BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Sistem Distribusi Tenaga Listrik Pada Gardu Induk (GI), energi listrik didistribusikan melalui penyulangpenyulang yang berupa saluran udara atau saluran kabel tanah. Pada penyulang distribusi ini terdapat gardu-gardu distribusi. Fungsi dari Gardu Distribusi ini adalah menurunkan Tegangan Distribusi Primer menjadi Tegangan Rendah (JTR). Konsumen tenaga listrik disambung dari JTR melalui Saluran Rumah (SR). Dari SR, tenaga listrik masuk ke Alat Pembatas dan Pengukur (APP) terlebih dahulu sebelum memasuki instalasi rumah milik konsumen. APP berfungsi membatasi daya dan mengukur pemakaian tenaga listrik oleh konsumen. Sistem Distribusi merupakan semua bagian peralatan sistem tenaga listrik yang mendistribusikan energi listrik dari gardu induk hingga KWh meter di konsumen dengan mutu yang memadai. Sistem Distribusi berfungsi sebagai pembagi atau penyalur tenaga listrik ke pelanggan, dan merupakan sub sistem tenaga listrik yang langsung berhubungan dengan pelanggan, karena catu daya pada pusat-pusat beban (pelanggan) dilayani langsung melalui jaringan distribusi. Tenaga listrik yang dihasilkan oleh pembangkit listrik besar dengan tegangan dari 11 kv sampai 24 kv dinaikan tegangannya oleh gardu induk dengan transformator penaik tegangan menjadi 70 kv, 154kV, 220kV atau 500kV kemudian disalurkan melalui saluran transmisi. Tujuan menaikkan tegangan ialah untuk memperkecil kerugian daya listrik pada saluran transmisi, dimana dalam hal ini kerugian daya adalah sebanding dengan kuadrat arus yang mengalir (I 2 R). Dengan daya yang sama bila nilai tegangannya diperbesar, maka arus yang mengalir semakin kecil sehingga kerugian daya juga akan kecil pula. Dari saluran transmisi, tegangan diturunkan lagi menjadi 20 kv dengan transformator penurun tegangan pada gardu induk distribusi, kemudian dengan sistem tegangan tersebut penyaluran tenaga listrik dilakukan oleh saluran distribusi primer. Dari saluran distribusi primer inilah gardu-gardu distribusi 5

2 6 mengambil tegangan untuk diturunkan tegangannya dengan trafo distribusi menjadi sistem tegangan rendah, yaitu 220/380 Volt. Selanjutnya disalurkan oleh saluran distribusi sekunder ke konsumen-konsumen. Dengan ini jelas bahwa sistem distribusi merupakan bagian yang penting dalam sistem tenaga listrik secara keseluruhan. Generator G Rel GI Pembangkit Trafo step up Transmisi 500 KV GI Tansmisi dengan Interbus Trafo GI Distribusi JTM 20 KV Gardu Distribusi JTR 0.4 KV Pelanggan 150 KV Gambar 2.1 Sistem Penyaluran Tenaga Listrik Pelanggan 20 KV Pelanggan 0.4 KV Pelanggan 0.4 KV Pada sistem penyaluran daya jarak jauh, selalu digunakan tegangan setinggi mungkin, dengan menggunakan trafo-trafo step-up. Nilai tegangan yang sangat tinggi ini (HV,UHV,EHV) menimbulkan beberapa konsekuensi antara lain: berbahaya bagi lingkungan dan mahalnya harga perlengkapan-perlengkapannya, selain menjadi tidak cocok dengan nilai tegangan yang dibutuhkan pada sisi beban. Maka, pada daerah-daerah pusat beban tegangan saluran yang tinggi ini diturunkan kembali dengan menggunakan trafo-trafo step-down. Akibatnya, bila ditinjau nilai tegangannya, maka mulai dari titik sumber hingga di titik beban, terdapat bagian-bagian saluran yang memiliki nilai tegangan berbeda-beda. 2.2 Pengelompokan Jaringan Distribusi Tenaga Listrik Untuk kemudahan dan penyederhanaan, maka jaringan distribusi di kelompokan menjadi beberapa kelompok, yaitu: Daerah I : Bagian pembangkitan (Generation) Daerah II : Bagian penyaluran (Transmission), bertegangan tinggi (HV, UVH, EHV) Daerah III : Bagian Distribusi Primer, bertegangan menengah (6 atau 20kV). Daerah IV : Bagian Distribusi sekunder (pada beban/konsumen), Instalasi, bertegangan rendah.

3 7 Gambar 2.2 Pembagian Tegangan Sistem Tenaga Listrik Berdasarkan pembatasan-pembatasan tersebut, maka diketahui bahwa porsi materi Sistem Distribusi adalah Daerah III dan IV, yang pada dasarnya dapat dikelasifikasikan menurut beberapa cara, bergantung dari segi apa klasifikasi itu dibuat. Dengan demikian ruang lingkup Jaringan Distribusi adalah: 1. SUTM, terdiri dari : Tiang dan peralatan kelengkapannya, konduktor dan peralatan perlengkapannya, serta peralatan pengaman dan pemutus. 2. SKTM, terdiri dari : Kabel tanah, indoor dan outdoor termination dan lainlain.

4 8 3. Gardu trafo, terdiri dari : Transformator, tiang, pondasi tiang, rangka tempat trafo, LV panel, pipa-pipa pelindung, Arrester, kabel-kabel, transformer band, peralatan grounding, dan lain-lain. 4. SUTR dan SKTR, terdiri dari : sama dengan perlengkapan / material pada SUTM dan SKTM. Yang membedakan hanya dimensinya. 2.3 Klasifikasi Saluran Distribusi Tenaga Listrik Secara umum, saluran tenaga Listrik atau saluran distribusi dapat diklasifikasikan sebagai berikut: Menurut nilai tegangannya: a. Saluran distribusi Primer, Terletak pada sisi primer trafo distribusi, yaitu antara titik Sekunder trafo substation (Gardu Induk) dengan titik primer trafo distribusi. Saluran ini bertegangan menengah 20 kv. Jaringan listrik 70 kv atau 150 kv, jika langsung melayani pelanggan, bisa disebut jaringan distribusi. b. Saluran Distribusi Sekunder, Terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban Menurut bentuk tegangannya: a. Saluran Distribusi DC (Direct Current) menggunakan sistem tegangan searah. b. Saluran Distribusi AC (Alternating Current) menggunakan sistem tegangan bolak-balik Menurut jenis/tipe konduktornya: a. Saluran udara, dipasang pada udara terbuka dengan bantuan penyangga (tiang) dan perlengkapannya, dan dibedakan atas: b. Saluran kawat udara, bila konduktornya telanjang, tanpa isolasi pembungkus. c. Saluran kabel udara, bila konduktornya terbungkus isolasi.

5 9 d. Saluran Bawah Tanah, dipasang di dalam tanah, dengan menggunakan kabel tanah (ground cable). e. Saluran Bawah Laut, dipasang di dasar laut dengan menggunakan kabel laut (submarine cable) Menurut susunan (konfigurasi) salurannya: a. Saluran Konfigurasi horizontal, bila saluran fasa terhadap fasa yang lain/terhadap netral, atau saluran positif terhadap negatif (pada sistem DC) membentuk garis horisontal. b. Saluran Konfigurasi Vertikal, bila saluran-saluran tersebut membentuk garis vertikal c. Saluran konfigurasi Delta, bila kedudukan saluran satu sama lain membentuk suatu segitiga (delta) Menurut Susunan Rangkaiannya Dari uraian diatas telah disinggung bahwa sistem distribusi di bedakan menjadi dua yaitu sistem distribusi primer dan sistem distribusi sekunder Jaringan Sistem Distribusi Primer Sistem distribusi primer digunakan untuk menyalurkan tenaga listrik dari gardu induk distribusi ke pusat-pusat beban. Sistem ini dapat menggunakan saluran udara, kabel udara, maupun kabel tanah sesuai dengan tingkat keandalan yang diinginkan dan kondisi serta situasi lingkungan. Saluran distribusi ini direntangkan sepanjang daerah yang akan di suplai tenaga listrik sampai ke pusat beban. Terdapat bermacam-macam bentuk rangkaian jaringan distribusi primer, yaitu: a. Jaringan Distribusi Radial, dengan model: Radial tipe pohon, Radial dengan tie dan switch pemisah, Radial dengan pusat beban dan Radial dengan pembagian phase area.

6 10 b. Jaringan distribusi ring (loop), dengan model: Bentuk open loop dan bentuk Close loop. c. Jaringan distribusi Jaring-jaring (NET) d. Jaringan distribusi spindle e. Saluran Radial Interkoneksi a. Jaringan Distribusi Radial Bila antara titik sumber dan titik bebannya hanya terdapat satu saluran, tidak ada saluran alternatif saluran lainnya. Bentuk jaringan ini merupakan bentuk dasar yang paling sederhana dan paling banyak digunakan. Dinamakan radial karena saluran ini ditarik secara radial dari suatu titik yang merupakan sumber dari jaringan itu, dan dari cabang-cabang ke titik-titik beban yang dilayani. Catu daya berasal dari satu titik sumber dan karena adanya percabangan-percabangan, maka arus beban yang mengalir sepanjang saluran menjadi tidak sama besar. Jaringan radial mempunyai keunggulan dan kekurangan yaitu : a) Keunggulan Bentuknya sederhana. Biaya inventasi ralatif murah. b) Kekurangan Kualitas pelayanan dayanya relatif jelek, karena rugi tegangan dan rugi daya yang terjadi pada saluran relatif besar. Kontinuitas pelayanan daya tidak terjamin, sebab antara titik sumber dan titik beban hanya ada satu alternatif saluran sehingga bila saluran tersebut mengalami gangguan, maka seluruh rangkaian sesudah titik gangguan akan mengalami Black Out secara total. Untuk melokalisir gangguan pada bentuk jaringan radial ini biasanya diperlengkapi dengan peralatan pengaman berupa fuse, sectionaliser, recloser, atau alat pemutus beban lainnya, tetapi fungsinya hanya membatasi daerah yang mengalami pemadaman total, yaitu daerah saluran sesudah atau dibelakang titik

7 11 gangguan selama gangguan belum teratasi. Jaringan distribusi radial ini memiliki beberapa bentuk modifikasi yaitu : a. Radial Tipe Pohon Bentuk ini merupakan bentuk yang paling dasar. Satu saluran utama dibentang menurut kebutuhannya, selanjutnya dicabangkan dengan saluran cabang (lateral penyulang) dan lateral penyulang ini dicabang-cabang lagi dengan sublateral penyulang (anak cabang). MAIN FEEDER F LATERAL FUSE LATERAL FEEDER TRAFO DISTRIBUSI K L SECONDARY FEEDER BEBAN BEBAN M Gambar 2.3 Radial Tipe Pohon Sesuai dengan kecepatan arus yang ditanggung masing-masing saluran, ukuran penyulang utama adalah yang terbesar, ukuran lateral lebih kecil dari penyulang utama dan ukuran sublateral adalah yang terkecil. b. Radial dengan Tie dan Switch Pemisah Bentuk ini merupakan modifikasi bentuk dasar dengan menambahkan tie dan switch pemisah, yang diperlukan untuk mempercepat pemulihan pelayanan bagi konsumen, dengan cara menghubungkan area-area yang tidak terganggu pada penyulang yang bersangkutan dengan penyulang di sekitarnya.

