2 TINJAUAN PUSTAKA. Gambar 1 Anemometer. Sumber: Safarudin (2003) diacu oleh Alamsyah (2007)

Ukuran: px
Mulai penontonan dengan halaman:

Download "2 TINJAUAN PUSTAKA. Gambar 1 Anemometer. Sumber: Safarudin (2003) diacu oleh Alamsyah (2007)"

Transkripsi

1 4 2 TINJAUAN PUSTAKA 2.1 dan Proses Terjadinya Menurut Harun (1987) yang diacu oleh Setiono (2006), adanya perbedaan suhu antara wilayah yang satu dengan wilayah yang lain di permukaan bumi ini menyebabkan timbulnya angin. Terjadinya perputaran udara yaitu perpindahan udara dari daerah khatulistiwa (suhu tinggi) ke daerah kutub (suhu rendah) dan sebaliknya dari daerah kutub (suhu rendah) ke daerah khatulistiwa (suhu tinggi). Perpindahan udara atau gesekan udara terhadap permukaan bumi inilah yang disebut dengan angin. Perbedaan suhu di permukaan bumi dikarenakan penyinaran matahari ke bumi dan peredaran bumi terhadap matahari. Oleh karena itu, adanya angin pada suatu wilayah tergantung perbedaan suhu, sehingga dapat dikatakan secara periodik angin di suatu wilayah dibangkitkan kembali selama ada perbedaan suhu oleh penyinaran matahari. Atas dasar hal tersebut, angin dapat dikatakan sebagai sumber daya energi terbarukan Alat ukur kecepatan angin Menurut Safarudin (2003) yang diacu oleh Alamsyah (2007), untuk memperkirakan kecepatan angin di lokasi, dapat dipergunakan dua teknik. Teknik pertama yaitu menggunakan alat yang disebut anemometer, sedangkan teknik kedua yaitu menggunakan pengamatan langsung berdasarkan Skala Beaufort. (1) Anemometer Kecepatan angin diukur dengan alat yang disebut anemometer. Anemometer jenis mangkok adalah yang mempunyai sumbu vertikal dan tiga buah mangkok yang berfungsi menangkap angin. Sumber: Safarudin (2003) diacu oleh Alamsyah (2007) Gambar 1 Anemometer.

2 5 Jumlah putaran per menit dari poros anemometer dihitung secara elektronik. Biasanya, anemometer dilengkapi dengan sudut angin untuk mendeteksi arah angin. Jenis anemometer lain adalah anemometer ultrasonik atau jenis laser yang mendeteksi perbedaan fase dari suara atau cahaya koheren yang dipantulkan dari molekul-molekul udara. (2) Skala Beaufort Menurut Hofman (1987) yang diacu oleh Alamsyah (2007), kecepatan angin dan tipe angin juga dapat diperkirakan dengan menggunakan skala Beaufort, dimana skala Beaufort memperkirakan kecepatan angin berdasarkan kondisi visual yang terdapat di daratan dan lautan. Sehingga, dapat ditentukan tipe angin di suatu wilayah berdasarkan besarnya kecepatan angin di wilayah tersebut. Berikut tabel skala Beaufort beserta penjelasannya dapat dilihat pada Tabel 1 di bawah ini. Tabel 1 Skala Beaufort. Skala Beaufort Skala Petersen 0 Datar 1 Datar 2 Riakan ringan Riakan ringan 3 sampai bergelombang 4 Bergelombang 5 Dahsyat 6 Laut yang agak dahsyat Uraian jelas dari angin Lazim Lazim dipakai di dipakai di laut darat Suasana Tidak ada sunyi angin Lemah dan sunyi Kesejukan lemah Kesejukan ringan Kesejukan sedang sepoi sepoi yang segar sepoi sepoi yang kaku 7 Laut yang liar - lemah lemah lemah sedang yang cukup kencang kencang keras Kecepatan angin m/s km/jam 0-0, ,3-1, ,6-3, ,4-5, ,5-7, ,0-10, ,8-13, ,9-17,

3 6 Skala Beaufort Skala Petersen Uraian jelas dari angin Lazim Lazim dipakai di dipakai di laut darat - taufan Kecepatan angin m/s Km/jam 8 Laut yang tinggi 17,2-20, Laut yang tinggi - Taufan 20,8-24, Laut yang Taufan - sangat tinggi berat 24,5-28, Laut yang luar biasa tinggi - Badai 28,5-32, Liar - Badai > 32,6 > 117 Sumber: Hofman (1987) diacu oleh Alamsyah (2007) Jenis jenis angin Menurut Wyrtki (1961) yang diacu oleh Suardi (2009), secara umum angin dapat dibagi menjadi angin lokal dan angin musim. Salah satu yang termasuk ke dalam angin lokal yaitu angin angin laut dan angin darat. (1) laut laut terjadi ketika pada pagi hingga menjelang sore hari, daratan menyerap energi panas lebih cepat dari lautan. Sehingga suhu udara di darat lebih panas daripada di laut, akibatnya udara panas di daratan akan naik dan digantikan udara dingin dari lautan. (2) darat darat terjadi ketika pada malam hari energi panas yang diserap permukaan bumi sepanjang hari akan dilepaskan lebih cepat oleh daratan (udara dingin), sementara itu di lautan energi panas sedang dalam proses dilepaskan ke udara. Gerakan konvektif tersebut menyebabkan udara dingin dari daratan bergerak menggantikan udara yang naik di lautan sehingga terjadi aliran udara dari darat ke laut, dan biasanya angin darat terjadi pada tengah malam dan dini hari. Kedua angin ini banyak dimanfaatkan oleh para nelayan tradisional untuk menangkap ikan di laut. Pada malam hari saat bertiupnya angin darat, para nelayan pergi menangkap ikan di laut. Sebaliknya pada siang hari saat bertiupnya angin laut, para nelayan pulang dari penangkapannya.

