BAB II. TINJAUAN PUSTAKA. A. Perencanaan Balok Baja dengan Metode Load Resistance and Factor Design

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II. TINJAUAN PUSTAKA. A. Perencanaan Balok Baja dengan Metode Load Resistance and Factor Design"

Transkripsi

1 BAB II. TINJAUAN PUSTAKA A. Perencanaan Balok Baja dengan Metode Load Resistance and Factor Design Analisis dari pembuatan program ini didasari secara teoritis dengan perhitungan desain balok dengan metode load resistance and factor design (LRFD). Pada analisis ini, perlu dilakukan pengecekan terhadap batasan rasio kelangsingan untuk penampang kompak balok kemudian dengan mengasumsikan balok berada pada kondisi inelastis maka dapat menentukan panjang bentang balok ang kemudian akan didapatkan kuat nominal momen lentur dan geser dari penampang balok. a. Tumpuan dan pembebanan Tumpuan ang diberikan pada balok merupakan tumpuan sederhana aitu sendi-rol. Pembebanan dilakukan dengan meninjau berat sendiri balok dan beban terpusat ang didistribusikan pada seluruh penampang profil, seperti pada Gambar.1 berikut, Gambar.1 Balok baja dengan tumpuan send-rol

2 b. Pembebanan balok baja Secara umum dalam struktur, pembebanan ang terjadi pada balok adalah beban terpusat dan beban mearata ang terdiri atas berat sendiri balok. Desain ini menjadi dasar untuk menentukan kondisi balok ang akan didesain, masingmasing kondisi balok saat terbebani tergantung dari profil ang dipilih. Analisis ang dilakukan adalah pengecekan kelangsingan profilna, apakah profilna kompak, tak kompak atau profil terlalu kuat sehingga kurang ekonomis dan dapat diganti dengan profil lain ang lebih sesuai. Setelah terpenuhi kondisi lenturna maka berikutna adalah tahanan geserna, tahanan geser akan lebih menentukan pada bentang ang lebih pendek. B. Sifat Material Baja Kriteria perencanaan struktur adalah memenuhi sarat kekuatan, kekakuan dan daktilitas. Kekuatan dikaitkan dengan besarna tegangan ang mampu dipikul tanpa rusak, baik berupa deformasi besar (ielding) atau fracture (terpisah). Faktor kekakuan adalah besarna gaa untuk menghasilkan satu unit deformasi, parameterna berupa Modulus Elastisitas

3 Tabel.1 Kekuatan mekanik beberapa macam bahan material konstruksi Modulus Berat Jenis Kuat (Mpa) Rasio Kuat + BJ Material Elastisitas (kg/m 3) (Mpa) Leleh Ultimate (IE+6 * 1/mm) Serat Karbon Baja A ,1-7 Baja A ,7 Alumunium ,3 Besi Cor ,8 Bambu Kau , Beton ,9 -,3 Jadi jika parameter kekuatan, kekakuan dan daktilitas digunakan untuk pemilihan material konstruksi maka dapat dikatn bahwa material baja adalah ang unggul dibandingkan beton dan kau.. Ini indikasi jika perencanaanna optimal maka bangunan dengan konstruksi baja tentuna akan menghasilkan sistem pondasi ang lebih ringan dibanding konstruksi beton, meskipun masih kalah dibanding kau atau bambu. Gambar. Grafik kekuatan mekanik beberapa material kontruksi

4 Dikaitkan efisiensi antara material baja dengan kau atau bambu, maka baja hana unggul karena kualitas mutu bahanna ang lebih homogen dan konsisten sehingga lebih handal. hal itu tidak mengherankan karena material baja adalah produk industri ang dapat terkontrol dengan baik. Beberapa keuntungan ang diperoleh dari baja sebagai bahan struktur adalah sebagai berikut: 1. Mempunai kekuatan ang tinggi, sehingga dapat mengurangi ukuran struktur serta mengurangi berat dari stuktur itu sendiri.. Keseragaman dan keawetan ang tinggi. 3. Bersifat elastis, hingga memiliki tegangan ang cukup tinggi mengikuti Hukum Hooke. Momen inersia dari profil baja juga dapat dihitung dengan pasti sehingga memudahkan dalam analisis struktur. 4. Daktilitas ang cukup tinggi, karena suatu batang baja ang menerima tegangan tarik ang tinggi akan mengalami regangan tarik cukup besar sebelum terjadi keruntuhan. 5. Beberapa keuntungan lainna adalah kemudahan penambungan antara elemen satu dengan ang lain menggunakan alat sambung las atau baut. Pembuatan baja melalui proses gilas panas mengakibatkan baja mudah dibentuk menjadi penampang ang diinginkan. Kecepatan pelaksanaan konstruksi baja juga menjadi suatu keunggulan material baja.

5 Selain keuntungan-keuntungan ang disebutkan tersebut, material baja juga memiliki beberapa kekurangan, terutama dari sisi pemeliharaan. Konstruksi baja ang berhubungan langsung dengan udara atau air secara periodik harus dilapisi dengan cat. Perlindungan terhadap bahaa kebakaran juga harus menjadi perhatian ang serius, karena material baja akan mengalami penurunan kekuatan secara drastis akibat kenaikan temperatur ang cukup tinggi, selain itu baja merupakan konduktor panas ang baik sehingga nala api dalam suatu bangunan justru akan menebar lebih cepat. Kelemahan lainna adalah masalah tekuk ang merupakan fungsi dari kelangsingan suatu penampang. Baja ang akan digunakan dalam suatu struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dalam baja tersebut seperti tegangan leleh dan tegangan putusna diatur dalam ASTM A6/A6M. 1. Baja Karbon Sebutan baja karbon berlaku untuk baja ang mengandung unsur bukan besi dengan persentase maksimum sebagai berikut: - Karbon 1,7% - Mangan 1,65% - Silikon 0,60% - Tembaga 0,60% Karbon dan mangan adalah unsur utama untuk menaikkan kekuatan besi murni. Baja karbon terbagi menjadi empat kategori: karbon rendah (kurang dari 0,15%);