8 12 Tie switch (normally open) Area Beban I Area Beban II Area Beban III Gambar 2.4 Radial dengan tie dan switch pemisah Dengan demikian bagian penyulang yang terganggu dilokalisir dan bagian penyulang lainnya yang sehat segera dioperasikan kembali dengan cara melepas switch yang terhubung ke titik gangguan dan menghubungkan bagian penyulang yang sehat ke penyulang disekitarnya. c. Radial dengan Pusat Beban Bentuk ini mencatu daya dengan menggunakan penyulang utama (main feeder) yang disebut express feeder langsung ke pusat beban dan dari titik pusat beban ini disebar dengan menggunakan back feeder secara radial. Ke Beban / konsumen Trafo Distribusi Express Feeder Back feeder Load Center Gambar 2.5 Radial dengan Pusat Beban

9 13 d. Radial dengan Pembagian Area Fasa Pada bentuk ini masing-masing fasa dari jaringan bertugas melayani daerah beban yang berlainan. Bentuk ini akan dapat menimbulkan akibat kondisi sistem 3 fasa yang tidak seimbang (simetris), bila digunakan pada daerah yang baru dan belum mantap pembagian bebannya. Karena hanya cocok untuk daerah beban yang stabil dan penambahan maupun pembagian bebannya dapat diatur merata dan simetris pada setiap fasanya. Main Feeder (3 phasa) Single Phasa Feeder Area Beban Phasa R Lateral Area Beban Phasa S Trafo Distribusi Area Beban Phasa T Ke Beban Gambar 2.6 Radial dengan Pembagian Phasa Area b. Jaringan Distribusi Ring (loop) Bila pada titik beban terdapat dua alternatif saluran berasal lebih dari satu sumber. Jaringan ini merupakan bentuk tertutup, disebut juga bentuk jaringan loop. Susunan rangkaian penyulang membentuk ring, yang memungkinkan titik beban dilayani dari dua arah penyulang, sehingga kontinuitas pelayanan lebih terjamin, serta kualitas dayanya menjadi lebih baik Karena rugi tegangan dan rugi daya pada saluran menjadi lebih kecil.

10 14 Pemutus (CB) Main Feeder Lateral Sectionalizing Distribusi Sekunder Trafo distribusi Loop Tie Distribusi Sekunder Ke Beban Gambar 2.7 Jaringan Distribusi Tipe Ring (Loop) Pada tipe ini, kualitas dan kontinuitas pelayanan daya memang lebih baik, tetapi biaya investasinya lebih mahal, karena memerlukan pemutus beban yang lebih banyak. Bila digunakan dengan pemutus beban yang otomatis (dilengkapi dengan recloser atau AVS), maka pengamanan dapat berlangsung cepat dan praktis, dengan cepat pula daerah gangguan segera beroperasi kembali bila gangguan telah teratasi. Dengan cara ini berarti dapat mengurangi tenaga operator. Bentuk ini cocok untuk digunakan pada daerah beban yang padat dan memerlukan keandalan tinggi. c. Jaringan Distribusi Spindle Selain bentuk-bentuk dasar jaringan distribusi yang telah ada, maka dikembangjan pula bentuk-bentuk modifikasi yang bertujuan untuk meningkatkan keandalan dan kualitas sistem. Salah satu bentuk modifikasi yang populer adalah bentuk jaringan spindle, yang biasanya terdiri atas maksimum 6 penyulang dalam keadaan dibebani dan satu penyulang dalam keadaan kerja tanpa beban. Saluran 6 penyulang yang beroperasi dalam keadaan berbeban dinamakan working feeder atau saluran kerja dan satu saluran yang dioperasikan tanpa beban dinamakan express feeder.

11 15 CB.1 LBS LBS CB.2 LBS CB.3 CB.4 CB.5 EXPRESS FEEDER CB.6 CB.7 Ke Beban / Konsumen GARDU HUBUNG Gambar 2.8 Jaringan Distribusi Tipe Spindle Fungsi express feeder dalam hal ini selain sebagai cadangan pada saat terjadi gangguan pada salah satu working feeder, juga berfungsi untuk memperkecil terjadinya drop tegangan pada sistem distribusi bersangkutan pada keadaan operasi normal. Dalam keadaan normal memang express feeder ini sengaja dioperasikan tanpa beban Jaringan Sistem Distribusi Sekunder Sistem distribusi sekunder digunakan untuk menyalurkan tenaga listrik dari gardu distribusi ke beban-beban yang ada di konsumen. Pada sistem distribusi sekunder bentuk saluran yang paling banyak digunakan ialah sistem radial. Sistem ini dapat menggunakan kabel yang berisolasi maupun konduktor tanpa isolasi. Sistem ini biasanya disebut sistem tegangan rendah yang langsung akan dihubungkan kepada konsumen/pemakai tenaga listrik dengan melalui peralatanperalatan sbb: Papan pembagi pada trafo distribusi. Hantaran tegangan rendah (saluran distribusi sekunder). Saluran Layanan Pelanggan (SLP) (ke konsumen/pemakai).

12 16 Alat Pembatas dan pengukur daya (kwh meter) serta fuse atau pengaman pada pelanggan. PMS PMT FCO TD SU PELAYANAN KONSUMEN Keterangan : PMS = Pemisah PMT = Pemutus FCO = Fuse Cut Out RIL TT TD = Trafo Distribusi SU = Saklar Utama SC = Saklar Cabang FC = Fuse Cabang RIL TR SC FC Gambar 2.9 Komponen Sistem Distribusi Sekunder Gambar 2.10 Hubungan Tegangan Menengah ke Tegangan Rendah dan Konsumen 2.4 Gangguan Pada Sistem Tenaga Listrik Jenis gangguan utama dalam saluran distribusi tenaga listrik adalah gangguan hubung singkat. Gangguan hubung singkat ini terjadi sebagai akibat dari tembusnya bahan isolasi, kesalahan teknis, polusi debu, dan pengaruh alam di

13 17 sekitar saluran distribusi tenaga listrik, sehingga ada arus yang mengalir dari fasa ke tanah atau antar fasa. Jaringan distribusi berfungsi untuk menyalurkan tenaga listrik ke pelanggan. Untuk keandalan pelayanan penyaluran tenaga listrik ke pelanggan maka jaringan distribusi perlu dilengkapi dengan alat pengaman. Bila ditinjau dari segi lamanya waktu gangguan, maka gangguan pada saluran distribusi tenaga listrik dapat dibedakan menjadi dua, yaitu : a. Gangguan sementara ( gangguan temporer ) b. Gangguan permanen ( gangguan stasioner ) Untuk gangguan temporer (gangguan sementara) ditandai dengan normalnya kerja sistem setelah pengaman dimasukkan (menutup) kembali. Sedangkan gangguan permanen (gangguan stationer) ditandai dengan jatuhnya pengaman setelah dimasukkan kembali, dan biasanya dilakukan sampai tiga kali. Pada gangguan permanen, pengaman bisa bekerja normal kembali setelah gangguan tersebut bisa diatasi. Sedangkan gangguan yang bersifat temporer, penyebab gangguan akan hilang dengan sendirinya setelah pengaman jatuh/trip. Gangguan yang bersifat permanen bisa disebabkan karena adanya kerusakan pada peralatan sistem tenaga listrik, sehingga gangguan ini baru bisa diatasi setelah kerusakan pada peralatan tersebut sudah diperbaiki. Gangguan temporer yang terjadi berulang-ulang dapat menyebabkan timbulnya kerusakan pada peralatan sistem tenaga listrik dan hal ini dapat pula menimbulkan gangguan yang bersifat permanen sebagai akibat adanya kerusakan peralatan tersebut. Ditinjau dari macam gangguannya, maka gangguan hubung singkat dapat dibedakan menjadi a. Gangguan hubung singkat tiga fasa b. Gangguan hubung singkat dua fasa ke tanah c. Gangguan hubung singkat satu fasa ke tanah d. Gangguan hubung singkat antar fasa (dua fasa) Dari empat jenis gangguan tersebut dapat dibedakan menjadi dua kelompok gangguan, yaitu :

14 18 a. Gangguan hubung singkat simetris. b. Gangguan hubung singkat tidak simetris. Yang termasuk dalam gangguan hubung singkat simetris adalah gangguan hubung singkat tiga fasa, sedangkan gangguan yang lainnya termasuk gangguan hubung singkat tidak simetris. Gangguan hubung singkat akan mengakibatkan arus lebih pada fasa yang teganggu, dimana arus gangguan tersebut mempunyai harga yang jauh lebih besar dari rating arus maksimum yang diijinkan pada peralatan. Arus hubung singkat ini dapat mengakibatkan kerusakan pada peralatan sistem tenaga listrik jika pengaman tidak segera bekerja. Gangguan-gangguan yang lain jika terjadi berulang-ulang bisa mengakibatkan terjadinya kerusakan isolasi maupun peralatan pada sistem transmisi dan distribusi tenaga listrik dan hal ini akhirnya dapat mengakibatkan terjadinya hubung singkat Gangguan Hubung Singkat Tiga Fasa Gangguan hubung singkat tiga fasa adalah gangguan hubung singkat yang berupa hubungan pendek antara ketiga fasanya. Didapat persamaan sebagai berikut: Ea I f 3 ( Ampere) Z 1 a V LL Dimana: Ea = ( ) 3 Volt Ia Zf b Ib Zf c Ic Zf Gambar 2.11 (a) Gangguan Hubung Singkat 3 Fasa

15 19 Arus gangguan hubung singkat 3 fasa bila dibandingkan dengan gangguan hubung singkat yang lain, mempunyai arus gangguan yang paling besar Gangguan Hubung Singkat Dua Fasa Gangguan hubung singkat dua fasa adalah gangguan hubung singkat yang berupa hubungan pendek antara satu fasa dengan fasa yang lain. Apabila hubung singkat terjadi pada fasa a dan b akan didapat persamaan dibawah: I f Eab ( Ampere ) 2 Z Z 1 2 Oleh karena Z 1 = Z 2 dan I f 3 Maka: I f I f Ea 3 3 Z a 1 Ia b Ib Zf c Ic Gambar 2.12 (a) Gangguan Hubung Singkat 2 Fasa Arus hubung singkat dua fasa lebih kecil daripada arus gangguan hubung singkat tiga fasa.

