluaran sensor RAMCES Besar sudut servo RAMCES-5 dengan perbedaan lebar pulsa Daya cengkram gripper Perangkat lunak pengendali RAMCES KESIMPULAN DAN SARAN Kesimpulan Saran DAFTAR PUSTAKA LAMPIRAN RIWAYAT HIDUP... 81

10 DAFTAR TABEL Halaman 1. Perkembangan lengan robot di dunia Spesifikasi jenis motor servo finger yang dipakai Spesifikasi jenis motor servo wrist dan arm yang dipakai Spesifikasi jenis motor servo elbow dan shoulder yang dipakai Hasil pengukuran tegangan yang dikeluarkan sensor pada sudut maksimum dan minimum Hasil pengukuran lebar pulsa dan sud ut yang dapat dibuat Hasil pengujian daya cengkram gripper pada berbagai macam bentuk obyek Hasil pengukuran tegangan yang dikeluarkan sensor pada sudut maksimum dan minimum Hasil pengukuran lebar pulsa dan sudut yang dapat dibuat Hasil pengujian daya cengkram gripper pada berbagai macam bentuk obyek... 45

11 DAFTAR GAMBAR Halaman 1. Bagian dasar konverer analog ke digital Potensio meter sebagai sensor posisi Penampang potensio meter bagian dalam Tahapan pembuatan lengan robot Rangkaian pengatur tegagan pada sensor lengan robot Rangkaian power supply kontroler lengan robot Rangkaian power supply motor servo lengan robot Rangkaian mikrokontroler lengan robot Flowchart program pada rangkaian lengan robot (robotic arm) Tampak samping desain RAMCES a. Tampak atas desain pelindung motor servo b. Tampak depan desain pelindung motor servo Tampak atas desain gripper dari servo a. Tampak atas desain motor servo 2 dan b. Tampak depan desain motor servo 2 dan a. Tampak atas desain motor servo 2 dan b. Tampak samping desain pelindung motor Tampak atas desain pelindung motor Tampak atas desain motor servo Tampak depan desain motor servo

12 18. Tampak atas desain motor servo Tampak samping desain penyeimbang servo Tampak samping bentuk jadi penyeimbang servo Tampak samping desain penyeimbang servo Tampak samping bentuk jadi penyeimbang servo Tampak belakang desain penyeimbang servo Tampak depan bentuk jadi penyeimbang servo Tampak samping desain penyeimbang servo Tampak samping bentuk jadi penyeimbang servo Tampak bawah sensor fingger Tampak bawah sensor wrist Tampak atas servo wrist Tampak bawah sensor arm Tampak bawah sensor arm Tampak bawah sensor elbow Tampak Tampak depan sensor shoulder Tampak atas kontroler RAMCES -5 beserta bagian-bagiannya... 42

13 DAFTAR LAMPIRAN Halaman 1. Referensi capit untuk RAMCES Bentuk mikrokontroler dan IC ATMega Data sheet ATMega Bentuk board DT-AVR Low Cost Micro System Ilustrasi duty cycle dan lebar pulsa Bentuk dan bagian-bagian motor servo Ilustrasi pemberian lebar pulsa pada motor servo Sejarah perkembangan lengan robot Bentuk lengkap dan bagian-bagian RAMCES Sensor RAMCES Bentuk sensor RAMCES-5 saat digunakan Data sheet regulator kontroler Keadaan gripper saat membuka dan menutup capit Listing program RAMCES

14 1. PENDAHULUAN 1.1. Latar belakang Perkembangan teknologi berbasis mikrokontroler pada abad -21 terjadi dengan sangat cepat. Kemajuan ini dapat dirasakan dengan munculnya banyaknya peralatan mutakhir yang bisa dioperasikan dengan mengguna kan komputer maupun beberapa tombol sederhana. Hampir keseluruhan peralatan elektronik yang berada disekitar kita telah dikendalikan dengan adanya mikrochip dan mikrokontroler, bahkan dalam skala kecil seperti pabrik pembuatan mobil dan motor. Kemajuan teknologi secara langsung telah membantu umat manusia lebih mudah melakukan hal yang dianggap sulit. Hadirnya produsen-produsen elektronika di Indonesia dan dunia telah mendorong terciptanya persaingan harga yang kompetitif sehingga mikrokontroler dan alat pendukungnya menjadi lebih murah. Mikrokontroler saat ini telah dapat melakukan banyak hal tanpa membutuhkan banyak peralatan elektronik oleh sebab itu pada penelitian ini penulis lebih fokus pada penggunaan mikrokontroler sebagai sarana pengendali lengan robot. Hal ini untuk mengatasi kekurangan tubuh manusia bila berada di dalam air. Tubuh manusia akan mendapatkan tekanan yang besarnya sama dengan volume air yang dipindahkan. Semakin dalam manusia menyelam maka akan semakin tinggi tekanan yan g diterima oleh tubuh sehingga dalam menyelam manusia hanya terbatas pada kedalam tertentu. Penelitian ini dilakukan sebagai salah satu jalan untuk memberikan cara yang lebih mudah bagi manusia mengeksplorasi lingkungan bawah laut terutama di perairan Indonesia.

15 1.2. Tujuan penelitian 1. Merancang alat yang mampu melakukan pengambilan obyek tertentu yang dapat dikendalikan secara manual melalui sensor lengan tangan manusia. 2. Pengujian terhadap kinerja Robotic Arm.

16 2. TINJAUAN PUSTAKA 2.1. Model lengan robot (robotic arm) Penulis membuat lengan robot menggunakan sistem kontrol gerak holomonic. Gerak holomonic merupakan sistem gerak yang serupa dengan gerak ujung pensil atau pulpen ke segala arah di permukaan kertas sesuai de ngan keinginan (Pitowarno, 2006). Penerapan sistem gerak holomonic memungkinkan lengan robot dapat menjangkau segala arah dengan mudah. Lengan robot yang dibuat oleh penulis lebih menitik beratkan pada jenis kontrol kinematika dengan memanfaatkan program pada mikrokontroler karena memiliki struktur dinamika yang rumit. Pitowarno (2006) menjelaskan bahwa untuk robot yang memiliki struktur dinamika yang rumit sering kali model matematika dinamiknya tidak mungkin dideskripsikan secara rinci dan ideal. Menu rut Pitowarno (2006) pada kenyataannya dalam aplikasi para enginer lebih suka menghindari analisis dinamik yang rumit dan lebih memfokuskan kajiannya dalam mempercanggih kontrol kinematik. Bagian tangan robot dikenal sebagai manipulator tangan, yaitu sistem gerak yang berfungsi untuk memanipulasi (memegang, mengambil, mengangkat, memindah atau mengolah) obyek (Pitowarno, 2006). Untuk melakukan pengambilan obyek lengan robot ini dilengkapi dengan gripper (pemegang). Gripper jenis capit telah teruji pada robot Lynx5 dalam mencengkram obyek bulat yang ditampilkan pada Lampiran Mikrokoprosesor. Mikroprosesor merupakan chip dengan fungsi sebagai pemroses data dari

17 input yang diterima dari sebuah sistem digital (Budiharto, 2005). Winoto (2008) menjelaskan bahwa mikrokontroler adalah sebuah sistem mikroprosesor dimana di dalamnya sudah terdapat CPU, ROM, RAM, I/O, Clock dan peralatan internal lainya yang sudah saling terhubung dan terorganisasi (teralamati) dengan baik oleh pabrik pembuatnya dan dikemas dalam satu chip yang siap dipakai. Winoto (2008) menjelaskan ALU adalah Processor yang bertugas mengeksekusi (eksekutor) kode program yang ditunjuk oleh program counter. Program counter (PC) merupakan komponen yang bertugas menu njukkan ke ALU alamat program memori yang harus diterjemahkan kode programnya dan dieksekusi (Winoto, 2008). Hampir semua pemrosesan data dilakukan di dalam ALU di dalam CPU Mikrokontroler ATMEL ATMEL merupakan pemimpin global dalam desain dan manufaktur dari mikrokontroler, dan komplementer produk seperti capacitive touch sensing ICS, ASICs, nonvolatil memori dan komponen frekuensi radio. Ada beberapa vendor yang membuat mikrokontroler diantaranya Intel, Microchip, Winbond, Atmel, Philips, Xemics dan lain - lain. Beberapa vendor tersebut, yang paling populer digunakan adalah mikrokontroler buatan Atmel (RIZKALINDO, 2008). Penggunaan mikrokontroler jenis ATMEL telah menyebar luas didunia sebab memiliki keunggulan dari segi kemampua n dan harga. Mikrokontroler ini memiliki kemampuan yang sama dengan mikrokontroler yang lain dengan perangkat pendukung yang tidak terlalu banyak, seperti kristal, resistor dan kapasitor (Budiharto, 2006).

