BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI"

Transkripsi

1 BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Semakin menipisnya sumber energi fosil yang tersedia, menuntut para cendikiawan memikirkan sumber energi alternatif yang ramah lingkungan. Sebelumnya telah banyak para cendikiawan yang melakukan Penelitian tentang pembangkit listrik alternatif. Purwanto Eko Nugroho melakukan penelitian tentang rancang bangun turbin angin sumbu vertikal mikro wind energy skala rumah tangga Pada pengujian turbin angin Mikro Wind Energy didapatkan sudut optimal sudu turbin angin adalah 10º. Turbin angin mampu berputar pada kecepatan range angin >0,8 m/s. Turbin angin tanpa pembebanan mampu berputar dengan kecepatan 238 rpm, dan dengan pembebanan sebesar 226 rpm pada kecepatan angin 3,8 m/s. Turbin angin dengan penghasil listrik Alternator mampu mengeluarkan arus sebesar 3,4 ampere dengan voltase 12 Volt DC, saat kecepatan angin >3m/s. Kalitbang Prof. Jateng bekerja sama dengan PT Karsa Halyamulya melakukan penelitian tentang Pengembangan energi listrik tenaga angin di Jawa Tengah. Dalam penelitiannya di dapat kecepatan rata rata angin tahunan di kawasan pantai Selatan Pulau Jawa Kabupaten Purworejo Provinsi Jawa Tengah adalah 6,1 m/s pada ketinggian 100 m dengan kecepatan angin efektif sebanyak 77,83%. Kecepatan angin tersebut dapat menghasilkan daya 289,4 W/m 2, dengan produksi energi angin tahunan 2335,75 Kwh/m 2. Dengan kecepatan yang ada maka dilokasi penelitian dimungkinkan untuk membangun pembangkit listrik tenaga angin dengan kapasitas besar ( >100 Kwh/turbin). Wasana Saputra melakukan penelitian tentang rancang bangun solar tracking system untuk mengoptimalkan penyerapan energi matahari pada solar cell. Dalam penelitiannya, dia berhasil membuat prototype solar tracking system yang terdiri dari solar tracker yang berfungsi untuk 8

2 9 mengoptimalkan penerimaan energi matahari oleh solar cell. Meskipun hasil pengujian belum berfungsi dengan baik, karena belum menemukan posisi peletakan LDR yang benar. Selain itu Puloeng Raharjo, juga melakukan penelitian yang berhubungan dengan pembangkit listrik, yaitu tentang perancangan sistem hibrid solar cell-baterai-pln menggunakan programmable logic controllers. Dengan menggunakan sistem hibrid yang terdiri dari 2 buah sumber pembangkitan dari solar cell dan dari PLN, pemakaian ini bertujuan untuk saling bantu antar pembangkit. Dengan menggunakan solar cell sebesar 100wp dan mengalami beban puncak pada pukul dengan menghasilkan tegangan 20,03v, arus 4,52v dan daya sebesar 90,52W. Keadaan baterai 100% ketika tegangan mencapai 12,7v dan dilakukan pengisian ketika keadaan baterai 30%-40% dengan tegangan sebesar 11,8V. Semua sistem dikontrol dengan PLC menggunakan bahasa ladder diagram. 2.2 Landasan Teori Hybrid Power Sistem Hybrid power sistem adalah suatu sistem pembangkit tenaga listrik yang menggunakan dua atau lebih pembangkit dengan sumber energi berbeda sehingga dapat saling menutupi kelemahan masing-masing dan dapat dicapai keandalan supply dan efisiensi ekonomis pada beban tertentu.. Tujuan utama dari sistem ini adalah untuk memaksimalkan energi dengan harga murah, bebas polusi, kualitas daya yang bagus, dan Dengan adanya kombinasi dari sumber-sumber energi tersebut, diharapkan dapat menyediakan catu daya listrik yang kontinyu dengan efisiensi yang paling optimal. Hybrid power system ini memiliki beberapa kelebihan dari konfigurasinya yaitu (Juwito, 2012): a. Dapat menjadi solusi untuk mengatasi krisis bahan bakar fosil. b. Dapat memenuhi beban listrik secara optimal terutama pada daerah-daerah yang tidak tersentuh oleh jaringan listrik PLN. c. Meningkatkan efisiensi ekonomi pembangkit.

3 10 d. Meningkatkan keandalan (reliability) sistem pembangkit. e. Meningkatkan waktu layanan listrik secara ekonomis. f. Meningkatkan umur operasi sistem. g. Tidak menimbulkan polusi dan limbah (ramah lingkungan). h. Biaya pengoperasian dan pemeliharaannya relatif murah. i. Biaya produksi energi listrik atau Cost of Energy (Rp/kWh) per tahun relatif murah. Di samping kelebihan-kelebihan di atas konfigurasi sistem Pembangkit Listrik Tenaga Hibrid tersebut juga mempunyai beberapa kekurangan, diantaranya (Juwito, 2012): a. Produksi energi baru dan terbarukan sangat tergantung pada siklus alam. b. Biaya investasi awal sistem ini lebih mahal. c. Tidak dapat menangani beban puncak dengan baik tanpa penyimpanan energi Sel Surya Sel surya adalah sebuah komponen elektronik yang dapat mengubah energi cahaya gelombang pendek menjadi energi listrik, perubahan energi ini disebabkan sebuah proses yang di sebut efek photovoltaic. Efek photovoltaic sendiri adalah pelepasan muatan positif dan negatif dalam material padat melalui cahaya. Jadi secara tidak langsung output berupa arus dan tegangan dipengaruhi oleh besarnya intensitas cahaya. Pada sel surya terdapat sambungan (junction) antara dua lapisan tipis yang terbuat dari bahan semikonduktor yang masing-masing diketahui sebagai semikonduktor jenis P (positif) dan semikonduktor jenis N (Negatif). Silikon jenis P merupakan lapisan permukaan yang dibuat sangat tipis supaya cahaya matahari dapat menembus langsung mencapai junction. Bagian P ini diberi lapisan nikel yang berbentuk cincin, sebagai terminal keluaran positif. Dibawah bagian P terdapat bagian jenis N yang dilapisi dengan nikel juga sebagai terminal keluaran negatif. Ketika cahaya

4 11 mengenai permukaan sel surya, beberapa fhoton dari cahaya diserap oleh atom semikonduktor untuk membebaskan electron dari ikatan atomnya, sehingga menjadi electron yang bebas bergerak. Adanya perpindahan electron inilah yang menyebabkan terjadinya arus listrik. (Quaschning, 2005) Gambar 2.1 Hubungan Sel Surya, Panel Surya (Quaschning, 2005 ) Array adalah Gabungan dari beberapa sel surya disebut panel surya. Sebuah panel surya umumnya terdiri dari sel surya, tergantung ukuran panel (Quaschning, 2005). Gabungan dari panel-panel ini akan membentuk suatu Array. Gambar 2.2 Susunan pembuatan panel surya, dari sel surya, modul dan panel (array) (Tutun dan Didik Sunardi, 2012.)