16 Gangguan Hubung Singkat 1 phasa ke Tanah Gangguan hubung singkat satu fasa ke tanah adalah gangguan hubung singkat yang berupa hubungan pendek antara satu fasa dengan tanah. Apabila hubung singkat terjadi pada fasa a akan didapat persamaan dibawah[8]: I 3 Vph HS 1 Z1eq Z2eq Z 0 eq Dimana: I HS 1Ф = arus hubung singkat 1 phasa ke tanah (Ampere) V ph = tegangan phasa netral sistem 20 kv (Volt) Z1 eq = impedansi ekivalen urutan positif (Ohm) Z2 eq = impedansi ekivalen urutan negatif (Ohm) Z0 eq = impedansi ekivalen urutan nol (Ohm) a Ia Zf b Ib c Ic Gambar 2.13 (a) Gangguan Hubung Singkat 1 Fasa ke Tanah, Arus gangguan satu fasa ke tanah hampir selalu lebih kecil daripada arus gangguan hubung singkat tiga fasa, bahkan mungkin lebih kecil dari arus beban nominalnya, sebab gangguan tanah hampir selalu melalui tahanan gangguan,

17 21 misalnya beberapa Ohm, yaitu tahanan pembumian kaki tiang, dalam hal flashover dengan tiang atau kawat tanah. Di samping itu untuk sistem dengan pembumian melalui tahanan, tahanan pembumian netral sistem itu juga akan membatasi arus gangguan satu fasa ke tanah. 2.5 Faktor-faktor Penyebab Terjadinya Gangguan Faktor-faktor yang dapat menyebabkan terjadinya gangguan pada sistem transmisi dan distribusi tenaga listrik antara lain : a) Surja Petir. Mengingat saluran transmisi dan distribusi tersebar luas dan panjang membentang serta beroperasi pada kondisi tempat yang cuacanya berbedabeda, maka kemungkinan terjadinya gangguan yang disebabkan oleh petir besar sekali, terutama pada musim hujan. Gangguan yang disebabkan oleh petir ini sangat berbahaya karena dapat merusak isolasi peralatan. b) Surja Hubung. Yang dimaksud dengan surja hubung adalah kenaikan tegangan pada saat dilangsungkan pemutusan arus oleh PMT. Kenaikan tegangan yang disebabkan oleh adanya gangguan surja hubung ini dapat merusak isolasi peralatan. Biasanya sering terjadi pada saat musim penghujan. Gangguan ini sangat dipengaruhi oleh kondisi cuaca yang berbeda-beda di suatu tempat. Gangguan yang disebabkan oleh petir ini sangat berbahaya karena dapat merusak isolasi dari peralatan. c) Polusi Debu. Debu-debu yang menempel pada isolator, bila udara lembab maka debu tersebut merupakan konduktor yang dapat menyebabkan terjadinya loncatan bunga api yang pada akhirnya dapat menyebabkan gangguan hubung singkat fasa ke tanah. d) Adanya pohon-pohon yang tidak terawat. Pohon-pohon yang dekat dengan saluran transmisi dan distribusi bila tidak terawat dan rantingnya masuk ke daerah bebas saluran transmisi dan distribusi, hal ini dapat mengakibatkan terjadinya gangguan hubung singkat fasa ke tanah.

18 22 e) Isolator yang rusak. Isolator yang rusak karena sambaran petir atau karena usia yang sudah tua bisa menyebabkan terjadinya gangguan hubung singkat antar fasa atau gangguan hubung singkata dari fasa ke tanah. f) Angin kencang Terjadinya angin kencang, sehingga menimbulkan gesekan pohon dengan jaringan listrik. g) Kesadaran masyarakat yang kurang Misalnya bermain layang-layang dengan menggunakan benang yang bisa dilalui aliran listrik. Ini sangat berbahaya jika benang tersebut mengenai jaringan listrik. h) Kualitas peralatan atau material yang kurang baik Misalnya pada JTR yang memakai Twested Cable dengan mutu yang kurang baik, sehingga isolasinya mempunyai tegangan tembus yang rendah, mudah mengelupas dan tidak tahan panas. Hal ini juga akan menyebabkan hubung singkat antar phasa. i) Pemasangan jaringan yang kurang baik Pemasangan konektor pada JTR yang memakai TC, apabila pemasangannya kurang baik akan menyebabkan timbulnya bunga api dan akan menyebabkan kerusakan phasa yang lainnya. Akibatnya akan terjadi hubung singkat. j) Terjadinya hujan, adanya sambaran petir, karena terkena galian (kabel tanah), umur jaringan (kabel tanah) sudah tua yang mengakibatkan pengelupasan isolasi dan menyebabkan hubung singkat dan sebagainya. 2.6 Sistem Proteksi Pengertian Sistem Proteksi Sistem proteksi merupakan sistem yang bekerja mengamankan peralatan yang berada di dalamnya pada saat terjadinya suatu gangguan. Sistem pengaman yang baik harus mampu : a. Melakukan koordinasi dengan sistem pengaman yang lain. b. Mengamankan peralatan dari kerusakan yang lebih luas akibat gangguan.

19 23 c. Membatasi kemungkinan terjadinya kecelakaan. d. Membatasi daerah pemadaman akibat gangguan Tujuan Sistem Proteksi Gangguan sistem distribusi tenaga listrik hampir seluruhnya merupakan gangguan hubung singkat, yang akan menimbulkan arus yang cukup besar, semakin besar sistemnya, semakin besar juga arus gangguannya. Arus gangguan yang besar bila tidak segera dihilangkan akan merusak peralatan yang dilalui arus gangguan. Untuk melepaskan daerah yang terganggu diperlukan alat pengaman. Disini dapat dilihat bahwa pengaman bukan untuk meniadakan, tetapi bertujuan untuk melepas atau membuka sistem yang terganggu, sehingga arus gangguan ini akan padam. 2.7 Relay Proteksi Pengertian Relay Proteksi Relay proteksi atau relay pengaman adalah suatu peralatan elektrik maupun magnetik yang dirancang untuk mendeteksi adanya suatu gangguan atau merasakan adanya kondisi tidak normal yang mungkin terjadi pada peralatan atau bagian sistem tenaga listrik. Jika kondisi abnormal tersebut terjadi maka relay pengaman secara otomatis memberikan sinyal atau perintah untuk membuka pemutus tenaga (circuit breaker) agar bagian yang terganggu dapat dipisahkan dari sistem normal. Di samping itu relay juga berfungsi untuk menunjukkan lokasi dan macam gangguannya sehingga memudahkan evaluasi pada saat terjadi gangguan. Relay proteksi dapat mendeteksi adanya gangguan pada peralatan yang diamankan dengan mengukur besaran-besaran listrik yang diterimanya dan membandingkan antara besaran pada saat kondisi normal dengan besaran pada saat kondisi gangguan. Besaran-besaran yang berubah harganya pada kondisi gangguan tersebut misalnya arus, tegangan, daya, sudut fasa, impedansi, frekuensi, dan lain sebagainya.

20 24 Relay secara otomatis akan membuka pemutus tenaga (PMT) untuk memisahkan peralatan atau bagian dari sistem yang terganggu dan memberikan isyarat berupa lampu dan alarm (bel) yang menandakan pada sistem telah terjadi gangguan Fungsi Relay Proteksi Relay pengaman adalah susunan peralatan yang direncanakan untuk dapat merasakan atau mengukur adanya gangguan atau merasakan adanya ketidak normalan pada peralatan atau bagian sistem tenaga listrik dan segera secara otomatis membuka Pemutus Tenaga (PMT) atau Circuit Breaker (CB) untuk memisahkan peralatan atau bagian dari sistem yang terganggu dan memberi isyarat berupa lampu atau alarm (bel). Relay pengaman dapat merasakan atau melihat adanya gangguan pada peralatan yang diamankan dengan mengukur atau membandingkan besaranbesaran yang diterimanya misalnya arus, tegangan, daya, sudut fase, frekuensi, impedansi dan sebagainya dengan besaran yang telah ditentukan, kemudian mengambil keputusan untuk seketika ataupun dengan perlambatan waktu membuka PMT ataupun hanya memberi tanda tanpa membuka PMT. PMT harus mempunyai kemampuan untuk memutus arus hubung singkat maksimum yang melewatinya dan juga harus mampu menutup rangkaian dalam keadaan hubung singkat dan kemudian membuka kembali. PMT biasanya dipasang pada generator, trafo daya, saluran transmisi, saluran distribusi dan sebagainya supaya masing-masing bagian sistem dapat dipisahkan sedemikian rupa sehingga sistem lainnya tetap beroperasi secara normal. Pada sistem tegangan menengah dan tegangan rendah adakalanya sekering digunakan sebagai relay dan pemutus tenaga bersamaan. Disamping tugas di atas, relay juga berfungsi menunjukkan lokasi dan macam gangguannya. Dengan data tersebut memudahkan analisa dari gangguannya. Dalam beberapa hal relay hanya memberi tanda adanya gangguan