18 Budiharto (2005) menjelaskan bahwa di dala m mikrokontroler terdapat bagian-bagian pendukung proses pengolahan data yang diterima, diantaranya: 1. CPU (Central Processing Unit) Tempat terjadinya proses pengolahan data yang diterima. 2. RAM (Random Access Memory) Tempat menyimpan data sementara sebelum di proses oleh CPU. 3. EPROM (Eraseable Programmable Read Only Memory ) Tempat menyimpan program secara permanen yang dapat dirubah. 4. I/O (Input/Output) Tempat berkomunikasinya dengan perangkat keras yang terhubung diluar. 5. Timer Tempat unit pencacahan dan delay un tuk mengatur pewaktuan. 6. Intrup Controler Tempat mengatur dan menampung permintaan mendadak saat running Mikrokontroler ATMega8535 Mikrokontroler ATMega 8535 merupakan jenis mikrokontroler AVR produk Atmel yang memiliki banyak macam dan jenisn ya. Mikrokontroler AVR (Alf and Vegard s Risc prosesor) memiliki arsitektur RISC 8 bit, dimana semua instruksi dikemas dalam kode 16-bit (16-bits word) dan sebagian besar instruksi dieksekusi dalam 1 (satu) siklus clock, berbeda dengan instruksi MCS 51 ya ng membutuhkan 12 siklus clock (RIZKALINDO, 2008). Kedua jenis mikrokontroler ini memiliki arsitektur yang berbeda. Wardhana (2006) menjelaskan bahwa AVR berteknologi RISC ( Reduced Instruction Set Computing), sedangkan seri MCS 51 berteknologi CI SC (Complex Instruction Set

19 Computing). RIZKALINDO (2008) menjelaskan secara umum, AVR dapat dikelompokkan menjadi 4 kelas, yaitu keluarga ATtiny, keluarga AT90Sxx, keluarga ATMega dan AT86RFxx. Pada dasarnya yang membedakan masing - masing kelas adalah memori, peripheral, dan fungsinya. Bentuk ATMega8535 ditampilkan pada Lampiran 2. Menurut Wardhana (2006) keunggulan pemakaian ATMega 8535 disebabkan karena memiliki fasilitasnya yang lengkap. Konfigurasi pin yang ada pada ATMega 8535 sebagai berikut: 1. VCC merupakan pin yang berfungsi sebagai masukan dari catu daya. 2. GND adalah pin dari ground 3. Port A (PA0..PA7) adalah pin I/O dua arah dan sebagai pin masukan ADC. 4. Port B (PB0..PB7) adalah pin I/O dua arah dan sebagai pin dengan fungsi khusus yaitu timer/counter, komparator analog, dan SPI. 5. Port C (PC0..PC7) adalah pin I/O dua arah dan pin dengan fungsi khusus berupa TWI, komparator analog, dan Timer Osilator. 6. Port D (PD0..PD7) adalah pin I/O dua arah dan pin dengan fungsi khusus berupa komparator analog, interupsi eksternal, dan komunikasi serial. 7. RESET merupakan pin yang berguna untuk menset ulang mikrokontroler. 8. XTAL1 dan XTAL2 merupakan pin masukan clock eksternal. 9. AVCC merupakan pin masukan tegangan untuk ADC. 10. AREF merupakan pin masukan tegangan refe rensi ADC. Susunan kaki dan karakteristik ATMega8535 secara lengkap ditampilkan pada Lampiran 3.

20 2.5. Board mikrokontroler ATMega8535 Board yang digunakan penulis adalah jenis DT-AVR Low Cost Micro System keluaran pabrikan Innovative Electronics ya ng berada di Surabaya, Indonesia. Fitur ADC pada mikrokontroler ATMega 8535 terdapat pada Port A (PA0 PA7) (ATMEL, 2003). DT-AVR Low Cost Micro System juga memiliki ADC hingga 8 channel single-ended A/D converter dengan resolusi 10 bit (Innovative Electronics, 2007). Bentuk board DT-AVR Low Cost Micro System didominasi warna merah dengan dimensi panjang 8,6 cm, lebar 7,2 cm dan tinggi 1,8 cm (Innovative Electronics, 2007). Bentuk dan penempatan pin-pin dari board DT-AVR Low Cost Micro System ditampil kan pada Lampiran ADC ADC adalah suatu prosedur yang dilakukan dalam memproses sinyal analog dengan alat digital dimana sinyal analog di konversi menjadi suatu deret angka yang mempunyai presisi terbatas (Proakis dan Manolakis, 1997). Pros es inisialisasi ADC meliputi proses penentuan clok, tegangan referensi, format output data, dan metode pembacaan (Budiharto, 2008). Proakis dan Manolakis (1995) menyebutkan dalam memandang konversi Analog ke Digital (A/D) ada 3 proses yang terjadi (Gambar 1), yaitu: 1. Pencuplikan. Ini merupakan konversi suatu sinyal waktu kontinu menjadi suatu sinyal waktu diskrit yang diperoleh dengan mengambil cuplikan sinyal waktu-kontinu pada saat waktu diskrit. 2. Kuantisasi. Ini adalah konversi sinyal yang bernilai -kontinu waktu-diskrit menjadi sinyal (digital) bernilai-diskrit, waktu diskrit.

21 3. Pengkodean. Dalam proses pengkodean setiap nilai diskrit digambarkan dengan barisan bilangan biner Pencuplikan Pengkuantisa si Sinyal analog Sinyal waktu diskrit Sinyal terkuantisasi Pengkode an Bit Sinyal digital Sumber : Proakis dan Manolakis (1995) Gambar 1. Bagian dasar konverter analog ke digital (Proakis dan Manolakis, 1995) Input pada mikrokontroler dihubungkan dengan sebuah 8 channel analog multiplexer yang digunakan untuk singgle ended input channels (Budiharto, 2008). Menurut Wardhana (2006) masukan ana log ADC tegangan harus lebih besar dari 0 Volt dan lebih kecil daripada tegangan referansi yang dipakai. Pada penelitian ini digunakan tegangan tegangan referensi internal sebesar 2,56 Volt. Tegangan referensi ADC dapat dipilih antara lain pada pin AREF pin AVCC, atau menggunakan tegangan referensi internal sebesar 2,56 Volt (Budiharto, 2008). Dalam penelitian ini penulis menggunakan 10 bit ADC untuk mencacah tegangan sebesar 2,56 Volt. Nilai bit tergantung dengan kemampuan mikrokontroler yang digunakan. Menurut Wardhana (2006) apabila

22 menggunakan 10 bit ADC maka rentang output yang dihasilkan adalah dari 0 sampai Penggunaan ADC pada lengan robot ditentukan menggunakan channel mode single conversion melalui program yang ada pada mikro kontroler. Mode Single conversion adalah mode yang biasa digunakan apabila ingin menggunakan banyak kanal (Wardhana, 2006). Mode single conversion sama dengan penghubungan input ADC dengan dua buah input ADC. Menurut Budiharto (2008) jika menggunakan differensial channel hasil dari nilai 41 menjadi 40,96 yang apabila digenapkan bisa berkisar 39, 40, 41 karena ketelitian ATMega8535 sebesar +/- 2 LSB (Least Significant Bit) PWM (Pulse Width Modulation) Pulse Width Modulation adalah suatu tehnik manipulasi dalam mengemudikan motor (alat perangkat elektronik berarus besar lainnya) yang menggunakan prisip cut-off dan saturasi (Pitowarno, 2006). Winoto (2008) menjelaskan bahwa PWM sendiri adalah bentuk gelombang digital (pulsa) yang bisa kita atur duty cycle-nya. Pulse With Modulation atau PWM adalah metode canggih untuk mengatur kecepatan motor dan menghindarkan rangkaian mengkonsumsi daya yang berlebih (Budiharto, 2006). Dengan pengaturan konsumsi daya akan membuat alat elektronik yang dibuat lebih efisien dan hemat energi dalam bekerja. Saklar pada rangkaian PWM bukanlah saklar mekanik, tetapi biasanya berupa komponen MOSFET atau Power Transistor karena Rangkaian chopping pada PWM tidak dimungkinkan memakai relay yang memiliki reaksi y ang kurang cepat (Duclin, 2008). Duty Cycle adalah perbandingan antara lama waktu pada

23 saat kondisi on/ high (logika 1) dan lama periode satu gelombang pulsa (Winoto, 2008). Perbandingan dari perioda ON dan perioda T disebut dengan duty cycle (Duclin, 2008). Secara umum duty cycle merupakan lebar pulsa PWM. Gambar perbandingan perioda duty cycle dapat dilihat pada Lampiran 5. Dengan prinsip ini maka akan mudah mengatur lebar pulsa untuk mendapatkan kecepatan motor DC yang diinginkan. PWM bekerja denga n pembuatan gelombang kotak (persegi) yang merupakan variabel antara perbandingan on -off, dimana rata-rata lamanya waktu berkisar antara 0 sampai 100 persen (Cook, 1999) Motor servo lengan robot (robotic arm) Motor servo merupakan sebuah motor DC kecil yang diberi sistem gear dan potensiometer sehingga dia dapat menempatkan horn servo pada posisi yang dikehendaki (Malik, 2007). Motor servo ini jelas menggunakan sistim close loop sehingga posisi horn yang dikehendaki bisa dipertahanka n. Menurut Budiharto (2006) motor servo adalah motor DC kualitas tinggi yang memenuhi syarat untuk digunakan pada aplikasi servo seperti close control loop, yaitu harus dapat menangani perubahan yang cepat pada posisi, kecepatan, dan percepatan. Secara umum terdapat 2 jenis motor servo, yaitu motor servo standard dan motor servo continous. Motor servo standard dapat berputar hingga sedangkan motor servo continous dapat berputar hingga (Budiharto, 2006). Jika dibandingkan dengan motor DC dan motor stepper motor servo memiliki kecepatan putar yang rendah tapi memiliki kekuatan yang besar. Bentuk dari motor servo dapat dilihat pada Lampiran 6.