4 Pola umum angin di Indonesia Pola angin yang sangat berperan di Indonesia yaitu angin muson. Hal ini disebabkan karena Indonesia teletak di antara dua benua yaitu Benua Asia dan Australia dan di antara dua samudera yaitu Samudera Pasifik dan Samudera Hindia. Menurut Wyrtki (1961) yang diacu oleh Suardi (2009), keadaan musim di Indonesia terbagi menjadi tiga golongan, yaitu : (1) Musim Barat (Oktober April) Di Pulau Jawa angin ini dikenal sebagai angin muson barat laut, musim barat umumnya membawa curah hujan yang tinggi di Pulau Jawa. muson barat berhembus pada bulan Oktober - April, terjadi pergerakan angin dari benua Asia ke benua Australia sebagai angin muson barat. ini melewati Samudera Pasifik dan Samudera Indonesia serta Laut Cina Selatan. Karena melewati lautan tentunya banyak membawa uap air dan setelah sampai di kepulauan Indonesia turun hujan. Setiap bulan November, Desember, dan Januari Indonesia bagian barat sedang mengalami musim hujan dengan curah hujan yang cukup tinggi. (2) Musim Timur (April - Oktober) muson timur berhembus setiap bulan April - Oktober, dimana selama musim timur biasanya Pulau Jawa mengalami kekeringan. Terjadi pergerakan angin dari benua Australia ke benua Asia melalui Indonesia sebagai angin muson timur. ini tidak banyak menurunkan hujan, karena hanya melewati laut kecil. Oleh sebab itu, di Indonesia sering menyebutnya sebagai musim kemarau. (3) Musim Peralihan Diantara musim penghujan (Musim Barat) dan musim kemarau (Musim Timur) terdapat musim lain yang disebut Musim Pancaroba (Peralihan). Adapun ciri-ciri musim pancaroba (peralihan), yaitu antara lain udara terasa panas, arah angin tidak teratur, sering terjadi hujan secara tiba-tiba dalam waktu yang singkat dan lebat. Musim peralihan terbagi menjadi dua periode, yaitu periode Maret Mei dikenal seagai musim Peralihan I atau Muson pancaroba awal tahun. Sedangkan, periode September November disebut musim peralihan II atau musim pancaroba akhir tahun. Pada musim-musim peralihan, matahari bergerak melintasi khatulistiwa, sehingga angin menjadi lemah dan arahnya tidak menentu.

5 8 2.2 Jenis Turbin Menurut Kamus Besar Bahasa Indonesia (KBBI), pengertian turbin adalah mesin atau motor yang roda penggeraknyaa berporos dengan suduu (baling-baling) yang digerakkan oleh aliran air, uap atau udara. Sedangkan, turbin angin adalah alat untuk merubah energi angin (energi gerak) menjadi energi listrik. Menurut Safarudin (2003) yang diacu oleh Alamsyah (2007), turbin anginn dibagi menjadi dua jenis, yaitu turbin angin propeller dan turbin anginn darrieus. (1) Turbin angin Propeller adalah jenis turbin anginn dengan poros horizontal seperti baling baling pesawat terbang pada umumnya. Turbin angin ini harus diarahkan sesuai dengan arah angin yang paling tinggi kecepatannya. (2) Turbin angin Darrieus merupakan suatu sistem konversi energi angin yang digolongkan dalam jenis turbin angin berporos tegak. Turbin angin ini pertama kali ditemukan oleh GJM Darrieus tahun Keuntungan dari turbin jenis Darrieus yaitu tidak memerlukan mekanisme orientasi pada arah angin. Untuk gambar turbin angin dapat dilihat pada Gambar 2 di bawah ini. Sumber: Safarudin (2003) diacu oleh Alamsyah (2007) Gambar 2 Turbin angin Propeller dan Darieus Konstruksi turbin angin Menurut Triharyanto (2007), kontruksi turbin angin secara umum terdiri beberapa macam sub sistem yang dapat meningkatkann efisiensi dari turbin angin tersebut yaitu sebagai berikut : 1) Sudu Sudu merupakan bagian rotor dari turbin angin, dimana rotor ini menerima energi kinetik dari angin dan dirubah ke dalam energi gerak putar.

6 9 (1) Model sudu Model sudu yang umum digunakan untuk turbin angin tipe horizontal (propeller) terbagi menjadi tiga bentuk, yaitu (1) bentuk persegi panjang, (2) bentuk taper linier terbalik dan (3) bentuk taper linier. Seperti terlihat pada Gambar 3 di bawah ini. (1) (2) (3) Sumber: Triharyanto (2007) Gambar 3 Jenis-jenis model sudu. Model sudu yang paling baik adalah yang mendekati bentuk streamline, dalam pengujian ini digunakan bentuk taper linear sebagai bentuk yang mendekati kondisi streamline. Menurut Hofman (1987) yang diacu oleh Alamsyah (2007), untuk mendapatkan hasil yang optimal dari sebuah turbin angin, maka perlu diperhatikan hal-hal sebagai berikut yaitu bentuk sudu seperti sekrup atau memuntir, sehingga aerodinamisnya semakin baik. Untuk mendapatkan energi yang lebih baik, puli dipasang langsung pada rotor. Serta sudu yang ideal berjumlah 3 buah sudu, karena menghasilkan pembagian gaya dan keseimbangan yang lebih baik. (2) Jumlah sudu/daun pada baling-baling Menurut Jhon (1985) yang diacu oleh Guntoro (2008), menyatakan bahwa semakin besar luas baling-baling maka akan menghasilkan gaya yang besar pula. Akibatnya akan menyebabkan putaran rotor yang semakin cepat dan menghasilkan daya listrik keluaran yang semakin besar. Demikian pula, dengan menambah jumlah sudu pada baling-baling akan menambah luas baling-baling yang berarti akan menambah gaya pada turbin sehingga akan memperbesar putaran rotor. Selain itu menurut Guntoro (2008), bahwa semakin banyak jumlah sudu pada baling-baling efisiensi daya listriknya cenderung semakin besar. Hal ini terjadi karena gaya angkat angin menjadi besar dengan bertambahnya luas baling-baling (luas bertambah karena jumlah