21 25 atau kerusakan, jika dipandang gangguan atau kerusakan tersebut tidak segera membahayakan. Dari uraian di atas maka relay pengaman pada sistem tenaga listrik berfungsi untuk : a. Merasakan, mengukur dan menentukan bagian sistem yang terganggu serta memisahkan secepatnya sehingga sistem lainnya tidak terganggu dan dapat beroperasi secara normal. b. Mengurangi kerusakan yang lebih parah dari peralatan atau bagian sistem yang terganggu. c. Mengurangi pengaruh gangguan terhadap bagian sistem yang lain yang tidak terganggu di dalam sistem tersebut serta mencegah meluasnya gangguan. d. Memperkecil bahaya bagi manusia atau operator e. Menunjukan lokasi dan macam gangguan. Sistem pengaman yang baik harus mampu : a. Melakukan koordinasi dengan sistim pengaman yang lain b. Mengamankan peralatan dari kerusakan yang lebih luas akibat gangguan c. Membatasi kemungkinan terjadinya kecelakaaan d. Secepatnya membebaskan pemadaman karena gangguan e. Membatasi daerah pemadaman akibat gangguan f. Mengurangi frekuensi pemutusan permanen karena gangguan Persyaratan Relay Proteksi Relay proteksi dirancang dan dibuat untuk merasakan adanya gangguan pada bagian suatu sistem tenaga listrik yang kemudian secara otomatis akan membuka Pemutus Tenaga. Relay proteksi harus memenuhi persyaratan sebagai berikut : 1) Dapat diandalkan ( Reliable ) Dalam keadaan normal (tidak ada gangguan) relay tidak boleh bekerja. Tetapi bila suatu saat terjadi gangguan yang mengharuskan relay bekerja, maka relay tidak boleh gagal bekerja untuk mengatasi gangguan tersebut. Kegagalan kerja

22 26 relay dapat mengakibatkan kerusakan yang berat bagi alat atau sistem yang diamankan atau gangguan menjadi meluas sehingga daerah yang mengalami pemadaman akan meluas. Disamping itu relay tidak boleh salah bekerja, sehingga menimbulkan pemadaman yang tidak seharusnya ataupun menyulitkan analisa gangguan yang terjadi. Dalam hal ini yang harus dapat diandalkan tidak hanya relaynya sendiri tetapi mulai dari trafo arus, trafo tegangan serta rangkaiannya, baterai serta pemutus tenaganya. 2) Selektif Relay bertugas mengamankan peralatan atau bagian sistem dalam daerah pengamannya. Letak PMT (Pemutus Tenaga) sedemikian rupa sehingga setiap bagian dari sistem dapat dipisahkan. Maka tugas relay adalah mendeteksi adanya gangguan yang terjadi pada daerah pengamanannya dan memberi perintah untuk membuka PMT (Pemutus Tenaga) untuk memisahkan bagian dari sistem pada daerah yang terganggu. Dengan demikian bagian sistem lainnya yang tidak terganggu jangan sampai dilepas, dan masih beroperasi normal sehingga tidak terjadi pemutusan pelayanan. Dengan kata lain pengamanan dinyatakan selektif bila relai dan PMT (Pemutus Tenaga) yang bekerja hanyalah pada daerah yang terganggu saja. 3) Responsif Relay pengaman harus dapat bekerja dengan cepat dan segera setelah merasakan adanya gangguan pada sistem. 4) Sensitif Relay pengaman harus cepat merasakan adanya arus gangguan yang melebihi arus settingnya. Relay dikatakan peka (sensitif) apabila dapat bekerja dengan masukan dari besaran yang dideteksi kecil. Jadi relay dapat bekerja pada awal kejadian gangguan atau dengan kata lain gangguan dapat diatasi pada awal kejadian. Hal ini memberi keuntungan dimana kerusakan peralatan yang diamankan akibat gangguan menjadi kecil. Namun demikian relay harus stabil, yang artinya relay harus dapat membedakan antara arus gangguan dan arus beban maksimum.

23 27 5) Ekonomis dan sederhana Penggunaan relay pengaman harus dipertimbangkan sisi ekonomisnya tanpa mempengaruhi fungsi relay tersebut. 2.8 Relay Arus Lebih Pengertian Relay Arus Lebih Proteksi arus lebih adalah proteksi terhadap perubahan parameter arus yang sangat besar dan terjadi pada waktu yang cepat, yang disebabkan oleh hubung singkat. Pada proteksi arus lebih ini, relay akan pick-up jika besar arus melebihi nilai seting (Tjahjono, 2000). Elemen dasar dari proteksi arus lebih adalah relay arus. Proteksi arus lebih meliputi proteksi terhadap gangguan hubung singkat yang dapat berupa gangguan hubung singkat phasa-phasa, satu phasa ke tanah serta hubung singkat antar phasa. Proteksi terhadap hubung singkat antar phasa dikenal sebagai proteksi arus lebih dan relay yang digunakan disebut relay arus lebih (over current relay). Jika arus gangguan mengalir melalui tanah, gangguan ini disebut gangguan hubung singkat ke tanah dan relay yang digunakan disebut proteksi hubung tanah (ground fault relay). Pada proteksi transformator daya, relay arus lebih digunakan sebagai tambahan bagi relay differensial untuk memberikan tanggapan terhadap gangguan luar. Relay arus lebih yang digunakan adalah relay arus lebih tanpa perlambatan waktu, relay arus lebih dengan karakteristik waktu yang berbanding terbalik dengan besar arus dan relay arus lebih dengan komponen arah Jenis Relay Arus Lebih Relay Arus Lebih Waktu Seketika (Moment-Instantaneous) Relay ini akan memberi perintah kepada Pemutus Tenaga ( PMT ) pada saat terjadi gangguan bila arus gangguan besarnya melampaui penyetelannya, dan jangka waktu kerja rele mulai pick-up sampai kerja relay sangat singkat tanpa penundaan waktu yaitu ms.

24 28 Gambar 2.14 Relay Arus Lebih dengan Karakteristik Waktu Kerja Seketika Keterangan Gambar 2.14 : CB : circuit breaker / PMT CT : current transformer TC : tripping coil C : relay arus lebih t op : waktu operasi Ip : arus setting relay Pada gambar 2.14 (b) terlihat bahwa waktu kerja rele sangat cepat tanpa penundaan waktu. Rele jenis ini biasanya dikombinasikan dengan rele arus lebih dengan karakteristik waktu kerja terbalik atau dengan rele arus lebih dengan karakteristik waktu kerja tertentu Relay Arus Lebih Waktu Tertentu (Definite Time) Relay ini akan memberi perintah kepada Pemutus Tenaga ( PMT ) pada saat terjadi gangguan bila besarnya arus gangguan melampaui penyetelannya, dan jangka waktu kerja rele mulai pick-up sampai kerja rele waktunya ditunda dengan harga tertentu tidak dipengaruhi oleh besarnya arus gangguan.

25 29 Gambar 2.15 Relay Arus Lebih dengan Karakteristik Waktu Kerja Tertentu Keterangan Gambar 2.15 : CB : circuit breaker / PMT t op : waktu operasi CT : current transformer Ip : arus setting (arus kerja) TC : tripping coil A : relay bantu C S T : relay arus lebih : relay sinyal : relay waktu tunda Pada gambar 2.15 (b) terlihat bahwa waktu kerja rele tidak tergantung dengan besarnya arus gangguan. Pebedaan rele ini denga rele waktu kerja seketika adalah pada lamanya waktu kerja, dimana pada rele arus kerja seketika waktu kerjanya sangat cepat tanpa penundaan waktu sedangkan pada rele waktu kerja tertentu ada penundaan waktu. Namun pada kedua rele arus lebih di atas lamanya waktu kerja tidak tergantung pada besarnya arus gangguan Relay Arus Lebih Berbanding Terbalik ( Inverse ) Relay ini akan memberi perintah kepada Pemutus Tenaga ( PMT ) pada saat terjadi gangguan bila besarnya arus gangguan melampaui penyetelannya, dan

26 30 jangka waktu kerja relay mulai pick-up sampai kerja relay waktu tundanya berbanding terbalik dengan besarnya arus gangguan. Gambar 2.16 Relay Arus Lebih dengan Karakteristik Waktu Kerja Terbalik Keterangan Gambar 2.16 : CB : circuit breaker / PMT CT : current transformer C : relay arus lebih T : relay waktu tunda TC : tripping coil Relay arus lebih jenis ini lamanya waktu kerja tergantung pada besarnya arus gangguan. Pada gambar 2.16 ( b ) terlihat bahwa makin besar arus gangguan yang dirasakan oleh relay arus lebih dengan karakteristik waktu kerja terbalik maka waktu kerjanya makin cepat. Terdapat 4 macam karakteristik Relay Inverse yaitu : 1) Standard Inverse Time (SIT), yaitu karakteristik yang menunjukan perbandingan antara besar arus dengan waktu kerja relai yang standard, ditulis dengan rumus:

27 31 Keterangan : Io = Arus uji pada relay Iso = Arus seting pada relay t = Io Iso 0,14 0,02 1. to > 2,97 2) Very Inverse (VIT), yaitu karakteristik yang menunjukkan perbandingan antara besar arus dengan waktu kerja relai yang lebih cepat/tinggi dari standard invers, ditulis dengan rumus: t = 13,5 to >. Io Iso 1 1,5 Keterangan : Io = Arus uji pada relay Iso = Arus seting pada relay 3) Extremely Inverse Time (EIT), yaitu karakteristik yang menunjukkan perbandingan antara besar arus dengan waktu kerja relai yang lebih cepat/tinggi dari standard dan very invers, ditulis dengan rumus: Keterangan : Io = Arus uji pada relay Iso = Arus seting pada relay t = Io Iso to > 0,808

28 32 4) Ultra Inverse Time (UIT), yaitu karakteristik yang menunjukkan perbandingan antara besar arus dengan waktu kerja relai yang lebih lambat/rendah diantara karakteristik yang lain, ditulis dengan rumus: Keterangan : Io = Arus uji pada relay Iso = Arus seting pada relay t = Io Iso 315 2,5 1. to > Gambar 2.17 Kurva karakteristik waktu Invers.