6 karbon lunak (0,15 0,9%); karbon sedang (0,30 0,59%); karbon tinggi (0,60 1,70%). Baja karbon struktural termasuk kategori karbon lunak, baja seperti A36 (ekuivalen dengan baja SS400) mengandung karbon maksimum ang berkisar antara 0,5% dan 0,9% tergantung pada tebalna. Baja struktural ini memiliki titik leleh ang jelas seperti ang ditunjukan pada kurva (a) dalam Gambar.3. Naikna persentase karbon dapat meningkatkan tegangan leleh namun menurunkan daktilitas, salah satuna membuat pekerjaan las menjadi lebih sulit. Baja karbon umuna memiliki tegangan leleh (f ) antara MPa. Gambar.3 Kurva Tegangan-Regangan Umum

7 . Baja paduan rendah mutu tinggi Yang termasuk dalam kategori baja paduan rendah mutu tinggi (high strengh low allo steel/hsla) mempunai tegangan leleh berkisar antara MPa dengan tegangan putus (f u ) antara MPa. Penambahan sedikit bahan-bahan paduan seperti Chronium, Columbium, Mangan, Molbden, Nikel, Fosfor, Vanadium, atau Zirkonium dapat memperbaiki sifat-sifat mekanikna. Jika baja karbon mendapatkan kekuatanna seiring dengan penambahan persetase karbon, maka bahan-bahan paduan ini mampu memperbaiki sifat mekanik baja dengan membentuk mikrostruktur dalam bahan baja ang lebih halus. 3. Baja paduan Baja paduan rendah (low allo) dapat ditempa dan dipanaskan untuk memperoleh tegangan leleh antara MPa. Tegangan leleh dari baja paduan biasana ditentukan sebagai tegangan ang terjadi saat timbul regangan permanen sebesar 0,% atau dapat ditentukan pula sebagai regangan mencapai 0,5%. Kurva tegangan-regangan ang umum akibat tarikan diperlihatkan pada Gambar.1 untuk tiga kategori baja tersebut. Kekakuan ang sama juga terjadi pada tekanan bila tekuk (buckling) dicegah dengan memberikan tumpuan. Bagian dari setiap kurva tegangan-regangan pada Gambar.1 ang biasa digunakan dalam perencanaan diperbesar pada Gambar..

8 Besarna tegangan pada kurva tegangan-regangan pada Gambar.1 ditentukan dengan membagi beban dengan luas penampang lintang semula benda uji, sedangkan reganganna (per inchi) dihitung sebagai perpanjangan dibagi dengan panjang semula. Kurva seperti ini disebut kurva tegangan-regangan teknik dan menaik hingga tegangan maksimum (disebut kekuatan tarik), kemudian kurva menurun bersamaan dengan kenaikan regangan dan tegangan berhenti seketika. Pada bahanna sendiri, tegangan terus menaik hingga putus. Yang disebut kurva tegangan sesungguhna atau regangan sesungguhna diperoleh dengan menggunakan penampang lintang semula (walaupun penampang mengecil) dan regangan tambahan sesaat (instanteneous incremental strain). Kurva teganganregangan teknik boleh digunakan dalam praktek untuk menetukan beban maksimum ang dapat dipikul (kekuatan tarik batas).

9 Gambar.4 Kurva Tegangan-Regangan Dalam perencaan struktur baja, SNI mengambil beberapa sifat mekanik dari material baja ang sama aitu: Modulus Elastisitas, E Modulus Geser, G = MPa = MPa Angka Poisson = 0,30 Koefisien muai panjang = / o C

10 C. Tekuk Lateral Balok Tekuk lateral adalah tekuk arah tegak lurus bidang kerja gaa luar, terjadi pada balok-balok langsing dimana I < I x. Pembebanan pada bidang web balok akan menghasilkan tegangan ang sama besar antara titik A dan B. Namun adana ketidaksempurnaan balok dan eksentrisitas beban, maka akan mengakibatkan perbedaan tegangan antara A dan B. Tegangan residu juga mengakibatkan distribusi tegangan ang tidak sama sepanjang lebar saap. Flens tekan dari balok dapat dianggap sebagai kolom. Saap ang diasumsikan sebagai kolom ini akan tertekuk dalam arah lemahna akibat lentur terhadap suatu sumbu seperti 1-1. Namun karena web balok memberikan sokongan untuk mencegah tekuk dalam arah ini, maka flens akan cenderung tertekuk oleh lentur pada sumbu -. Karena bagian tarik dari balok berada dalam kondisi stabil, maka proses tekuk lentur dalam arah lateral tersebut tersebut akan dibarengi dengan proses torsi sehingga terjadilah tekuk lentur. Tekuk torsi lateral adalah kondisi batas ang menentukan kekuatan sebuah balok. Sebuah balok mampu menahan momen maksimum hingga mencapai momen plastis (Mp), tercapai atau tidakna momen plastis, keruntuhan dari sebuah struktur balok adalah salah satu dari peristiwa berikut : 1. Tekuk lokal dari torsi tekan.. Tekuk lokal dari web dalam tekan lentur. 3. Tekuk torsi lateral.