5 Keuntungan dan Kelebihan Sel Surya a. Keuntungan Sel surya dapat memberikan keuntungan dibandingkan dengan sumber-sumber tenaga lainnya, seperti generator diesel, fosil dan lainlain. Berikut adalah keuntungannya: 1. Tidak membutuhkan bahan bakar untuk beroperasi. Hal ini menguntungkan karena tidak menyebabkan gangguan pada lingkungan karena tidak menyebabkan polusi akibat proses pemakaian bahan bakar, dan tidak mengeluarkan suara mesin yang bergerak sehingga tidak mengganggu lingkungan. 2. Sel surya memiliki ketahanan dan kestabilan yang sudah teruji waktu operasinya cukup lama. 3. Sel surya dapat dengan mudah di bangun di daerah terpencil dan dapat di pindahkan peletakannya. b. Kerugian Di samping memiliki keuntungan sel surya juga memiliki beberapa kerugian, yaitu 1. Terlalu bergantung pada matahari, sehingga sangat terpengaruh oleh keadaan cuaca dalam produksi listriknya. 2. Biaya pembangunannya cukup mahal. 3. Membutuhkan komponen tambahan untuk mengonversi dan memperbesar output listriknya Jenis Sel Surya a. Monokristal Sel surya yang terdiri atas p-n Junction monokristal silicon atau yang disebut juga monocrystalline PV, mempunyai kemurnian yang tinggi yaitu 99,999%. Efisiensi sel fotovoltaik jenis silicon monokristal mempunyai efisiensi konversi yang cukup tinggi yaitu

6 13 sekitar 16 sampai 17%. Berikut contoh modul fotovoltaik (PV) jenis monokristal seperti yang terlihat pada gambar 2.3 (a) Sel fotovoltaik (b) Modul fotovoltaik (Sumber: Laporan Kerja Praktek Ega dan Pandu di PT Surya Utama Putra) Gambar 2.3 Sel dan Modul fotofoltaik (PV) Jenis Monokristal b. Polikristal Polikristal PV atau sel surya yang bermateri polokristal dikembangkan atas alasan mahalnya materi monokristal per kilogram. Efisiensi konversi sel surya jenis silicon polikristal berkisar antara 12% hingga 15%. Berikut contoh modul fotovoltaik jenis polikristal seperti yang terlihat pada gambar 2.4 (a) Sel Fotovoltaik (b) Modul Fotovoltaik (Sumber : Laporan Kerja Praktek Ega dan Pandu di PT Surya Utama Putra) Gambar 2.4 Sel dan Modul Sel Surya Jenis Polikristal

7 14 c. Amorfous Sel surya bermateri Amorphous Silicon merupakan teknologi fotovoltaik dengan lapisan tipis atau thin film. Ketebalannya sekitar 10µm (micron) dalam bentuk modul surya. Efisiensi sel dengan silicon amorfous berkisar 6% sampai dengan 9%. Berikut contoh fotovoltaik jenis amorfous seperti yang terlihat pada gambar 2.5 (Sumber Laporan Kerja Praktek Ega dan Pandu di PT Surya Utama Putra) Gambar 2.5 Modul Fotovoltaik Jenis Amorfous Karakteristik Sel Surya Sel Surya diproduksi dari bahan semikonduktor berupa silikon yang berperan sebagai insulator pada temperatur rendah dan sebagai konduktor bila ada energi dan panas. Sebuah Sel Surya dalam menghasilkan energi listrik (energi sinar matahari menjadi photon) tidak tergantung pada besaran luas bidang Silikon, dan secara konstan akan menghasilkan energi berkisar ± 0.5 volt max. 600 mv pada 2 amp, dengan kekuatan radiasi solar matahari 1000 W/m2 = 1 Sun akan menghasilkan arus listrik (I) sekitar 30 ma/cm2 per sel surya. Sel Surya akan menghasilkan energi maximum jika nilai Vm dan Im juga maximum. Sedangkan Isc adalah arus listrik maximum pada nilai volt = nol, Isc berbanding langsung dengan tersedianya sinar matahari. Voc adalah volt maximum pada nilai arus nol, Voc naik secara logaritma dengan peningkatan sinar matahari, karakter ini yang memungkinkan Sel Surya untuk mengisi accu.

8 15 Gambar 2.6 Kurva arus dan tegangan (Wulandari Triyas Ika,2010) Keterangan: Isc = Short-circuit current Vsc = Open-circuit voltage Vm = Voltage maximum power Im = Current maximum power Pm = Power maximum-output dari PV array (watt) Sebuah Sel surya dapat beroperasi secara maximum jika temperatur sel tetap normal (pada 25 derajat celsius), kenaikan temperatur lebih tinggi dari temperatur normal pada sel surya akan melemahkan voltage (Voc). Setiap kenaikan temperatur sel surya 1 derajat celsius (dari 25 derajat) akan berkurang sekitar 0.4 % pada total tenaga yang dihasilkan 8 atau akan melemah 2x lipat untuk kenaikan temperatur sel per 10 derajat C. Gambar 2.8 merupakan grafik pengaruh temperatur pada solar cell dalam C.

9 16 Gambar 2.7 Grafik Arus Terhadap Temperatur (Wulandari Triyas Ika, 2010) Radiasi solar matahari di bumi dan berbagai lokasi bervariable, dan sangat tergantung keadaan spektrum solar ke bumi. Intensitas matahari akan banyak berpengaruh pada current (I) sedikit pada volt. Semakin rendah intensitas cahaya yang diterima oleh sel surya, maka arus akan semakin rendah. Hal ini membuat titik Maximum Power Point berada pada titik yang semakin rendah. Gambar 2.8 merupakan grafik pengaruh temperatur pada solar cell dalam W/m2. Gambar 2.8 Grafik Arus Terhadap Insolation (Wulandari Triyas Ika, 2010)

10 17 Efisiensi dari konversi energi surya dari sel surya di deskripsikan melalui persamaan: η = Daya keluaran Daya masukan x 100%...(2.1) Dimana: η = efisiensi Tentunya dengan semakin tingginya nilai efisiensi maka semakin tinggi pula daya keluaran sel surya yang di dapatkan Parameter Sel Surya Pengoperasian maximum Sel Surya sangat tergantung pada : a. Ambient air temperature Sebuah Sel Surya dapat beroperasi secara maximum jika temperatur sel tetap normal (pada 25 derajat Celsius), kenaikan temperatur lebih tinggi dari temperature normal pada sel surya akan melemahkan voltage (Voc). Setiap kenaikan temperatur Sel Surya1 derajat celsius (dari 25 derajat) akan berkurang sekitar 0.4 % pada total tenaga yang dihasilkan atau akan melemah 2x lipat untuk kenaikan temperatur Sel per 10 derajat C. b. Radiasi solar matahari (insolation) Radiasi solar matahari di bumi dan berbagai lokasi bervariable, dan sangat tergantung keadaan spektrum solar ke bumi. Insolation solar matahari akan banyak berpengaruh pada current (I) sedikit pada volt. c. Kecepatan angin bertiup Kecepatan tiup angin di sekitar lokasi sel surya (array) dapat membantu mendinginkan permukaan temperatur kaca-kaca sel surya (array). d. Keadaan atmosfer bumi Keadaan atmosfer bumi berawan, mendung, jenis partikel debu udara, asap, uap air udara(rh), kabut dan polusi sangat menentukan hasil maximum arus listrik dari deretan sel surya (array).

11 18 e. Orientasi panel atau sel surya (array) Kecepatan tiup angin di sekitar lokasi sel surya (array) dapat membantu mendinginkan permukaan temperatur kaca-kaca sel surya (array). Keadaan atmosfer bumi berawan, mendung, jenis partikel debu udara, asap, uap air udara (Rh), kabut dan polusi sangat menentukan hasil maximum arus listrik dari deretan sel surya. Orientasi dari rangkaian sel surya (array) ke arah matahari secara optimum adalah penting agar panel/deretan sel surya dapat menghasilkan energi maximum. Kalau tidak dapat mempertahankan ketegak lurusan antara sinar matahari dengan bidang sel surya, maka penambahan luas bidang panel sel surya dibutuhkan (bidang panel sel surya terhadap sun altitude yang berubah setiap jam dalam sehari) Sistem Penyimpanan Energi Sistem penyimpanan energi yang biasanya di pakai pada sel surya adalah baterai, dari segi penggunaannya baterai dapat diklasifikasikan menjadi 2 jenis yaitu: a. Baterai Primer Baterai primer adalah baterai yang hanya digunakan atau di pakai sekali saja. Pada waktu baterai dipakai, material dari salah satu elektroda menjadi larut dalam elektrolit dan tidak dapat dikembalikan dalam keadaan semula. b. Baterai Sekunder Baterai sekunder adalah jenis baterai yang dapat digunakan dan di diisi ulang beberapa kali, komposisi awal elektroda dapat dikembalikan dengan arus berkebalikan.