24 Dalam motor servo sistem kontrol untuk motor relatif sedikit (diperlukan hanya 1 jalur data saja), hal ini tentu berbeda misalnya jika menggunakan motor stepper yang memerlukan jalur kontrol lebih dari 1 jalur (Malik, 2007). Untuk dapat membelokkan motor servo kekanan atau kekiri maka harus diberikan lebar pulsa kepada motor servo secara berula ng-ulang. Ilustrasi pemberian lebar pulsa pada motor servo dapat dilihat pada Lampiran Bahasa program lengan robot ( robotic arm) Program yang kita buat harus disesuaikan dengan mikrokontroler yang kita pakai atau sesuai dengan fasilitas yang diberikan mikrokontroler. Wahyudi (2007) menuliskan beberapa dasar dari BASCOM 8051 diantaranya adalah karakter dalam BASCOM, tipe data, variable, alias, konstanta, array, operasi - operasi dalam BASCOM dan kontrol program Program lengan robot (robotic arm) Pemrograman lengan robot menggunakan software BASCOM-AVR dengan bahasa tingkat tinggi BASIC. Wahyudi (2007) menjelaskan penggunaan bahasa tingkat tinggi BASIC lebih mudah dimengerti dan dipahami dibandingkan bahasa tingkat tinggi lainnya. Bahasa BASIC merupakan jalan keluar dari sulitnya memahami bahasa tingkat rendah assembly. Alberts (2008) menjelaskan bahwa BASCOM AVR merupakan hasil dari pengembangan lebih lanjut dari kompiler BASCOM 8051 dengan kelebihan dapat mendukung penggunaan mikrokontroler jenis AVR yang dikeluarkan ATMEL.

25 2.11. Perangkat penginderaan (sensor) Dalam instrument ini digunakan beberapa alat elektronika yang berfungsi sebagai sensor pada persendian tangan manusia, yaitu potensio meter. Menurut Pitowarno (2006) potensio meter adalah sensor analog yang paling sederhana namun sangat berguna untuk mendeteksi posisi putaran, misalnya kedudukan sudut poros aktuator berdasarkan nilai resistansi pada putaran porosnya. Bentuk perangkat sensor lengan robot dapat dilihat pada Gambar 2. Sumber : Pitowarno (2006) Gambar 2. Potensio meter sebagai sensor posisi Potensio meter poros merupakan hambatan variable yang dapat dirubah nilai hambatannya dengan cara memutar batang porosnya. Perputaran ini akan menggeser kedudukan hambatannya sehingga hambatan yang terbaca berbeda - beda. Potensio meter memiliki 3 kaki dan sebuah pemutar yang berguna untuk

26 merubah hambatan yang ada didalamnya. Bentuk dan bagian potensio met er poros dapat dilihat pada Gambar 3. Sumber : Etisystems (2009) Gambar 3. Penampang potensio meter bagian dalam Sejarah perkembangan lengan robot (robotic arm) Pengembangan robot di dunia ternyata telah ada pada jaman Le onardo da Vinci, hingga saat ini dengan robot yang paling maju bernama ASIMO buatan perusahaan raksasa mobil Honda negara Jepang. Ilustrasi perkembangan lengan robot ditampilkan pada Lampiran 8. Secara singkat perkembangan teknologi lengan robot di dunia dapat dilihat pada Tabel 1 (Jaeger, 2007): Tabel 1. Perkembangan lengan robot di dunia. Tahun Penemu Karya yang dibuat 250 S.M Ctesibius Alexandria Membangun bagian tubuh dan jam air dengan menggunakan papan yang dapat bergerak 1495 Merancang gambar robot manusia yang pertama kali yang Leonardo da mampu duduk, memutar tangan, dan menggerakkan Vinci kepala dengan leluasa 1564 Pare Ambroise Rancangan tangan robot mekanik dengan otot -otot mesin yang menggerakkan tangan 1865 John Brainerd Membuat manusia mesin uap yang digunakan untuk mendorong benda apapun

27 1885 Frank Reade Jr 1937/38 Westinghouse Willard Pollard dan Harold Roselund Raymond Goertz Perusahaan General Motors Rumah sakit Rancho Los Amigos Victor Scheinman dan Larry Leifer 1968 Marvin Minsky 1969 Victor Scheinman 1974 David Silver Victor Scheinman Perusahaan mobil Honda Perusahaan mobil Honda Ilmuan dari Salt Lake City Tim film The Lost World Kedokteran amerika MD Robotics of Canada 2003 Steven Ashley 2007 Steven Ashley Membuat manusia listrik yang merupakan pengembangan dari manusia mesin uap yang telah dibuat sebelumnya Membuat robot bernama ELEKTRO, ini merupakan ro bot dengan bentuk menyerupai manusia yang dapat berbicara, berjalan dan merokok Merancang lengan mekanik untuk menyemprot cat secara terprogram Merancang lengan robot yang dapat dikendalikan me lalui transmisi radio Mengembangkan dan memakai teknologi lengan robot bernama UNIMATE Pembuatan lengan robot dengan nama Rancho Arm dimana untuk pertama kalinya Robotic Arm dapat dikendalikan melalui komputer Membuat lengan robot yang menggunakan penggerak udara dinamakan Orm Membuat lengan robot tentakel yang memiliki kemampuan untuk dapat mengangkat manusia Lengan robot Stanford yang sepenuhnya bergerak menggunakan listrik dan dapat dikendalikan melalui computer Lengan robot Silver, robot ini dibuat dengan komponen terkecil dan dilengkapi dengan sensor tekanan yang mampu merasakan sentuh an Membangun Programmable Universal Manipulation untuk lengan robot yang dapat digunakan pada industri robot Robot manusia bernama P2 yang sudah memiliki kaki dan lengan yang dapat bergerak dengan baik Robot manusia P3 yang merupakan pengembangan kedua untuk mencapai tujuan pembuatan robot ASIMO yang pintar SARCOS dengan pengendali robot secara manual Pembuatan kerangka pengandali (Telemetri Suit) robot dimana kerangka ini menyerupai pergerakan lengan manusia Membangun lengan robot bionik yang disebut dengan Edinburg Modular Arm System (EMAS) Membangun lengan robot tercanggih untuk membantu pekerjaan menyiapkan stasiun ruang angkasa dengan nama Space Station Remote Manipulator System (SSRMS) Artificial Muscle dibuat dari bahan polymer khusus yang dapat berubah bentuk apabila dialiri listrik melal ui bahan ini Robot lengan dengan otot tiruan ( Artificial Muscle) generasi terbaru dengan penggerak serat polymer yang bentuknya telah mirip dengan anatomi tangan manusia

28 3. METODE PENELITIAN 3.1. Tempat dan waktu penelitian Penelitian dilakukan di Laboratorium Akustik dan Instrumentasi Kelautan IPB. Waktu penelitian dilaksanakan secara efektif selama 4 bulan terhitung dari bulan Desember 2008 sampai Maret Alat bantu Alat ukur dan peralatan pembuatan l engan robot Digital Multi Meter (DMM), project board, downloader ISP, kabel serial, Personal Computer (PC) dengan spesifikasi Prosesor Pentium III 700 MHz, solder, gergaji U, gergaji besi, kikir dan amplas, standing bor, pinset, penggaris, penggaris siku, mesin gerinda, mesin jigsaw, tang, dan obeng Software pembuatan lengan robot 1. BASCOM-AVR 2. AutoCAD Bahan untuk membuat lengan robot, kontroler, dan sensor IC ATMega 8535, DT-AVR Low Cost Micro System, trafo CT 1 ampere, kabel pita komputer, fuse 5 ampere, pin header singgle, b oard sircuit, eject serial dan pararel, fan PC 12 Volt, heat sink, IC regulator, kapasitor, dioda bridge, saklar, arkrilik 2, 3, dan 5 mm, arkrilik siku, Parallax Standard Servo, GWS Servo SO3T STD, GWS Servo SO4 BBM, potensio meter, batang stainles steel 5 mm, o-ring karet, greese, resin, strach, bearing, gear, papan tic block, klem besi ukuran 3 ½ Inci, dan kabel ciut.

29 3.4. Proses pembuatan lengan robot (robotic arm) Proses pembuatan lengan robot dibagi menjadi beberapa tahapan yang saling melengkapi satu sama lain. Bagian -bagian ini dapat dilihat pada Gambar 3. Tahap Pembuatan Cassing Tahap Pemberian Pemberat Pengeimbang Tahap Penyambungan Sendi Tahap Pemodelan Tahap Pemotong Tahap Penyatuan Tahap Pemasangan Motor Servo Lengan Robot (Robotic Arm) Tahap Interkoneksi Kabel Proses Berjalannya Program Lengan Robot (Robotic Proses Kerja Lengan Robot (Robotic Arm) Proses Pembuatan Kontroler Lengan Robot (Robotic Arm) Proses Pembuatan Sensor Pengendali Lengan Robot (Robotic Arm) Pengujian Lengan Robot (Robotic Arm) di Laboratorium. Gambar 4. Tahapan pembuatan lengan robot 3.5. Unit motor servo lengan robot (robotic arm) Pada lengan robot ini kita menggunakan 3 buah motor servo yang memiliki perbedaan spesifikasinya. Servo 2 dan 3 menggunakan motor servo jenis SO3T STD. Servo 4 dan 5 menggunakan servo ukuran besar jenis SO 4 BBM. Pada bagian penggerak gripper kita menggunakan servo jenis Parallax Standard servo yang memiliki bentuk hampir sama dengan SO3T STD. Semua spesifikasi motor servo dapat dilihat pada Tabel 2, 3, dan 4.