11 Ketiga macam keruntuhan tersebut dapat terjadi pada kondisi elastis maupun inelastis. Gambar. menunjukan perilaku dari sebuah balok ang dibebani momen konstan M dengan bentang tak terkekang L : 1. Jika L cukup kecil (L < Lpd) maka momen plastis, Mp tercapai dengan deformasi ang besar. Deformasi ang besar ditunjukan oleh kapasitas rotasi R. tidak cukup kuatna flens maupun web menjadi faktor utama dari tercapaina momen plastis profil, jika profil kompak maka momen plastis profil mampu tercapai. Gambar.5 a, b, c Tekuk Puntir Lateral Pada Balok

12 D. Desain Balok I Setiap komponen struktur ang memikul momen lentur, harus memenuhi Persamaan 1 berikut, b. M n M u...(1) dengan b = faktor reduksi untuk lentur (sebesar 0,9) M n = kuat nominal momen lentur dari penampang M u = momen lentur terfaktor Besarna kuat nominal momen lentur dari penampang ditentukan sebagai berikut: Kasus 1: M n = M p (R 3) Agar penampang dapat mencapai kuat niminal M n = M p, maka penampang harus kompak untuk mencegah terjadina tekuk lokal. Sarat penampang kompak ditentukan sesuai dengan Tabel SNI , aitu λ untuk flens( (b/t f ) dan untuk web (h/t w ) tidak boleh melebihi λ p. Batasan nilai untuk λ p ditampilkan pada Tabel.. Selain harus kompak, pengaku vertikal harus diberikan sehingga panjang bentang tak terkekang, L tidak melebihi L pd ang diperoleh dari persamaan M ( ) M L pd. r f...()

13 Tabel. Batasan Rasio Kelangsingan λ p untuk Penampang Kompak Balok I Tegangan Leleh f (MPa) Tekuk Lokal Flens b t f f 11,73 10,97 10,75 9,98 8,4 Tekuk Lokal Web h t w f 115,93 108,44 106,5 98,65 8,97 Tekuk Torsi Lateral L 790. r f 54,5 50,99 49,96 46,39 39,0 Kasus : M n = M p (R < 3) Agar penampang dapat mencapai momen plastis M p dengan kapsitas rotasi R < 3, maka penampang harus kompak dan tidak terjadi tekuk lokal (b/t f dan h/t w < λ p ). Pengaku lateral harus diberikan sehingga bentang tak terkekang L tidak melebihi L p ang ditentukan oleh persamaan 3 (untuk C b = 1) 790 L p. r...(3) f Kasus 3: M p > M n M r Dalam kasus 3 terjadi tekuk torsi lateral untuk penampang kompak (λ λ p ). Kuat momen nominal didekati dengan hubungan linear antara titik 1 (L p, M p ) dengan titik (L r, M r ) pada Gambar.6. kuat momen lentur nominal dalam kasus 3 ditentukan dalam SNI (pasal 8.3.4). M n L Cb M r ( M p M r ) Lr L M L p r p...(4)

14 M r adalah kuat nominal ang tersedia untuk beban laan ketika serat terluar penampang mencapai tegangan f (termasuk tegangan residu) dan dapat diekspresikan sebagai Persamaan 5 berikut dengan M r = S x. (f f r )...(5) f = tegangan leleh profil f r = tegangan residu (70 MPa untuk penampang di rol dan 115 Mpa untuk penampang di las) S x = modulus penampang Panjang L r diperoleh dari Persamaan 11 L r X. r 1 f L 1 1 X. f L...(6) dengan, f L f f r...(7) X 1 S x E. G. J. A...(8) S x X 4.. G. J C I w...(9)

15 Gambar.6 Kuat Momen Lentur Nominal Akibat Tekuk Torsi Lateral Kasus 4: M p > M n M r Kasus ini terjadi jika: 1. L p < L < L r. λ p < (λ = b/.t f ) < λ r (flens tak kompak) 3. λ p < (λ = h/t w ) < λ r (web tak kompak) Kuat momen lentur nominal dalam kasus 4 harus dihitung berdasarkan keadaan ang paling kritis dari tekuk lokal flens, tekuk lokal web serta tekuk torsi lateral. Untuk membatasi terhadap tekuk lokal flens serta tekuk lokal web, SNI (pasal 8..4) merumuskan: M n p M p ( M p M r ) p p...(10)

16 Sedangkan kondisi batas untuk tekuk torsi lateral ditentukan berdasarkan M n L Cb M r ( M p M r ) Lr L M L p r p...(11) Dengan faktor pengali momen, C b, ditentukan oleh persamaan C b,5. M max 1,5. M 3. M A max 4. M B 3. M C,3...(1) Dengan, M max M A M B M C = momen maksimum pada bentang ang ditinjau = momen pada ¼ bentang tak terkekang = momen pada tengah bentang tak terkekang = momen pada ¾ bentang tak terkekang Kuat momen lentur nominal dalam kasus 4 ini diambil dari nilai ang terkecil antara Persamaaan 10 dan Persamaan 11. Batasan rasio kelangsingan penampang, λ r untuk penampang tak kompak ditampilkan dalam Tabel.3. Tabel.3 Batasan Rasio Kelangsingan λ r untuk Penampang Kompak Balok I Tegangan Leleh f (MPa) Tekuk Lokal Flens b t f f f r,64,18,06 1,68 1,09 Tekuk Lokal Web h 550. t w f 175,97 164,60 161,8 149,74 15,94

17 Kasus 5: M n > M r Kasus 5 terjadi apabila L > L r dan kelangsingan dari flens serta web tak melebihi λ r (penampang kompak). Kuat nominal momen lentur dalam kondisi ini ditentukan sebagai berikut:. E M n Cb.. E. I. G. J. I. C L L w...(13) Persamaan 13 dapat pula dituliskan dengan menggunakan variabel X 1 dan X seperti pada Persamaan 7 dan 8, sehingga menjadi: C. S. X. L r. X b x 1 1 M n. 1...(14) X. L r E. Kuat Geser Penampang IWF Perencanaan balok ang memilki bentang panjang biasana lebih ditentukan oleh sarat lendutan daripada sarat tahanan. Balok dengan bentang-bentang menenengah, ukuran profil lebih ditentukan akibat lentur pada balok. Pada balok dengan bentang-bentang pendek, tahanan geser lebih menentukan dalam pemilihan profil. Tahanan geser penampang gilas pada balok sebagian besar ditahan oleh web, jika web dalam kondisi stabil, kuat geser nominal pelat web ditentukan oleh SNI pasal aitu : V n = 0,60f A w (15)