29 Relay Gangguan Tanah/ Ground Fault Relay (GFR) Ground Fault Relay biasanya digunakan pada jaringan tegangan menengah dan jaringan tegangan rendah atau saluran distribusi untuk melindungi trafo dan saluran distribusi. Relay ini berfungsi untuk mendeteksi arus sisa dari hasil masing-masing arus fasa dan netralnya. Penggunaan sensor arus dapat dilakukan dengan satu buah CT yang melingkari seluruh fasa (3 fasa). Prinsip kerja relay ini adalah mendeteksi arus urutan nol, karena setiap gangguan tanah menghasilkan arus urutan nol. Jika tidak ada gangguan tanah atau pada kondisi normal,arus yang melewati relay adalah penjumlahan vektor arus tiga fasa, yang dalam titik netral Star seimbang adalah sama dengan nol, sehingga relay tidak bekerja. Tetapi jika terjadi gangguan tanah, maka terjadi arus urutan nol yang mengalir ke relay dan menghasilkan operasi pengaman terhadap gangguan Setting dan Koordinasi Relay Arus Lebih Pertimbangan Umum Hal-hal yang harus diperhatikan dalam menentukan setting relay arus lebih adalah sebagai berikut : 1. Arus kerja minimum relay harus lebih besar dari arus beban maksimum dan lebih kecil dari arus gangguan hubung singkat terkecil, yaitu arus gangguan hubung singkat dua fasa di ujung seksi. 2. Penentuan setting dari seksi yang paling ujung dan secara bertahap dilakukan untuk seksi-seksi berikutnya kearah sumber. Untuk menentukan setting waktu relay perlu diketahui beda waktu koordinasi minimum yang di perbolehkan sesuai dengan spesifikasi relay dan pemutus daya yang dipakai. 3. Pada saat melakukan setting waktu relay invers, lakukanlah pada saat arus gangguan maksimum karena untuk arus yang lebih kecil waktu kerja relay akan lebih besar.

30 Parameter Seting Arus Lebih Setting Arus Untuk Waktu Tunda ( I>) 1 Iset = k k S D x In...(2.1) 2 Iset = 0,8 x I HS 1... (2.2) Iset diambil dari nilai terkecil antara persamaan (2.1) dan persamaan (2.2) k S = 1,05 k D > 80 % In = Arus beban nominal Setting Arus Untuk Instantaneous ( I>>) Di sisi down stream (hilir) maka : 1 I HS 2 min I SET1 I HS 3 min... (2.3) 2 I SET 2 < kemampuan kabel...(2.4) Iset diambil dari nilai terkecil diantara persamaan (2.3) dan (2.4) Di sisi Up stream (hulu) maka : I = 1,2 x I HS3Ø max di downstream... (2.5) SetInst Setting TMS I fault t (( ) Iset Tms 0,14 0,02 1)... (2.6)

31 Relay OCR SEPAM Gambar Fungsi dan skema koneksi relay SEPAM 1000

32 36 AS (1A) 1-2 Power Supply 48V/125V 3-4 Alarm contact (tripping on fault or loss of auxiliary supply) 5-6 closing coil 7-8 tripping coil AS (1B) 1 2 Watch dog (default adressing) 3 4 (a) (b) (c) Gambar 2.20 (a) Display Relay SEPAM 1000 (b) Tampak depan relay SEPAM 1000 (c) Tampak Belakang dan koneksi Relay SEPAM 1000

33 Metode Setting Relay SEPAM Setting Arus Waktu Tunda Ib IS 0,2xI N Keterangan : Ib = Nilai setting pada relay (dial option) Iset = Besar setting arus relay hasil perhitungan In = Arus nominal relay pada nameplate Contoh: Is0= 0.05 Amp In= 10 Amp Maka: I0set> = IS0> x In= 0.05x10= Setting Arus Instantaneous I I I SetInst SetTimdel Keterangan : I>> = Nilai setting pada relay I SetInst = Besar setting arus Instantaneous hasil perhitungan I SetTimdel = Besar setting arus Time Delay hasil perhitungan

BAB II LANDASAN TEORI 2.1 Sistem Distribusi Tenaga Listrik

BAB II LANDASAN TEORI 2.1 Sistem Distribusi Tenaga Listrik BAB II LANDASAN TEORI 2.1 Sistem Distribusi Tenaga Listrik Energi listrik disalurkan melalui penyulang-penyulang yang berupa saluran udara atau saluran kabel tanah. Pada penyulang distribusi ini terdapat

Lebih terperinci

Pengelompokan Sistem Tenaga Listrik

Pengelompokan Sistem Tenaga Listrik SISTEM DISTRIBUSI Sistem Distribusi Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power Source) sampai ke konsumen. Jadi fungsi distribusi tenaga listrik

Lebih terperinci

JARINGAN DISTRIBUSI TENAGA LISTRIK

JARINGAN DISTRIBUSI TENAGA LISTRIK JARINGAN DISTRIBUSI TENAGA LISTRIK Pengertian dan fungsi distribusi tenaga listrik : Pembagian /pengiriman/pendistribusian/pengiriman energi listrik dari instalasi penyediaan (pemasok) ke instalasi pemanfaatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Gangguan pada Sistem Distribusi Tenaga Listrik 2.1.1 Jenis Gangguan Jenis gangguan utama dalam saluran distribusi tenaga listrik adalah gangguan hubung singkat. Gangguan hubung

Lebih terperinci

A. SALURAN TRANSMISI. Kategori saluran transmisi berdasarkan pemasangan

A. SALURAN TRANSMISI. Kategori saluran transmisi berdasarkan pemasangan A. SALURAN TRANSMISI Kategori saluran transmisi berdasarkan pemasangan Berdasarkan pemasangannya, saluran transmisi dibagi menjadi dua kategori, yaitu: 1. saluran udara (overhead lines); saluran transmisi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Relai Proteksi Relai proteksi atau relai pengaman adalah susunan peralatan yang berfungsi untuk mendeteksi atau merasakan adanya gangguan atau mulai merasakan adanya ketidak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Penyaluran Tenaga Listrik Ke Konsumen Didalam dunia kelistrikan sering timbul persoalan teknis, dimana tenaga listrik dibangkitkan pada tempat-tempat tertentu, sedangkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Distribusi Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Distribusi Tenaga Listrik Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Klasifikasi Saluran Distribusi Tenaga Listrik Secara umum, saluran tenaga Listrik atau saluran distribusi dapat diklasifikasikan sebagai berikut: 1. Menurut nilai tegangan a.

Lebih terperinci

BAB II SISTEM DISTRIBUSI TENAGA LISTRIK

BAB II SISTEM DISTRIBUSI TENAGA LISTRIK BAB II SISTEM DISTRIBUSI TENAGA LISTRIK Awalnya energi listrik dibangkitkan di pusat-pusat pembangkit listrik seperti PLTA, PLTU, PLTG, PLTGU, PLTP dan PLTD dengan tegangan menengah 13-20 kv. Umumnya pusat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Jaringan Distribusi Jaringan Pada Sistem Distribusi tegangan menengah (Primer 20kV) dapat dikelompokkan menjadi lima model, yaitu Jaringan Radial, Jaringan hantaran penghubung

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sistem Distribusi 1 Bagian dari sistem tenaga listrik yang paling dekat dengan pelanggan adalah sistem distribusi. Sistem distribusi adalah bagian sistem tenaga listrik yang

Lebih terperinci

Bab V JARINGAN DISTRIBUSI

Bab V JARINGAN DISTRIBUSI Bab V JARINGAN DISTRIBUSI JARINGAN DISTRIBUSI Pengertian: bagian dari sistem tenaga listrik yang berupa jaringan penghantar yang menghubungkan antara gardu induk pusat beban dengan pelanggan. Fungsi: mendistribusikan

Lebih terperinci

BAB IV SISTEM PROTEKSI GENERATOR DENGAN RELAY ARUS LEBIH (OCR)

BAB IV SISTEM PROTEKSI GENERATOR DENGAN RELAY ARUS LEBIH (OCR) 27 BAB IV SISTEM PROTEKSI GENERATOR DENGAN RELAY ARUS LEBIH (OCR) 4.1 Umum Sistem proteksi merupakan salah satu komponen penting dalam system tenaga listrik secara keseluruhan yang tujuannya untuk menjaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA. c. Memperkecil bahaya bagi manusia yang ditimbulkan oleh listrik.

BAB II TINJAUAN PUSTAKA. c. Memperkecil bahaya bagi manusia yang ditimbulkan oleh listrik. 6 BAB II TINJAUAN PUSTAKA 2.1 Sistem Proteksi Sistem proteksi merupakan sistem pengaman yang terpasang pada sistem distribusi tenaga listrik, trafo tenaga transmisi tenaga listrik dan generator listrik.

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1. Umum Pusat tenaga listrik umumnya terletak jauh dari pusat bebannya. Energi listrik yang dihasilkan pusat pembangkitan disalurkan melalui jaringan transmisi.

