Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES. Bertalya Universitas Gunadarma 2009
|
|
|
- Leony Hadiman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES Bertalya Universitas Gunadarma 2009
2 Data Mining (DM) DM merupakan suatu proses penjelajahan otomatis untuk mendapatkan informasi berguna dalam suatu repositori data yang sangat besar. DM merupakan bagian yg terintegrasi dari Knowledge Discovery in Databases (KDD). KDD terbagi atas 3 tahap secara global yakni Data preprocessing Data mining Postprocessing DM dan KDD 2
3 Tahap-tahap pada KDD Data preprocessing, bertujuan mentransformasikan data mentah ke format yg sesuai utk analisis. Terdiri atas proses seleksi fitur, reduksi dimensionalitas, normalisasi dan subsetting data Postprocessing, bertujuan untuk menjamin bahwa hasil proses data mining yg diintegrasikan pada sistem penunjang keputusan, benar2 hasil yg valid. Terdiri atas proses penapisan pola, visualisasi dan interpretasi pola DM dan KDD 3
4 (KDD) Proses transformasi data mentah menjadi informasi berguna DM dan KDD 4
5 Tahap-tahap Detail pada KDD Seleksi proses penyeleksian atau segmentasi data menurut beberapa kriteria, mis. Orang-orang yang mempunyai mobil Preprocessing proses pembersihan data, dimana informasi yg tidak dibutuhkan dibuang, Mis. Jenis kelamin pasien utk analisis kehamilan Data dikonfigurasi ulang untuk memastikan format yg konsisten krn berasal dari berbagai sumber. Mis. Jenis kelamin disimpan dgn bentuk f atau m dan 1 atau 0 DM dan KDD 5
6 Tahap2 pada KDD (lanj.) Transformasi proses transformasi sehingga data menjadi berguna dan dapat ditelusuri. Data Mining proses yg berfokus pada ekstraksi pola2 data. Pola dapat didefinisikan sebagai sekumpulan fakta2 (data) F, bahasa L, dan beberapa measure of certainty (pengukuran kepastian) C. Suatu pola dinyatakan S dalam L menggambarkan keterhubungan antara subset Fs dari F dgn kepastian c dimana S adalah simpel dibandingkan perhitungan semua fakta dalam Fs. DM dan KDD 6
7 Tahap2 pada KDD (lanj.) Interpretasi & Evaluasi pola diidentifikasi sistem, lalu diinterpretasikan sebagai pengetahuan yg dapat digunakan utk mendukung pengambilan keputusan manusia, contoh tugas prediksi & klasifikasi, meringkas konten suatu database menjelaskan fenomena yg diamati DM dan KDD 7
8 Isu / Masalah DM Sistem data mining bertumpu pada database2 yg memasok data mentah sebagai masukan. Masalah yg timbul a.l : Informasi yg terbatas Database dirancang utk tujuan berbeda dgn DM. Atribut2nya sederhana. Data yg tidak lengkap menimbulkan masalah karena apabila tidak terdapat atribut2 penting utk pengetahuan domain aplikasi tertentu, hal ini akan mengakibatkan kesulitan utk mendapatkan pengetahuan yg tepat utk domain tertentu. Contoh, tidak dapat mendiagnosa penyakit malaria dari database pasien apabila database tersebut tidak terdapat hasil pengukuran sel darah merah pasien DM dan KDD 8
9 Isu / Masalah DM (lanj.) Nilai data yg hilang atau noise Biasanya database terkontaminasi oleh kesalahan sehingga tidak dapat sepenuhnya dinyatakan bahwa database mempunyai data yg benar. Ketidakpastian Ketidakpastian merujuk pada tingkat kesalahan dan noise pada data Bidang yg tidak relevan & termodifikasi serta ukurannya Database cenderung sangat besar & dinamis, dimana kontennya selalu berubah2 (ditambah, dimodifikasi & dihapus). DM dan KDD 9
10 Isu / Masalah DM (lanj.) Masalahnya bagaimana menyakinkan bahwa aturan yg ada tetap up-to-date & konsisten dgn informasi yg ada. Selain itu, bidang database terkadang tidak relevan dgn fokus pencarian data. Contoh, kode pos merupakan hal dasar utk menyatakan hubungan mengenai sesuatu secara geografis, seperti penjualan produk. DM dan KDD 10
11 Arsitektur DM Graphical user interface Pattern evaluation Data mining engine Database or data warehouse server Data cleaning & data integration Filtering Knowledge-base Databases Data Warehouse DM dan KDD 11
12 Data pada DM Database relasional Data warehouse Database transaksi Database lanjut & repositori informasi Database berorientasi objek & database relasional Database Spasial DataTime-series & data temporal Database teks & database multimedia Database heterogen & database legal WWW DM dan KDD 12