18 Dengan, f = kuat leleh web A w = luas penampang web = 0,9 V n > V u F. PEMROGRAMAN 1. Pengetian program dan pemrograman Pemrograman komputer, menurut binanto kata program dan pemrograman dapat diartikan sebagai berikut: a. Mendeskripsikan instruksi-instruksi tersendiri ang biasana disebut source code ang dibuat oleh programmer. b. Mendeskripsikan suatu keseluruhan bagian dari software ang executable. c. Program merupakan himpunan atau kumpulan instruksi tertulis ang dibuat oleh programmer atau suatu bagian executable dari suatu software. d. Pemrograman berarti membuat program komputer. e. Pemrograman merupakan suatu kumpulan urutan perintah ke komputer untuk mengerjakan sesuatu. Perintah-perintah ini membutuhkan suatu bahasa tersendiri ang dapat dimengerti oleh komputer. Sedangkan menurut Yulikuspartono mengemukakan bahwa, program merupakan sederetan instruksi atau stetement dalam bahasa ang dimengerti oleh komputer ang bersangkutan, serta kata pemrograman menurut

19 Sugiono program adalah suatu rangkaian instruksi-instruksi dalam bahasa komputer ang disusun secara logis dan sistematis. Sebelum program diterapkan, maka program harus bebas terlebih dahulu dari kesalahan-kesalahan. Oleh sebab itu program harus diuji untuk menemukan kesalahan-kesalahan ang mungkin dapat terjadi. Kesalahan dari program ang mungkin terjadi dapat diklasifikasikan dalam tiga bentuk kesalahan menurut Hartono antara lain : a. Kesalahan Bahasa (Language Errors) Adalah kesalahan dalam penulisan source program ang tidak sesuai dengan ang telah diisaratkan. b. Kesalahan dalam Proses (Run Time Progres) Adalah kesalahan saat executable program dijalankan. c. Kesalahan Logika (logical Errors) Adalah kesalahan logika saat pembuatan program.. Pemrograman PHP Pemrograman PHP atau Hpertext Prepocessor adalah suatu pemrograman ang digunakan secara luas untuk penanganan pembuatan atau pengembangan sebuah situs web ang dapat digunakan bersamaan dengan HTML. PHP dibuat oleh Rasmus lerdorf pada tahun 1994, pada versi pertamana PHP adalah singkatan dari Personal Home Page Tools, ditulis kembali pada pertengahan tahun 1995 dan diberi nama PHP/FI (Forms interperter), aitu versi kedua dari PHP dengan penambahan dukungan terhadap SQL dan

20 setelah pertengahan tahun 1999 versi ketiga PHP mulai dikenal dengan singkatan Hper text Prossesor, dan pada saat itu penggunana lebih dari 1 juta site. PHP adalah bahasa ang menginterpretasikan perintah sebuah file ang berisi kode pemrograman atau script ang dijalankan, selanjutna interpreter ini akan memerintahkan komputer kita untuk menjalankan perintah sesuai dengan permintaan script. PHP dapat disisipkan dihalaman HTML, sehingga memudahkan dan mempercepat dan membuat aplikasi web, oleh karena itu PHP sangat berguna untuk membuat website - website ang dinamis.

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Balok Lentur Pertemuan - 6

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Balok Lentur Pertemuan - 6 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Balok Lentur Pertemuan - 6 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa mampu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 Sub Pokok Bahasan : Perilaku Mekanis Baja Pengantar LRFD Untuk

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan

BAB II TINJAUAN PUSTAKA. nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi kegagalan BAB II TINJAUAN PUSTAKA 2.1 Profil C Baja adalah salah satu alternatif bahan dalam dunia konstruksi. Baja digunakan sebagai bahan konstruksi karena memiliki kekuatan dan keliatan yang tinggi. Keliatan

Lebih terperinci

Struktur Baja 2 KOMPONEN STRUKTUR LENTUR

Struktur Baja 2 KOMPONEN STRUKTUR LENTUR Struktur Baja KOPONEN STRUKTUR LENTUR Penampang Elemen Lentur Struktur Baja Penampang Baja untuk Balok Perilaku Balok Lentur Batas kekuatan lentur Kapasitas momen elastis Kapasitas momen plastis Batas

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

ANALISIS KOLOM BAJA WF MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG ( SNI ) MENGGUNAKAN MICROSOFT EXCEL 2002

ANALISIS KOLOM BAJA WF MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG ( SNI ) MENGGUNAKAN MICROSOFT EXCEL 2002 ANALISIS KOLOM BAJA WF MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG ( SNI 03 1729 2002 ) MENGGUNAKAN MICROSOFT EXCEL 2002 Maulana Rizki Suryadi NRP : 9921027 Pembimbing : Ginardy Husada

Lebih terperinci

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PENULISAN Umumnya, pada masa lalu semua perencanaan struktur direncanakan dengan metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan dipikul

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Bidang konstruksi memiliki peran yang sangat penting dalam pembangunan prasarana yang diperlukan dalam mempertahankan dan mengembangkan peradaban manusia. Di era globalisasi

Lebih terperinci

BAB 5 ANALISIS. Laporan Tugas Akhir Semester II 2006/ UMUM

BAB 5 ANALISIS. Laporan Tugas Akhir Semester II 2006/ UMUM BAB 5 ANALISIS 5.1 UMUM Setelah semua perhitungan elemen kolom dimasukkan pada tahap pengolahan data, maka tahap berikutnya yaitu tahap analisis. Tahap analisis merupakan tahap yang paling penting dalam

Lebih terperinci

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc PERENCANAAN SAMBUNGAN KAKU BALOK KOLOM TIPE END PLATE MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03 1729 2002) MENGGUNAKAN MICROSOFT EXCEL 2002 Henny Uliani NRP : 0021044 Pembimbing

Lebih terperinci

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK... DAFTAR ISI HALAMAN LEMBAR JUDUL... i KATA PENGANTAR...... ii UCAPAN TERIMA KASIH......... iii DAFTAR ISI...... iv DAFTAR TABEL...... v DAFTAR GAMBAR...... vi ABSTRAK...... vii BAB 1PENDAHULUAN... 9 1.1.Umum...