Lebih terperinci

BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH DAN SISTEM PROTEKSINYA

BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH DAN SISTEM PROTEKSINYA BAB GANGGUAN PADA JARNGAN LSTRK TEGANGAN MENENGAH DAN SSTEM PROTEKSNYA 3.1 Gangguan Pada Jaringan Distribusi Penyebab utama terjadinya pemutusan saluran distribusi tenaga listrik adalah gangguan pada sistem

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Distributed Generation Distributed Generation adalah sebuah pembangkit tenaga listrik yang bertujuan menyediakan sebuah sumber daya aktif yang terhubung langsung dengan jaringan

Lebih terperinci

dalam sistem sendirinya dan gangguan dari luar. Penyebab gangguan dari dalam

dalam sistem sendirinya dan gangguan dari luar. Penyebab gangguan dari dalam 6 Penyebab gangguan pada sistem distribusi dapat berasal dari gangguan dalam sistem sendirinya dan gangguan dari luar. Penyebab gangguan dari dalam antara lain: 1 Tegangan lebih dan arus tak normal 2.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Jenis Gangguan Jenis gangguan utama dalam saluran distribusi tenaga listrik adalah gangguan hubung singkat. Gangguan hubung singkat ini terjadi sebagai akibat dari tembusnya bahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Dasar-Dasar Sistem Proteksi 1 Sistem proteksi adalah pengaman listrik pada sistem tenaga listrik yang terpasang pada : sistem distribusi tenaga listrik, trafo tenaga, transmisi

Lebih terperinci

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem tenaga listrik merupakan suatu sistem terpadu yang terbentuk oleh hubungan-hubungan peralatan dan komponen - komponen listrik, seperti generator,

Lebih terperinci

12 Gambar 3.1 Sistem Penyaluran Tenaga Listrik gardu induk distribusi, kemudian dengan sistem tegangan tersebut penyaluran tenaga listrik dilakukan ol

12 Gambar 3.1 Sistem Penyaluran Tenaga Listrik gardu induk distribusi, kemudian dengan sistem tegangan tersebut penyaluran tenaga listrik dilakukan ol BAB III TINJAUAN PUSTAKA 3.1 Pengertian Sistem Distribusi Tenaga Listrik Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Saluran Transmisi Sistem transmisi adalah suatu sistem penyaluran energi listrik dari satu tempat ke tempat lain, seperti dari stasiun pembangkit ke substation ( gardu

Lebih terperinci

BAB II GARDU INDUK 2.1 PENGERTIAN DAN FUNGSI DARI GARDU INDUK. Gambar 2.1 Gardu Induk

BAB II GARDU INDUK 2.1 PENGERTIAN DAN FUNGSI DARI GARDU INDUK. Gambar 2.1 Gardu Induk BAB II GARDU INDUK 2.1 PENGERTIAN DAN FUNGSI DARI GARDU INDUK Gardu Induk merupakan suatu instalasi listrik yang terdiri atas beberapa perlengkapan dan peralatan listrik dan menjadi penghubung listrik

Lebih terperinci

Gambar 2.1 Skema Sistem Tenaga Listrik (3)

Gambar 2.1 Skema Sistem Tenaga Listrik (3) BAB II TINJAUAN PUSTAKA 2.1 Teori Umum Secara umum suatu sistem tenaga listrik terdiri dari tiga bagian utama, yaitu, pusat pembangkitan listrik, saluran transmisi dan sistem distribusi. Perlu dikemukakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Koordinasi Proteksi Pada Sistem Kelistrikan Keandalan dan kemampuan suatu sistem tenaga listrik dalam melayani konsumen sangat tergantung pada sistem proteksi yang digunakan.

Lebih terperinci

BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV

BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV BAB II STRUKTUR JARINGAN DAN PERALATAN GARDU INDUK SISI 20 KV 2.1. UMUM Gardu Induk adalah suatu instalasi tempat peralatan peralatan listrik saling berhubungan antara peralatan yang satu dengan peralatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB LANDASAN TEOR. Gangguan Pada Sistem Tenaga Listrik Gangguan dapat mengakibatkan kerusakan yang cukup besar pada sistem tenaga listrik. Banyak sekali studi, pengembangan alat dan desain sistem perlindungan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Jaringan Distribusi Sistem Tenaga listrik di Indonesia tersebar dibeberapa tempat, maka dalam penyaluran tenaga listrik dari tempat yang dibangkitkan sampai ke tempat

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Sistem Distribusi Tenaga Listrik Sistem Tenaga Listrik adalah sistem penyediaan tenaga listrik yang terdiri dari beberapa pembangkit atau pusat listrik terhubung satu dengan

Lebih terperinci

SALURAN UDARA TEGANGAN MENENGAH (SUTM) DAN GARDU DISTRIBUSI Oleh : Rusiyanto, SPd. MPd.

SALURAN UDARA TEGANGAN MENENGAH (SUTM) DAN GARDU DISTRIBUSI Oleh : Rusiyanto, SPd. MPd. SALURAN UDARA TEGANGAN MENENGAH (SUTM) DAN GARDU DISTRIBUSI Oleh : Rusiyanto, SPd. MPd. Artikel Elektronika I. Sistem Distribusi Merupakan system listrik tenaga yang diawali dari sisi tegangan menengah

Lebih terperinci

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO Jalan MT Haryono 167 Telp& Fax. 0341 554166 Malang 65145 KODE PJ-01 PENGESAHAN PUBLIKASI HASIL PENELITIAN

Lebih terperinci

III PENGUMPULAN DAN PENGOLAHAN DATA

III PENGUMPULAN DAN PENGOLAHAN DATA III PENGUMPULAN DAN PENGOLAHAN DATA 3.1. Umum Berdasarkan standard operasi PT. PLN (Persero), setiap pelanggan energi listrik dengan daya kontrak di atas 197 kva dilayani melalui jaringan tegangan menengah

Lebih terperinci

BAB III SISTEM PROTEKSI JARINGAN DISTRIBUSI

BAB III SISTEM PROTEKSI JARINGAN DISTRIBUSI BAB III SISTEM PROTEKSI JARINGAN DISTRIBUSI 3.1 Umum Sebaik apapun suatu sistem tenaga dirancang, gangguan pasti akan terjadi pada sistem tenaga tersebut. Gangguan ini dapat merusak peralatan sistem tenaga

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Distribusi Tenaga Listrik Sistem tenaga listrik adalah kumpulan atau gabungan dari komponenkomponen atau alat-alat listrik seperti generator, transformator, saluran transmisi,

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen TINJAUAN PUSTAKA 2.1. Sistem Distribusi Sistem distribusi merupakan keseluruhan komponen dari sistem tenaga listrik yang menghubungkan secara langsung antara sumber daya yang besar (seperti gardu transmisi)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Sistem distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem transmisi memegang peranan yang sangat penting dalam proses penyaluran daya. Oleh karena itu pengaman pada saluran transmisi perlu mendapat perhatian

Lebih terperinci

BAB II TINJAUAN PUSTAKA. terhadap kondisi abnormal pada operasi sistem. Fungsi pengaman tenaga listrik antara lain:

BAB II TINJAUAN PUSTAKA. terhadap kondisi abnormal pada operasi sistem. Fungsi pengaman tenaga listrik antara lain: 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Pengaman 2.1.1 Pengertian Pengaman Sistem pengaman tenaga listrik merupakan sistem pengaman pada peralatan yang terpasang pada sistem tenaga listrik seperti generator,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Proteksi Pada suatu sistem tenaga listrik, meliputi pelayanan umum, industri, komersil, perumahan maupun sistem lainnya, mempunyai maksud yang sama yaitu menyediakan energi

Lebih terperinci

BAB III PENGAMANAN TRANSFORMATOR TENAGA

BAB III PENGAMANAN TRANSFORMATOR TENAGA 41 BAB III PENGAMANAN TRANSFORMATOR TENAGA 3.1 Pengamanan Terhadap Transformator Tenaga Sistem pengaman tenaga listrik merupakan sistem pengaman pada peralatan - peralatan yang terpasang pada sistem tenaga

Lebih terperinci

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB 252 Oleh Vigor Zius Muarayadi (41413110039) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Mercu Buana Sistem proteksi jaringan tenaga

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proteksi Sistem Tenaga Listrik Proteksi terhadap suatu sistem tenaga listrik adalah sistem pengaman yang dilakukan terhadap peralatan- peralatan listrik, yang terpasang pada sistem

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi yang sebelumnya terlebih dahulu dinaikkan

Lebih terperinci

BAB IV ANALISIA DAN PEMBAHASAN. 4.1 Koordinasi Proteksi Pada Gardu Induk Wonosobo. Gardu induk Wonosobo mempunyai pengaman berupa OCR (Over Current

BAB IV ANALISIA DAN PEMBAHASAN. 4.1 Koordinasi Proteksi Pada Gardu Induk Wonosobo. Gardu induk Wonosobo mempunyai pengaman berupa OCR (Over Current BAB IV ANALISIA DAN PEMBAHASAN 4.1 Koordinasi Proteksi Pada Gardu Induk Wonosobo Gardu induk Wonosobo mempunyai pengaman berupa OCR (Over Current Relay) dan Recloser yang dipasang pada gardu induk atau

Lebih terperinci

Analisa Koordinasi Over Current Relay Dan Ground Fault Relay Di Sistem Proteksi Feeder Gardu Induk 20 kv Jababeka

Analisa Koordinasi Over Current Relay Dan Ground Fault Relay Di Sistem Proteksi Feeder Gardu Induk 20 kv Jababeka Analisa Koordinasi Over Current Relay Dan Ground Fault Relay Di Sistem Proteksi Feeder Gardu Induk 20 kv Jababeka Erwin Dermawan 1, Dimas Nugroho 2 1) 2) Jurusan Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Dasar Dasar Sistem Proteksi Suatu sistem tenaga listrik dibagi ke dalam seksi-seksi yang dibatasi oleh PMT. Tiap seksi memiliki relai pengaman dan memiliki daerah pengamanan

Lebih terperinci

BAB II DASAR TEORI. Sistem proteksi adalah sistem yang memisahkan bagian sistem yang. b. Melepaskan bagian sistem yang terganggu (fault clearing)

BAB II DASAR TEORI. Sistem proteksi adalah sistem yang memisahkan bagian sistem yang. b. Melepaskan bagian sistem yang terganggu (fault clearing) BAB II DASAR TEORI 2.1 Sistem Proteksi Panel Tegangan Menegah Sistem proteksi adalah sistem yang memisahkan bagian sistem yang terganggu sehingga bagian sistem lain dapat terus beroperasi dengan cara sebagai

Lebih terperinci

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gardu Induk Gardu induk adalah sub sistem dari sistem penyaluran (tranmisi) tenaga listrik, atau merupakan satu kesatuan dari sistem penyaluran, gardu induk memiliki peran yang

Lebih terperinci

BAB III SISTEM PROTEKSI DENGAN RELAI JARAK. terutama untuk masyarakat yang tinggal di kota-kota besar. Kebutuhan tenaga

BAB III SISTEM PROTEKSI DENGAN RELAI JARAK. terutama untuk masyarakat yang tinggal di kota-kota besar. Kebutuhan tenaga BAB III SISTEM PROTEKSI DENGAN RELAI JARAK 3.1. Umum Tenaga listrik merupakan suatu kebutuhan pokok dalam kehidupan manusia, terutama untuk masyarakat yang tinggal di kota-kota besar. Kebutuhan tenaga

Lebih terperinci

Kata kunci hubung singkat, recloser, rele arus lebih

Kata kunci hubung singkat, recloser, rele arus lebih ANALSS KOORDNAS RELE ARUS LEBH DAN PENUTUP BALK OTOMATS (RECLOSER) PADA PENYULANG JUNREJO kv GARDU NDUK SENGKALNG AKBAT GANGGUAN ARUS HUBUNG SNGKAT Mega Firdausi N¹, Hery Purnomo, r., M.T.², Teguh Utomo,