30 Tabel 2. Spesifikasi jenis motor servo fingger yang dipakai. Jenis Servo Berat Servo Tegangan Maksimum Kecepatan Sudut Torsi yang dihasilkan Gram) (Volt) (Sec / ) (Kg/ Cm) Servo Fingger Parallax Standard ,5 3,4 Sumber : Parallax Inc, 2004 Tabel 3. Spesifikasi jenis motor servo wrist dan arm yang dipakai. Jenis Servo Berat Servo Tegangan Maksimum Kecepatan Sudut Torsi yang dihasilkan (gram) (Volt) (sec / 60 0 ) (Kg/ Cm) Servo Wrist dan Arm SO3T STD 48 4,8 0,33 7,2 Sumber : Robot Shop, 2009 Tabel 4. Spesifikasi jenis motor servo elbow dan shoulder yang dipakai. Jenis Servo Berat Servo Tegangan Maksimum Kecepatan Sudut Torsi yang dihasilkan (gram) (Volt) (sec / 60 0 ) (Kg/ Cm) Servo Elbow dan Shoulder ,20 13 SO4 BBM Sumber : Servo Hunt, 2009

31 3.6. Unit sensor lengan robot (robotic arm) Lengan robot yang dibuat membutuhkan sensor yang dapat mendeteksi gerakan sendi lengan pengguna. Sensor ini dirancang sesuai dengan masukan nilai ADC mikrokontroler sehingga dapat dengan mudah dibaca oleh IC ATMega8535. Sumber tegangan untuk sensor diambil dari mikrokontroler sebesar 5 Volt. Rangkaian sensor ini dapat dilihat pada Gambar 5. Gambar 5. Rangkaian pengatur tegangan pada sensor lengan robot 3.7. Unit catu daya mikrokontroler lengan robot (robotic arm) Mikrokontroler yang dibuat membutuhkan sumber tegangan searah yang dihasilkan dari penyearahan arus bolak -balik listrik PLN. Proses penyearahan ini membutuhkan rangkaian elektronik penyearah dengan tegangan keluaran 9 Volt. Rangkaian elektronik catu daya ini dapat diliha t pada Gambar 6. Gambar 6. Rangkaian catu daya kontroler lengan robot

32 3.8. Unit catu daya motor servo lengan robot (robotic arm) Motor servo yang digunakan memiliki tegangan kerja yang berbeda dengan mikrokontroler sehingga dibutuhkan unit catu daya terpisah. Motor servo dapat bekerja secara maksimal jika keluaran power supply untuk jenis Parallax dan GWS SO3T sebesar 5 Volt sedangkan servo jenis GWS SO4 BBM sebesar 6 Volt. Rangkaian catu daya ini dapat dilihat pada G ambar 7. Gambar 7. Rangkaian catu daya motor servo lengan robot 3.9. Mikrokontroler lengan robot (robotic arm) Mikrokontroler ATMega8535 memiliki rangkaian pendukung yang membantu kerja dari operasi program. Rangkaian sensor akan dihubungkan dengan mikrokontroler pada Port A sedangkan untuk motor servo ada pada Port B. Rangkain ini dapat dilihat pada Gambar 8.

33 Gambar 8. Rangkaian mikrokontroler lengan robot Proses berjalannya program lengan robot (robotic arm) Tahapan kerja ini di buat dalam bentuk flowchart sebagai langkah awal dalam pembuatan struktur program. Flowchart ini dibuat untuk mengetahui apa yang harus dikerjakan sebelum memulai merancang program. Keuntungan pengg unaan flowchart adalah apabila terjadi kesalahan dalam pembuatan program akan lebih mudah ditelusuri dari diagram yang dibuat sebelumnya. Flowchart program yang dibuat dapat dilihat pada Gambar 9.

34 Start aktifkan Interupsi dan Configurasi ADC Start ADC Lakukan pembacaan nilai ADC pada Port A Salin nilai ADC Di Port A Baca nilai ADC Port A.0 Baca nilai ADC Port A.1 Baca nilai ADC Port A.2 Baca nilai ADC Port A.3 Baca nilai ADC Port A.4 Masukkan kedalam Rumus pulsa Masukkan kedalam Rumus pulsa Masukkan kedalam Rumus pulsa Masukkan kedalam Rumus pulsa Masukkan kedalam Rumus pulsa Apakah Pulsa melebihi Batas Ya Apakah Pulsa melebihi Batas Ya Apakah Pulsa melebihi Batas Ya Apakah Pulsa melebihi Batas Ya Apakah Pulsa melebihi Batas Ya Tidak Kembalikan Menjadi nilai Batas yang Ditentukan Tidak Kembalikan Menjadi nilai Batas yang Ditentukan Tidak Kembalikan Menjadi nilai Batas yang Ditentukan Tidak Kembalikan Menjadi nilai Batas yang Ditentukan Tidak Kembalikan Menjadi nilai Batas yang Ditentukan Pulsa keluar Dari Port B.0 Pulsa keluar Dari Port B.1 Pulsa keluar Dari Port B.2 Pulsa keluar Dari Port B.3 Pulsa keluar Dari Port B.4 Servo fingger Bergerak Servo wrist Bergerak Servo arm Bergerak Servo elbow Bergerak Servo shoulder Bergerak Gambar 9. Flowchart program pada rangkaian lengan robot (robotic arm).

35 Pada bagian flowchart program di atas dapat dilihat bahwa algoritma program yang pertama kali dilakukan adalah pengaktifan fungsi fitur interupsi dan ADC. Tanpa ada pengaktifan fitur ADC maka perhit ungan lebar pulsa tidak dapat dilakukan. Data yang telah disalin pada Port A akan dilakukan perhitungan sesuai dengan rumus yang ditentukan untuk lebar pulsa. Besaran lebar pulsa yang keluar kita tentukan dengan menentukan rumus awal didalam program mik rokontroler Pengujian lengan robot (robotic arm) Pengujian dilakukan di Laboratorium Akustik dan Instrumentasi Kelautan IPB. Pengujian yang dilakukan berada di luar air untuk mengetes apakah bagian tangan robot dapat bergerak kesemua sudut yang diinginkan dan mampu menjepit benda dengan baik Pengujian sensor lengan robot (robotic arm) Pengujian dilakukan dengan mengukur keluaran tegangan yang ada pada kaki 2 sensor menggunakan Digital Multi Meter. Hasil pengujian akan dicatat pada Tabel 5. Tabel 5. Hasil pengukuran tegangan yang dikeluarkan sensor pada sudut maksimum dan minimum. No Jenis Sensor Sudut Sensor yang dapat dibentuk (derajat) Tegangan Vinput (kaki 1) (mili Volt) Tegangan yang Keluar Pada Kaki 2 Sensor (mili Volt) Hasil Pengamatan Kondisi Sensor Tangan 1 Sensor Fingger Max 100 Min 0 2 Sensor Wrist Max 120 Min 0 3 Sensor Arm Max 122 Min 0 4 Sensor Elbow Max 120 Min 0 5 Sensor Shoulder Max 90 Min 0

36 Pengujian besar sudut servo dengan perbedaan lebar pulsa Motor servo yang digunakan memiliki batas lebar pulsa untuk melakukan gerakan memutar dengan sudut tertentu. Mengetahui lebar pulsa ini maka kita dapat menyesuaikan lebar pulsa maksimum dan minimum dengan sintak program yang dibuat. Cara ini untuk mencegah kerusakan gear motor servo pada beroperasi. Hasil dari pengukuran ini dicatat pada Tabel 6. Tabel 6. Hasil pengukuran lebar pulsa dan sudut yang dapat dibuat. Jenis No Servo 1 Servo Fingger 2 Servo Wrist 3 Servo Arm Besar Lebar Pulsa Maksimum dan Minimum Sudut Putaran Pada Servo Keterangan 4 Servo Elbow 5 Servo Shoulder Pengujian daya cengkram gripper lengan robot (robotic arm) Pengujian dilakukan dengan mencoba mengambil sepuluh obyek benda dengan ukuran dan bobot yang berbeda menggunakan gripper lengan robot. Hasil pengamatan dicatat pada Tabel 7. Tabel 7. Hasil pengujian daya cengkram gripper pada berbagai macam bentuk obyek. Ulangan Bentuk Obyek yang Dicengkram Dimensi Obyek (cm) Bobot Obyek (gram) Kondisi Pemukaan Obyek Hasil Pengamatan Cengkraman Gripper

37 4. HASIL DAN PEMBAHASAN 4.1. Hasil rangkaian lengan robot (robotic arm) Lengan robot yang dibuat penulis diberi nama RAMCES -5 singkatan dari Robotic Arm with Manual Control servos 5. Pengujian di Laboratorium Akustik dan Ilmu Kelautan IPB menunjukkan RAMCES -5 dapat bekerja dengan baik saat mengambil obyek yang berbeda. Pergerakan menjepit dan memindahkan obyek dapat dilakukan dengan baik dan terarah. Respon dari RAMCES-5 terhadap pergerakan sensor tangan terjadi sangat cepat dan tidak mengalami hambatan. Lengan robot ini memiliki beberap a keunggulan diantaranya: mampu mengambil berbagai macam benda dengan batas ukuran dan berat tertentu, mampu melakukan gerakan seperti manusia, dan pengendali robot menggunakan sensor yang ada pada tangan manusia. Pengendalian yang dilakukan menggunakan tangan akan memberi kemudahan dalam mengarahkan gerakan RAMCES-5 sesuai gerakan tangan. Alat khusus yang ditempatkan pada RAMCES -5 adalah gripper yang berguna dalam mencengkram benda yang diinginkan. Bentuk gripper yang dipilih menyerupai capit karena bentuk ini mudah untuk dibuat dan memiliki gerakan yang serempak antara kedua bagian capit. Sepasang capit akan memberikan hasil cengkraman yang seimbang pada obyek yang diambil. Bentuk seperti capit mempermudah RAMCES-5 mencengkram obyek secara baik saat kondisi vertikal. Desain keseluruhan RAMCES-5 ditampilkan pada Gambar 10.