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang sangat besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan

Lebih terperinci

3.1 Tegangan pada penampang gelagar pelat 10

3.1 Tegangan pada penampang gelagar pelat 10 DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN MOTTO DAN PERSEMBAHAN KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI ABSTRAKSI i ii iii iv vi x xijj xiv xvi{ BAB I PENDAHULUAN 1

Lebih terperinci

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya BABH TINJAUAN PUSTAKA Pada balok ternyata hanya serat tepi atas dan bawah saja yang mengalami atau dibebani tegangan-tegangan yang besar, sedangkan serat di bagian dalam tegangannya semakin kecil. Agarmenjadi

Lebih terperinci

PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI ) MENGGUNAKAN MATLAB

PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI ) MENGGUNAKAN MATLAB PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03-1729-2002) MENGGUNAKAN MATLAB R. Dhinny Nuraeni NRP : 0321072 Pembimbing : Ir. Ginardy

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985).

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985). BAB II TINJAUAN PUSTAKA 2.1 Baja Bahan konstruksi yang mulai diminati pada masa ini adalah baja. Baja merupakan salah satu bahan konstruksi yang sangat baik. Baja memiliki sifat keliatan dan kekuatan yang

Lebih terperinci

STRUKTUR BAJA 2 TKS 1514 / 3 SKS

STRUKTUR BAJA 2 TKS 1514 / 3 SKS STRUKTUR BAJA 2 TKS 1514 / 3 SKS MODUL 1 TEKUK TORSI LATERAL Panjang elemen balok tanpa dukungan lateral dapat mengalami tekuk torsi lateral akibat beban lentur yang terjadi (momen lentur). Tekuk Torsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Metode Desain LRFD dengan Analisis Elastis o Kuat rencana setiap komponen struktur tidak boleh kurang dari kekuatan yang dibutuhkan yang ditentukan berdasarkan kombinasi pembebanan

Lebih terperinci

ABSTRAK. Kata Kunci : LRFD, beban, lentur, alat bantu, visual basic.

ABSTRAK. Kata Kunci : LRFD, beban, lentur, alat bantu, visual basic. ABSTRAK Dewasa ini baja sudah mulai banyak digunakan dalam konstruksi bangunan di Indonesia, hal ini mendorong perencanaan desain konstruksi baja yang semakin berkembang terutama dengan dikeluarkannya

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Baja Baja adalah salah satu dari bahan konstruksi yang paling penting. Sifatsifatnya yang penting dalam penggunaan konstruksi adalah kekuatannya yang tinggi dibandingkan terhadap

Lebih terperinci

Bab II STUDI PUSTAKA

Bab II STUDI PUSTAKA Bab II STUDI PUSTAKA 2.1 Pengertian Sambungan, dan Momen 1. Sambungan adalah lokasi dimana ujung-ujung batang bertemu. Umumnya sambungan dapat menyalurkan ketiga jenis gaya dalam. Beberapa jenis sambungan

Lebih terperinci

PERHITUNGAN BALOK DENGAN PENGAKU BADAN

PERHITUNGAN BALOK DENGAN PENGAKU BADAN PERHITUNGAN BALOK DENGAN PENGAKU BADAN A. DATA BAHAN [C]2011 : M. Noer Ilham Tegangan leleh baja (yield stress ), f y = 240 MPa Tegangan sisa (residual stress ), f r = 70 MPa Modulus elastik baja (modulus

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA Alderman Tambos Budiarto Simanjuntak NRP : 0221016 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS KRISTEN

Lebih terperinci

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Mata Kuliah Kode SKS : Perancangan Struktur Baja : TSP 306 : 3 SKS Perilaku Material Baja dan Konsep Perencanaan Struktur Baja Pertemuan - 1 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Balok Lentur Pertemuan 11, 12 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

2- ELEMEN STRUKTUR KOMPOSIT

2- ELEMEN STRUKTUR KOMPOSIT 2- ELEMEN STRUKTUR KOMPOSIT Pendahuluan Elemen struktur komposit merupakan struktur yang terdiri dari 2 material atau lebih dengan sifat bahan yang berbeda dan membentuk satu kesatuan sehingga menghasilkan

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA II.1 Umum dan Latar Belakang Kolom merupakan batang tekan tegak yang bekerja untuk menahan balok-balok loteng, rangka atap, lintasan crane dalam bangunan pabrik dan sebagainya yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena

BAB II TINJAUAN PUSTAKA. yang lebih bawah hingga akhirnya sampai ke tanah melalui fondasi. Karena BAB II TINJAUAN PUSTAKA Kolom adalah batang tekan vertikal dari rangka struktural yang memikul beban dari balok. Kolom meneruskan beban-beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

5- STRUKTUR LENTUR (BALOK)

5- STRUKTUR LENTUR (BALOK) Pengertian Balok 5- STRUKTUR LENTUR (BALOK) Balok adalah bagian dari struktur bangunan yang menerima beban tegak lurus ( ) sumbu memanjang batang (beban lateral beban lentur) Beberapa jenis balok pada