12 19 Baterai berperan sangat penting dalam sistem sel surya karena baterai di gunakan untuk membantu agar sel surya dapat memenuhi kestabilan suplai daya ke beban. Baterai pada sel surya mengalami proses siklus mengisi (Charging) dan mengosongkan (Discharging), tergantung pada ada tidaknya sinar matahari. Selama ada sinar matahari, panel surya akan menghasilkan listrik. Apabila energi listrik yang dihasilkan tersebut melebihi kebutuhan bebannya, maka energy listrik tersebut akan segera dipergunakan untuk mengisi baterai. Sebaliknya, selama matahari tidak ada maka permintaan energi listrik akan di suplai oleh baterai. Proses pengisian dan pengosongan ini disebut satu siklus baterai. Karakteristik daya keluaran sel surya sendiri tidak stabil, daya keluaran akan terus naik turun sesuai dengan intensitas cahaya matahari yang jatuh pada permukaan sel surya. Berikut adalah beberapa hal yang harus di perhatikan dalam baterai: a. Tegangan baterai Tegangan baterai adalah karakteristik dasar dari baterai, yang di tentukan oleh reaksi kimia dalam baterai. b. Kapasitas baterai Kapasitas baterai adalah ukuran muatan yang disimpan pada suatu baterai. Kapasitas menggambarkan sejumlah energi maksimum yang di keluarkan dari sebuah baterai dengan kondisi tertentu. Kapasitas baterai umumnya dinyatakan dalam Ampere Hour (Ah). Nilai Ah pada baterai menunjukkan nilai arus yang dapat dilepaskan, dikalikan dengan nilai waktu untuk pelepasan tersebut. Berdasarkan hal tersebut maka secara teoritis, baterai 12 V, 200 Ah harus dapat memberikan baik 200 A selama satu jam, 50 A selama 4 jam, 4 A untuk 50 jam, atau 1 A untuk 200 jam. Pada saat mendesain kapasitas baterai yang akan dipergunakan dalam system PLTS, penting juga untuk menentukan ukuran hari-hari otonomi (days of autonomy). (Polarpowerinc, 2011).

13 20 c. Parameter charging dan discharging baterai Nilai charging dan discharging berpengaruh terhadap nilai kapasitas baterai. Jika baterai di discharging dengan cepat(arus discharging tinggi), maka sejumlah energi yang dapat digunakan oleh baterai menjadi berkurang sehingga kapasitas baterai menjadi lebih rendah. Hal ini dikarenakan kebutuhan suatu material/komponen untuk reaksi yang terjadi tidak mempunyai waktu yang cukup untuk bergerak ke posisi yang seharusnya. Jadi seharusnya arus discharging yang di gunakan sekecil mungkin, sehingga energi yang di gunakan kecil dan kapasitas baterai menjadi lebih tinggi Inverter Inverter adalah peralatan elektronika yang berfungsi untuk mengubah arus searah (DC) dari panel surya atau baterai menjadi arus bolak-balik (AC). Tegangan keluaran dapat bernilai tetap atau berubahubah sesuai kebutuhan. Bentuk gelombang keluaran dari inverter idealnya gelombang sinus. Tetapi pada kenyataannya tidak demikian karena adanya harmonisa. Inverter di bagi menjadi 2 macam yaitu, inverter satu fase dan inverter tiga fase. Dan menurut jenis gelombangnya ada tiga jenis inverter yang ada di pasaran yakni; inverter gelombang sinus, gelombang sinus termodifikasi, dan inverter gelombang kotak. Berikut formula untuk menghitung kapasitas inverter (rashid. 1993): P inverter = P max x 125%...(2.2) Keterangan: P inverter = Daya inverter (Watt) P max = Beban puncak (Watt) 125% = Kompensasi

14 Energi Angin Angin merupakan energi alternatif yang murah dan dapat berpotensi untuk dimanfaatkan sebagai sumber energi bagi kebutuhan masyarakat. Energi tersebut dapat di konversikan menjadi beberapa energi kinetik yang nantinya dapat mempermudah pekerjaan manusia. Hal ini sudah diterapkan dalam pemanfaatan angin menjadi penggerak utama pompa air untuk pengairan sawah. Gambar 2.9 Skema terjadinya angin (Eri prasetyo, 2002) Pada dasarnya angin terjadi karena ada perbedaan suhu antara udara panas dan udara dingin. Di daerah khatulistiwa, udaranya menjadi panas mengembang dan menjadi ringan, naik ke atas dan bergerak 30 0 hingga 60 0 ke daerah yang lebih dingin misalnya daerah Kutub. Sebaliknya di daerah Kutub yang dingin, udaranya menjadi dingin dan turun ke bawah dengan demikian terjadi suatu perputaran udara berupa perpindahan udara dari Kutub Utara ke Garis Khatulistiwa menyusuri permukaan bumi, dan sebaliknya suatu perpindahan udara dari Garis Khatulistiwa kembali ke Kutub Utara, melalui lapisan udara yang lebih tinggi. Proses pemanfaatan energi angin juga dilakukan sejak lama untuk pemanfaatan energi listrik. Dengan bantuan energi angin ini proses

15 22 pengubahan energi dilakukan melalui dua tahapan konversi energi, pertama aliran angin akan menggerakkan rotor (baling-baling) yang menyebabkan rotor berputar selaras dengan angin yang bertiup, kemudian putaran dari rotor dihubungkan dengan generator, dari generator inilah dihasilkan arus listrik Jenis-Jenis Angin Jenis-jenis angin adalah antara lain: 1. Angin tetap a. Angin Barat, bertiup dari daerah subtropik ke daerah kutub. b. Angin Timur, bertiup dari daerah kutub. c. Angin pasat, bertiup dari daerah subtropik selatan dan utara menuju ke daerah khatulistiwa. d. Angin anti pasat, bertiup berlawanan dengan angin pasat. 2. Angin periodik a. Angin muson, bertiup setiap setengah tahun sekali dan selalu berganti arah. b. Angin darat, bertiup dari darat ke laut dan terjadi pada malam hari. c. Angin laut, bertiup dari laut ke darat dan terjadi pada siang hari. d. Angin gunung, bertiup dari lereng gunung ke lembah dan terjadi pada malam hari. e. Angin lembah, bertiup dari lembah ke puncak gunung dan terjadi pada siang hari. 3. Angin lokal a. Angin siklon, bertiup di daerah depresi yang memiliki barometri minimum dan dikelilingi barometri maksimum. b. Angin antisiklon, bertiup di daerah yang memiliki barometri maksimum dan dikelilingi oleh barometri minimum. Contohnya : angin taifun di Asia Timur dan Tornado di USA.

16 23 c. Angin fohn, bertiup dari daerah pegunungan yang bersifat panas dan kering. Contohnya : angin kumbang di Cirebon, angin bahorok di Deli, angin gending di Pasuruan, angin brubu di Makasar dan angin wambrau di Biak, Papua Syarat Kecepatan Angin Syarat dan kondisi angin yang dapat digunakan untuk menghasilkan energi listrik dengan kincir angin dan jari-jari 1 meter dapat dilihat pada tabel 2.1 berikut: Tabel 2.1 Tingkatan kecepatan angin 10 meter di atas permukaan tanah (Sumber: Kelas Kecepatan Kondisi Alam di Daratan Angin tenang Angin tenang, asap lurus ke atas Asap bergerak mengikuti arah angin Wajah terasa ada angin, daun-daun bergoyang pelan, petunjuk arah angin bergerak Debu jalan, kertas beterbangan, ranting pohon Bergoyang Ranting pohon bergoyang, bendera berkibar Ranting pohon besar bergoyang, air kolam berombak kecil Ujung pohon melengkung, hembusan angin terasa di telinga Dapat mematahkan ranting pohon, jalan berat melawan arah angin Dapat mematahkan ranting pohon, rumah rubu Dapat merubuhkan pohon, menimbulkan kerusakan Menimbulkan kerusakan parah