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1 Studi Kasus Gambar 4.1 Ilustrasi studi kasus Pada tahun 2014 telah terjadi gangguan di sisi pelanggan gardu JTU5 yang menyebabkan proteksi feeder Arsitek GI Maximangando

Lebih terperinci

BAB II SALURAN DISTRIBUSI

BAB II SALURAN DISTRIBUSI BAB II SALURAN DISTRIBUSI 2.1 Umum Jaringan distribusi adalah salah satu bagian dari sistem penyaluran tenaga listrik dari pembangkit listrik ke konsumen. Secara umum, sistem penyaluran tenaga listrik

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

ANALISA SETTING RELAI PENGAMAN AKIBAT REKONFIGURASI PADA PENYULANG BLAHBATUH

ANALISA SETTING RELAI PENGAMAN AKIBAT REKONFIGURASI PADA PENYULANG BLAHBATUH ANALISA SETTING RELAI PENGAMAN AKIBAT REKONFIGURASI PADA PENYULANG BLAHBATUH I K.Windu Iswara 1, G. Dyana Arjana 2, W. Arta Wijaya 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik Universitas Udayana, Denpasar

Lebih terperinci

BAB IV PEMBAHASAN. Gardu Induk Godean berada di jalan Godean Yogyakarta, ditinjau dari

BAB IV PEMBAHASAN. Gardu Induk Godean berada di jalan Godean Yogyakarta, ditinjau dari BAB IV PEMBAHASAN 4.1 Gardu Induk Godean Gardu Induk Godean berada di jalan Godean Yogyakarta, ditinjau dari peralatannya, Gardu Induk ini merupakan gardu induk pasangan luar, gardu induk godean memiliki

Lebih terperinci

LANDASAN TEORI Sistem Tenaga Listrik Tegangan Menengah. adalah jaringan distribusi primer yang dipasok dari Gardu Induk

LANDASAN TEORI Sistem Tenaga Listrik Tegangan Menengah. adalah jaringan distribusi primer yang dipasok dari Gardu Induk II LANDASAN TEORI 2.1. Sistem Tenaga Listrik Tegangan Menengah Sistem Distribusi Tenaga Listrik adalah kelistrikan tenaga listrik mulai dari Gardu Induk / pusat listrik yang memasok ke beban menggunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Gardu Distribusi Gardu distribusi adalah suatu bangunan gardu listrik yang terdiri dari instalasi PHB-TM (Perlengkapan Hubung Bagi Tegangan Menengah), TD (Transformator Distribusi),

Lebih terperinci

Ground Fault Relay and Restricted Earth Faulth Relay

Ground Fault Relay and Restricted Earth Faulth Relay Ground Fault Relay and Restricted Earth Faulth Relay Seperti telah disebutkan sebelumnya, maka tentang relay akan dilanjutkan dengan beberapa tipe relay. Dan kali ini yang ingin dibahas adalah dua tipe

Lebih terperinci

1 BAB II TINJAUAN PUSTAKA

1 BAB II TINJAUAN PUSTAKA 1 BAB II TINJAUAN PUSTAKA 1.1 Teori Umum Proteksi adalah pengaman listrik pada sistem tenaga listrik yang terpasang pada sistem distribusi tenaga listrik. Tujuan utama dari suatu sistem tenaga listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. PENDAHULUAN Energi listrik pada umumnya dibangkitkan oleh pusat pembangkit tenaga listrik yang letaknya jauh dari tempat para pelanggan listrik. Untuk menyalurkan tanaga listik

Lebih terperinci

ANALISIS ARUS GANGGUAN HUBUNG SINGKAT PADA PENYULANG 20 KV DENGAN OVER CURRENT RELAY (OCR) DAN GROUND FAULT RELAY (GFR)

ANALISIS ARUS GANGGUAN HUBUNG SINGKAT PADA PENYULANG 20 KV DENGAN OVER CURRENT RELAY (OCR) DAN GROUND FAULT RELAY (GFR) JURNAL LOGIC. VOL. 16. NO.1. MARET 2016 46 ANALISIS ARUS GANGGUAN HUBUNG SINGKAT PADA PENYULANG 20 KV DENGAN OVER CURRENT RELAY (OCR) DAN GROUND FAULT RELAY (GFR) I Gusti Putu Arka, Nyoman Mudiana, dan

Lebih terperinci

BAB I PENDAHULUAN. 1-1 Pemanfaatan Tenaga Listrik. 1-2 Kualitas Daya Listrik

BAB I PENDAHULUAN. 1-1 Pemanfaatan Tenaga Listrik. 1-2 Kualitas Daya Listrik Pendahuluan 1 1-1 Pemanfaatan Tenaga Listrik BAB I PENDAHULUAN Selain memberikan manfaat, tenaga listrik mempunyai potensi membahayakan bagi manusia dan berpotensi merusak lingkungan. Beberapa permasalahan

Lebih terperinci

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh. BAB II DASAR TEORI 2.1. Sistem Jaringan Distribusi Pada dasarnya dalam sistem tenaga listrik, dikenal 3 (tiga) bagian utama seperti pada gambar 2.1 yaitu : a. Pusat pusat pembangkit tenaga listrik, merupakan

Lebih terperinci

DAFTAR ISI LEMBAR PENGESAHAN PEMBIMBING LEMBAR PERNYATAAN KEASLIAN LEMBAR PENGESAHAN PENGUJI HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR

DAFTAR ISI LEMBAR PENGESAHAN PEMBIMBING LEMBAR PERNYATAAN KEASLIAN LEMBAR PENGESAHAN PENGUJI HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR DAFTAR ISI LEMBAR PENGESAHAN PEMBIMBING LEMBAR PERNYATAAN KEASLIAN LEMBAR PENGESAHAN PENGUJI HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL ABSTRAK ii iii iv v vi

Lebih terperinci

SIMULASI OVER CURRENT RELAY (OCR) MENGGUNAKAN KARATERISTIK STANDAR INVERSE SEBAGAI PROTEKSI TRAFO DAYA 30 MVA ABSTRAK

SIMULASI OVER CURRENT RELAY (OCR) MENGGUNAKAN KARATERISTIK STANDAR INVERSE SEBAGAI PROTEKSI TRAFO DAYA 30 MVA ABSTRAK Simulasi Over Current Relay (OCR) Menggunakan Karateristik Standar Invers. Selamat Meliala SIMULASI OVER CURRENT RELAY (OCR) MENGGUNAKAN KARATERISTIK STANDAR INVERSE SEBAGAI PROTEKSI TRAFO DAYA 30 MVA

Lebih terperinci

Makalah Seminar Tugas Akhir. Judul

Makalah Seminar Tugas Akhir. Judul 1 Judul ANALISA PENGGUNAAN ECLOSE 3 PHASA 20 KV UNTUK PENGAMAN AUS LEBIH PADA SUTM 20 KV SISTEM 3 PHASA 4 KAWAT DI PT. PLN (PESEO) APJ SEMAANG Disusun oleh : Kunto Herwin Bono NIM : L2F 303513 Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Sistem distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya

Lebih terperinci

BAB II SISTEM DISTRIBUSI TENAGA LISTRIK

BAB II SISTEM DISTRIBUSI TENAGA LISTRIK BAB II SISTEM DISTRIBUSI TENAGA LISTRIK 2.1 Sistem Distibusi Tenaga Listrik Saluran distribusi adalah saluran yang berfungsi untuk menyalurkan tegangan dari gardu distribusi ke trafo distribusi ataupun

Lebih terperinci

BAB III METODELOGI PENELITIAN

BAB III METODELOGI PENELITIAN BAB III METODELOGI PENELITIAN 3.1 Kinerja Distribusi PT. PLN (Persero) Area Jaringan Tangerang Secara umum kinerja distribusi di PT. PLN (Persero) Area Jaringan Tangerang mengalami penurunan yang baik

Lebih terperinci

Suatu sistem pengaman terdiri dari alat alat utama yaitu : Pemutus tenaga (CB)

Suatu sistem pengaman terdiri dari alat alat utama yaitu : Pemutus tenaga (CB) 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Proteksi Sistem proteksi terhadap tenaga listrik ialah sistem pengamanan yang dilakukan ternadap peralatan-peralatan listrik, yang terpasang pada sistem tenaga listrik.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Proses Penyaluran Tenaga Listrik Gambar 2.1. Proses Tenaga Listrik Energi listrik dihasilkan dari pusat pembangkitan yang menggunakan energi potensi mekanik (air, uap, gas, panas

Lebih terperinci

Setting Relai Gangguan Tanah (Gfr) Outgoing Gh Tanjung Pati Feeder Taram Pt. Pln (Persero) Rayon Lima Puluh Kota

Setting Relai Gangguan Tanah (Gfr) Outgoing Gh Tanjung Pati Feeder Taram Pt. Pln (Persero) Rayon Lima Puluh Kota JURNAL TEKNIK ELEKTRO ITP, Vol. 6, No. 2, JULI 2017 180 Setting Relai Gangguan Tanah (Gfr) Outgoing Gh Tanjung Pati Feeder Taram Pt. Pln (Persero) Rayon Lima Puluh Kota NASRUL, ST., M. KOM ABSTRAK Daerah

Lebih terperinci

BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH

BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH BAB III GANGGUAN PADA JARINGAN LISTRIK TEGANGAN MENENGAH 3.1 KOMPONEN KOMPONEN SIMETRIS Tiga fasor tak seimbang dari sistem fasa tiga dapat diuraikan menjadi tiga sistem fasor yang seimbang. Himpunan seimbang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Sistem Operasi Jaringan Distribusi Pada umumnya suatu sistem tenaga listrik yang lengkap mengandung empat unsur Pertama, adanya suatu unsur pembangkit tenaga listrik. Tegangan

Lebih terperinci

LAPORAN AKHIR PEMELIHARAN GARDU DISTRIBUSI

LAPORAN AKHIR PEMELIHARAN GARDU DISTRIBUSI LAPORAN AKHIR PEMELIHARAN GARDU DISTRIBUSI Oleh: OFRIADI MAKANGIRAS 13-021-014 KEMENTRIAN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI MANADO 2016 BAB I PENDAHULUAN 1.1