Lebih terperinci

BAB I PENDAHULUAN PENDAHULUAN

BAB I PENDAHULUAN PENDAHULUAN BAB I PENDAHULUAN PENDAHULUAN 1.1 Latar belakang Pada tahun 1850, J.L Lambot memperkenal konsep dasar konstruksi komposit yaitu gabungan dua bahan konstruksi yang berbeda yang bekerja bersama sama memikul

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR Diajukan sebagai salah satu persyaratan menyelesaikan Tahap Sarjana pada

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu IV. HASIL DAN PEMBAHASAN Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu pengujian mekanik beton, pengujian benda uji balok beton bertulang, analisis hasil pengujian, perhitungan

Lebih terperinci

BAB I PENDAHULUAN. berkembang dan telah mempermudah manusia untuk melakukan pekerjaan

BAB I PENDAHULUAN. berkembang dan telah mempermudah manusia untuk melakukan pekerjaan BAB I PENDAHULUAN 1.1.Umum dan Latar Belakang Perkembangan teknologi perancangan konstruksi gedung sudah semakin berkembang dan telah mempermudah manusia untuk melakukan pekerjaan analisis struktural yang

Lebih terperinci

BAB I PENDAHULUAN. Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk

BAB I PENDAHULUAN. Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk BAB I PENDAHULUAN 1.1. Latar Belakang Laju pertumbuhan penduduk di Indonesia pada umumnya dan di Daerah Istimewa Yogyakarta pada khususnya semakin meningkat. Populasi penduduk yang terus meningkat tentu

Lebih terperinci

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau 17 BAB I PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi di Indonesia semakin berkembang dengan pesat. Seiring dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau bahan yang dapat

Lebih terperinci

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA ABSTRAK STUDI ANALISIS KINERJA BANGUNAN 2 LANTAI DAN 4 LANTAI DARI KAYU GLULAM BANGKIRAI TERHADAP BEBAN SEISMIC DENGAN ANALISIS STATIC NON LINEAR (STATIC PUSHOVER ANALYSIS) DAN ANALISIS PERKUATAN KAYU

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kekuatannya yang besar dan keliatannya yang tinggi. Keliatan (ductility) ialah

BAB II TINJAUAN PUSTAKA. kekuatannya yang besar dan keliatannya yang tinggi. Keliatan (ductility) ialah 5 BAB II TINJAUAN PUSTAKA Baja merupakan bahan konstruksi yang sangat baik, sifat baja antara lain kekuatannya yang besar dan keliatannya yang tinggi. Keliatan (ductility) ialah kemampuan untuk berdeformasi

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

Studi Analisis Tinggi Lubang Baja Kastilasi dengan Pengaku.Ni Kadek Astariani 25

Studi Analisis Tinggi Lubang Baja Kastilasi dengan Pengaku.Ni Kadek Astariani 25 GaneÇ Swara Vol 7 No2 September 2013 STUDI ANALISIS TINGGI LUBANG BAJA KASTILASI DENGAN PENGAKU BADAN PADA PROFIL BAJA IWF 200 X 100 ABSTRAKSI NI KADEK ASTARIANI Universitas Ngurah Rai Denpasar Struktur

Lebih terperinci

ANALISA SISTEM PENGAKU (STIFFENER) PADA GELAGAR PELAT GIRDER PENAMPANG - I

ANALISA SISTEM PENGAKU (STIFFENER) PADA GELAGAR PELAT GIRDER PENAMPANG - I ANALISA SISTEM PENGAKU (STIFFENER) PADA GELAGAR PELAT GIRDER PENAMPANG - I TUGAS AKHIR Diajukan Untuk Melengkapi Tugas-Tugas dan Memenuhi Syarat Untuk Menempuh Ujian Sarjana Teknik Sipil Disusun Oleh :

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dalam bidang konstruksi terus menerus mengalami peningkatan, kontruksi bangunan merupakan bagian dari kehidupan manusia yang tidak akan pernah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Balok komposit adalah balok ang terdiri dari dua atau lebih material ang bekerja sama dalam memikul beban kerja. Material ang digunakan bermacammacam, seperti beton, baja,

Lebih terperinci

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD MODUL 4 BATANG TEKAN METODE ASD 4.1 MATERI KULIAH Panjang tekuk batang tekan Angka kelangsingan batang tekan Faktor Tekuk dan Tegangan tekuk batang tekan Desain luas penampang batang tekan Syarat kekakuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah salah satu bahan konstruksi yang paling banyak digunakan. Sifat-sifatnya yang penting dalam penggunaan konstruksi adalah kekuatannya yang tinggi dibandingkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. A. Perbandingan Kekuatan Balok Kastela Dengan Bukaan Dan Tanpa Bukaan

BAB II TINJAUAN PUSTAKA. A. Perbandingan Kekuatan Balok Kastela Dengan Bukaan Dan Tanpa Bukaan BAB II TINJAUAN PUSTAKA A. Perbandingan Kekuatan Balok Kastela Dengan Bukaan Dan Tanpa Bukaan Resmi Mohan dan Preeta Prabhakaran melakukan peneletian mengenai analisis eksperimen untuk membandingkan lenduan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dalam tekan sebelum terjadi kegagalan (Bowles, 1985).