38 Gambar 10. Tampak samping desain RAMCES Desain pelindung motor servo RAMCES Desain motor servo fingger Desain motor servo fingger (servo 1) memiliki bagian yang berbeda dengan servo lainnya karena memiliki gripper yang menempel dibagian atas pelindung servo 1. Gripper ini berguna untuk mencengkram obyek yang diinginkan. Skala untuk ukuran desain ini dipakai satuan mili meter (mm). Lebar bukaan yang mampu dilakukan gripper adalah sebesar 5,6 cm. Hal ini membuat RAMCES -5 hanya mampu mencengkram obyek dengan ukuran dibawah 5,6 mm. Desain dari servo 1 ditampilkan pada Gambar 11a,b sedangkan desain gripper ditampilkan pada Gambar 12.

39 Satuan= mili meter Satuan= mili meter (a) (b) Gambar 11. (a). Tampak atas desain pelindung motor servo 1, (b). Tampak depan desain pelindung motor servo 1 Satuan= mili meter Gambar 12. Tampak atas desain gripper dari servo 1

40 Desain motor servo wrist dan arm Motor servo wrist (servo 2) dan arm (servo 3) memiliki desain pelindung servo yang hampir sama dengan servo 1 hanya saja tidak memiliki perangkat tambahan seperti gripper. Desain dari servo 2 dan 3 ditampilkan pada Gambar 13a,b. Satuan= mili meter (a) Satuan= mili meter (b) Gambar 13. (a). Tampak atas desain motor servo 2 dan 3, (b). Tampak depan desain motor servo 2 dan Desain motor servo elbow Desain pelindung servo elbow (servo 4) memiliki bentuk yang lebih panjang dari servo lainnya. Dengan ukuran yang penjang maka servo ini akan membantu servo didepannya lebih mudah menjangkau obyek -obyek yang jauh. Desain panjang dipilih untuk menyamakan bagian ini dengan fungsi lengan ma nusia. Hal ini akan membuat RAMCES-5 lebih mudah dikendalikan dan identik dengan

41 gerakan lengan manusia. Desain dari servo 4 ditampilkan pada Gambar 14a,b dan Gambar 15. Satuan= mili meter (a) (b) Gambar 14. (a). Tampak depan desain pelindung motor servo 4, (b). Tampak samping desain pelindung motor servo 4

42 Satuan= mili meter Gambar 15. Tampak atas desain pelindung motor servo Desain motor servo shoulder Desain servo shoulder (servo 5) dirancang lebih kokoh dan besar dari pada servo yang lain agar mampu menahan beban berat lebih besar. Desain dari servo 5 ditampilkan pada Gambar 16 dan 17. Satuan= mili meter Gambar 16. Tampak atas desain motor servo 5

43 Gambar 17. Tampak depan desain motor servo 5 Satuan= mili meter Bentuk servo 5 seperti kotak dengan bagian bawah terpotong sebagian berfungsi sebagai tempat menaruh RAMCES -5 pada dudukan wahana tetap atau mobile yang membawanya. Khusus untuk servo 5 dipasangkan 2 buah bearing pada poros perputaran stainles steel agar mengurangi b esarnya gesekan saat berputar. Arkrilik yang tebal digunakan agar servo 5 mampu menahan bobot RAMCES-5 secara keseluruhan dengan baik. Gear penghubung yang lebih besar digunakan pada servo 5 karena bobot keseluruhan dari RAMCES -5 bertumpu pada bagian servo ini sehingga dibutuhkan daya cengkram yang tinggi saat berputar. Pemasangan kedua gear ini harus diposisikan sedikit longgar agar saat berputar tidak macet dan mengganggu pergerakan RAMCES -5.

44 Desain persambungan sendi RAMCES -5 Desain cekungan ini dibuat untuk memberikan kekuatan persambungan sendi servo sehingga tidak terjadi pergeseran saat servo bekerja. Dengan memberikan cekungan selain memberi kekuatan persambungan sekaligus mengurangi jeda yang terjadi saat servo bergerak. Desain persambungan sendi RAMCES-5 ditampilkan pada Gambar 18. Satuan= mili meter Gambar 18. tampak samping desain persambungan sendi RAMCES Desain beban penyeimbang motor servo RAMCES Desain penyeimbang servo 1 Pada RAMCES-5 dipakai banyak bahan arkrilik untuk pelindung servo sehingga menimbulkan berat pada bagian servo penopangnya. Untuk mengurangi beban yang diterima oleh servo saat berputar maka diberikan beban penyeimbang. Desain penyeimbang untuk servo 1 tidak digunakan beban tambahan melainkan menggunakan bobot servo ini sendiri. Hal ini akan mengurangi bobot total dibagian servo selanjutnya. Desain penyeimbang servo 1 ditampilkan pada Gambar 19.

45 Satuan= mili meter Gambar 19. Tampak samping desain penyeimbang servo 1 Dengan desain ini maka torsi putaran pada servo 2 tidak mengalami pengurangan sehingga mampu memberikan memutar yang baik. Letak posisi dari poros servo 2 berada dekat dengan sumbu horizontal gripper agar gerakan memutar servo 2 tidak mempengaruhi posisi cengkraman gripper. Bentuk sebenarnya dari desain penyeimbang servo 1 ditampilkan pada Gambar 20. Gambar 20. Tampak samping bentuk jadi penyeimbang servo 1

46 Bagian dalam servo diberikan pencahayaan ya ng cukup dari nyala lampu LED. Cahaya LED selain berguna menerangi bagian dalam servo juga berfungsi sebagai indikator motor servo sedang bekerja. Saat motor servo bergerak maka lampu LED akan berkedip dengan cepat yang menandakan sedang menerima sinyal pulsa dari mikrokontroler. Dengan terlihatnya bagian dalam servo maka dapat dengan mudah memantau pergerakan gear penghubung servo Desain penyeimbang servo 2 Desain penyeimbang servo 2 berbeda dengan penyeimbang servo 1 agar didapatkan bobot seimbang dari servo 1 dan 2. Berat yang ada pada servo 1 dan 2 akan diseimbangkan dengan beban penyeimbang yang terletak berlawanan dari servo ini. Hal ini akan membantu perputaran servo 3 dan menambah torsi yang dihasilkan. Beban penyeimbang ini te rbuat dari timah padat yang telah dibentuk seperti tabung. Desain penyeimbang servo 2 ditampilkan pada Gambar 21 sedangkan Gambar 22 menampilkan bentuk sebenarnya penyeimbang servo 2. Satuan= mili meter Gambar 21. Tampak samping desain penyeim bang servo 2.

47 Gambar 22. Tampak samping bentuk jadi penyeimbang servo Desain penyeimbang servo 3 Desain penyeimbang pada servo 3 berbeda dengan penyeimbang servo 1 dan 2 karena perbedaan fungsi beban ini. Beba n penyeimbang servo 3 tidak akan berpengaruh banyak saat posisi servo 4 tepat pada posisi vertikal. Saat servo 4 bergerak dari posisi vertikalnya maka penyeimbang servo 3 akan membantu gerakan memutar servo 4. Desain penyeimbang servo 3 ditampilkan pada Gambar 23 sedangkan bentuk sebenarnya ditampilkan pada Gambar 24 Satuan= mili meter Gambar 23. Tampak belakang desain penyeimbang servo 3

48 Gambar 24. Tampak depan bentuk jadi penyeimbang servo Desain penyeimbang servo 4 Bagian servo 4 merupakan servo terakhir yang diberi beban penyeimbang sedangkan bagian servo 5 akan menempel pada wahana yang membawa RAMCES-5. Pada bagian servo 4 memiliki desain beban penyeimbang yang lebih besar dibandingkan dengan servo yang lainnya karena servo ini berperan utama menyeimbangkan seluruh bobot servo didepannya (sevo 1,2, dan 3). Desain penyeimbang servo 4 ditampilkan pada Gambar 25 sedangkan Gambar 26 menampilkan bentuk sebenarnya penyeimbang servo 4. Satuan= mili meter Gambar 25. Tampak samping desain penyeimbang servo 4