7 10 sudu bertambah) sehingga kecepatan putaran rotor (alternator) juga semakin lebih besar, akibatnya daya dan arus listrik yang dihasilkan juga semakin besar. Menurut Fyson (1985) yang diacu oleh Sambada (2001), baling-baling pada kapal adalah alat untuk melanjutkan putaran yang diberikan mesin utama yang disalurkan melalui poros (shafting) baling-baling yang berupa kekuatan hantar (delivered horse power) menjadi tenaga dorong (thrust horse power) untuk melakukan gerakan atau mendorong kapal. Dimensi propeller menurut Fyson (1985) terdiri dari diameter baling-baling (Dp), diameter hub (biasanya 0,2 Dp), Disc Area Ratio (DAR) adalah total luas daun baling-baling per luas sapuan baling-baling, dan untuk baling-baling kapal berdaun tiga biasanya memiliki nilai DAR =0,5. Bentuk daun baling-baling secara melintang dan membujur, rake dan skew, pitch dan slip. Menurut Harvald (1992) yang diacu oleh Sambada (2001), semakin sedikit jumlah daun baling-baling semakin tinggi efisiensi baling-baling. Hal ini berlaku jika angka maju mempunyai harga yang tetap. Dengan harga maju yang sudah tertentu demikian itu maka berarti harus dipilih baling-baling dengan jumlah daun yang sesedikit mungkin. Tetapi jika dilakukan perhitungan dengan menganggap bahwa kecepatan, dan dengan demikian daya balingbaling yang diperlukan serta garis tengah baling-baling semuanya sudah tertentu, dan memenuhi kriteria kavitasi maka penambahan jumlah daun baling-baling akan menurunkan efisiensi. Jumlah daun baling-baling tidak memiliki pengaruh yang berarti pada daya yang diperlukan untuk menggerakkan kapal. (2) Generator Generator merupakan salah satu komponen terpenting dalam pembuatan sistem turbin angin, karena generator ini dapat mengubah energi gerak menjadi energi listrik. (3) Tower Tower atau tiang penyangga yaitu bagian struktur dari turbin angin horizontal yang memiliki fungsi sebagai struktur utama penopang dari komponen sistem terangkai sudu, poros dan generator.

8 Alternator Mobil Menurut Nipondenso (1980) yang diacu oleh Setiono (2006), alternator adalah suatu mesin yang mengubah tenaga mekanik menjadi tenaga listrik. Pengubahan energi angin menjadi energi listrik pada alat-alat yang kecil dapat dilakukan memakai alternator mobil, energi mekanik dan mesin diterima melalui sebuah pulley yang memutarkan rotor dan membangkitkan arus bolak-balik pada stator. Arus bolak-balik ini diubah menjadi arus searah oleh diode, Bagian-bagian utama pada alternator adalah rotor yang membangkitk kan elektromagnetik. Stator yang membangkitkann arus listrik dan diode yang menyearahkan arus. Sebagai tambahan, terdapat pula brush yang mengalirkan arus ke rotor coil untuk memperhalus putaran rotor dan fan untuk mendingink kan rotor, stator serta diode dan semua bagian tersebut dipegang oleh front dan rear frame. Untuk gambar alternatorr mobil disampaikan pada Gambar 4 di bawah ini. Sumber: Setionoo (2006) Gambar 4 Alternator mobil. Kecepatan angin (km/jam) sangat berpengaruh terhadap kecepatan putaran (rpm) alternator. Dimana, semakin tinggi kecepatan angin (km/jam) diikuti dengan semakin cepatnya putaran (rpm) alternator, hal ini membuktikan bahwa kecepatan angin (km/jam) berbanding lurus dengann kecepatan putaran (rpm) alternator. Selain itu, pada alternator mobil, saat rpm rendah maka keluarannya akan rendah. Sebaliknya, semakin tinggi rpm maka keluarannya akan semakin tinggi (Alamsyah, 2007). 2.4 Sistem Penyimpanan Energi Listrik Menurut Alamsyah (2007), karena terbatasnya a ketersediaan energi angin (tidak sepanjang hari angin akan selalu tersedia) maka ketersediaan listrik pun tidak menentu, oleh karena itu digunakan alat penyimpan energi yang berfungsi

9 12 sebagai back-up energi listrik. Ketika beban penggunaan daya listrik masyarakat/lampu meningkat atau ketika kecepatan angin suatuu daerah sedang menurun, maka kebutuhan permintaan akan daya listrik tidak dapat terpenuhi. Oleh karena itu, kita perlu menyimpan sebagian energi yang dihasilkan ketika terjadi kelebihan daya pada saat turbin angin berputar kencang atau saat penggunaan daya pada masyarakat menurun. Penyimpanan energi ini diakomodasi dengan menggunakann alat penyimpan energi, contoh sederhana yang dapat dijadikan sebagai alat penyimpan energi listrik adalah accu mobil. Accu mobil memiliki kapasitas penyimpanan energi yang cukup besar, sehingga energi dapat digunakan secara maksimal untuk memenuhi kebutuhan listrik. Untuk gambar accu mobil disampaikan pada Gambar 5 di bawah ini. Sumber: Alamsyah (2007) Gambar 5 Accu mobil 12 Volt 45 Ah. 2.5 Sistem Kelistrikan pada Kapal Penangkap Ikan Menurut Koenhardono (2009), sistem kelistrikan yang adaa di darat dan di kapal tidak berbeda. Daya listrik dihasilkan oleh suatuu sistem pembangkit listrik, kemudian didistribusikan melalui sistem kawat menuju ke beban listrik. Apabila sistem kelistrikan di darat merupakan sistem terpusat, dimana beberapa sistem pembangkit listrik yang terpisahkan dalam jarak puluhan bahkan ratusan kilometer menjadi satu, untuk memenuhi kebutuhan daya listrik konsumenn dari satu atau beberapa pulau. Sistem kelistrikan di kapal hanya untuk memenuhi kebutuhan di kapal itu sendiri, dimana jarak antara sistem pembangkit dan konsumen hanya beberapa puluh meter tergantung pada ukuran kapal. Perencanaan sistem kelistrikan di kapal harus mampu menjaga kontinyuitas ketersediaan tenaga listrik yang ada,