BAB II TINJAUAN PUSTAKA. dalam tekan sebelum terjadi kegagalan (Bowles, 1985). BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah salah satu bahan konstruksi yang penting. Sifat-sifatnya yang terutama adalah kekuatannya yang tinggi dan sifat keliatannya. Keliatan (ductility) adalah kemampuan

Lebih terperinci

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BAL KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI Jusak Jan Sampakang R. E. Pandaleke, J. D. Pangouw, L. K. Khosama Fakultas Teknik, Jurusan

Lebih terperinci

Struktur Baja 2. Kolom

Struktur Baja 2. Kolom Struktur Baja 2 Kolom Perencanaan Berdasarkan LRFD (Load and Resistance Factor Design) fr n Q i i R n = Kekuatan nominal Q = Beban nominal f = Faktor reduksi kekuatan = Faktor beban Kombinasi pembebanan

Lebih terperinci

ANALISIS TINGGI LUBANG BAJA KASTILASI DENGAN PENGAKU BADAN PADA PROFIL BAJA IWF 500 X 200

ANALISIS TINGGI LUBANG BAJA KASTILASI DENGAN PENGAKU BADAN PADA PROFIL BAJA IWF 500 X 200 GaneÇ Swara Vol. 8 No.1 Maret 014 ANALISIS TINGGI LUBANG BAJA KASTILASI DENGAN PENGAKU BADAN PADA PROFIL BAJA IWF 500 X 00 NI KADEK ASTARIANI ABSTRAK Universitas Ngurah Rai Denpasar Baja kastilasi memiliki

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Jembatan merupakan sebuah struktur yang sengaja dibangun untuk menyeberangi jurang atau rintangan seperti sungai, lembah, rel kereta api maupun jalan raya. Struktur jembatan

Lebih terperinci

Filosofi Desain Struktur Baja

Filosofi Desain Struktur Baja Filosofi Desain Struktur Baja Strong Column Waek Beam adalah filosofi dasar yang harus selalu diimplementasikan setiap kali melakukan perencanaan struktur. Bagaimana cara menerapkannya dalam mendesain

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 28 BAB II TINJAUAN PUSTAKA II.1 Material Beton II.1.1 Definisi Material Beton Beton adalah suatu campuran antara semen, air, agregat halus seperti pasir dan agregat kasar seperti batu pecah dan kerikil.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kolom Kolom beton murni dapat mendukung beban sangat kecil, tetapi kapasitas daya dukung bebannya akan meningkat cukup besar jika ditambahkan tulangan longitudinal. Peningkatan

Lebih terperinci

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral 1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok

Lebih terperinci

32 Media Bina Ilmiah ISSN No

32 Media Bina Ilmiah ISSN No 32 Media Bina Ilmiah ISSN No. 1978-3787 OPTIMASI TINGGI LUBANG BAJA KASTILASI DENGAN PENGAKU PADA PROFIL BAJA IWF 300 X 150 Oleh : Ni Kadek Astariani Universitas Ngurah Rai Denpasar Abstrak: Penggunaan

Lebih terperinci

viii DAFTAR GAMBAR viii

viii DAFTAR GAMBAR viii vi DAFTAR ISI HALAMAN DEPAN... I LEMBAR PENGESAHAN... II HALAMAN PERNYATAAN... III HALAMAN PERSEMBAHAN... IV KATA PENGANTAR... V DAFTAR ISI... VI DAFTAR GAMBAR... VIII DAFTAR TABEL... XI INTISARI... XII

Lebih terperinci

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke BAB III LANDASAN TEORI 3.1. Pelat Pelat beton (concrete slabs) merupakan elemen struktural yang menerima beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke balok dan kolom sampai

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Batang Tekan Pertemuan - 4

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Batang Tekan Pertemuan - 4 Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Batang Tekan Pertemuan - 4 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa dapat

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1. Hasil Pengumpulan Data Data dan asumsi ang digunakan pada penelitian ini adalah: a. Dimensi pelat lantai Dimensi pelat lantai ang dianalisa disajikan pada Tabel 4.1 berikut

Lebih terperinci

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON BAB IV BALOK BETON 4.1. TEORI DASAR Balok beton adalah bagian dari struktur rumah yang berfungsi untuk menompang lantai diatasnya balok juga berfungsi sebagai penyalur momen menuju kolom-kolom. Balok dikenal

Lebih terperinci

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini BAB I PENDAHULUAN I.1 Latar Belakang Pada saat ini kolom bangunan tinggi banyak menggunakan material beton bertulang. Seiring dengan berkembangnya teknologi bahan konstruksi di beberapa negara, kini sudah

Lebih terperinci

Analisis Profil Baja Kastilasi. Ni Kadek Astariani

Analisis Profil Baja Kastilasi. Ni Kadek Astariani GaneÇ Swara Vol 7 No1 Maret 2013 ANALISIS PROFIL BAJA KASTILASI NI KADEK ASTARIANI ABSTRAKSI Universitas Ngurah Rai Denpasar Penggunaan baja kastilasi selain dapat mengurangi biaya konstruksi dapat juga

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling

BAB I PENDAHULUAN Latar Belakang. Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling BAB I PENDAHULUAN 1.1. Latar Belakang Dalam bidang konstruksi, beton dan baja saling bekerja sama dan saling melengkapi dengan kelebihan dan kekurangan masing-masing bahan, sehingga membentuk suatu jenis

Lebih terperinci

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural

BAB III LANDASAN TEORI. Menurut McComac dan Nelson dalam bukunya yang berjudul Structural BAB III LANDASAN TEORI 3.1 Kolom Pendek Menurut McComac dan Nelson dalam bukunya yang berjudul Structural Steel Design LRFD Method yang berdasarkan dari AISC Manual, persamaan kekuatan kolom pendek didasarkan

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan konstruksi bangunan menggunakan konstruksi baja sebagai struktur utama. Banyaknya penggunaan

Lebih terperinci

MODUL 4 STRUKTUR BAJA 1. S e s i 1 Batang Tekan (Compression Member) Dosen Pengasuh : Ir. Thamrin Nasution

MODUL 4 STRUKTUR BAJA 1. S e s i 1 Batang Tekan (Compression Member) Dosen Pengasuh : Ir. Thamrin Nasution STRUKTUR BAJA 1 MODUL 4 S e s i 1 Batang Tekan (Compression Member) Dosen Pengasuh : Materi Pembelajaran : 1. Elemen Batang Tekan... Tekuk Elastis EULER. 3. Panjang Tekuk. 4. Batas Kelangsingan Batang

Lebih terperinci

BAB I PENDAHULUAN. atas dan bawah dengan cara digeser sedikit kemudian dilas. Gagasan semacam ini pertama kali dikemukakan oleh H.E.

BAB I PENDAHULUAN. atas dan bawah dengan cara digeser sedikit kemudian dilas. Gagasan semacam ini pertama kali dikemukakan oleh H.E. BAB I PENDAHULUAN 1.1 Latar Belakang Open-Web Expanded Beams and Girders (perluasan balok dan girder dengan badan berlubang) adalah balok yang mempunyai elemen pelat badan berlubang, yang dibentuk dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Beton Bertulang Beton terdiri atas agregat, semen dan air yang dicampur bersama-sama dalam keadaan plastis dan mudah untuk dikerjakan. Sesaat setelah pencampuran, pada adukan

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

KATA PENGANTAR. telah melimpahkan nikmat dan karunia-nya kepada penulis, karena dengan seizin-

KATA PENGANTAR. telah melimpahkan nikmat dan karunia-nya kepada penulis, karena dengan seizin- KATA PENGANTAR Puji dan syukur penulis sampaikan kehadirat Tuhan Yang Maha Esa yang telah melimpahkan nikmat dan karunia-nya kepada penulis, karena dengan seizin- Nyalah sehingga penulis dapat menyelesaikan

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m Soal 2 Suatu elemen struktur sebagai balok pelat berdinding penuh (pelat girder) dengan ukuran dan pembebanan seperti tampak pada gambar di bawah. Flens tekan akan diberi kekangan lateral di kedua ujung

Lebih terperinci

BAB I PENDAHULUAN. bersifat monolit (menyatu secara kaku). Lain halnya dengan konstruksi yang

BAB I PENDAHULUAN. bersifat monolit (menyatu secara kaku). Lain halnya dengan konstruksi yang BAB I PENDAHULUAN A. Latar belakang Pada suatu konstruksi bangunan, tidak terlepas dari elemen-elemen seperti balok, kolom pelat maupun kolom balok, baik itu yang terbuat dari baja, kayu, maupun beton,

Lebih terperinci

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan sarjana teknik sipil Anton Wijaya 060404116 BIDANG

Lebih terperinci

PLASTISITAS. Pendahuluan. Dalam analisis maupun perancangan struktur (design) dapat digunakan metoda ELASTIS atau Metoda PLASTIS (in elastis)

PLASTISITAS. Pendahuluan. Dalam analisis maupun perancangan struktur (design) dapat digunakan metoda ELASTIS atau Metoda PLASTIS (in elastis) PLASTISITAS Pendahuluan. Dalam analisis maupun perancangan struktur (design) dapat digunakan metoda ELASTIS atau etoda PLASTIS (in elastis) 1. Analisis Elastis Analisis struktur secara elastis memakai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang BAB II TINJAUAN PUSTAKA 2.1 Umum Struktur bangunan bertingkat tinggi memiliki tantangan tersendiri dalam desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang memiliki faktor resiko

Lebih terperinci

BAB 4 PENGUJIAN LABORATORIUM

BAB 4 PENGUJIAN LABORATORIUM BAB 4 PENGUJIAN LABORATORIUM Uji laboratorium dilakukan untuk mengetahui kekuatan dan perilaku struktur bambu akibat beban rencana. Pengujian menjadi penting karena bambu merupakan material yang tergolong

Lebih terperinci

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT 2.1 KONSEP PERENCANAAN STRUKTUR GEDUNG RAWAN GEMPA Pada umumnya struktur gedung berlantai banyak harus kuat dan stabil terhadap berbagai macam

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

ANALISIS PENGARUH DIMENSI DAN JARAK PELAT KOPEL PADA KOLOM DENGAN PROFIL BAJA TERSUSUN

ANALISIS PENGARUH DIMENSI DAN JARAK PELAT KOPEL PADA KOLOM DENGAN PROFIL BAJA TERSUSUN Jurnal Sipil Statik Vol.4 No.8 Agustus 216 (59-516) ISSN: 2337-6732 ANALISIS PENGARUH DIMENSI DAN JARAK PELAT KOPEL PADA KOLOM DENGAN PROFIL BAJA TERSUSUN Jiliwosy Salainti Ronny Pandaleke, J. D. Pangouw

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Bagan Alir Perencanaan Ulang Bagan alir (flow chart) adalah urutan proses penyelesaian masalah. MULAI Data struktur atas perencanaan awal, As Plan Drawing Penentuan beban

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA Roland Martin S 1*)., Lilya Susanti 2), Erlangga Adang Perkasa 3) 1,2) Dosen,

Lebih terperinci

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan BAB I PENDAHULUAN 1.6 Latar Belakang Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan kolom, baik yang terbuat dari baja, beton atau kayu. Pada tempat-tempat tertentu elemen-elemen

Lebih terperinci

ANALISIS DAKTILITAS BALOK BETON BERTULANG

ANALISIS DAKTILITAS BALOK BETON BERTULANG ANALISIS DAKTILITAS BALOK BETON BERTULANG Bobly Sadrach NRP : 9621081 NIRM : 41077011960360 Pembimbing : Daud Rahmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING )

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) [C]2011 : M. Noer Ilham Gaya tarik pada track stank akibat beban terfaktor, T u = 50000 N 1. DATA BAHAN PLAT SAMBUNG DATA PLAT SAMBUNG Tegangan leleh baja, f

Lebih terperinci