49 Gambar 26. Tampak samping bentuk jadi penyeimbang servo 4 Letak dari beban penyeimbang yang miring berguna untuk mendapatkan titik grafitasi yang berubah-ubah saat bergerak karena RAMCES -5 memiliki kemampuan menjauh dan mendekatkan posisi servo 2. Hal ini disebabkan karena RAMCES-5 memiliki servo 3 yang berperan sebagai sendi engsel tangan manusia. Dengan menjauhnya posisi servo 2 maka bobot yang dite rima servo 5 akan bertambah. Pada saat inilah penyeimbang servo 4 melakukan fungsinya yaitu mengurangi gaya grafitasi yang diterima servo 1,2,3 sehingga membantu pergerakan servo 5 dalam memutar. Bentuk lengkap dan bagian -bagian RAMCES-5 dapat dilihat pada Lampiran Desain sensor pengendali RAMCES Desain sensor fingger Lengan robot ini dilengkapi dengan 5 buah sensor pada tangan yang berfungsi menjadi pengendali gerakan robot. Untuk mengendalikan gerakan servo fingger diperlukan sensor fingger. Sensor fingger kita buat dari cassing yang mampu menempel pada bagian tangan. Semua bagian sensor ini di tempatkan pada jari

50 manusia dengan cara tertentu kita buat agar sensor dapat bergerak mengikuti gerakan jemari tangan. Sensor yang dibuat harus dapat dipasang dan dilepaskan dengan mudah dari jari manusia. Bentuk sensor fingger secara lengkap ditampilkan pada Gambar 27. Gear penghubung Bagian aktif sensor fingger Bagian aktif sensor fingger Potensio meter Gambar 27. Tampak bawah sensor fingger Desain sensor wrist Sensor wrist merupakan yang paling rumit dari segi desain dibandingkan dengan sensor lainnya. Hal ini disebabkan oleh bentuk sendi putar pergelangan tangan yang memiliki poros putar di bagian tengah tulang sehingga membutuhkan mekanisme khusus untuk mendeteksi gerakan putar sendi ini. Sensor terpasang menempel dengan kuat pada bagian pergelangan tangan manusia sehingga saat sendi berputar sensor tidak ikut bergerak. Bentuk sensor wrist ditampilkan pada Gambar 28 dan 29.

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Tempat dan waktu penelitian Penelitian dilakukan di Laboratorium Akustik dan Instrumentasi Kelautan IPB. Waktu penelitian dilaksanakan secara efektif selama 4 bulan terhitung

Lebih terperinci

2. TINJAUAN PUSTAKA. Penulis membuat lengan robot menggunakan sistem kontrol gerak holomonic.

2. TINJAUAN PUSTAKA. Penulis membuat lengan robot menggunakan sistem kontrol gerak holomonic. 2. TINJAUAN PUSTAKA 2.1. Model lengan robot (robotic arm) Penulis membuat lengan robot menggunakan sistem kontrol gerak holomonic. Gerak holomonic merupakan sistem gerak yang serupa dengan gerak ujung

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Lengan robot yang dibuat penulis diberi nama RAMCES -5 singkatan dari

4. HASIL DAN PEMBAHASAN. Lengan robot yang dibuat penulis diberi nama RAMCES -5 singkatan dari 4. HASIL DAN PEMBAHASAN 4.1. Hasil rangkaian lengan robot (robotic arm) Lengan robot yang dibuat penulis diberi nama RAMCES -5 singkatan dari Robotic Arm with Manual Control servos 5. Pengujian di Laboratorium

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Dalam bab ini penulis akan membahas prinsip kerja rangkaian yang disusun untuk merealisasikan sistem alat, dalam hal ini potensiometer sebagai kontroler dari motor servo, dan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan dari prototype yang dibuat, yaitu konsep dasar alat, diagram blok, perancangan elektronika yang meliputi rangkaian rangkaian elektronika

Lebih terperinci

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro Jurusan Teknik Elektro Universitas Lampung pada bulan Desember 2013 sampai

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR II. TINJAUAN PUSTAKA A. Mikrokontroler ATmega8535 Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR (Alf and Vegard s Risc Processor) yang diproduksi oleh Atmel Corporation.

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

BAB I PENDAHULUAN. Seiring dengan kemajuan teknologi yang sangat pesat dewasa ini,

BAB I PENDAHULUAN. Seiring dengan kemajuan teknologi yang sangat pesat dewasa ini, BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan kemajuan teknologi yang sangat pesat dewasa ini, Perkembangan teknologi berbasis mikrokontroler terjadi dengan sangat pesat dan cepat. Kemajuan

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS 3.1. Spesifikasi Perancangan Perangkat Keras Secara sederhana, perangkat keras pada tugas akhir ini berhubungan dengan rancang bangun robot tangan. Sumbu

Lebih terperinci

PENGONTROL ROBOT. Dosen : Dwisnanto Putro, S.T, M.Eng. Published By Stefanikha69

PENGONTROL ROBOT. Dosen : Dwisnanto Putro, S.T, M.Eng. Published By Stefanikha69 PENGONTROL ROBOT Dosen : Dwisnanto Putro, S.T, M.Eng Pengontrol Pengendali atau Pengontrol merupakan suatu instrument atau alat yang berfungsi untuk mengendalikan sesuatu yang akan dikendalikan. Pengendali

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai

Lebih terperinci

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dan perancangan tugas akhir dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 sampai dengan

Lebih terperinci

BAB III METODE PENELITIAN. Pada pengerjaan tugas akhir ini metode penelitian yang dilakukan yaitu. dengan penelitian yang dilakukan.

BAB III METODE PENELITIAN. Pada pengerjaan tugas akhir ini metode penelitian yang dilakukan yaitu. dengan penelitian yang dilakukan. BAB III METODE PENELITIAN 3.1. METODE PENELITIAN Pada pengerjaan tugas akhir ini metode penelitian yang dilakukan yaitu sebagai berikut : Studi literatur, yaitu dengan mempelajari beberapa referensi yang

Lebih terperinci

Percobaan 2 I. Judul Percobaan Sistem Kendali Digital Berbasis Mikrokontroler

Percobaan 2 I. Judul Percobaan Sistem Kendali Digital Berbasis Mikrokontroler Percobaan 2 I. Judul Percobaan Sistem Kendali Digital Berbasis Mikrokontroler II. Tujuan Percobaan 1. Mahasiswa memahami pemrograman dasar mikrokontroler 2. Mahasiswa memahami fungsi dan prinsip kerja

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009 dilakukan di Laboratorium Konversi Energi Elektrik dan Laboratorium

Lebih terperinci

MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia

MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia MIKROKONTROLER Yoyo Somantri dan Egi Jul Kurnia Mikrokontroler Mikrokontroler adalah sistem komputer yang dikemas dalam sebuah IC. IC tersebut mengandung semua komponen pembentuk komputer seperti CPU,

Lebih terperinci

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Agustus

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Agustus III. METODE PENELITIAN A. Tempat dan Waktu Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Agustus 2009, dilakukan di Laboratorium Konversi Energi Elektrik dan Laboratorium Sistem

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Jenis Mikrokontroler AVR dan spesifikasinya Flash adalah suatu jenis Read Only Memory yang biasanya diisi dengan program

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Bab ini akan membahas tentang perancangan sistem deteksi keberhasilan software QuickMark untuk mendeteksi QRCode pada objek yang bergerak di conveyor. Garis besar pengukuran

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari perangkat keras maupun perangkat lunak dari setiap modul yang dipakai pada skripsi ini. 3.1. Perancangan dan

Lebih terperinci

BAB III METODOLOGI PENULISAN

BAB III METODOLOGI PENULISAN BAB III METODOLOGI PENULISAN 3.1 Blok Diagram Gambar 3.1 Blok Diagram Fungsi dari masing-masing blok diatas adalah sebagai berikut : 1. Finger Sensor Finger sensor berfungsi mendeteksi aliran darah yang

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)

Lebih terperinci

KENDALI LENGAN ROBOT MENGGUNAKAN MIKROKONTROLLER AT89S51

KENDALI LENGAN ROBOT MENGGUNAKAN MIKROKONTROLLER AT89S51 KENDALI LENGAN ROBOT MENGGUNAKAN MIKROKONTROLLER AT89S51 Eko Patra Teguh Wibowo Departemen Elektronika, Akademi Angkatan Udara Jalan Laksda Adi Sutjipto Yogyakarta den_patra@yahoo.co.id ABSTRACT A robot

Lebih terperinci

BAB II LANDASAN TEORI. pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system.

BAB II LANDASAN TEORI. pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system. BAB II LANDASAN TEORI Landasan teori sangat membantu untuk dapat memahami suatu sistem. Selain dari pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system. Dengan pertimbangan

Lebih terperinci

BAB IV PEMBAHASAN Rancangan Mesin Panjang Terpal PUSH BUTTON. ATMega 128 (Kendali Kecepatan Motor Dua Arah)

BAB IV PEMBAHASAN Rancangan Mesin Panjang Terpal PUSH BUTTON. ATMega 128 (Kendali Kecepatan Motor Dua Arah) BAB IV PEMBAHASAN 4.1 Identifikasi Masalah Dalam proses produksi hal yang paling menonjol untuk menghasilkan suatu barang produksi yang memiliki kualitas yang bagus adalah bahan dan mesin yang digunakan.