10 13 sehingga dalam perencanaannya diperlukan pertimbangan-pertimbangan agar generator yang digunakan dapat melayani kebutuhan listrik secara optimal pada berbagai kondisi operasi di kapal (Koenhardono, 2009). 2.6 Lampu LED (Light Emitting Diode) Lampu LED merupakan lampu terbaru yang merupakan sumber cahaya yang efisien energinya. Sebuah LED adalah sejenis dioda semikonduktor istimewa. Seperti sebuah dioda normal, LED terdiri dari sebuah chip bahan semikonduktor yang diisi penuh, atau di-dop, dengan ketidakmurnian untuk menciptakan sebuah struktur yang disebut p-n junction. Pembawa muatanelektron dan lubang mengalir ke junction dari elektroda dengan voltase berbeda. Ketika elektron bertemu dengan lubang, dia jatuh ke tingkat energi yang lebih rendah, dan melepas energi dalam bentuk photon (Routledge, 2002). Sumber: Routledge (2002) Gambar 6 Bagian lampu LED. LED mempunyai beberapa keunggulan dibandingkan dengan lampu pijar konvensional. LED tidak memiliki filamen yang terbakar, sehingga usia pakai LED jauh lebih panjang daripada lampu pijar, LED tidak memerlukan gas untuk menghasilkan cahaya. Selain itu bentuk dari LED yang sederhana, kecil dan kompak memudahkan penempatannya. Di dalam hal efisiensi, LED juga memiliki keunggulan. Pada lampu pijar konvensional, proses produksi cahaya menghasilkan panas yang tinggi karena filamen lampu harus dipanaskan.led hanya sedikit menghasilkan panas, sehingga porsi terbesar dari energi listrik yang ada digunakan untuk menghasilkan cahaya dan membuatnya jauh lebih efisien (Kuniyo, 2006).

11 Lampu Navigasii Lampu navigasi adalah lampu kapal yg harus dipasang pada waktu kapal berlayar pada malamm hari untuk mengetahui arah kapal, jenis kapal dan ukuran kapal. Menurut FAO (2009), penggunaann lampu navigasi dibagi berdasarkan ukuran kapal. Untuk ukuran pertama, yaitu kapal yang mempunyai ukuran di bawah tujuh meter (< 7 meter) dan kecepatan kurang dari 7 knot menggunakan lampu navigasi yang berwarna putih, posisi lampu dipasang diatas kapal dan harus terlihat hingga jarak 2 mil, serta lampu tersebut harus terlihat dari segala arah. Posisi lampu Sumber: FAO (2009) Gambar 7 Posisi lampu pada kapal ukuran kurang dari 7 meter. Ukuran kedua yaitu kapal yang mempunyai ukuran 7 meter sampai dengan 12 meter (7-12 meter). Pada kapal ukuran ini digunakan tiga warna lampu yaitu merah, hijau, dan putih. Lampu merah dan hijau harus terlihat hingga jarak 1,5 mil dan hanya bisa dilihat dari satu sisi saja. Untuk lampu merah harus bisa dilihat dari sisi kiri saja dan lampu hijau hanya bisa dilihat dari sisi kanan saja. Sedangkann lampu putih harus terlihat hingga jarak 2 mil dan dapat terlihatt dari segala arah. Sumber: FAO (2009) Gambar 8 Posisi lampu pada kapal ukuran 7 12 meter.

12 15 Ukuran ketiga yaitu kapal yang mempunyai ukuran 12 meter sampai dengan 20 meter (12-20 meter). Pada kapal ukuran ini digunakan tiga warna lampu yaitu merah, hijau, dan putih. Lampu merah dan hijau harus terlihat hingga jarak 1,5 mil dan hanya bisa dilihat dari satu sisi saja. Untuk lampu merah harus bisa dilihat dari sisi kiri saja dan lampu hijau hanya bisa dilihat dari sisi kanan saja. Lampu putih harus terlihat hingga jarak 3 mil dan dapat terlihat dari arah depan. Sedangkan lampu putih yang lain harus dapat dilihat hingga jarak 2 mil dan dapat dilihat dari arah belakang saja. Sumber: FAO (2009) Gambar 9 Posisi lampu pada kapal ukuran meter.

TURBIN ANGIN MINI SEBAGAI ALTERNATIF SUMBER ENERGI LISTRIK UNTUK LAMPU NAVIGASI PADA KAPAL PENANGKAP IKAN DUDI FIRMANSYAH

TURBIN ANGIN MINI SEBAGAI ALTERNATIF SUMBER ENERGI LISTRIK UNTUK LAMPU NAVIGASI PADA KAPAL PENANGKAP IKAN DUDI FIRMANSYAH TURBIN ANGIN MINI SEBAGAI ALTERNATIF SUMBER ENERGI LISTRIK UNTUK LAMPU NAVIGASI PADA KAPAL PENANGKAP IKAN DUDI FIRMANSYAH PROGRAM STUDI TEKNOLOGI DAN MANAJEMEN PERIKANAN TANGKAP DEPARTEMEN PEMANFAATAN

Lebih terperinci

5 HASIL. kecepatan. dan 6 Sudu. dengan 6 sudu WIB, yaitu 15,9. rata-rata yang. sebesar 3,0. dihasilkan. ampere.

5 HASIL. kecepatan. dan 6 Sudu. dengan 6 sudu WIB, yaitu 15,9. rata-rata yang. sebesar 3,0. dihasilkan. ampere. 31 5 HASIL DAN PEMBAHASAN 5.1 Hasil Pengamatan Kecepatan Angin pada Turbin Angin dengan 3 Sudu dan 6 Sudu Padaa saat melakukan uji coba turbin dengan 3 sudu maupun dengan 6 sudu terdapat beberapa variabel

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 16 3 METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilaksanakan dalam tiga tahap, tahap pertama yaitu pembuatan alat yang dilaksanakan pada bulan Juli - Oktober 2011 di Workshop Bagian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