17 Pembangkit Listrik Tenaga Angin Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit ini dapat mengonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Sistem pembangkitan listrik menggunakan angin sebagai sumber energi merupakan sistem alternatif yang sangat berkembang pesat, mengingat angin merupakan salah satu energi yang tidak terbatas di alam Turbin Angin (Wind Turbine) Turbin angin atau wind turbine adalah kincir angin yang digunakan untuk memutar generator listrik dan menghasilkan energi listrik. Prinsip kerja dari turbin angin ini menggunakan prinsip konversi energi dan menggunakan sumber daya alam yang terbarukan yaitu angin. Energi angin bisa ditangkap dengan dua atau tiga buah bilah sudu yang didesain seperti sayap pesawat terbang. Bilah sudu yang digunakan berfungsi seperti sayap pesawat udara. Ketika angin bertiup melalui bilah tersebut, maka akan timbul udara bertekanan rendah di bagian bawah dari sudu, Tekanan udara yang rendah akan menarik sudu bergerak ke area tersebut. Gaya yang ditimbulkan dinamakan gaya angkat. Besarnya gaya angkat biasanya lebih kuat dari tekanan pada sisi depan bilah, atau yang biasa disebut tarik. Kombinasi antara gaya angkat dan tarik menyebabkan rotor berputar seperti propeler dan memutar generator. Turbin angin terbagi dalam dua kelompok, yaitu: 1. Turbin sumbu horizontal Turbin ini biasanya memiliki dua atau tiga blade dalam penggunaannya. Turbin sumbu horizontal memiliki poros utama dan generator listrik di puncak menara. Turbin berukuran kecil diarahkan oleh sebuah baling-baling angin yang sederhana. Sebuah menara menghasilkan turbulensi di belakangnya, sehingga turbin harus

18 25 diarahkan melawan arah angin. Bilah-bilah dibuat kaku agar tidak terdorong menuju menara oleh angin berkecepatan tinggi. 2. Turbin sumbu vertikal Turbin ini merupakan turbin yang dapat menerima angin dari segala arah selain itu juga mampu bekerja pada angin dalam kecepatan yang rendah. Turbin ini memiliki efisiensi yang lebih kecil dibandingkan dengan turbin angin sumbu horizontal. Komponen turbin angin terdiri dari rotor dengan sudu sebagai penggerak utama, generator sebagai pengubah energi mekanik menjadi energi listrik, dan sayap/ekor yang berfungsi sebagai pengubah arah dan perangkat sistem kontrol elektrik. Turbin angin mengambil energi angin dengan menurunkan kecepatannya. Untuk bisa mencapai 100% efisien, maka sebuah turbin angin harus menahan 100% kecepatan angin yang ada, dan rotor harus terbuat dari piringan solid dan tidak berputar sama sekali, yang artinya tidak ada energi kinetik yang akan dikonversi. Besarnya energi angin yang dapat dikonversi menjadi daya dapat dicari dengan menggunakan persamaan: P = ½ Aρηv 3 (2.3) Dimana: P = daya yang dapat dihasilkan oleh wind turbine A = swept area wind turbine ρ = massa jenis udara η = efisiensi wind turbine V = kecepatan angin Secara teori, efisiensi maksimum yang bisa dicapai setiap desain turbin angin adalah 59%, artinya energi angin yang bisa diserap hanyalah

19 26 59%. Jika faktor-faktor seperti kekuatan dan durabilitas diperhitungkan, maka efisiensi sebenarnya hanya 35-45%, bahkan untuk desain terbaik. Terlebih lagi jika ditambah inefisiensi sistem wind turbine lengkap, termasuk generator, bearing, transmisi daya dan sebagainya, hanya 10-30% energi angin yang bisa di konversikan ke listrik Komponen Utama Wind Turbine Dalam mengonversi energi kinetik menjadi energi mekanik suatu wind turbine memerlukan beberapa komponen-komponen yang mempunyai fungsi masing-masing. Khusus untuk turbin dengan kapasitas kecil di hindarkan dari pemakaian gearbox karena gearbox bisa menyebabkan bertambah beratnya turbin sehingga untuk mengubah arah turbin di butuhkan angin yang kencang untuk menerpa ekor yang berfungsi untuk mengarahkan arah turbin ke angin. Selain itu brake juga di hindari karena untuk turbin kapasitas kecil rata-rata di gunakan untuk kecepatan angin yang rendah, jadi ketika di tambah dengan komponen brake yang memiliki gaya gesekan di brake meskipun dalam keadaan tidak mengerem gaya gesekan tersebut tetap ada, hal ini mengakibatkan putaran turbin semakin berat. Komponen-komponen tersebut antara lain adalah: Gambar 2.10 Komponen turbin kecil (mit.ilearning.me)

20 27 1. Sudu Sudu adalah bagian rotor dari turbin angin. Rotor ini menerima energi kinetik dari angin dan dirubah ke dalam energi gerak putar. menggunakan prinsip-prinsip aerodinamika seperti halnya pesawat. Gambar 2.11 Gaya gaya angin pada sudu (Eri prasetyo, 2002) Pada prinsipnya gaya-gaya angin yang bekerja pada sudu-sudu kincir sumbu horizontal terdiri atas tiga komponen yaitu: a. Gaya aksial(a), yang mempunyai arah sama dengan angin, gaya ini harus ditampung oleh poros dan bantalan. b. Gaya sentrifugal (s), yang meninggalkan titik tengah. Bila kipas bentuknya simetris, semua gaya sentrifugal s akan saling meniadakan atau resultannya sama dengan nol. c. Gaya tangensial( t), yang menghasilkan momen, bekerja tegak lurus pada radius dan yang merupakan gaya produktif. Energi kinetik angin diperoleh berdasarkan energi kinetik sebuah benda dengan massa m, kecepatan v, maka rumus energi angin dapat dirumuskan sebagai berikut:

21 28 E = 0.5 m v 2.(2.4) Dimana: E = Energi Angin m= Massa benda v = kecepatan sementara efisiensi turbin dapat di hitung dengan persamaan berikut. (2.5) Dimana: A = swept area wind turbine ρ = massa jenis udara η = efisiensi wind turbine V = kecepatan angin 2. Tower Tower atau tiang penyangga adalah bagian struktur dari turbin angin horizontal yang memiliki fungsi sebagai struktur utama penopang dari komponen sistem terangkai sudu, poros, dan generator. 3. Ekor Ekor pada wind turbin berguna untuk mengubah posisi generator dan turbin agar sesuai dengan arah datangnya angin, ekor juga bisa berfungsi untuk melakukan furling atau penggulungan yang berfungsi untuk melambatkan putaran turbin saat terjadi angin yang memiliki batas kecepatan putaran dengan cara menekuk ekor agar arah angin tidak mendarat pada bagian samping turbin hal ini

22 29 menyebabkan turbin berputar pelan kalena arah angin tidak pas di tengah turbin. 4. Generator Ini adalah salah satu komponen terpenting dalam pembuatan sistem turbin angin. Generator ini dapat mengubah energi gerak menjadi energi listrik. Prinsip kerjanya dapat dipelajari dengan menggunakan teori medan elektromagnetik. Singkatnya, (mengacu pada salah satu cara kerja generator) poros pada generator dipasang dengan material ferromagnetic permanen. Setelah itu di sekeliling poros terdapat stator yang bentuk fisis nya adalah kumparankumparan kawat yang membentuk loop. Ketika poros generator mulai berputar maka akan terjadi perubahan fluks pada stator yang akhirnya karena terjadi perubahan fluks ini akan dihasilkan tegangan dan arus listrik tertentu. Tegangan dan arus listrik yang dihasilkan ini disalurkan melalui kabel jaringan listrik untuk akhirnya digunakan oleh masyarakat. Tegangan dan arus listrik yang dihasilkan oleh generator ini berupa AC (alternating current) yang memiliki bentuk gelombang kurang lebih sinusoidal. 5. Baterai Karena keterbatasan ketersediaan akan energi angin (tidak sepanjang hari angin akan selalu tersedia) maka ketersediaan listrik pun tidak menentu. Oleh karena itu digunakan alat penyimpan energi yang berfungsi sebagai back-up energi listrik. Ketika beban penggunaan daya listrik masyarakat meningkat atau ketika kecepatan angin suatu daerah sedang menurun, maka kebutuhan permintaan akan daya listrik tidak dapat terpenuhi. Oleh karena itu kita perlu menyimpan sebagian energi yang dihasilkan ketika terjadi kelebihan daya pada saat turbin angin berputar kencang atau saat penggunaan daya pada masyarakat menurun. Penyimpanan energi ini di