Lebih terperinci

BAB III DESKRIPSI MASALAH

BAB III DESKRIPSI MASALAH BAB III DESKRIPSI MASALAH 3.1 Perancangan Hardware Perancangan hardware ini meliputi keseluruhan perancangan, artinya dari masukan sampai keluaran dengan menghasilkan energi panas. Dibawah ini adalah diagram

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Mikrokontroller AVR Mikrokontroller adalah suatu alat elektronika digital yang mempunyai masukan serta keluaran serta dapat di read dan write dengan cara khusus. Mikrokontroller

Lebih terperinci

RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535

RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535 RANCANGAN SISTEM PARKIR TERPADU BERBASIS SENSOR INFRA MERAH DAN MIKROKONTROLER ATMega8535 Masriadi dan Frida Agung Rakhmadi Program Studi Fisika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda

Lebih terperinci

BAB 1 PERSYARATAN PRODUK

BAB 1 PERSYARATAN PRODUK BAB 1 PERSYARATAN PRODUK 1.1 Pendahuluan Saat ini teknologi robotika telah menjangkau sisi industri (Robot pengangkut barang), pendidikan (penelitian dan pengembangan robot). Salah satu kategori robot

Lebih terperinci

BAB II DASAR TEORI. Arduino adalah pengendali mikro single-board yang bersifat opensource,

BAB II DASAR TEORI. Arduino adalah pengendali mikro single-board yang bersifat opensource, BAB II DASAR TEORI 2.1 ARDUINO Arduino adalah pengendali mikro single-board yang bersifat opensource, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai bidang.

Lebih terperinci

II. TINJAUAN PUSTAKA. kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi

II. TINJAUAN PUSTAKA. kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi II. TINJAUAN PUSTAKA A. Temperatur dan Kelembaban Temperatur dan kelembaban merupakan aspek yang penting dalam menentukan kondisi cuaca pada suatu daerah. Banyak hal yang sangat bergantung pada kondisi

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV Pengujian Alat dan Analisa BAB IV PENGUJIAN ALAT DAN ANALISA 4. Tujuan Pengujian Pada bab ini dibahas mengenai pengujian yang dilakukan terhadap rangkaian sensor, rangkaian pembalik arah putaran

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT 39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Dalam perancangan sistem otomatisasi pemakaian listrik pada ruang belajar berbasis mikrokontroler terdapat beberapa masalah yang harus

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei 2012. Adapun tempat pelaksanaan penelitian ini adalah di Laboratorium Elektronika Dasar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori-teori dasar yang digunakan untuk merealisasikan suatu sistem penjejak obyek bergerak. 2.1 Citra Digital Citra adalah suatu representasi (gambaran),

Lebih terperinci

BAB III DESKRIPSI DAN PERANCANGAN SISTEM

BAB III DESKRIPSI DAN PERANCANGAN SISTEM BAB III DESKRIPSI DAN PERANCANGAN SISTEM 3.1. DESKRIPSI KERJA SISTEM Gambar 3.1. Blok diagram sistem Satelit-satelit GPS akan mengirimkan sinyal-sinyal secara kontinyu setiap detiknya. GPS receiver akan

Lebih terperinci

Rancang Bangun Quadropod Robot Berbasis ATmega1280 Dengan Desain Kaki Kembar

Rancang Bangun Quadropod Robot Berbasis ATmega1280 Dengan Desain Kaki Kembar Rancang Bangun Quadropod Robot Berbasis ATmega1280 Dengan Desain Kaki Kembar I Wayan Dani Pranata*), Ida Bagus Alit Swamardika, I Nyoman Budiastra Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas dasar teori yang berhubungan dengan perancangan skripsi antara lain fungsi dari function generator, osilator, MAX038, rangkaian operasional amplifier, Mikrokontroler

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam Perancangan dan Implementasi Pemotong Rumput Lapangan Sepakbola Otomatis dengan Sensor Garis dan Dinding ini, terdapat beberapa masalah

Lebih terperinci

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu 37 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dan dilaksanakan mulai bulan Maret 2012 sampai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Robot telah banyak dikembangkan, karena robot berguna untuk membantu kerja manusia misalnya, untuk pekerjaan dengan resiko bahaya ataupun melakukan pekerjaan yang membutuhkan tenaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam

BAB II TINJAUAN PUSTAKA. Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler ATMega 8535 Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam bidang elektronika dan instrumentasi. Mikrokontroler AVR ini memiliki arsitektur

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini membahas perencanaan dan pembuatan dari alat yang akan dibuat yaitu Perencanaan dan Pembuatan Pengendali Suhu Ruangan Berdasarkan Jumlah Orang ini memiliki 4 tahapan

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan dan implementasi jari animatronik berbasis mikrokontroler ini menggunakan beberapa metode rancang bangun yang pembuatannya terdapat

Lebih terperinci

Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol)

Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol) BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler Mikrokontroler merupakan keseluruhan sistem komputer yang dikemas menjadi sebuah chip di mana di dalamnya sudah terdapat Mikroprosesor, I/O Pendukung, Memori

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Landasan teori sangat membantu untuk dapat memahami suatu sistem selain itu dapat juga dijadikan sebagai bahan acuan dalam merencanakan suatu sistem yang akan dibuat. Dengan pertimbangan

Lebih terperinci

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor Sistem Minimum Mikrokontroler TTH2D3 Mikroprosesor MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang memiliki

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1PHOTODIODA Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan

BAB II TINJAUAN PUSTAKA. 2.1PHOTODIODA Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan 4 BAB II TINJAUAN PUSTAKA 2.1PHOTODIODA Dioda foto adalah jenis dioda yang berfungsi mendeteksi cahaya. Berbeda dengan dioda biasa, komponen elektronika ini akan mengubah cahaya menjadi arus listrik. Cahaya

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli 36 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2015 sampai dengan bulan Juli 2015. Perancangan, pembuatan dan pengambilan data dilaksanakan di

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada Bab III ini akan diuraikan mengenai perancangan perangkat keras dan perangkat lunak yang digunakan untuk membangun sistem keamanan rumah nirkabel berbasis mikrokontroler

Lebih terperinci

RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535

RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535 Ali Firdaus, Rancang Bangun Rautan Pensil Pintar 31 RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535 Ali Firdaus *1, Rahmatika Inayah *2 1 Jurusan Teknik Komputer Politeknik; Negeri

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN

BAB III PERANCANGAN DAN PEMBUATAN 37 BAB III PERANCANGAN DAN PEMBUATAN 3.1 Perancangan Dalam pembuatan suatu alat atau produk perlu adanya sebuah rancangan yang menjadi acuan dalam proses pembuatanya, sehingga kesalahan yang mungkin timbul

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global. BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM 3.1 Perancangan Perangkat Keras 3.1.1 Blok Diagram Dari diagram sistem dapat diuraikan metode kerja sistem secara global. Gambar

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Diagram Blok Sistem Secara Umum Perancangan sistem yang dilakukan dengan membuat diagram blok yang menjelaskan alur dari sistem yang dibuat pada perancangan dan pembuatan

Lebih terperinci

III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar

III. METODE PENELITIAN. Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar 28 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilaksanakan di Laboratorium Elektronika Dasar dan Laboratorium Pemodelan Jurusan Fisika Universitas Lampung. Penelitian

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan dan implementasi wajah animatronik berbasis mikrokontroler ini menggunakan beberapa metode rancang bangun yang pembuatannya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 18 BAB II TINJAUAN PUSTAKA 2.1. Mikrokontroler Mikrokontroler adalah suatu mikroposesor plus. Mikrokontroler adalah otak dari suatu sistem elektronika seperti halnya mikroprosesor sebagai otak komputer.

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur

BAB II PENDEKATAN PEMECAHAN MASALAH. Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur 6 BAB II PENDEKATAN PEMECAHAN MASALAH A. Tombol Kuis dengan Pengatur dan Penampil Nilai Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur sebagai berikut: 1. tombol pengolah

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang

Lebih terperinci

BAB II DASAR TEORI Arduino Mega 2560

BAB II DASAR TEORI Arduino Mega 2560 BAB II DASAR TEORI Pada bab ini akan dijelaskan teori-teori penunjang yang diperlukan dalam merancang dan merealisasikan skripsi ini. Bab ini dimulai dari pengenalan singkat dari komponen elektronik utama

Lebih terperinci

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di BAB III TEORI PENUNJANG 3.1. Microcontroller ATmega8 Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di dalamnya terkandung sebuah inti proccesor, memori (sejumlah kecil RAM, memori

Lebih terperinci

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C.

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C. BAB II DASAR TEORI 2.1 ARDUINO Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai bidang.