Geografi. Kelas X ATMOSFER IV KTSP & K-13. I. Angin 1. Proses Terjadinya Angin

Geografi. Kelas X ATMOSFER IV KTSP & K-13. I. Angin 1. Proses Terjadinya Angin KTSP & K-13 Kelas X Geografi ATMOSFER IV Tujuan Pembelajaran Setelah mempelajari materi ini kamu diharapkan memiliki kemampuan untuk memahami proses terjadinya angin dan memahami jenis-jenis angin tetap

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo BAB I PENDAHULUAN 1.1. Latar Belakang Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo adalah pulau kecil dengan pesona alam yang mengagumkan. Terletak disebelah utara Kota Probolinggo sekitar

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar

Lebih terperinci

5 HASIL DAN PEMBAHASAN

5 HASIL DAN PEMBAHASAN 5 HASIL DAN PEMBAHASAN 5.1 Rangkaian Elektronik Lampu Navigasi Energi Surya Rangkaian elektronik lampu navigasi energi surya mempunyai tiga komponen utama, yaitu input, storage, dan output. Komponen input

Lebih terperinci

POKOK BAHASAN : ANGIN

POKOK BAHASAN : ANGIN POKOK BAHASAN : ANGIN ANGIN ANGIN Angin adalah udara yang bergerak dari daerah bertekanan udara tinggi ke daerah bertekanan udara rendah. Ada beberapa hal penting yang perlu diketahui tentang angin, yaitu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

Desain Turbin Angin Sumbu Horizontal

Desain Turbin Angin Sumbu Horizontal Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

BAB I PENDAHULUAN. untuk memperoleh kualitas lampu yang tahan lama dengan kuat cahaya yang

BAB I PENDAHULUAN. untuk memperoleh kualitas lampu yang tahan lama dengan kuat cahaya yang BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan berkembangnya teknologi, banyak penelitian yang dilakukan untuk memperoleh kualitas lampu yang tahan lama dengan kuat cahaya yang tinggi dan tentunya

Lebih terperinci

BAB II LANDASAN TORI

BAB II LANDASAN TORI BAB II LANDASAN TORI Proses perancangan suatu alat ataupun yang mesin yang baik, diperlukan perencanaan yang cermat dalam perhitungan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L Oleh Hendriansyah 23410220 Pembimbing : Dr. Ridwan, MT. Latar Belakang Energi angin merupakan salah satu energi

Lebih terperinci

BAB I LANDASAN TEORI. 1.1 Fenomena angin

BAB I LANDASAN TEORI. 1.1 Fenomena angin BAB I LANDASAN TEORI 1.1 Fenomena angin Angin adalah udara yang bergerak akibat adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki tekanan lebih tinggi ke tempat yang bertekanan

Lebih terperinci

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang 7 BAB II LANDASAN TEORI A. LANDASAN TEORI 1. Pembebanan Suatu mobil dalam memenuhi kebutuhan tenaga listrik selalu dilengkapi dengan alat pembangkit listrik berupa generator yang berfungsi memberikan tenaga

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Angin adalah salah satu bentuk energi yang tersedia di alam dan tidak akan pernah habis. Pada dasarnya angin terjadi karena ada perbedaan suhu antara lokasi

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi

Lebih terperinci

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik.

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit ini dapat mengkonversikan energi angin menjadi

Lebih terperinci

METEOROLOGI LAUT. Sirkulasi Umum Atmosfer dan Angin. M. Arif Zainul Fuad

METEOROLOGI LAUT. Sirkulasi Umum Atmosfer dan Angin. M. Arif Zainul Fuad METEOROLOGI LAUT Sirkulasi Umum Atmosfer dan Angin M. Arif Zainul Fuad Cuaca berubah oleh gerak udara, gerak udara disebabkan oleh berbagai gaya yang bekerja pada partikel udarayg berasal dari energi matahari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. LED ( Light Emitting Diode) Dioda cahaya atau lebih dikenal dengan sebutan LED (light-emitting diode) adalah suatu semikonduktor yang memancarkan cahaya monokromatik yang tidak

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA ANGIN

MAKALAH PEMBANGKIT LISTRIK TENAGA ANGIN MAKALAH PEMBANGKIT LISTRIK TENAGA ANGIN Diajukan sebagai tugas mata kuliah Teknik Tenaga Listrik Disusun oleh : Angga Saputra 2013110074 Fajar Niko Setiawan 2013110066 Odio Putra Riondri 2013110072 Arif

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses perancangan suatu alat ataupun mesin yang baik, diperlukan perencanaan yang cermat dalam pendesainan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : Muhammadsuprapto13@gmail.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Studi Literatur Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Bambang setioko (2007), Kenaikan harga BBM

Lebih terperinci

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya.

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. I. PENDAHULUAN A. Latar Belakang Turbin angin pada awalnya dibuat untuk mengakomodasi kebutuhan para petani dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. Turbin angin

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci

KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK

KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK Ilmi Abdullah 1, Jufrizal Nurdin 2*, Hasanuddin 3 1,2,3) Jurusan Teknik Mesin, Fakultas Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka 2.1.1 Energi Alternatif Berdasarkan UU Republik Indonesia no. 30 tahun 2007, energi alternatif adalah energi yang dapat digunakan sebagai pengganti energi yang

Lebih terperinci

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA). BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

SD kelas 4 - ILMU PENGETAHUAN ALAM BAB 14. PERUBAHAN LINGKUNGAN FISIK Latihan Soal 14.2

SD kelas 4 - ILMU PENGETAHUAN ALAM BAB 14. PERUBAHAN LINGKUNGAN FISIK Latihan Soal 14.2 SD kelas 4 - ILMU PENGETAHUAN ALAM BAB 14. PERUBAHAN LINGKUNGAN FISIK Latihan Soal 14.2 1. Di bawah ini pernyataan yang tidak tepat mengenai angin adalah... Angin merupakan udara yang bergerak Angin bertiup

Lebih terperinci

KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF

KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF Miftahur Rahmat 1,Kaidir 1,Edi Septe S 1 1 Jurusan Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sudu Sudu adalah baling baling pada turbin angin. Sudu pada turbin angin sendiri biasanya dihubungkan dengan rotor pada turbin angin. Sudu merupakan salah satu bagian dari turbin