23 30 akomodasi dengan menggunakan alat penyimpan energi. Contoh sederhana yang dapat dijadikan referensi sebagai alat penyimpan energi listrik adalah aki mobil. Aki mobil memiliki kapasitas penyimpanan energi yang cukup besar. Aki 12 volt, 65 Ah dapat dipakai untuk mencatu rumah tangga (kurang lebih) selama 0.5 jam pada daya 780 watt. Kendala dalam menggunakan alat ini adalah alat ini memerlukan catu daya DC (Direct Current) untuk mengcharge/mengisi energi, sedangkan dari generator dihasilkan catu daya AC (Alternating Current). Oleh karena itu diperlukan rectifierinverter untuk mengakomodasi keperluan ini HOMER Homer adalah singkatan dari the hybrid optimization model for electric renewables, merupakan perangkat lunak yang digunakan untuk membantu pemodelan dari sebuah sistem tenaga listrik dengan menggunakan berbagai pilihan sumber daya terbahrukan dan salah satu tool popular untuk desain system PLH (Pembangkit Listrik Hybrid) menggunakan energi terbarukan dan energi yang sudah ada. HOMER mensimulasikan dan mengoptimalkan system pembangkit listrik baik stand-alone maupun grid connected yang dapat terdiri dari kombinasi turbin angin, photovoltaic, mikrohidro, biomassa, generator (diesel/bensin), microturbine, fuel-cell, baterai, dan penyimpanan hidrogen, melayani beban listrik maupun termal. Dengan HOMER, dapat diperoleh spisifikasi paling optimal dari sumber-sumber energy yang mungkin diterapkan. a) Tutorial HOMER Tampilan perangkat lunak HOMER bisa dilihat di Gambar 2.12 dibawah ini. Perancang dapat menyususn system pembangkit dari berbagai jenis sumber daya, baik sumber daya konvensional maupun yang

24 31 terbarukan. Proses simulasi pada HOMER dilakukan untuk mengetahui karakteristik atau performansi dari suatu system pembangkit. Gambar 2.12 Tampilan utama Homer Setelah kita membuat program Homer, maka yang harus kita lakukan adalah memberikan atau menambahkan masukan device pada system hybrid yang akan kita buat. Disini, yang harus kita masukan adalah jenis beban yang akan ditopang dari system kita. Homer memberikan pilihan berbagai jenis beban sesuai dengan kebutuhan pengguna. Begitu juga pada pilihan komponen yang akan kita buat. Komponen pembangkit energi yang disediakan HOMER yaitu: PV, Wind Turbine, Hydro, Converter, Electrolyzer, Hydrogen Tank, Reforme, Generator, dan system batteray. Gambar 2.13 Pemilihan tipe beban dan komponen Setelah menentukan tipe beban dan komponen pembangkit, maka hal yang selanjutnya dilakukan adalah memasukkan data beban tiap jamnya.

25 32 Disini ada pilihan beban yang kita buat, tipe DC dan AC. Selanjutnya simulasi dari variasi beban tiap waktunya dapat kita simulasikan dengan memasukkan presentase pada random variable. Gambar 2.14 Proses input data beban Data beban yang telah kita inputkan secara otomatis akan langsung dihitung oleh Homer dan menghasilkan data rata-rata pemakaian, dan beban puncak dan load factor beban. b) Konfigurasi HOMER Saat melakukan simulasi, HOMER menentukan semua konfigurasi system yang mungkin, kemudian ditampilkan berurutan menurut net presents costs-npc (atau disebut juga life cycle costs). Jika analisa sensitivitas diperlukan, HOMER akan mengulangi proses simulasi untuk setiap variable sensitivitas yang ditetapkan. Gambar 2.15 Bagian Utama Arsitektur HOMER

BAB I LANDASAN TEORI. 1.1 Fenomena angin

BAB I LANDASAN TEORI. 1.1 Fenomena angin BAB I LANDASAN TEORI 1.1 Fenomena angin Angin adalah udara yang bergerak akibat adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki tekanan lebih tinggi ke tempat yang bertekanan

Lebih terperinci

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk energi yang lain. Saat ini kebutuhan energi, khususnya energi listrik terus meningkat dengan pesat,

Lebih terperinci

II. TINJAUAN PUSTAKA. Angin adalah massa udara yang bergerak. Angin dapat bergerak secara horizontal

II. TINJAUAN PUSTAKA. Angin adalah massa udara yang bergerak. Angin dapat bergerak secara horizontal II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah massa udara yang bergerak. Angin dapat bergerak secara horizontal maupun secara vertikal dengan kecepatan bervariasi dan berfluktuasi secara dinamis. Faktor

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. daya lain sebagai alternatif energi untuk menunjang pasokan listrik yang semakin

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. daya lain sebagai alternatif energi untuk menunjang pasokan listrik yang semakin BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI A. Tinjauan Pustaka Keterbatasan energi fosil membuat perlu adanya suatu pemanfaatan sumber daya lain sebagai alternatif energi untuk menunjang pasokan listrik

Lebih terperinci

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh filter warna kuning terhadap efesiensi Sel surya. Dalam penelitian ini menggunakan metode

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sel Surya Sel surya di definisikan sebagai teknologi yang menghasilkan listrik dc dari suatu bahan semikonduktor ketika dipaparkan oleh cahaya. Selama bahan semikonduktor tersebut

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Bab ini meliputi waktu dan tempat penelitian, alat dan bahan, rancangan alat, metode penelitian, dan prosedur penelitian. Pada prosedur penelitian akan dilakukan beberapa

Lebih terperinci

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER Oleh: Muhammad Anwar Widyaiswara BDK Manado ABSTRAK Penelitian ini bertujuan untuk mengetahui perbedaan

Lebih terperinci

MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN

MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang Email: isdiyarto@yahoo.co.id Abstrak. Energi terbarukan

Lebih terperinci

INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA

INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA Hasyim Asy ari 1, Jatmiko 2, Angga 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol

Lebih terperinci

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Made Sucipta1,a*, Faizal Ahmad2,b dan Ketut Astawa3,c 1,2,3 Program Studi Teknik Mesin, Fakultas Teknik, Universitas Udayana,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Studi Literatur Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Bambang setioko (2007), Kenaikan harga BBM

Lebih terperinci

pusat tata surya pusat peredaran sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim

pusat tata surya pusat peredaran sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim Ari Susanti Restu Mulya Dewa 2310100069 2310100116 pusat peredaran pusat tata surya sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim Tanpa matahari, tidak akan ada kehidupan

Lebih terperinci

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER 3.1 Deskripsi Plant Sistem solar tracker yang penulis buat adalah sistem yang bertujuan untuk mengoptimalkan penyerapan cahaya matahari pada

Lebih terperinci

PEMANFAATAN SEL SURYA DAN LAMPU LED UNTUK PERUMAHAN

PEMANFAATAN SEL SURYA DAN LAMPU LED UNTUK PERUMAHAN PEMANFAATAN SEL SURYA DAN LAMPU LED UNTUK PERUMAHAN Jatmiko, Hasyim Asy ari, Mahir Purnama Jurusan Teknik Elektro, Fakultas Teknik Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos 1 Pabelan Kartasura,

Lebih terperinci

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN I.W.G.A Anggara 1, I.N.S. Kumara 2, I.A.D Giriantari 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA ANGIN

PEMBANGKIT LISTRIK TENAGA ANGIN PEMBANGKIT LISTRIK TENAGA ANGIN A. Pembangkit Listrik Tenaga Angin Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi

Lebih terperinci

BAB II TINJAUAN UMUM

BAB II TINJAUAN UMUM BAB II TINJAUAN UMUM 2.1 Solar Cell Solar Cell atau panel surya adalah suatu komponen pembangkit listrik yang mampu mengkonversi sinar matahari menjadi arus listrik atas dasar efek fotovoltaik. untuk mendapatkan

Lebih terperinci

PEMBANGKIT LISRIK TENAGA ANGIN. Nama : M. Beny Djaufani ( ) Ardhians A. W. ( Benny Kurnia ( Iqbally M.