Lebih terperinci

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 MIKROKONTROLER Arsitektur Mikrokontroler AT89S51 Ringkasan Pendahuluan Mikrokontroler Mikrokontroler = µp + Memori (RAM & ROM) + I/O Port + Programmable IC Mikrokontroler digunakan sebagai komponen pengendali

Lebih terperinci

BAB III MIKROKONTROLER

BAB III MIKROKONTROLER BAB III MIKROKONTROLER Mikrokontroler merupakan sebuah sistem yang seluruh atau sebagian besar elemennya dikemas dalam satu chip IC, sehingga sering disebut single chip microcomputer. Mikrokontroler merupakan

Lebih terperinci

BAB III ANALISA DAN CARA KERJA RANGKAIAN

BAB III ANALISA DAN CARA KERJA RANGKAIAN BAB III ANALISA DAN CARA KERJA RANGKAIAN 3.1 Analisa Rangkaian Secara Blok Diagram Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM 3.1. Spesifikasi Sistem Sebelum merancang blok diagram dan rangkaian terlebih dahulu membuat spesifikasi awal rangkaian untuk mempermudah proses pembacaan, spesifikasi

Lebih terperinci

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. Metode penelitian yang digunakan adalah studi kepustakaan dan

BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. Metode penelitian yang digunakan adalah studi kepustakaan dan BAB III MEODE PENELIIAN DAN PERANCANGAN SISEM 3.1 Metode Penelitian Metode penelitian yang digunakan adalah studi kepustakaan dan penelitian laboratorium. Studi kepustakaan dilakukan sebagai penunjang

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS 3.1. Pendahuluan Perangkat pengolah sinyal yang dikembangkan pada tugas sarjana ini dirancang dengan tiga kanal masukan. Pada perangkat pengolah sinyal

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 31 BAB III PERANCANGAN SISTEM 3.1 Diagram Blok Air ditampung pada wadah yang nantinya akan dialirkan dengan menggunakan pompa. Pompa akan menglirkan air melalui saluran penghubung yang dibuat sedemikian

Lebih terperinci

BAB II KONSEP DASAR PERANCANGAN

BAB II KONSEP DASAR PERANCANGAN BAB II KONSEP DASAR PERANCANGAN Pada bab ini akan dijelaskan konsep dasar sistem keamanan rumah nirkabel berbasis mikrokontroler menggunakan modul Xbee Pro. Konsep dasar sistem ini terdiri dari gambaran

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR...

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN P EMBIMBING... HALAMAN PENGESAHAN P ENGUJI... HALAMAN PERSEMBAHAN... HALAMAN MOTTO... KATA PENGANTAR... ABSTRAKSI... TAKARIR... DAFTAR ISI... DAFTAR TABEL...

Lebih terperinci

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer disusun oleh : MERIZKY ALFAN ADHI HIDAYAT AZZA LAZUARDI JA FAR JUNAIDI 31780 31924

Lebih terperinci

BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK

BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK 22 BAB III PERANCANGAN PERANGKAT KERAS DAN LUNAK 3.1. Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras (hardware) dan perangkat lunak (software). Pembahasan perangkat keras

Lebih terperinci

BAB III ANALISA SISTEM

BAB III ANALISA SISTEM BAB III ANALISA SISTEM 3.1 Gambaran Sistem Umum Pembuka pintu otomatis merupakan sebuah alat yang berfungsi membuka pintu sebagai penganti pintu konvensional. Perancangan sistem pintu otomatis ini merupakan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM Pada bab ini membahas tentang perancangan sistem yang dibuat dimana diantaranya terdiri dari penjelasan perancangan perangkat keras, perancangan piranti lunak dan rancang bangun

Lebih terperinci

II. TINJAUAN PUSTAKA. menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC-

II. TINJAUAN PUSTAKA. menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC- II. TINJAUAN PUSTAKA A. Pengenalan DC Chopper Chopper adalah suatu alat yang mengubah sumber tegangan arus searah tetap menjadi sumber tegangan arus searah yang bersifat variable. Pengubah daya DC- DC

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Minimum AVR USB Sistem minimum ATMega 8535 yang didesain sesederhana mungkin yang memudahkan dalam belajar mikrokontroller AVR tipe 8535, dilengkapi internal downloader

Lebih terperinci

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 21 BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK 3.1 Gambaran umum Perancangan sistem pada Odometer digital terbagi dua yaitu perancangan perangkat keras (hardware) dan perangkat lunak (software). Perancangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Deskripsi Robot Robot merupakan suatu hasil dari kemajuan teknologi yang dapat berbentuk macam-macam, misalnya robot serangga, robot helikopter, robot berbentuk anjing, robot

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1. Identifikasi Kebutuhan Proses pembuatan alat penghitung benih ikan ini diperlukan identifikasi kebutuhan terhadap sistem yang akan dibuat, diantaranya: 1. Perlunya rangkaian

Lebih terperinci

IMPLEMENTASI MIKROKONTROLER PIC 16F877A DALAM PERANCANGAN ROBOT OBSTACLE AVOIDANCE

IMPLEMENTASI MIKROKONTROLER PIC 16F877A DALAM PERANCANGAN ROBOT OBSTACLE AVOIDANCE IMPLEMENTASI MIKROKONTROLER PIC 16F877A DALAM PERANCANGAN ROBOT OBSTACLE AVOIDANCE HARMON VICKLER D. LUMBANRAJA, S.T., M.Kom (SEKOLAH TINGGI ILMU EKONOMI SURYA NUSANTARA) ABSTRAK Dalam pemrograman robot

Lebih terperinci

3.2. Tempat Penelitian Penelitian dan pengujian alat dilakukan di lokasi permainan game PT. EMI (Elektronik Megaindo) Plaza Medan Fair.

3.2. Tempat Penelitian Penelitian dan pengujian alat dilakukan di lokasi permainan game PT. EMI (Elektronik Megaindo) Plaza Medan Fair. BAB III METODOLOGI PENELITIAN 3.1. Metode Penelitian Dalam penulisan tugas akhir ini metode yang digunakan dalam penelitian adalah : 1. Metode Perancangan Metode yang digunakan untuk membuat rancangan

Lebih terperinci

BAB III PERANCANGAN ALAT. eletronis dan software kontroler. Konstruksi fisik line follower robot didesain

BAB III PERANCANGAN ALAT. eletronis dan software kontroler. Konstruksi fisik line follower robot didesain BAB III PERANCANGAN ALAT 3.1. Konstruksi Fisik Line Follower Robot Konstruksi fisik suatu robot menjadi dasar tumpuan dari rangkaian eletronis dan software kontroler. Konstruksi fisik line follower robot

Lebih terperinci

BAB IV METODE KERJA PRAKTEK

BAB IV METODE KERJA PRAKTEK BAB IV METODE KERJA PRAKTEK sebagai berikut : Metode yang digunakan dalam pengerjaan kerja praktek ini adalah 1. Wawancara, yaitu bertanya secara langsung kepada asisten laboratorium mikrokontroler untuk

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari alat akuisisi data termokopel 8 kanal. 3.1. Gambaran Sistem Alat yang direalisasikan

Lebih terperinci

BAB III ANALISA MASALAH DAN PERANCANGAN

BAB III ANALISA MASALAH DAN PERANCANGAN BAB III ANALISA MASALAH DAN PERANCANGAN III.1. Analisa Sub bab ini berisikan tentang analisa sistem yang akan dibangun. Sub bab ini membahas teknik pemecahan masalah yang menguraikan sebuah sistem menjadi

Lebih terperinci

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan

BAB III PERANCANGAN ALAT. Gambar 3.1 Diagram Blok Pengukur Kecepatan BAB III PERANCANGAN ALAT 3.1 PERANCANGAN PERANGKAT KERAS Setelah mempelajari teori yang menunjang dalam pembuatan alat, maka langkah berikutnya adalah membuat suatu rancangan dengan tujuan untuk mempermudah

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015,

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015, III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015, pembuatan alat dan pengambilan data dilaksanakan di Laboratorium

Lebih terperinci

III. METODE PENELITIAN. : Laboratorium Teknik Kendali Jurusan Teknik Elektro. Universitas Lampung

III. METODE PENELITIAN. : Laboratorium Teknik Kendali Jurusan Teknik Elektro. Universitas Lampung III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Waktu : Juni 2010 November 2010 Tempat : Laboratorium Teknik Kendali Jurusan Teknik Elektro Universitas Lampung B. Alat dan Bahan Alat dan bahan yang

Lebih terperinci

Perancangan Serial Stepper

Perancangan Serial Stepper Perancangan Serial Stepper ini : Blok diagram dari rangakaian yang dirancang tampak pada gambar dibawah Komputer Antar Muka Peralatan luar Komputer Komputer berfungsi untuk mengendalikan peralatan luar,

Lebih terperinci

SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535

SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535 3 PENERAPAN FILM Ba 0,55 Sr 0,45 TiO 3 (BST) SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535 23 Pendahuluan Indonesia sebagai negara agraris

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN

BAB IV PENGUJIAN DAN ANALISA RANGKAIAN BAB IV PENGUJIAN DAN ANALISA RANGKAIAN Dalam bab ini penulis akan mengungkapkan dan menguraikan mengenai persiapan komponen dan peralatan yang dipergunakan serta langkah langkah praktek, kemudian menyiapkan

Lebih terperinci

NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION

NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION Diajukan Sebagai Salah Satu Syarat Menyelesaikan Program Studi S-1 Jurusan Teknik Elektro Fakultas

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI

BAB 4 IMPLEMENTASI DAN EVALUASI BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Sistem 4.1.1 Spesifikasi Perangkat Keras Proses pengendalian mobile robot dan pengenalan image dilakukan oleh microcontroller keluarga AVR, yakni ATMEGA

Lebih terperinci

PROCEEDING. sepeti program untuk mengaktifkan dan PENERAPAN AUTOMATIC BUILDING SYSTEM DI PPNS. menonaktifkan AC, program untuk counter

PROCEEDING. sepeti program untuk mengaktifkan dan PENERAPAN AUTOMATIC BUILDING SYSTEM DI PPNS. menonaktifkan AC, program untuk counter PROCEEDING PENERAPAN AUTOMATIC BUILDING SYSTEM DI PPNS (Sub Judul:MONITORING SISTIM PENGKONDISIAN UDARA DI LABORATORIUM REPARASI LISTRIK) Dengan meningkatnya dan semakin kompleknya persoalan penggunaan

Lebih terperinci