Konsep Data Mining. Pendahuluan. Bertalya. Universitas Gunadarma 2009
Konsep Data Mining Pendahuluan Bertalya Universitas Gunadarma 2009 Latar Belakang Data yg dikumpulkan semakin bertambah banyak Data web, e-commerce Data pembelian di toko2 / supermarket Transaksi Bank/Kartu
PERTEMUAN 14 DATA WAREHOUSE
PERTEMUAN 14 DATA WAREHOUSE Data Warehouse Definisi : Data Warehouse adalah Pusat repositori informasi yang mampu memberikan database berorientasi subyek untuk informasi yang bersifat historis yang mendukung
- PERTEMUAN 1 - KNOWLEGDE DISCOVERY
DATA WAREHOUSE - PERTEMUAN 1 - KNOWLEGDE DISCOVERY in DATABASE (KDD) Penemuan Pengetahuan di Database Tujuan : Mahasiswa Dapat memahami konsep KDD yang merupakan tujuan akhir dari Data Warehouse dan Data
BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan
6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika. Knowledge Discovery in Databases (KDD)
Universitas Putra Indonesia YPTK Padang Fakulas Ilmu Komputer Program Studi Teknik Informatika Knowledge Discovery in Databases (KDD) Knowledge Discovery in Databases (KDD) Definisi Knowledge Discovery
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. yang tepat. Sistem data mining mampu memberikan informasi yang tepat dan
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Sistem data mining akan lebih efektif dan efisiensi dengan komputerisasi yang tepat. Sistem data mining mampu memberikan informasi yang
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 State of the Art Penelitian mengenai segmentasi pasar pada sebuah perusahaan telah banyak digunakan dengan tujuan untuk mengetahui strategi pasar yang baik dan dapat menguntungkan
2. Tinjauan Pustaka. Gambar 2-1 : Knowledge discovery in database
2. Tinjauan Pustaka 2.1 Data Mining Data mining merupakan ilmu yang mempelajari tentang proses ekstraksi informasi yang tersembunyi dari sekumpulan data yang berukuran sangat besar dengan menggunakan algoritma
BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket
Bab1 Konsep Data Mining POKOK BAHASAN: Konsep dasar dan pengertian Data Mining Tahapan dalam Data Mining Model Data Mining Fungsi Data Mining TUJUAN BELAJAR: Setelah mempelajari materi dalam bab ini, mahasiswa
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Penelitian ini menggunakan beberapa sumber pustaka yang berhubungan dengan kasus yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Penambangan Data (Data Mining) Pengertian data mining, berdasarkan beberapa orang: 1. Data mining (penambangan data) adalah suatu proses untuk menemukan suatu pengetahuan atau
jumlah keluarga, dan jumlah rumah. Data diambil dari hasil sensus potensi desa yang dilakukan BPS tahun 1996, 1999, 2003, dan 2006.
1 Latar Belakang PENDAHULUAN Kemajuan teknologi komputer semakin memudahkan proses penyimpanan dan pengolahan data berukuran besar. Namun demikian, seringkali data yang sudah tersimpan belum dimanfaatkan
Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak
DATA MINING MELIHAT POLA HUBUNGAN NILAI TES MASUK MAHASISWA TERHADAP DATA KELULUSAN MAHASISWA UNTUK MEMBANTU PERGURUAN TINGGI DALAM MENGAMBIL KEBIJAKAN DALAM RANGKA PENINGKATAN MUTU PERGURUAN TINGGI Timor
Manajemen Data. Dosen : Dr. Yan Rianto Rini Wijayanti, M.Kom Nama : Yoga Prihastomo NIM :
Manajemen Data Dosen : Dr. Yan Rianto Rini Wijayanti, M.Kom Nama : Yoga Prihastomo NIM : 1011601026 MAGISTER ILMU KOMPUTER UNIVERSITAS BUDI LUHUR 2011 DIT TI / DJHKI SKPL-DJHKI-01.04.2011.xx Halaman 0
2.2 Data Mining. Universitas Sumatera Utara
Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record
PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan
BAB 1 PERSYARATAN PRODUK Bab ini membahas mengenai hal umum dari produk yang dibuat, meliputi tujuan, ruang lingkup proyek, perspektif produk, fungsi produk dan hal umum yang lainnya. 1.1 Pendahuluan Hal
BAB 2 LANDASAN TEORI
6 BAB 2 LANDASAN TEORI Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN Pada proses penelitian ini dilakukan beberapa tahapan mulai dari tahap awal yaitu tahap inisiasi, pengembangan model, dan tahap terakhir pengembangan prototipe. Dalam tahapan inisiasi
BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.
BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan
BAB 1 PENGERTIAN DATA MINING DAN FUNGSI-FUNGSI DATA MINING
BAB 1 PENGERTIAN DATA MINING DAN FUNGSI-FUNGSI DATA MINING Pendahuluan Perkembangan yang cepat dalam teknologi pengumpulan dan penyimpanan data telah memudahkan organisasi untuk mengumpulkan sejumlah data
Tahapan Proses KDD (Peter Cabena) Business Objective Determination (#1) Business Objective Determination (#2) Business Objective Determination (#4)
Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (
Tahapan Proses KDD (Peter Cabena)
Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #2 Gunawan Jurusan Teknik Informatika Sekolah Tinggi Teknik Surabaya Tahapan Proses KDD (Peter Cabena) Penentuan Sasaran Bisnis (Business
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah Proses yang menggunakan
BAB 3 LANDASAN TEORI
BAB 3 LANDASAN TEORI 3.1. Data Mining Data mining adalah proses menganalisa data dari perspektif yang berbeda dan menyimpulkannya menjadi informasi-informasi penting yang dapat dipakai untuk meningkatkan
ARSITEKTUR & MODEL DATA MINING
PERTEMUAN 3 ARSITEKTUR & MODEL DATA MINING 28 September 2005 Arsitektur dan Model Data Mining 1 Arsitektur : Sistm Data Mining Graphical User Interface (GUI) Pattern evaluation Data Mining Engine Database
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Situs jejaring sosial merupakan gaya hidup sosial baru yang muncul seiring berkembangnya internet. Gaya hidup baru tersebut memiliki ruang lingkup yang lebih luas
APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)
Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pasar modal merupakan salah satu bagian dari pasar keuangan, di samping pasar uang, yang sangat penting peranannya bagi pembangunan nasional pada umumnya dan bagi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Secara sederhana data mining adalah penambangan atau penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar. Data mining
Gambar Tahap-Tahap Penelitian
BAB III METODELOGI PENELITIAN Dalam menyelesaikan penelitian ini dibuat beberapa tahapan. Tahap-tahap kegiatan dijelaskan dalam Gambar 3.1 Studi Literatur Pengumpulan Data Retrieve Data Pre-Processing
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Faktor penentu bagi usaha atau bisnis apapun pada masa sekarang ini adalah kemampuan untuk menggunakan informasi seefektif mungkin. Penggunaan data secara tepat karena
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini membahas tentang landasan teori yang medukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Data Mining Data mining adalah kegiatan menemukan
MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING
MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING Marlindawati1), Andri2) 1), 2) Sistem Informasi UNIVERSITAS BINA DARMA Palembang Jl, Jend. A.Yani
DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA. Oleh : Rita Prima Bendriyanti ABSTRAK
DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Oleh : Rita Prima Bendriyanti ABSTRAK Penelitian ini menggunakan metode observasi, dengan melihat atau mengamati secara langsung
3.1 Metode Pengumpulan Data
BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data Sebuah penelitian memerlukan pengumpulan data dan metode pengumpulan data karena sangat berpengaruh terhadap akurasi dan kualitas data yang digunakan
BAB 1 PENDAHULUAN 1-1