PEMBANGKIT LISRIK TENAGA ANGIN. Nama : M. Beny Djaufani ( ) Ardhians A. W. ( Benny Kurnia ( Iqbally M. PEMBANGKIT LISRIK TENAGA ANGIN Nama : M. Beny Djaufani (11-2009-035) Ardhians A. W. (11-2009-0 Benny Kurnia (11-2009-0 Iqbally M. (11-2009-0 Pengertian PLTB Pembangkit Listrik Tenaga Angin atau sering

Lebih terperinci

Ribuan tahun yang silam radiasi surya dapat menghasilkan bahan bakar fosil yang dikenal dengan sekarang sebagai minyak bumi dan sangat bermanfaat bagi

Ribuan tahun yang silam radiasi surya dapat menghasilkan bahan bakar fosil yang dikenal dengan sekarang sebagai minyak bumi dan sangat bermanfaat bagi PENGISI BATERAI OTOMATIS DENGAN MENGGUNAKAN SOLAR CELL Nama: Heru Nugraha. E-mail: benjamin_hometown@yahoo.com Dosen Pembimbing 1: Prof. Busono Soerowirdjo., Ph.D. E-mail: busonos@gmail.com Dosen Pembimbing

Lebih terperinci

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya BAB IV HASIL DAN ANALISIS 4.1. Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya 4.1.1. Analisis Radiasi Matahari Analisis dilakukan dengan menggunakan data yang

Lebih terperinci

BAB I PENDAHULUAN. perkantoran, maupun industrisangat bergantung pada listrik. Listrik

BAB I PENDAHULUAN. perkantoran, maupun industrisangat bergantung pada listrik. Listrik BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Listrik telah menjadi bagian yang tidak terpisahkan dalam kehidupan masyarakat modern. Hampir semua aktivitas manusia, baik di rumah tangga, perkantoran,

Lebih terperinci

PENGUJIAN SISTEM PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN SUMBER DAYA LISTRIK KOMBINASI DARI SOLAR PANEL DAN TURBIN SAVONIUS

PENGUJIAN SISTEM PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN SUMBER DAYA LISTRIK KOMBINASI DARI SOLAR PANEL DAN TURBIN SAVONIUS PENGUJIAN SISTEM PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN SUMBER DAYA LISTRIK KOMBINASI DARI SOLAR PANEL DAN TURBIN SAVONIUS Sefta Risdiara 1), Chalilillah Rangkuti 2) 1 2) Jurusan Teknik Mesin Fakultas

Lebih terperinci

II. Tinjauan Pustaka. A. State of the Art Review

II. Tinjauan Pustaka. A. State of the Art Review Perbandingan Penggunaan Motor DC Dengan AC Sebagai Penggerak Pompa Air Yang Disuplai Oleh Sistem Pembangkit Listrik Tenaga Surya (PLTS) Agus Teja Ariawan* Tjok. Indra. P, I. W. Arta. Wijaya. Jurusan Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Pada bab ini akan menjelaskan pengertian energi surya, potensi energi surya di Indonesia, teori tentang panel surya, komponen - komponen utama Pembangkit Listrik

Lebih terperinci

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini, penelitian mengenai sumber energi terbarukan sangat gencar dilakukan. Sumber-sumber energi terbarukan yang banyak dikembangkan antara lain sumber energi tenaga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TINJAUAN PUSTAKA Semakin cepat menipisnya ketersediaan energi dari fosil, menuntut para cendikiawan memikirkan sumber energi alternatif yang ramah lingkungan. Salah satunya

Lebih terperinci

12/18/2015 ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN

12/18/2015 ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN Demi matahari dan cahaya siangnya. (QS Asy Syams :1) Dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan-nya manzilah-manzilah (tempattempat) bagi perjalanan bulan itu, supaya kamu

Lebih terperinci

PANEL SURYA dan APLIKASINYA

PANEL SURYA dan APLIKASINYA PANEL SURYA dan APLIKASINYA Suplai energi surya dari sinar matahari yang diterima oleh permukaan bumi sebenarnya sangat luar biasa besarnya yaitu mencapai 3 x 10 24 joule pertahun. Jumlah energi sebesar

Lebih terperinci

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED TMLEnergy TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat Jl Soekarno Hatta no. W: 541 www.tmlenergy.co.id C, Bandung, Jawa Barat W: www.tmlenergy.co.id E: marketing@tmlenergy.co.id E: marketing@tmlenergy.co.id

Lebih terperinci

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam menghasilkan energi listrik, terjadi konversi energi dari energi mekanik menjadi energi listrik melalui suatu alat konversi energi, dalam hal ini disebut dengan

Lebih terperinci

Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit Tenaga Hybrid

Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit Tenaga Hybrid 208 Satwiko S / Uji Karakteristik Sel Surya Pada Sistem 24 Volt Dc Sebagai Catudaya Pada Sistem Pembangkit Tenaga Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit

Lebih terperinci

P R O P O S A L. Pembangkit Listrik Tenaga Surya (PLTS), LPG Generator System

P R O P O S A L. Pembangkit Listrik Tenaga Surya (PLTS), LPG Generator System P R O P O S A L CV. SURYA SUMUNAR adalah perusahaan swasta yang bergerak dibidang pengadaan dan penjualan energi listrik dengan menggunakan tenaga surya (matahari) sebagai sumber energi utamanya. Kami

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA). BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT Mujiburrahman Fakultas Teknik Universitas Islam Kalimantan MAAB Jl. Adhyaksa No 2 Kayu Tangi Banjarmasin Email : Mujiburrahman.4646@gmail.com

Lebih terperinci

JOBSHEET SENSOR CAHAYA (SOLAR CELL)

JOBSHEET SENSOR CAHAYA (SOLAR CELL) JOBSHEET SENSOR CAHAYA (SOLAR CELL) A. TUJUAN 1. Merancang sensor sel surya terhadap besaran fisis. 2. Menguji sensor sel surya terhadap besaran fisis. 3. Menganalisis karakteristik sel surya. B. DASAR

Lebih terperinci

PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP

PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP Efrizal, Johan Sainima Program Studi Teknik mesin, Fakultas teknik, Universitas Muhammadiyah Tangerang, Jl. Perintis Kemerdekaan

Lebih terperinci

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN PERANCANGAN HYBRID SISTEM PHOTOVOLTAIC DI GARDU INDUK BLIMBING-MALANG Irwan Yulistiono 1, Teguh Utomo, Ir., MT. 2, Unggul Wibawa, Ir., M.Sc. 3 ¹Mahasiswa Teknik Elektro, ² ³Dosen Teknik Elektro, Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT Novi Caroko 1,a, Wahyudi 1,b, Aditya Ivanda 1,c Universitas

Lebih terperinci

BAB I PENDAHULUAN. Suatu masalah terbesar yang dihadapi oleh negara-negara di dunia

BAB I PENDAHULUAN. Suatu masalah terbesar yang dihadapi oleh negara-negara di dunia BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH Suatu masalah terbesar yang dihadapi oleh negara-negara di dunia termasuk Indonesia adalah masalah energi. Saat ini Indonesia telah mengalami krisis energi

Lebih terperinci

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc.