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar Dasar Sistem Proteksi Suatu sistem t`enaga listrik dibagi ke dalam seksi-seksi yang dibatasi oleh PMT. Tiap seksi memiliki relai pengaman dan memiliki daerah pengamanan

Lebih terperinci

Jl. Prof. Sudharto, Tembalang, Semarang, Indonesia Abstrak

Jl. Prof. Sudharto, Tembalang, Semarang, Indonesia   Abstrak Makalah Seminar Kerja Praktek PRINSIP KERJA DAN DASAR RELE ARUS LEBIH PADA PT PLN (PERSERO) PENYALURAN DAN PUSAT PENGATURAN BEBAN REGION JAWA TENGAH DAN DIY Fa ano Hia. 1, Ir. Agung Warsito, DHET. 2 1

Lebih terperinci

BAB III GANGGUAN SIMPATETIK TRIP PADA GARDU INDUK PUNCAK ARDI MULIA. Simpatetik Trip adalah sebuah kejadian yang sering terjadi pada sebuah gardu

BAB III GANGGUAN SIMPATETIK TRIP PADA GARDU INDUK PUNCAK ARDI MULIA. Simpatetik Trip adalah sebuah kejadian yang sering terjadi pada sebuah gardu BAB III GANGGUAN SIMPATETIK TRIP PADA GARDU INDUK PUNCAK ARDI MULIA 3.1. Pengertian Simpatetik Trip adalah sebuah kejadian yang sering terjadi pada sebuah gardu induk, dimana pemutus tenaga dari penyulang-penyulang

Lebih terperinci

BAB I PENDAHULUAN. Pada sistem penyaluran tenaga listrik, kita menginginkan agar pemadaman tidak

BAB I PENDAHULUAN. Pada sistem penyaluran tenaga listrik, kita menginginkan agar pemadaman tidak BAB I PENDAHULUAN 1-1. Latar Belakang Masalah Pada sistem penyaluran tenaga listrik, kita menginginkan agar pemadaman tidak sering terjadi, karena hal ini akan mengganggu suatu proses produksi yang terjadi

Lebih terperinci

BAB 2 GANGGUAN HUBUNG SINGKAT DAN PROTEKSI SISTEM TENAGA LISTRIK

BAB 2 GANGGUAN HUBUNG SINGKAT DAN PROTEKSI SISTEM TENAGA LISTRIK BAB 2 GANGGUAN HUBUNG SINGKAT DAN PROTEKSI SISTEM TENAGA LISTRIK 2.1 PENGERTIAN GANGGUAN DAN KLASIFIKASI GANGGUAN Gangguan adalah suatu ketidaknormalan (interferes) dalam sistem tenaga listrik yang mengakibatkan

Lebih terperinci

PEMASANGAN DGR ( DIRECTIONAL GROUND RELE

PEMASANGAN DGR ( DIRECTIONAL GROUND RELE UCAPAN TERIMA KASIH Puji syukur penulis panjatkan ke hadapan Tuhan Yang Maha Esa atas karunia-nya sehingga penulis dapat menyelesaikan Skripsi ini. berjudul PEMASANGAN DGR (DIRECTIONAL GROUND RELE) UNTUK

Lebih terperinci

ANALISA KOORDINASI OCR - RECLOSER PENYULANG KALIWUNGU 03

ANALISA KOORDINASI OCR - RECLOSER PENYULANG KALIWUNGU 03 Analisa Koordinasi OCR Recloser Penyulang Kaliwungu 03 (Nugroho A.D., Susatyo H.) ANALISA KOORDINASI OCR - RECLOSER PENYULANG KALIWUNGU 03 Nugroho Agus Darmanto, Susatyo Handoko nugroho@elektro.ft.undip.ac.id,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Gangguan-Gangguan Pada Sistem Tenaga Listrik Gangguan yang terjadi pada sistem tenaga listrik sangat beragam besaran dan jenisnya. Gangguan dalam sistem tenaga listrik adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Monte Carlo, nilai yang didapat telah mencapai standar yang sudah diterapkan

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Monte Carlo, nilai yang didapat telah mencapai standar yang sudah diterapkan BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Menurut Agung Arief Wibowo dalam penelitiannya yang berjudul Analisa Keandalan Transformator Gardu Induk Wilayah Surabaya Menggunakan Metode

Lebih terperinci

Studi Koordinasi Proteksi Sistem Kelistrikan di Project Pakistan Deep Water Container Port

Studi Koordinasi Proteksi Sistem Kelistrikan di Project Pakistan Deep Water Container Port PROCEEDING TUGAS AKHIR, (2014) 1-6 1 Studi Koordinasi Proteksi Sistem Kelistrikan di Project Pakistan Deep Water Container Port Adam Anas Makruf, Margo Pujiantara 1), Feby Agung Pamuji 2) Jurusan Teknik

Lebih terperinci

ANALISA KOORDINASI PERALATAN PENGAMAN JARINGAN PENYULANG KALIWUNGU 03 SECARA INDEPENDEN SERTA PELIMPAHAN BEBAN DARI PENYULANG WELERI

ANALISA KOORDINASI PERALATAN PENGAMAN JARINGAN PENYULANG KALIWUNGU 03 SECARA INDEPENDEN SERTA PELIMPAHAN BEBAN DARI PENYULANG WELERI ANALISA KOORDINASI PERALATAN PENGAMAN JARINGAN PENYULANG KALIWUNGU 03 SECARA INDEPENDEN SERTA PELIMPAHAN BEBAN DARI PENYULANG WELERI 06 SUMARDJIYONO L2F 303 521 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Pengaman [2] Sistem pengaman adalah beberapa komponen yang saling berhubungan dan bekerja bersama-sama untuk satu tujuan dalam mengatasi permasalahan yang terjadi disebabkan

Lebih terperinci

Analisa Relai Arus Lebih Dan Relai Gangguan Tanah Pada Penyulang LM5 Di Gardu Induk Lamhotma

Analisa Relai Arus Lebih Dan Relai Gangguan Tanah Pada Penyulang LM5 Di Gardu Induk Lamhotma Yusmartato,Yusniati, Analisa Arus... ISSN : 2502 3624 Analisa Arus Lebih Dan Gangguan Tanah Pada Penyulang LM5 Di Gardu Induk Lamhotma Yusmartato,Yusniati Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Jaringan Distribusi Tenaga Listrik Sistem tenaga listrik merupakan sistem sarana penyaluran tenaga listrik dari titik sumber ke titik pusat beban ( konsumen ). Penyaluran tenaga

Lebih terperinci

Pertemuan ke :2 Bab. II

Pertemuan ke :2 Bab. II Pertemuan ke :2 Bab. II Pokok bahasan : Proteksi dengan menggunakan relay Setelah mengikuti kuliah ini mahasiswa mengetahui macam-macam relay, fungsi dari relay, prinsip kerja, karakteristik relay dan

Lebih terperinci

BAB V RELE ARUS LEBIH (OVER CURRENT RELAY)

BAB V RELE ARUS LEBIH (OVER CURRENT RELAY) BAB V RELE ARUS LEBH (OVER CURRENT RELAY) 5.1 Pendahuluan Saluran dilindungi oleh relai arus lebih, relai jarak dan rele pilot, tergantung pada persyaratan. Relay arus lebih adalah sederhana, murah dan

Lebih terperinci

TUGAS AKHIR ANALISA DAN SOLUSI KEGAGALAN SISTEM PROTEKSI ARUS LEBIH PADA GARDU DISTRIBUSI JTU5 FEEDER ARSITEK

TUGAS AKHIR ANALISA DAN SOLUSI KEGAGALAN SISTEM PROTEKSI ARUS LEBIH PADA GARDU DISTRIBUSI JTU5 FEEDER ARSITEK TUGAS AKHIR ANALISA DAN SOLUSI KEGAGALAN SISTEM PROTEKSI ARUS LEBIH PADA GARDU DISTRIBUSI JTU5 FEEDER ARSITEK Diajukan guna melengkapi sebagian syarat dalam mencapai gelar Sarjana Strata Satu (S1) Disusun

Lebih terperinci

STUDI ANALISIS SETTING BACKUP PROTEKSI PADA SUTT 150 KV GI KAPAL GI PEMECUTAN KELOD AKIBAT UPRATING DAN PENAMBAHAN SALURAN

STUDI ANALISIS SETTING BACKUP PROTEKSI PADA SUTT 150 KV GI KAPAL GI PEMECUTAN KELOD AKIBAT UPRATING DAN PENAMBAHAN SALURAN STUDI ANALISIS SETTING BACKUP PROTEKSI PADA SUTT 150 KV GI KAPAL GI PEMECUTAN KELOD AKIBAT UPRATING DAN PENAMBAHAN SALURAN I Putu Dimas Darma Laksana 1, I Gede Dyana Arjana 2, Cok Gede Indra Partha 3 1,2,3

Lebih terperinci

BAB 3 RELE PROTEKSI PADA SALURAN UDARA TEGANGAN TINGGI

BAB 3 RELE PROTEKSI PADA SALURAN UDARA TEGANGAN TINGGI BAB 3 RELE PROTEKSI PADA SALURAN UDARA TEGANGAN TINGGI 3.1 RELE JARAK Pada proteksi saluran udara tegangan tinggi, rele jarak digunakan sebagai pengaman utama sekaligus sebagai pengaman cadangan untuk

Lebih terperinci

Analisa Penggunaan Recloser Untuk Pengaman Arus Lebih Pada Jaringan Distribusi 20 kv Gardu Induk Garuda Sakti

Analisa Penggunaan Recloser Untuk Pengaman Arus Lebih Pada Jaringan Distribusi 20 kv Gardu Induk Garuda Sakti Analisa Penggunaan Recloser Untuk Pengaman Arus Lebih Pada Jaringan Distribusi 20 kv Gardu Induk Garuda Sakti Ario Putra*, Firdaus** Jurusan Teknik Elektro Fakultas Teknik Universitas Riau Kampus Bina

Lebih terperinci

BAB I I LANDASAN TEORI

BAB I I LANDASAN TEORI 6 BAB I I LANDASAN TEORI 2.1 Pengantar Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar sampai

Lebih terperinci