BAB 1 PENDAHULUAN Dalam bab ini berisi penjelasan mengenai latar belakang masalah, identifikasi masalah, tujuan tugas akhir, lingkup tugas akhir, metode penelitian serta sistematika penulisan. 1.1 Latar
PROPOSAL PENELITIAN. PENERAPAN DATA MINING UNTUK MENINGKATKAN PENJUALAN PADA PT. XL AXIATA, Tbk PALEMBANG
PROPOSAL PENELITIAN PENERAPAN DATA MINING UNTUK MENINGKATKAN PENJUALAN PADA PT. XL AXIATA, Tbk PALEMBANG I. PENDAHULUAN 1.1. Latar Belakang Kemajuan perkembangan teknologi informasi pada era globalisasi
ALGORITMA NEAREST NEIGHBOR UNTUK MENENTUKAN AREA PEMASARAN PRODUK BATIK DI KOTA PEKALONGAN
ALGORITMA NEAREST NEIGHBOR UNTUK MENENTUKAN AREA PEMASARAN PRODUK BATIK DI KOTA PEKALONGAN Devi Sugianti Program Studi Sistem Informasi,STMIK Widya Pratama Jl. Patriot 25 Pekalongan Telp (0285)427816 email
PE DAHULUA. Latar Belakang
Latar Belakang PE DAHULUA Pemilihan Kepala Daerah dan Wakil Kepala Daerah, atau seringkali disebut Pilkada, adalah pemilihan umum untuk memilih Kepala Daerah dan Wakil Kepala Daerah secara langsung di
BAB 1 PENDAHULUAN. terhadap peran sistem informasi dalam perusahaan sebagai bagian dari produktivitas.
BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Perkembangan teknologi informasi telah mampu mengubah persepsi manusia terhadap peran sistem informasi dalam perusahaan sebagai bagian dari produktivitas.
System Testing Pengujian terhadap integrasi sub-system, yaitu keterhubungan antar sub-system.
PENGUJIAN / TESTING Definisi Proses eksekusi suatu program dengan maksud menemukan kesalahan. Sebuah ujicoba kasus yang baik adalah yang memiliki probabilitas yang tinggi dalam menemukan kesalahan-kesalahan
PERTEMUAN 13 ARSITEKTUR & MODEL DATA MINING
PERTEMUAN 13 ARSITEKTUR & MODEL DATA MINING bagan lanjut Keterangan : 1. Data cleaning (Pembersihan Data) : untuk membuang data yang tidak konsisten dan noise) 2. Data integration : penggabungan data dari
BAB I PENDAHULUAN. bersaing. Dalam dunia bisnis yang dinamis dan penuh persaingan. Seiring dengan
BAB I PENDAHULUAN 1.1 Latar Belakang Kemajuan perkembangan teknologi informasi pada era globalisasi sekarang ini sangat pesat, hal ini menuntut setiap perusahaan untuk dapat saling bersaing. Dalam dunia
BUSINESS INTELLIGENCE. Management Database & Informasi
BUSINESS INTELLIGENCE Management Database & Informasi Pengorganisasian data di lingkungan file tradisional vs Pendekatan database Dasar-dasar Business Intellegence Basis Data Vs Pemrosesan File Tradisional
BAB III METODE PENELITIAN
15 BAB III METODE PENELITIAN Sistem informasi geografis persebaran hotspot di Indonesia merupakan suatu sistem yang bertujuan untuk memantau dan memberikan informasi mengenai persebaran hotspot yang ada
PENGKLASIFIKASIAN MINAT BELAJAR MAHASISWA DENGAN MODEL DATA MINING MENGGUNANAKAN METODE CLUSTERING
PENGKLASIFIKASIAN MINAT BELAJAR MAHASISWA DENGAN MODEL DATA MINING MENGGUNANAKAN METODE CLUSTERING Marlindawati 1) Andri 2) 1) Manajemen Informatika Universitas Bina Darma Jl. Ahmad Yani No. 3, Palembang
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN Pada bab ini dijabarkan tentang latar belakang, rumusan masalah, batasan masalah, tujuan dan manfaat penelitian, metode penelitian, serta sistematika penulisan laporan dari tugas akhir
II. TINJAUAN PUSTAKA
II. TINJAUAN PUSTAKA 2.1 Sistem Informasi Manajemen Mcleod R dan Schell G, (2004) membagi sumber daya menjadi dua bagian yaitu sumberdaya fisikal dan sumberdaya konseptual. Sumber daya fisikal terdiri
BAB I PENDAHULUAN I.1. Latar Belakang Masalah
BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dalam era teknologi seperti saat ini, informasi berupa teks sudah tidak lagi selalu tersimpan dalam media cetak seperti kertas. Orang sudah mulai cenderung
BAB IV METEDOLOGI PENELITIAN
BAB IV METEDOLOGI PENELITIAN 4.1. Desain Penelitian Desain penelitian yang digunakan adalah pendekatan cross sectional. Penelitian cross sectional dicirikan dengan satu pengukuran atau observasi untuk
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI penelitian. Pada bab ini akan dibahas literatur dan landasan teori yang relevan dengan 2.1 Tinjauan Pustaka Kombinasi metode telah dilakukan oleh beberapa peneliti
TAKARIR. : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas
TAKARIR Data Mining Clustering Cluster Iteratif Random Centroid : Penggalian data : Mengelompokkan suatu objek yang memiliki kesamaan. : Kelompok atau kelas : Berulang : Acak : Pusat area KDD (Knowledge
Akurasi Data Mining Untuk Menghasilkan Pola Kelulusan Mahasiswa
Akurasi Data Mining Untuk Menghasilkan Pola Kelulusan Mahasiswa dengan Metode NAÏVE BAYES M. Ridwan Effendi Fakultas Komputer Jurusan Sistem Informasi Universitas Mohammad Husni Thamrin Jakarta Email :
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Pada bab ini akan dijelaskan tahap-tahap yang dilakukan dalam melakukan penelitian. Tahapan penelitian berguna agar pelaksanaan penelitian dapat berjalan dengan baik dan sistematis
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER
PENERAPAN DATA MINING UNTUK EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER I. PENDAHULUAN Mahasiswa merupakan salah satu aspek penting dalam evaluasi keberhasilan penyelenggaraan
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Untuk melakukan sebuah penelitian, diperlukan adanya tahapan-tahapan yang tersusun dengan baik dan sistematis agar pelaksanaan penelitian tepat mencapai tujuan yang diharapkan.
TUGAS DATA WAREHOUSE & DATA MINING OLAP, OPERASI OLAP & MOLAP
TUGAS DATA WAREHOUSE & DATA MINING OLAP, OPERASI OLAP & MOLAP OLEH: VIVIAN WIJAYA (15 62 003) JURUSAN SISTEM INFORMASI FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS ATMA JAYA MAKASSAR 2017 OLAP, OPERASI OLAP
BAB I PENDAHULUAN. pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses
BAB I PENDAHULUAN A. Latar Belakang Masalah Data mining adalah suatu konsep yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Sejak dilahirkan hingga tumbuh dewasa manusia diciptakan dengan kecerdasan yang luar biasa, kecerdasan juga akan berkembang dengan pesat. Kecerdasan tersebut yang dapat
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA II.1 Tinjauan Perusahaan CV. Aldo Putra berlokasi di Jalan Pasar Induk Gedebage No. 89/104 Bandung, bergerak dibidang grosir pakaian jadi impor. Barang yang dijual di CV. Aldo Putra
BAB III METODOLOGI PENELITIAN
44 BAB III METODOLOGI PENELITIAN Metodologi yang digunakan dalam penelitian terbagi dalam beberapa tahap, yaitu: Pengumpulan Data, Menelaah Kebutuhan Bisnis dan Informasi, Menelaah Data dan Perancangan
BAB III LANDASAN TEORI
BAB III LANDASAN TEORI Dalam bab ini akan dijelaskan tentang beberapa konsep tentang supra desa, business intelligence, data warehouse, staging area, ETL, OLAP, ROLAP, Pentaho Data Integration, dan PHP.
DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING (OLAP)
DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING (OLAP) Overview Data Warehouse dan OLAP merupakan elemen penting yang mendukung decision support. Terutama bagi perusahaan perusahaan besar dengan database
Abidah Elcholiqi, Beta Noranita, Indra Waspada
Abidah Elcholiqi, Beta Noranita, Indra Waspada PENENTUAN BESAR PINJAMAN DI KOPERASI SIMPAN PINJAM DENGAN ALGORITMA K-NEAREST NEIGHBOR (Studi Kasus di Koperasi Simpan Pinjam BMT Bina Insani Pringapus) Abidah
BAB III LANDASAN TEORI
BAB III LANDASAN TEORI 3.1. Sistem Sistem adalah kumpulan obyek-obyek yang saling berinteraksi dan bekerja bersama-sama untuk mencapai tujuan tertentu dalam lingkungan yang komplek (Andoko, 2013). Maksud
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Metodologi penelitian merupakan rangkaian dari langkah-langkah yang diterapkan dalam penelitian, secara umum dan khusus langkah-langkah tersebut tertera pada Gambar flowchart
PENDAHULUAN TINJAUAN PUSTAKA
Latar Belakang PENDAHULUAN Analisis data historis dan pengolahan data multidimensi bukan merupakan hal yang baru untuk mendukung suatu pengambilan keputusan. Namun perubahan objek data yang dicatat, membuat
PENGUJIAN PERANGKAT LUNAK
PENGUJIAN PERANGKAT LUNAK Aprilia Sulistyohati, S.Kom Jurusan Teknik Informatika Universitas Islam Indonesia Your Logo DASAR PENGUJIAN PL PENGUJIAN : proses eksekusi suatu program dengan maksud menemukan
PENDAHULUAN TINJAUAN PUSTAKA
1 Latar Belakang PENDAHULUAN Teknologi basis data saat ini berkembang sangat pesat. Data disimpan dalam basis data, diolah kemudian disajikan sebagai informasi yang bernilai bagi pengguna. Penyimpanan
BAB IV ANALISIS DAN PERANCANGAN SISTEM. permasalahan dari suatu sistem informasi. Hasil akhir dari analisis sistem
BAB IV ANALISIS DAN PERANCANGAN SISTEM 4.1. Analisis yang Berjalan Analisis sistem merupakan proses memilah-milah suatu permasalahan menjadi elemen-elemen yang lebih kecil untuk dipelajari guna mempermudah
DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI
DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki
Organizing Data and Information
Organizing Data and Information Chapter 5 Heru Lestiawan, M.Kom 1 Principles and Learning Objectives Pendekatan Database untuk manajemen data memberikan keuntungan yang signifikan atas pendekatan berbasis
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 Instrumen Penelitian Pada penelitian ini bahan dan peralatan yang diperlukan sebagai berikut: 3.1.1 Bahan Dalam penelitian ini bahan yang dibutuhkan adalah data siswa kelas
PENDAHULUAN. Latar Belakang
Latar Belakang PENDAHULUAN Perkembangan teknologi informasi yang sangat pesat yang terjadi dewasa ini menuntut manusia untuk mampu beradaptasi dengan perkembangan tersebut. Upaya adaptasi yang dilakukan
BAB III METODOLOGI PENELITIAN. Gambar 3.1 merupakan desain penelitian yang akan digunakan dalam
BAB III METODOLOGI PENELITIAN 3.1 Desain Penelitian Gambar 3.1 merupakan desain penelitian yang akan digunakan dalam proses penelitian penerapan algoritma K-Means pada clustering berita berbahasa Indonesia.
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Rekomendasi Sistem Rekomendasi (SR) merupakan model aplikasi dari hasil observasi terhadap keadaan dan keinginan pelanggan. Sistem Rekomendasi memanfaatkan opini seseorang
PERTEMUAN 13 STRATEGI PENGUJIAN PERANGKAT LUNAK
PERTEMUAN 13 STRATEGI PENGUJIAN PERANGKAT LUNAK Strategi Pengujian Strategi uji coba perangkat lunak dilakukan untuk memudahkan para perancang untuk menentukan keberhasilan system yang telah dikerjakan
Data Mining. Pengenalan Sistem & Teknik, Serta Contoh Aplikasi. Avinanta Tarigan. 22 Nov Avinanta Tarigan Data Mining
Data Mining Pengenalan Sistem & Teknik, Serta Contoh Aplikasi Avinanta Tarigan 22 Nov 2008 1 Avinanta Tarigan Data Mining Outline 1 Pengertian Dasar 2 Classification Mining 3 Association Mining 4 Clustering
Data Warehouse, Data Mart, OLAP, dan Data Mining CHAPTER 6
1 Data Warehouse, Data Mart, OLAP, dan Data Mining CHAPTER 6 Data Warehouse 2 Data warehouse adalah basis data yang menyimpan data sekarang dan data masa lalu yang berasal dari berbagai sistem operasional
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Data Mining Dengan perkembangan pesat teknologi informasi termasuk diantaranya teknologi pengelolaan data, penyimpanan data, pengambilan data disertai kebutuhan pengambilan
BAB 3 METODE PENELITIAN. Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder.
BAB 3 METODE PENELITIAN 3.1 Metode Pengumpulan Data 3.1.1 Sumber Data Jenis sumber data yang didapatkan peneliti adalah data primer dan data sekunder. 1. Data primer Didapatkan peneliti secara langsung
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Data Mining Data Mining adalah proses yang mempekerjakan satu atau lebih teknik pembelajaran komputer (machine learning) untuk menganalisis dan mengekstraksi pengetahuan (knowledge)
ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK
ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK Dody Herdiana, S.T., M. Kom. Dosen PNS DPK pada Program Studi Teknik Informatika
2. Data & Proses Datamining
2. Data & Proses Datamining Data 1. Input (Dataset) 2. Pengolahan Data Awal 3. Metode Learning Tahapan Utama Proses Data Mining Input (Data) Metode (Algoritma Data Mining) Output (Pola/Model/ Knowledge)
STRATEGI PENGUJIAN PERANGKAT LUNAK
STRATEGI PENGUJIAN PERANGKAT LUNAK Strategi uji coba perangkat lunak dilakukan untuk memudahkan para perancang untuk menentukan keberhasilan system yang telah dikerjakan Proses testing Unit Module Sub-system
APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA
APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Yuli Asriningtias, Rodhyah Mardhiyah Program Studi Teknik Informatika Fakultas Bisnis & Teknologi Informasi, Universitas Teknologi
III. METODE KONVENS IONAL 11. REKAYASA SISTEM BERBASIS KOMPUTER
III. METODE KONVENS IONAL 11. REKAYASA SISTEM BERBASIS KOMPUTER 11.1 Sistem Berbasis Komputer (Computer-based System) Sistem berbasis komputer bertujuan untuk mendukung berbagai fungsi bisnis atau untuk
BAB I PENDAHULUAN 1.1 Latar Belakang
Pesatnya perkembangan dunia teknologi sekarang ini memberikan banyak kemudahan bagi manusia di berbagai bidang. Selain itu, kebutuhan manusia untuk mendapatkan ilmu pengetahuan pun dapat dilakukan dengan
Sistem Pendukung Keputusan. Komponen SPK. Entin Martiana, S.Kom, M.Kom. Politeknik Elektronika Negeri Surabaya
Komponen SPK Entin Martiana, S.Kom, M.Kom Komponen-komponen dss Subsistem manajemen data Termasuk database, yang mengandung data yang relevan untuk berbagai situasi dan diatur oleh software yang disebut
PERANCANGAN APLIKASI DATA MINING UNTUK MEMREDIKSI PERMINTAAN CUSTOMER PADA PERUSAHAAN PERSEWAAN MOBIL
PERANCANGAN APLIKASI DATA MINING UNTUK MEMREDIKSI PERMINTAAN CUSTOMER PADA PERUSAHAAN PERSEWAAN MOBIL Dewi Agushinta R 1, M. Irfan H 2 1,2 Jurusan Sistem Informasi, Universitas Gunadarma Jl. Margonda Raya
BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam
12 BAB II TINJAUAN PUSTAKA Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam melakukan penelitian data mining dengan metode asosiasi menggunakan algoritma apriori yang terdiri dari state
Perkembangan Teknologi Database
Konsep Teknologi Informasi Perkembangan Teknologi Database ARIF BASOFI PENS 2016 Referensi 1. Fitrianingsih, Perkembangan Basis Data, Universitas Gunadarma. 2. Yulia Kahitela, Perkembangan Teknologi Database,
Materi 2 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya
Materi 2 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2015 Nizar Rabbi Radliya [email protected] Nama Mahasiswa NIM Kelas Memahami definisi, proses serta teknik data mining. Pengenalan
PERTEMUAN 1 & 2 PENDAHULUAN DAN PROSES KDD. 28 September 2005 Pendahuluan dan Proses KDD 1
PERTEMUAN 1 & 2 PENDAHULUAN DAN PROSES KDD 28 September 2005 Pendahuluan dan Proses KDD 1 Kebutuhan Bisnis Terdapat tiga kebutuhan bisnis : Penambahan maupun peningkatan kapasitas produk Pengurangan biaya