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc. Sistem MPPT Untuk PV dan Inverter Tiga Fasa yang Terhubung Jala-Jala Menggunakan Voltage-Oriented Control Andi Novian L. 2210 106 027 Dosen Pembimbing : Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum

Lebih terperinci

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik BAB I 1. PENDAHULUAN 1.1 Latar Belakang Salah satu kebutuhan energi yang hampir tidak dapat dipisahkan lagi dalam kehidupan manusia pada saat ini adalah kebutuhan energi listrik. Banyak masyarakat aktifitasnya

Lebih terperinci

1 BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

1 BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 1 BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Penelitian yang berhubungan dengan pembangkit listrik dari sumber energi alternatif sudah banyak dilakukan. Hasyim Asy ari, Abdul Rozaq,

Lebih terperinci

BAB I PENDAHULUAN. I.I Latar Belakang

BAB I PENDAHULUAN. I.I Latar Belakang BAB I PENDAHULUAN I.I Latar Belakang Perkembangan era globalisasi saat ini berdampak pada kebutuhan konsumsi energi listrik yang semakin meningkat. Saat ini energi listrik menjadi energi yang sangat dibutuhkan

Lebih terperinci

NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA

NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA Diajukan oleh : ANGGA AGUNG PRIHARTOMO D 400 060 067 JURUSAN ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA

BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA Sesuai pembahasan pada bab sebelumnya, dan dengan mengikuti tahapantahapan yang telah dicantumkan hasil akhir alat yang di

Lebih terperinci

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi II. TINJAUAN PUSTAKA 2.1 Sistem Pembangkit Hibrid Sistem pembangkit hibrid adalah kombinasi dari satu atau lebih sumber energi alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu energi primer yang tidak dapat dilepaskan penggunaannya dalam kehidupan sehari-hari. Peningkatan jumlah penduduk dan pertumbuhan

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

1. BAB I PENDAHULUAN 1.1 Latar Belakang

1. BAB I PENDAHULUAN 1.1 Latar Belakang 1. BAB I PENDAHULUAN 1.1 Latar Belakang Pada saat ini sebagian besar pembangkit listrik di dunia masih menggunakan bahan bakar fosil seperti minyak bumi, batu bara dan gas bumi sebagai bahan bakarnya.

Lebih terperinci

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

Muhamad Fahri Iskandar Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT

Muhamad Fahri Iskandar Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT ANALISIS INTENSITAS CAHAYA MATAHARI DENGAN SUDUT KEMIRINGAN PANEL SURYA PADA SOLAR WATER PUMP Muhamad Fahri Iskandar 24411654 Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT Latar Belakang Konversi energi

Lebih terperinci

BAB 2 TEORI DASAR. Gambar 2.1. Komponen dan diagram rangkaian PLTS. Gambar 2.2. Instalasi PLTS berdaya kecil [2]

BAB 2 TEORI DASAR. Gambar 2.1. Komponen dan diagram rangkaian PLTS. Gambar 2.2. Instalasi PLTS berdaya kecil [2] 3 BAB 2 TEORI DASAR 2.1. Pembangkit Listrik Tenaga Surya PLTS adalah pembangkit listrik yang menggunakan cahaya matahari, dengan mengubah energi cahaya matahari menjadi energi listrik. Energi listrik yang

Lebih terperinci

Sistem PLTS Off Grid Komunal

Sistem PLTS Off Grid Komunal PT. REKASURYA PRIMA DAYA Jl. Terusan Jakarta, Komp Ruko Puri Dago no 342 kav.31, Arcamanik, Bandung 022-205-222-79 Sistem PLTS Off Grid Komunal PREPARED FOR: CREATED VALID UNTIL 2 2 mengapa menggunakan

Lebih terperinci

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Agus Sifa a, Casiman S b, Habib Rizqon H c a Jurusan Teknik Mesin,Politeknik Indramayu,Indramayu

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

1. BAB I PENDAHULUAN

1. BAB I PENDAHULUAN 1. BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini, listrik merupakan kebutuhan primer masyarakat pada umumnya. Faktor yang paling berpengaruh pada peningkatan kebutuhan listrik adalah majunya teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Penelitian tentang pembangkit listrik telah banyak dilakukan. Agus Setiawan melakukan penelitian tentang Desain Pembangkit Listrik Tenaga Pedal Sebagai Sumber Energi Alternatif

Lebih terperinci

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3. 29 BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN 3.1 Konsep Perancangan Sistem Adapun blok diagram secara keseluruhan dari sistem keseluruhan yang penulis rancang ditunjukkan pada gambar 3.1.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 2.1 Mesin Pemotong Rumput BAB II LANDASAN TEORI Alat pemotong rumput adalah mesin yang digunakan untuk memotong rumput atau tanaman. Mesin ini biasa digunakan untuk merapikan taman dan juga untuk membersihkan

Lebih terperinci

LAPORAN PRAKTIKUM ENERGI PERTANIAN PENGUKURAN TEGANGAN DAN ARUS DC PADA SOLAR CELL

LAPORAN PRAKTIKUM ENERGI PERTANIAN PENGUKURAN TEGANGAN DAN ARUS DC PADA SOLAR CELL LAPORAN PRAKTIKUM ENERGI PERTANIAN PENGUKURAN TEGANGAN DAN ARUS DC PADA SOLAR CELL Kelompok 4: 1. Andi Hermawan (05021381419085) 2. Debora Geovanni (05021381419072) 3. Ruby Hermawan (05021381419073) 4.

Lebih terperinci

DASAR DASAR KELISTRIKAN DAIHATSU TRAINING CENTER

DASAR DASAR KELISTRIKAN DAIHATSU TRAINING CENTER DASAR DASAR KELISTRIKAN Dasar dasar kelistrikan Komposisi benda Substance Suatu benda bila kita bagi, kita akan mendapatkan suatu partikel yang disebut Molekul, Molekul bila kita bagi lagi kita kan mendapatkan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Diagram Alir Penelitian Pada peneliatian ini langkah-langkah yang dilakukan mengacu pada diagram alir di bawah ini: Mulai Persiapan Alat dan Bahan Menentukan Sudut Deklinasi,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo BAB I PENDAHULUAN 1.1. Latar Belakang Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo adalah pulau kecil dengan pesona alam yang mengagumkan. Terletak disebelah utara Kota Probolinggo sekitar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sudu Sudu adalah baling baling pada turbin angin. Sudu pada turbin angin sendiri biasanya dihubungkan dengan rotor pada turbin angin. Sudu merupakan salah satu bagian dari turbin

Lebih terperinci

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik.

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit ini dapat mengkonversikan energi angin menjadi

Lebih terperinci

BAB II LANDASAN TEORI Defenisi Umum Solar Cell

BAB II LANDASAN TEORI Defenisi Umum Solar Cell 4 BAB II LANDASAN TEORI 2.1. Defenisi Umum Solar Cell Photovoltaic adalah teknologi yang berfungsi untuk mengubah atau mengkonversi radiasi matahari menjadi energi listrik secara langsung. Photovoltaic

Lebih terperinci

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi

ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA. TUGAS ke 5. Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi ENERGI SURYA DAN PEMBANGKIT LISTRIK TENAGA SURYA TUGAS ke 5 Disusun Untuk Memenuhi Salah Satu Tugas Mata Kuliah Managemen Energi dan Teknologi Oleh : ZUMRODI NPM. : 250120150017 MAGISTER ILMU LINGKUNGAN

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dengan meningkatnya kebutuhan akan energi listrik yang terus meningkat dan semakin menipisnya cadangan minyak bumi maka dibutuhkan pula sumber-sumber energi listrik

Lebih terperinci

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan.