Lebih terperinci

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

Energi angin (Wind Energy) Hasbullah, S.Pd., MT

Energi angin (Wind Energy) Hasbullah, S.Pd., MT Energi angin (Wind Energy) Hasbullah, S.Pd., MT Dasar Energi Angin Semua energi yang dapat diperbaharui dan berasal dari Matahari. (kecuali.panas bumi) Matahari meradiasi 1,74 x 1.014 kilowatt jam energi

Lebih terperinci

DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN ABSTRACT

DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN ABSTRACT JURNAL AUSTENIT VOLUME 3, NOMOR 2, OKTOBER 2011 DESAIN DAN UJI UNJUK KERJA KINCIR ANGIN Dalom Staf Edukatif Jurusan Teknik Mesin Politeknik Negeri Sriwijaya Jl.Srijaya Negara Bukit Besar Palembang 30139

Lebih terperinci

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK Ahmad Farid 1, Mustaqim 2, Hadi Wibowo 3 1,2,3 Dosen Teknik Mesin Fakultas Teknik Universitas Pancasakti Tegal Abstrak Kota Tegal dikenal

Lebih terperinci

BAB II TEORI DASAR. Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara

BAB II TEORI DASAR. Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara BAB II TEORI DASAR 2.1 Definisi Angin Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara antara satu tempat dan tempat yang lain (Yusman, 2005). Adapun penyebab perbedaan tekanan udara

Lebih terperinci

FAKTOR-FAKTOR PEMBENTUK IKLIM INDONESIA. PERAIRAN LAUT INDONESIA TOPOGRAFI LETAK ASTRONOMIS LETAK GEOGRAFIS

FAKTOR-FAKTOR PEMBENTUK IKLIM INDONESIA. PERAIRAN LAUT INDONESIA TOPOGRAFI LETAK ASTRONOMIS LETAK GEOGRAFIS FAKTOR-FAKTOR PEMBENTUK IKLIM INDONESIA. PERAIRAN LAUT INDONESIA TOPOGRAFI LETAK ASTRONOMIS LETAK GEOGRAFIS IKLIM INDONESIA Pengertian Iklim Iklim adalah keadaan cuaca rata-rata dalam waktu satu tahun

Lebih terperinci

drimbajoe.wordpress.com

drimbajoe.wordpress.com 1. Suatu bidang berbentuk segi empat setelah diukur dengan menggunakan alat ukur yang berbeda, diperoleh panjang 5,45 cm, lebar 6,2 cm, maka luas pelat tersebut menurut aturan penulisan angka penting adalah...

Lebih terperinci

PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK

PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK Dosen Pengampu : Drs. Purwandari Disusun Oleh : Rizcy Dwi Prastikasari (09421.127) Septya Sri Ekawaty (09421.135) PROGRAM STUDI PENDIDIKAN

Lebih terperinci

Perhitungan Potensi Energi Angin di Kalimantan Barat Irine Rahmani Utami Ar a), Muh. Ishak Jumarang a*, Apriansyah b

Perhitungan Potensi Energi Angin di Kalimantan Barat Irine Rahmani Utami Ar a), Muh. Ishak Jumarang a*, Apriansyah b Perhitungan Potensi Energi Angin di Kalimantan Barat Irine Rahmani Utami Ar a), Muh. Ishak Jumarang a*, Apriansyah b a Program Studi Fisika, FMIPA Universitas Tanjungpura, b Program Studi Ilmu Kelautan,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 PENDAHULUAN Sistem Pengisian Konvensional Pembangkit listrik pada alternator menggunakan prinsip induksi yaitu perpotongan antara penghantar dengan garis-garis gaya magnet.

Lebih terperinci

PENGUJIAN SISTEM PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN SUMBER DAYA LISTRIK KOMBINASI DARI SOLAR PANEL DAN TURBIN SAVONIUS

PENGUJIAN SISTEM PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN SUMBER DAYA LISTRIK KOMBINASI DARI SOLAR PANEL DAN TURBIN SAVONIUS PENGUJIAN SISTEM PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN SUMBER DAYA LISTRIK KOMBINASI DARI SOLAR PANEL DAN TURBIN SAVONIUS Sefta Risdiara 1), Chalilillah Rangkuti 2) 1 2) Jurusan Teknik Mesin Fakultas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Pengertian Angin Angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah. Perbedaan tekanan udara disebabkan oleh perbedaan suhu

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini.

SNMPTN 2011 FISIKA. Kode Soal Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. SNMPTN 2011 FISIKA Kode Soal 999 Doc. Name: SNMPTN2011FIS999 Version: 2012-10 halaman 1 01. Gerakan sebuah mobil digambarkan oleh grafik kecepatan waktu berikut ini. Percepatan ketika mobil bergerak semakin

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Alternator Alternator atau yang lebih kita kenal sebagai "Dinamo Amper" merupakan suatu unit yang berfungsi sebagai power supply dan charging syste. Fungsi alternator adalah

Lebih terperinci

PENGARUH LEBAR BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL

PENGARUH LEBAR BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL Artikel Skripsi PENGARUH LEBAR BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Teknik (S.T) Pada Program Studi Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

Faktor-faktor Pembentuk Iklim Indonesia. Perairan laut Indonesia Topografi Letak astronomis Letak geografis

Faktor-faktor Pembentuk Iklim Indonesia. Perairan laut Indonesia Topografi Letak astronomis Letak geografis IKLIM INDONESIA Pengertian Iklim Iklim adalah keadaan cuaca rata-rata dalam waktu satu tahun dan meliputi wilayah yang luas. Secara garis besar Iklim dapat terbentuk karena adanya: a. Rotasi dan revolusi

Lebih terperinci

Udara adalah suatu campuran gas yang terdapat pada lapisan yang mengelilingi

Udara adalah suatu campuran gas yang terdapat pada lapisan yang mengelilingi AERODINAMIKA TUGAS 1 Membuat makalah atau Menjawab pertanyaan yang isinya: 1. Berkaitan dengan udara (apa itu udara, karakteristik udara, warna udara). Lalu apa bedangan dengan angin (apa itu angin, warna

Lebih terperinci

BAB III METODOLOGI PENGUKURAN

BAB III METODOLOGI PENGUKURAN BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Persiapan UAS - Latihan Soal Doc. Name: K3ARFIS0UAS Version : 205-02 halaman 0. Jika sebuah partikel bergerak dengan persamaan posisi r= 5t 2 +, maka kecepatan rata -rata antara

Lebih terperinci

PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR

PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR Sebagai Salah Satu Syarat untuk Menyelesaikan Program Strata I pada Jurusan Teknik Elektro Fakultas TeknikUniversitas

Lebih terperinci

STRUKTUR BUMI. Bumi, Tata Surya dan Angkasa Luar

STRUKTUR BUMI. Bumi, Tata Surya dan Angkasa Luar STRUKTUR BUMI 1. Skalu 1978 Jika bumi tidak mempunyai atmosfir, maka warna langit adalah A. hitam C. kuning E. putih B. biru D. merah Jawab : A Warna biru langit terjadi karena sinar matahari yang menuju

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan dari bulan Desember 2012 - April 2013 di Laboratorium Motor Bakar Teknik Mesin Universitas Lampung. B. Alat dan bahan

Lebih terperinci

Memahami sistem pembangkitan tenaga listrik sesuai dengan sumber energi yang tersedia

Memahami sistem pembangkitan tenaga listrik sesuai dengan sumber energi yang tersedia Memahami sistem pembangkitan tenaga listrik sesuai dengan sumber energi yang tersedia Memahami konsep penggerak mula (prime mover) dalam sistem pembangkitan tenaga listrik Teknik Pembangkit Listrik 1 st

Lebih terperinci

CONTOH SOAL FISIKA OSN KE-1 Oleh: Enjang Jaenal Mustopa

CONTOH SOAL FISIKA OSN KE-1 Oleh: Enjang Jaenal Mustopa CONTOH SOAL FISIKA OSN KE-1 Oleh: Enjang Jaenal Mustopa 1. Energi dapat berpindah dan berubah. Misalnya energi dapat berpindah dari tumbuhan ke manusia. Energi juga dapat berubah dari suatu bentuk energi

Lebih terperinci

Skripsi PEMANFAATAN TURBIN ANGIN DUA SUDU SEBAGAI PENGGERAK MULA ALTERNATOR PADA PEMBANGKIT LISTRIK TENAGA ANGIN

Skripsi PEMANFAATAN TURBIN ANGIN DUA SUDU SEBAGAI PENGGERAK MULA ALTERNATOR PADA PEMBANGKIT LISTRIK TENAGA ANGIN Skripsi PEMANFAATAN TURBIN ANGIN DUA SUDU SEBAGAI PENGGERAK MULA ALTERNATOR PADA PEMBANGKIT LISTRIK TENAGA ANGIN Diajukan dalam rangka menyelesaikan program studi Strata I untuk mencapai gelar Sarjana

Lebih terperinci

TUGAS AKHIR. Disusun oleh : ENDI SOFAN HADI NIM : D

TUGAS AKHIR. Disusun oleh : ENDI SOFAN HADI NIM : D TUGAS AKHIR PERENCANAAN FAN PENDINGIN RADIATOR PADA KENDARAAN RODA EMPAT DENGAN DAYA MESIN 88 HP DAN PUTARAN 3100 RPM DENGAN JUMLAH SUDU 8 BUAH SERTA DIAMETER KIPAS 410 mm Tugas Akhir Disusun Sebagai Syarat

Lebih terperinci

Universitas Medan Area

Universitas Medan Area BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 Nur Aklis, H mim Syafi i, Yunika Cahyo Prastiko, Bima Mega Sukmana Teknik Mesin, Universitas Muhammadiyah

Lebih terperinci

BAB 2 DASAR TEORI 2.1 Energi Angin

BAB 2 DASAR TEORI 2.1 Energi Angin BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kebutuhan akan energi, khususnya energi listrik di Indonesia, merupakan bagian tak terpisahkan dari kebutuhan hidup masyarakat sehari-hari seiring dengan pesatnya

Lebih terperinci

Ikhlasul-pgsd-fip-uny/iad. Bumi, Berlian biru alam semesta

Ikhlasul-pgsd-fip-uny/iad. Bumi, Berlian biru alam semesta Bumi, Berlian biru alam semesta Planet Bumi merupakan tempat yang menarik. Jika dilihat dari angkasa luar, Bumi seperti sebuah kelereng berwarna biru. Dengan bentuk awan yang selalu berubah, Bumi menjadi

Lebih terperinci

PENGUJIAN PROTOTYPE ALAT KONVERSI ENERGI MEKANIK DARI LAJU KENDARAAN SEBAGAI SUMBER ENERGI LISTRIK DENGAN VARIASI PEMBEBANAN INTISARI

PENGUJIAN PROTOTYPE ALAT KONVERSI ENERGI MEKANIK DARI LAJU KENDARAAN SEBAGAI SUMBER ENERGI LISTRIK DENGAN VARIASI PEMBEBANAN INTISARI PENGUJIAN PROTOTYPE ALAT KONVERSI ENERGI MEKANIK DARI LAJU KENDARAAN SEBAGAI SUMBER ENERGI LISTRIK DENGAN VARIASI PEMBEBANAN M. Samsul Ma arif Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah

Lebih terperinci

BAB I PENDAHULUAN. Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun

BAB I PENDAHULUAN. Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun BAB I PENDAHULUAN 1.1 Latar Belakang Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun oleh P. La Cour dari Denmark diakhir abad ke-19. Setelah perang dunia I, layar dengan penampang

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Verifikasi Model Visualisasi Klimatologi Suhu Permukaan Laut (SPL) model SODA versi 2.1.6 diambil dari lapisan permukaan (Z=1) dengan kedalaman 0,5 meter (Lampiran 1). Begitu

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 22 BAB III METODE PENELITIAN 3.1 Sistem Alternator Alternator adalah peralatan elektromekanis yang mengkonversikan energi mekanik menjadi energi listrik arus bolak-balik. Pada prinsipnya, generator listrik

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang

Lebih terperinci

(D) 40 (E) 10 (A) (B) 8/5 (D) 5/8

(D) 40 (E) 10 (A) (B) 8/5 (D) 5/8 1. Benda 10 kg pada bidang datar kasar (koef. gesek statik 0,40; koef gesek kinetik 0,35) diberi gaya mendatar sebesar 30 N. Besar gaya gesekan pada benda tersebut adalah N (A) 20 (C) 30 (E) 40 (B) 25

Lebih terperinci

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT 38 BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT Bab ini membahas rancangan diagram blok alat, rancangan Konstruksi Kumparan Stator dan Kumparan Rotor, rancangan Konstruksi Magnet Permanent pada Rotor

Lebih terperinci

STASIUN METEOROLOGI KLAS III NABIRE

STASIUN METEOROLOGI KLAS III NABIRE STASIUN METEOROLOGI KLAS III NABIRE KARAKTERISTIK RATA-RATA SUHU MAKSIMUM DAN SUHU MINIMUM STASIUN METEOROLOGI NABIRE TAHUN 2006 2015 OLEH : 1. EUSEBIO ANDRONIKOS SAMPE, S.Tr 2. RIFKI ADIGUNA SUTOWO, S.Tr

Lebih terperinci

ALTENATOR. Gambar 1. Altenator

ALTENATOR. Gambar 1. Altenator ALTENATOR Gambar 1. Altenator 1. Fungsi Alatenator Altenator Berfungsi sebagai pengubah energi mekanis berupa putaran dari mesin menjadi tenaga listrik. Energi putar di hubungkan melalui V-belt/Vribbed

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 PENGERTIAN SPEED LIMITER Kecepatan tinggi merupakan salah satu faktor utama penyebab kecelakaan lalu-lintas darat. Disisi lain banyak perusahaan otomotif yang saling berlomba

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi

Lebih terperinci

PROGRAM PEMBELAJARAN ILMU PENGETAHUAN ALAM SEKOLAH DASAR KELAS IV SEMESTER 2

PROGRAM PEMBELAJARAN ILMU PENGETAHUAN ALAM SEKOLAH DASAR KELAS IV SEMESTER 2 PROGRAM PEMBELAJARAN ILMU PENGETAHUAN ALAM SEKOLAH DASAR KELAS IV SEMESTER 2 1 PROGRAM SEMESTER TAHUN PELAJARAN 20 / 20 MATA PELAJARAN : Ilmu Pengetahuan Alam KELAS / SEMESTER : IV (Empat) / 2 (dua) Standar

Lebih terperinci

Bab 1 Pendahuluan 1.1 Latar Belakang

Bab 1 Pendahuluan 1.1 Latar Belakang Bab 1 Pendahuluan 1.1 Latar Belakang Pada saat ini, penggunaan sumber energi fosil tak pelak lagi merupakan sumber energi utama yang digunakan oleh umat manusia. Dalam penggunaan energi nasional di tahun

Lebih terperinci

Paket Latihan Ulangan IPA Kelas 3 SD Semester II

Paket Latihan Ulangan IPA Kelas 3 SD Semester II Paket Latihan Ulangan IPA Kelas 3 SD Semester II LATIHAN 1 Isilah titik-titik di bawah ini dengan jawaban yang tepat! 1. Gerak adalah.. 2. Apel yang telah masak dari pohon dapat mengalami gerak. 3. Lapangan

Lebih terperinci

(Energi Listrik dan Konversi Energi Listrik) Dra. Shrie Laksmi Saraswati,M.Pd

(Energi Listrik dan Konversi Energi Listrik) Dra. Shrie Laksmi Saraswati,M.Pd LISTRIK DAN MAGNET (Energi Listrik dan Konversi Energi Listrik) Dra. Shrie Laksmi Saraswati,M.Pd laksmi.sedec@gmail.com A. Kompetensi Dasar Mengidentifikasi kegunaan energi listrik, konversi energi listrik,

Lebih terperinci

Dibuat oleh invir.com, dibikin pdf oleh

Dibuat oleh invir.com, dibikin pdf oleh 1. Air terjun setinggi 8 m dengan debit 10 m³/s dimanfaatkan untuk memutarkan generator listrik mikro. Jika 10% energi air berubah menjadi energi listrik dan g = 10m/s², daya keluaran generator listrik

Lebih terperinci

PERANCANGAN ELECTRIC ENERGY RECOVERY SYSTEM PADA SEPEDA LISTRIK

PERANCANGAN ELECTRIC ENERGY RECOVERY SYSTEM PADA SEPEDA LISTRIK PERANCANGAN ELECTRIC ENERGY RECOVERY SYSTEM PADA SEPEDA LISTRIK ANDHIKA IFFASALAM 2105.100.080 Jurusan Teknik Mesin Fakultas TeknologiIndustri Institut TeknologiSepuluhNopember Surabaya 2012 LATAR BELAKANG

Lebih terperinci

RADIASI MATAHARI DAN TEMPERATUR

RADIASI MATAHARI DAN TEMPERATUR RADIASI MATAHARI DAN TEMPERATUR Gerakan Bumi Rotasi, perputaran bumi pada porosnya Menghasilkan perubahan waktu, siang dan malam Revolusi, gerakan bumi mengelilingi matahari Kecepatan 18,5 mil/dt Waktu:

Lebih terperinci

GEJALA-GEJALA YANG TERJADI DI ATMOSFER

GEJALA-GEJALA YANG TERJADI DI ATMOSFER GEJALA-GEJALA YANG TERJADI DI ATMOSFER GEJALA-GEJALA YANG TERJADI DI ATMOSFER GEJALA OPTIK GEJALA KLIMATIK Gejala-gejala Optik Pelangi, yaitu spektrum matahari yang dibiaskan oleh air hujan. Oleh karena

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari skripsi meliputi gambaran alat, cara kerja sistem dan modul yang digunakan. Gambar 3.1 merupakan diagram cara

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan energi yang mempunyai peranan penting bagi masyarakat. Salah satu manfaatnya adalah untuk penerangan. Keadaan kelistrikan di Indonesia sekarang

Lebih terperinci