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan. BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan suatu kebutuhan utama yang sangat dibutuhkan pada zaman modern ini. Jika dilihat dari kebutuhan energi listrik tiap negara, maka semakin maju

Lebih terperinci

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ G.17 DESAIN SISTEM HIBRID PHOTOVOLTAICBATERAI MENGGUNAKAN BIDIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ Soedibyo 1*, Dwiana Hendrawati 2 1 Jurusan Teknik Elektro,

Lebih terperinci

Penerapan Teknologi Sel Surya dan Turbin Angin Untuk Meningkatkan Efisiensi Energi Listrik di Galangan Kapal

Penerapan Teknologi Sel Surya dan Turbin Angin Untuk Meningkatkan Efisiensi Energi Listrik di Galangan Kapal Penerapan Teknologi Sel Surya dan Turbin Angin Untuk Meningkatkan Efisiensi Energi Listrik di Galangan Kapal MIZZA FAHRIZA RAHMAN 4107100082 DOSEN PEMBIMBING Ir. TRIWILASWANDIO WP., M.Sc. 19610914 198701

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi ABSTRAK Ketergantungan pembangkit listrik terhadap sumber energi seperti solar, gas alam dan batubara yang hampir mencapai 75%, mendorong dikembangkannya energi terbarukan sebagai upaya untuk memenuhi

Lebih terperinci

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL Oleh Aditya Dewantoro P (1) Hendro Priyatman (2) Universitas Muhammadiyah Pontianak Fakultas Teknik, Jurusan Teknik Mesin Tel/Fax 0561

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Energi Surya Energi surya atau matahari telah dimanfaatkan di banyak belahan dunia dan jika dieksplotasi dengan tepat, energi ini berpotensi mampu menyediakan kebutuhan konsumsi

Lebih terperinci

Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal

Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal Sandro Putra 1) ; Ch. Rangkuti 2) 1), 2) Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Trisakti E-mail: xsandroputra@yahoo.co.id

Lebih terperinci

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA Diajukan oleh: FERI SETIA PUTRA D 400 100 058 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL

BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL 3.1 Survey Lokasi Langkah awal untuk merancang dan membuat Pembangkit Listrik Tenaga Surya

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN SKALA KECIL PADA BANGUNAN BERTINGKAT

SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN SKALA KECIL PADA BANGUNAN BERTINGKAT SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN SKALA KECIL PADA BANGUNAN BERTINGKAT Ibrahim Nawawi 1), Bagus Fatkhurrozi 2) 1 Fakultas Teknik, Universitas Tidar email: ibn.elektro@yahoo.com 2 Fakultas Teknik,

Lebih terperinci

Memahami sistem pembangkitan tenaga listrik sesuai dengan sumber energi yang tersedia

Memahami sistem pembangkitan tenaga listrik sesuai dengan sumber energi yang tersedia Memahami sistem pembangkitan tenaga listrik sesuai dengan sumber energi yang tersedia Memahami konsep penggerak mula (prime mover) dalam sistem pembangkitan tenaga listrik Teknik Pembangkit Listrik 1 st

Lebih terperinci

ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK. Subandi 1, Slamet Hani 2

ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK. Subandi 1, Slamet Hani 2 ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK Subandi 1, Slamet Hani 2 1,2 Jurusan Teknik Elektro Institut Sains & Teknologi AKPRIND Yogyakarta Kampus ISTA Jl. Kalisahak

Lebih terperinci

PEMBUATAN SEPEDA LISTRIK BERTENAGA SURYA SEBAGAI ALAT TRANSPORTASI ALTERNATIF MASYARAKAT

PEMBUATAN SEPEDA LISTRIK BERTENAGA SURYA SEBAGAI ALAT TRANSPORTASI ALTERNATIF MASYARAKAT PKMT-3-8-1 PEMBUATAN SEPEDA LISTRIK BERTENAGA SURYA SEBAGAI ALAT TRANSPORTASI ALTERNATIF MASYARAKAT D.Z. Anugra, M.H. Yanuar, S. Widodo, S.R. Wibowo, R. Kusuma Jurusan Teknik Fisika, Fakultas Teknik, Universitas

Lebih terperinci

Z. Sya diyah/bimafika, 2014, 11, ANALISIS POTENSI ANGIN WILAYAH AMBON SEBAGAI ALTERNATIF ENERGI TERBARUKAN BERBASIS WIND ENERGY

Z. Sya diyah/bimafika, 2014, 11, ANALISIS POTENSI ANGIN WILAYAH AMBON SEBAGAI ALTERNATIF ENERGI TERBARUKAN BERBASIS WIND ENERGY Z. Sya diyah/bimafika, 04,, 66-670 ANALISIS POTENSI ANGIN WILAYAH AMBON SEBAGAI ALTERNATIF ENERGI TERBARUKAN BERBASIS WIND ENERGY Zumrotus Sya diyah Fakultas Keguruan dan Ilmu Pendidikan Diterima 8-08-04;

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

Pelatihan Sistem PLTS Maret 2015 PELATIHAN SISTEM PLTS INVERTER DAN JARINGAN DISTRIBUSI. Rabu, 25 Maret Oleh: Nelly Malik Lande

Pelatihan Sistem PLTS Maret 2015 PELATIHAN SISTEM PLTS INVERTER DAN JARINGAN DISTRIBUSI. Rabu, 25 Maret Oleh: Nelly Malik Lande PELATIHAN SISTEM PLTS INVERTER DAN JARINGAN DISTRIBUSI Rabu, 25 Maret 2015 Oleh: Nelly Malik Lande POKOK BAHASAN TUJUAN DAN SASARAN PENDAHULUAN PENGERTIAN, PRINSIP KERJA, JENIS-JENIS INVERTER TEKNOLOGI

Lebih terperinci

Pengukuran Arus dan Tegangan pada Sistem Pembangkit Listrik Hybrid (Tenaga Angin dan Tenaga Matahari) Menggunakan Atmega 8535

Pengukuran Arus dan Tegangan pada Sistem Pembangkit Listrik Hybrid (Tenaga Angin dan Tenaga Matahari) Menggunakan Atmega 8535 SIMETRI, Jurnal Ilmu Fisika Indonesia Volume 1 Nomor 1(C) Mei 2012 Pengukuran Arus dan Tegangan pada Sistem Pembangkit Listrik Hybrid (Tenaga Angin dan Tenaga Matahari) Menggunakan Atmega 8535 Handjoko

Lebih terperinci

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pembangkit-pembangkit tenaga listrik yang ada saat ini sebagian besar masih mengandalkan kepada sumber energi yang tidak terbarukan dalam arti untuk mendapatkannya

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Waktu dan Lokasi Penelitian Kegiatan penelitian dilaksanakan selama 8 bulan, dimulai bulan Agustus 2010 sampai dengan Maret 2011. Penelitian dilakukan di dua tempat, yaitu (1)

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian dilakukan di Laboraturium Daya dan Alat Mesin Pertanian (Lab

III. METODOLOGI PENELITIAN. Penelitian dilakukan di Laboraturium Daya dan Alat Mesin Pertanian (Lab 18 III. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilakukan di Laboraturium Daya dan Alat Mesin Pertanian (Lab DAMP) Jurusan Teknik Pertanian Fakultas Pertanian Universitas Lampung

Lebih terperinci

PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR

PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR Muchammad dan Hendri Setiawan Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro Kampus Undip Tembalang, Semarang 50275, Indonesia

Lebih terperinci

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN Diajukan Oleh: ABDUR ROZAQ D 400 100 051 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

PEMANFAATAN SOLAR CELL DENGAN PLN SEBAGAI SUMBER ENERGI LISTRIK RUMAH TINGGAL ABSTRAKSI

PEMANFAATAN SOLAR CELL DENGAN PLN SEBAGAI SUMBER ENERGI LISTRIK RUMAH TINGGAL ABSTRAKSI Jurnal Emitor Vol. 14 No. 01 ISSN 1411-8890 PEMANFAATAN SOLAR CELL DENGAN PLN SEBAGAI SUMBER ENERGI LISTRIK RUMAH TINGGAL Hasyim Asy ari, Abdul Rozaq, Feri Setia Putra Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci