KOREKTOR FAKTOR DAYA OTOMATIS PADA INSTALASI LISTRIK RUMAH TANGGA

dokumen-dokumen yang mirip
BAB II LANDASAN TEORI

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

BAB II LANDASAN TEORI

Perancangan Alat Perbaikan Faktor Daya Beban Rumah Tangga dengan Menggunakan Switching Kapasitor dan Induktor Otomatis

PERANCANGAN COS PHI METER DIGITAL BERBASIS MIKROKONTROLER ATMEGA16

1.KONSEP SEGITIGA DAYA

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

Disusun oleh Muh. Wiji Aryanto Nasri ( ) Ryan Rezkyandi Saputra ( ) Hardina Hasyim ( ) Jusmawati ( ) Aryo Arjasa

Gambar 2.1 Alat Penghemat Daya Listrik

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Simulasi Pengukuran Daya Listrik Sistem 1 Fasa menggunakan LabVIEW

AUTOMATISASI PERBAIKAN FAKTOR DAYA BERBASIS MIKROKONTROLER ATmega32

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

Kata kunci: Faktor daya, Induktif, Kapasitif. Keyword : Power factor, Inductive, Capacitive. 1 PENDAHULUAN 1.1. Latar Belakang

BAB III CAPACITOR BANK. Daya Semu (S, VA, Volt Ampere) Daya Aktif (P, W, Watt) Daya Reaktif (Q, VAR, Volt Ampere Reactive)

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV

Implementasi Mikrokontroler Sebagai Pengendali Kapasitor Untuk Perbaikan Faktor Daya Otomatis pada Jaringan Listrik

MODUL 1 PRINSIP DASAR LISTRIK

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif

ANALISIS KEBUTUHAN CAPACITOR BANK BESERTA IMPLEMENTASINYA UNTUK MEMPERBAIKI FAKTOR DAYA LISTRIK DI POLITEKNIK KOTA MALANG

PERBAIKAN FAKTOR DAYA UNTUK BEBAN RUMAH TANGGA SECARA OTOMATIS

RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT

BAB III METODE PENELITIAN. pembebanan pada sistem tenaga listrik tiga fasa. Percobaan pembebanan ini

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

Design of Power Factor Corection (PFC) with Metering and Capasitor Bank Control for Dynamic Load

BAB II TINJAUAN PUSTAKA

RANGKAIAN ARUS BOLAK-BALIK.

COS PHI (COS φ) METER

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah

RANCANG BANGUN PERBAIKAN FAKTOR DAYA

INDUKSI EM DAN HUKUM FARADAY; RANGKAIAN ARUS BOLAK BALIK

PENGUJIAN ALAT PENGHEMAT DAYA LISTRIK KONSUMSI PUBLIK

RANCANG BANGUN PERBAIKAN FAKTOR DAYA OTOMATIS BERBASIS SMART RELAY PADA JARINGAN TEGANGAN RENDAH TIGA FASA

RESONANSI PADA RANGKAIAN RLC

Pengaruh Penambahan Kapasitor Terhadap Tegangan, Arus, Faktor Daya, dan Daya Aktif pada Beban Listrik di Minimarket

Daya Rangkaian AC [2]

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK

PENGARUH PEMASANGAN KAPASITOR SHUNT TERHADAP KONSUMSI DAYA AKTIF INSTALASI LISTRIK

BAB III. PERANCANGAN PERBAIKAN FAKTOR DAYA (COS φ) DAN PERHITUNGAN KOMPENSASI DAYA REAKTIF

ANALISIS ALAT PENGHEMAT LISTRIK TERHADAP INSTALASI ALAT RUMAH TANGGA

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda

BAB IV ANALISIS DATA

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB II TINJAUAN PUSTAKA

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

ANALISA PERBANDINGAN R DAN C SEBAGAI PENGGANTI L ( BALLAST ) PADA FLUORESCENT ATAU LAMPU TL ( LAMPU TABUNG ) Yasri

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

ANALISIS UPAYA PENURUNAN BIAYA PEMAKAIAN ENERGI LISTRIK PADA LAMPU PENERANGAN

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

BAB II TINJAUAN PUSTAKA

Prinsip Pengukuran Besaran Listrik

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya

Jurnal Teknika Atw 36

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR

DAYA AKTIF, REAKTIF & NYATA

TEGANGAN DAN ARUS BOLAK-BALIK

RANCANGAN BANGUN PENGUBAH SATU FASA KE TIGA FASA DENGAN MOTOR INDUKSI TIGA FASA

ek SIPIL MESIN ARSITEKTUR ELEKTRO

ARUS DAN TEGANGAN BOLAK- BALIK

20 kv TRAFO DISTRIBUSI

PENGGUNAAN MOTOR LISTRIK 3 PHASA SEBAGAI GENERATOR LISTRIK 1 PHASA PADA PEMBANGKIT LISTRIK BERDAYA KECIL

STUDI PENGARUH PEMASANGAN ENERGY SAVER PADA SISTEM TENAGA LISTRIK

BAB III KETIDAKSEIMBANGAN BEBAN

ANALISIS PENINGKATAN FAKTOR KERJA MOTOR INDUKSI 3 PHASA

Gambar 2.1 Skema Sistem Tenaga Listrik

ANALISIS RANGKAIAN RLC

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang

ARUS BOLAK BALIK. I m v. Gambar 1. Diagram Fasor (a) arus, (b) tegangan. ωt X(0 o )

PERBAIKAN FAKTOR DAYA UNTUK BEBAN RUMAH TANGGA SECARA OTOMATIS

BAB II GENERATOR SINKRON

MODUL PRAKTIKUM PENGUKURAN BESARAN LISTRIK

Rangkaian Arus Bolak Balik. Rudi Susanto

K13 Revisi Antiremed Kelas 12 Fisika

Teknik Tenaga Listrik(FTG2J2)

atau pengaman pada pelanggan.

MESIN SINKRON ( MESIN SEREMPAK )

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

Analisis Pengaruh Harmonisa terhadap Pengukuran KWh Meter Tiga Fasa

ANALISIS PERBAIKAN FAKTOR DAYA BEBAN RESISTIF,INDUKTIF,KAPASITIF GENERATOR SINKRON 3 FASA MENGGUNAKAN METODE POTTIER

BAB II MOTOR INDUKSI 3 Ø

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Segitiga Daya

OPTIMISASI Minimisasi Rugi-rugi Daya pada Saluran

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi


BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya

PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH. Jl Kaliurang km 14,5 Sleman Yogyakarta

BAB II SISTEM DAYA LISTRIK TIGA FASA

DAFTAR ISI. HALAMAN JUDUL... i. LEMBAR PENGESAHAN... ii. PERNYATAAN... iii. PRAKATA... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... ix. DAFTAR TABEL...

Politeknik Negeri Sriwijaya

Tarif dan Koreksi Faktor Daya

PEMBAHASAN. R= ρ l A. Secara matematis :

Antiremed Kelas 12 Fisika

EVALUASI PENGGUNAAN LAMPU LED SEBAGAI PENGGANTI LAMPU KONVENSIONAL

RANCANG BANGUN KAPASITOR BANK UNTUK EFISIENSI DAYA LISTRIK PADA INDUSTRI KECIL

Transkripsi:

KOREKTOR FAKTOR DAYA OTOMATIS PADA INSTALASI LISTRIK RUMAH TANGGA Yuniarto, Eko Ariyanto Program Studi Diploma III Teknik Elektro Sekolah Vokasi Universitas Diponegoro ABSTRACT Yuniarto, Eko Ariyanto, in this paper explain that TL lamps, electric motors, Air Conditioner (AC), and other electrical equipment which is widely used for industry and households. Where all the electrical equipment is a burden that is inductive. As a result of the use of an inductive load, causing the falling value of the electrical power factor mounted on the customer can not be used optimally. To overcome this, in this thesis, has created a tool to correct the power factor value automatically. To improve the power factor, is used capacitors mounted in parallel to the load. By using the integrator, it can be obtained how large capacitor must be mounted parallel to the load according to the inductive load changes resulting in improved power factor value. Test results showed that an increase in the value of power factor from 0.34 to 0.95. Keyword : power factor, capasitor, inductive load, integraton PENDAHULUAN Pemakaian beban induktif oleh pelanggan listrik untuk rumah tangga memang tidak bisa terhindar, karena banyak peralatan listrik semisal AC, kipas angin, lampu TL, pompa air dan lain-lain merupakan beban induktif. Akibat dari pemakain beban induktif ini akan membuat turunnya nilai faktor daya, sehingga dapat membuat kapasitas daya listrik yang terpasang pada pelanggan tidak dapat digunakan secara optimal. Banyak pelanggan listrik melakukan penambahan daya jika kapasitas daya yang terpasang dirasa kurang mencukupi kebutuhan. Padahal jika kapasitas daya yang terpasang dapat optimal, opsi penambahan daya tidak perlu dilakukan. Banyak cara yang digunakan untuk memperbaiki faktor daya, salah satunya adalah dengan menambahkan kapasitor. Di kalangan industri perbaikan faktor daya dengan menggunakan kapasitor ini telah banyak digunakan. Akan tetapi jarang digunakan pada kalangan rumah tangga. Pada umumnya faktor daya yang dijual dipasaran untuk keperluan rumah tangga hanya terdiri dari sebuah kapasitor. Sedangkan faktor daya yang dihasilkan berubah-ubah, hal ini disebabkan karena beban listrik pada rumah tangga juga berubah-ubah pula. Untuk mengatasi masalah tersebut, pada penelitian ini, dibuatlah sebuah alat yang dapat memperbaiki faktor daya secara otomatis sesuai beban induktif yang berubah-ubah dengan menggunakan integrator untuk menentukan besarnya kompensasi (kapasitor) yang harus dipasang paralel terhadap terjadinya perubahan beban induktif. DASAR TEORI Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik daya merupakan jumlah energi yang digunakan untuk melakukan kerja atau usaha. Daya listrik biasanya dinyatakan dalam satuan Watt atau Horsepower (HP), Horsepower merupakan satuan daya listrik dimana 1 HP setara 746 Watt atau lbft/second. Sedangkan Watt merupakan unit daya listrik dimana 1 Watt memiliki daya setara dengan daya yang dihasilkan oleh perkalian arus 1 Ampere dan tegangan 1 Volt. Daya dinyatakan dalam P, tegangan dinyatakan dalam V dan arus dinyatakan dalam I, sehingga besarnya daya dinyatakan : P = V x I P = Volt x Ampere x Cos φ P = Watt Gambar 1. Arah Aliran Arus Listrik Daya Aktif Daya aktif (active power) adalah daya yang terpakai untuk melakukan energi sebenarnya. Satuan daya aktif adalah Watt. Misalnya energi panas, cahaya, mekanik dan lain-lain. Rumus dari daya aktif adalah: P = V. I. Cosφ Daya ini digunakan secara umum oleh konsumen dan dikonversikan dalam bentuk kerja. 24 GEMA TEKNOLOGI Vol. 19 No. 4 Periode Oktober 2017 - April 2018

Daya Reaktif Daya reaktif (reactive power) adalah jumlah daya yang diperlukan untuk pembentukan medan magnet. Dari pembentukan medan magnet maka akan terbentuk fluks medan magnet. Contoh daya yang menimbulkan daya reaktif adalah transformator, motor, lampu TL dan lain-lain. Satuan daya reaktif adalah VAR. tegangan tersebut akan sefasa (berimpit) (Eminister,1994). Secara matematis dinyatakan: R = V I Q = V. I. Sinφ Q = S 2 + P 2 Q = E2 X Daya Semu Daya Semu (apparent power) adalah daya yang dihasilkan oleh perkalian antara tegangan rms dan arus rms dalam suatu jaringan atau daya yang merupakan hasil penjumlahan trigonometri daya aktif dan daya reaktif. Satuan daya semu adalah VA. Rumus daya semu adalah : Gambar 3. Rangkaian Beban Resistif Gambar 4. memperlihatkan grafik yang melukiskan tegangan bolak-balik dan kuat arus listrik bolak-balik dalam suatu system koordinat yang sama. S = V. I Gambar 4. Hubungan Fasa Antara Arus Dan Tegangan Pada Beban Resistif Gambar 2. Penjumlahan Trigonometri Daya Aktif, Reaktif Dan Semu Sifat Beban Listrik Dalam suatu rangkaian listrik selalu dijumpai suatu sumber dan beban. Bila sumber listrik DC, maka sifat beban hanya bersifat resistif murni, karena frekuensi sumber DC adalah nol. Reaktansi induktif (X L ) akan menjadi nol yang berarti bahwa induktor tersebut akan short circuit. Reaktansi kapasitif (X C ) akan menjadi tak terhingga yang berarti bahwa kapasitif tersebut akan open circuit. Jadi sumber DC akan mengakibatkan beban induktif dan beban kapasitif tidak akan berpengaruh pada rangkaian. Bila sumber listrik AC maka beban dibedakan menjadi tiga yaitu beban resistif, beban induktif, beban kapasitif. Beban Resistif Beban resistif yang merupakan suatu resistor murni. contoh: lampu pijar, pemanas. Beban ini hanya menyerap daya aktif dan tidak menyerap daya reaktif sama sekali. Apabila pada beban resistif murni dialiri arus listrik bolak-balik, maka arus dan Dari gambar 4 tampak bahwa V dan I mencapai nilai maksimum, nol dan minimum pada saat yang bersamaan. Pada keadaan demikian, dikatakan bahwa V dan I mempunyai fase yang sama (sefase). Cara lain untuk memperlihatkan hubungan antara V dan i dapat dilakukan dengan melukiskan dengan diagram phasor, seperti yang diperlihatkan dalam gambar 5. Gambar 5. Diagram Phasor Hubungan V dan I Rangkaian Resistor Beban Induktif Beban induktif adalah beban yang mengandung kumparan kawat yang dililitkan pada sebuah inti besi, contoh: motor-motor listrik, induktor dan transformator. Beban ini mempunyai faktor daya antara 0 1 lagging. Beban ini GEMA TEKNOLOGI Vol. 19 No. 4 Periode Oktober 2017 - April 2018 25

menyerap daya aktif (W) dan daya reaktif (VAR). Tegangan mendahului arus sebesar φ. Secara matematis dinyatakan: X L = 2πf.L Gambar 10. Rangkaian Beban Kapasitif Grafik V dan i untuk rangkaian kapasitor digambarkan dalam sebuah sistem koordinat yang sama, maka akan diperoleh kurva tegangan dan arus seperti tampak pada gambar dibawah ini. Gambar 7. Rangkaian Beban Induktif Gambar 8 melukiskan diagram hubungan antara V dan I untuk rangkaian induktor L dalam sebuah sistem koordinat yang sama. Gambar 11. Hubungan Fasa Antara Arus Dan Tegangan Pada Beban Kapasitif Gambar 8. Hubungan Fasa Antara Arus Dan Tegangan Pada Beban Induktif Dengan grafik tersebut, tampak bahwa V dan i berbeda fase sebesar π/2. Dalam diagram phasor, hubungan V dan i untuk rangkaian induktor dapat dilihat pada gambar dibawah ini Dari gambar 11 di atas tergambarkan bahwa V dan i berbeda fase π /2, yaitu arus i mendahului V sebesar π /2. Diagram phasor untuk rangkaian kapasitor C dapat digambarkan seperti pada gambar 12 sebagai berikut. Gambar 12. Diagram Phasor V dan i Rangkaian Kapasitor Gambar 9. Diagram Phasor V dan i Rangkaian Induktor 2.1.1 Beban Kapasitif Beban kapasitif adalah beban yang mengandung suatu rangkaian kapasitor. Beban ini mempunyai faktor daya antara 0 1 leading. Beban ini menyerap daya aktif (W) dan mengeluakan daya reaktif (VAR). arus mendahului tegengan sebesar φ. Secara matematis dinyatakan: 2.2 Segitiga Daya Segitiga daya merupakan segitiga yang menggambarkan hubungan matematika antara tipetipe daya yang berbeda (apparent power, active power, reactive power) berdasarkan prinsip trigonometri. X C = 1 2πfC 26 GEMA TEKNOLOGI Vol. 19 No. 4 Periode Oktober 2017 - April 2018

Gambar 7. Diagram Segitiga Daya Dimana berlaku hubungan: S = P 2 + Q 2 S = V.I P = S Cosφ Q = S Sinφ Gambar 8. Beban Resistif Beban yang bersifat induktif atau kapasitif dapat menggeser persilangan nol antara tegangan dan arus. Bila bebannya merupakan beban induktif persilangan nol gelombang arus muncul beberapa saat setelah persilangan nol gelombang tegangan muncul. Hal ini biasa dikatakan sebagai arus tertinggal. Faktor daya Faktor daya (Cosφ) dapat didefinisikan sebagai rasio perbandingan antara daya aktif (Watt) dan daya semu (VA) yang digunakan dalam sirkuit AC atau beda sudut fasa antara V dan I yang biasanya dinyatakan dalam Cosφ. Faktor daya = Daya Aktif (P) Daya Semu (S) = W VA = V.I Cos φ V.I = Cosφ Gambar 9. Beban Induktif Sebaliknya untuk arus beban yang bersifat kapasitif, persilangan nol gelombang arus akan muncul beberapa saat sebelum persilangan nol gelombang tegangan. Hal ini biasa dikatakan sebagai arus mendahului. Faktor daya mempunyai nilai range antara 0 1 dan dapat juga dinyatakan dalam persen. Faktor daya yang bagus apabila bernilai mendekati satu. Tanφ = Daya Reaktif (Q) Daya Aktif (P) = VAR W Karena komponen daya aktif umumnya konstan (komponen VA dan VAR berubah sesuai dengan faktor daya), maka dapat ditulis seperti berikut: Daya Reaktif (Q) = Daya Aktif (P) Tan φ Perbaikan Faktor Daya Dalam sebuah sumber arus bola balik, bila beban yang diaplikasikan bersifat resistif murni, maka gelombang tegangan dan arus adalah sefasa seperti yang diperlihatkan gambar 8. Gambar 10. Beban Kapasitif Sebuah kapasitor daya atau yang dikenal dengan nama kapasitor bank harus mempunyai daya Q C yang sama dengan daya reaktif dari system yang akan diperbaiki faktor dayanya. Jika keadaan ini dipenuhi, kapasitor bank akan memperbaiki faktor daya menjadi bernilai maksimum (faktor daya = 1). Besarnya daya reaktif yang diperlukan untuk mengubah faktor daya dari cos φ 1 menjadi cos φ 2 dapat ditentukan dengan: GEMA TEKNOLOGI Vol. 19 No. 4 Periode Oktober 2017 - April 2018 27

Qc = P x (tanθ 1 tanθ 2 ) PERANCANGAN ALAT Blok Diagram Keterangan : P : Daya Aktif (Watt) Qc : Daya Reaktif Kompensator (VAR) θ 1 : Sudut sebelum diperbaiki : Sudut setelah diperbaiki θ 2 Gambar 12. Blok diagram Gambar 11. Prinsip Perbaikan Faktor Daya Untuk menghitung ukuran kapasitor yang diperlukan untuk melawan dampak dari faktor daya yang tertinggal, dengan cara menurunkan dalam persamaan sebagai berikut : Keterangan: Qc Xc E f Qc = E2 Xc Xc = E2 Qc C = 1 2 π f.xc : Daya Reaktif Kompensator (VAR : Hambatan Kompensator (Ohm) : Tegangan Listrik (V) : Frekuensi Listrik (Hz) Dasar Alat yang Dibuat Sinyal kondisioner dari jala-jala listrik masuk ke sensor arus dan sensor tegangan. Sinyal kondisioner ini berupa gelombang sinus. Sinyal keluaran dari sensor tegangan berupa gelombang sinus terpenggal, amplitudo tetap. Selanjutnya kedua sinyal dari sensor tegangan dan arus diubah menjadi gelombang kotak agar bisa diterima oleh rangkaian pembanding fasa. Untuk mengubah gelombang sinus menjadi gelombang kotak dibutuhkan rangkaian zero crossing detector yaitu rangkaian yang mengubah sinyal sinusoida menjadi gelombang kotak. Rangkaian pembanding fasa mempunyai dua input dan dua output. Masukan dari rangkaian pembanding fasa berupa gelombang kotak dari sensor arus dan sensor tegangan. Karena beban cenderung induktif atau arus ketinggalan berarti sinyal dari sensor arus ketinggalan dari sinyal sensor tegangan. Sinyal sensor tegangan akan menset satu dari rangkaian pembanding fasa dan output akan direset apabila disusul masukan dari sinyal sensor arus. Sinyal output rangkaian pembanding fasa akan menuju integrator. Integrator ini membuat beda waktu antara sinyal dari sensor arus dan sensor tegangan. Semakin lama sinyal dari sensor arus maka tegangan output pembanding fasa akan tinggi, begitu juga sebaliknya. Dan apabila sefasa maka tegangan output akan konstan. Tegangan output integrator akan diproses dengan komparator untuk menentukan besar kompensasi yang diberikan. Apabila tegangan masukan komparator lebih tinggi dari tegangan referensi maka tegangan keluaran akan bernilai high dan menyalakan driver relay, begitu juga sebaliknya, apabila tegangan input lebih rendah dari tegangan referensi maka output komparator akan bernilai low. Driver relay ini akan menghubungkan kapasitor pada jala-jala listrik sehingga beban akan bersifat kapasitif akibat adanya kapasitor. Pada saat jaringan bersifat kapasitif maka sensor tegangan dan sensor arus akan membaca perubahan fasa ini sehingga komparator akan menentukan berapa banyak kapasitor yang akan dibutuhkan 28 GEMA TEKNOLOGI Vol. 19 No. 4 Periode Oktober 2017 - April 2018

HASIL PENGUKURAN Dari alat dibuat yang telah dibuat kemudian dilakukan uji coba menggunakan beban lampu TL dengan besar beban yang bervariasi yaitu 1 x 15 W, 2 x 15 W, 3 x 15 W, dan 4 x 15 W. Dari hasil pengukuran didapatkan data-data seperti pada tabel 1 dan 2. Hasil pengukuran diatas didapat bahwa arus listrik yang mengalir sebelum dipasang kapasitor lebih besar daripada arus listrik pada saat dipasang kapasitor. Sedangkan untuk faktor daya terjadi kenaikan nilai faktor daya yang semula 0,34 0,36 menjadi 0,90 0,95. Tabel 1. Pengukuran Sinyal Sensor No Beban Sebelum Dipasang Kapasitor Setelah Dipasang Kapasitor 1 Tanpa beban 2 1 x 15 Watt 3 2 x 15 Watt 4 3 x 15 Watt GEMA TEKNOLOGI Vol. 19 No. 4 Periode Oktober 2017 - April 2018 29

5 4 x 15 Watt Tabel 2. Pengukuran Arus dan Faktor Daya Sebelum Dipasang C Setelah Dipasang C No Beban Arus (A) Cosphi Arus (A) Cosphi 1 1 x 15 Watt 0,22 0,35 0,08 0,95 2 2 x 15 Watt 0,44 0,34 0,15 0,90 3 3 x 15 Watt 0,66 0,35 0,22 0,92 4 4 x 15 Watt 0,88 0,36 0,30 0,91 KESIMPULAN Sensor fasa tegangan dan fasa arus dapat bekerja dengan baik seperti yang terlihat di tabel 4.1. Alat yang dibuat bisa bekerja dengan baik, yang ditandai dengan cos phi yang cenderung tetap meskipun beban berubah. Perubahan cos phi cukup significant yang diikuti juga dengan perubahan arus yang cukup significant pada saat sebelum diberi kapasitor dan sesudah diberi kapasitor. DAFTAR PUSTAKA 1. Bishop, Owen. 2004. Electronics a first Course. (diterjemahkan oleh: Irzam Harmein). Jakarta: Erlangga 2. Calyton, George, Steve winder. 2005. Operational Amplifiers. Edisi Kelima. (diterjemahkan oleh: Wiwit Kastawan). Jakarta: Erlangga. 3. Coughlin, Robert F., Frederick F. Driscoll. 1983. Operational Amplifiers and Linear Integrated Circuits. Edisi Kedua. (diterjemahkan oleh: Herman Widodo Soemitro). Jakarta: Erlangga. 4. Fauzan. Pembuatan dan Pengujian Modul Beban Tak Seimbang. http://isjd.pdii.lipi.go.id/admin/jurnal/5108374 0.pdf 30 GEMA TEKNOLOGI Vol. 19 No. 4 Periode Oktober 2017 - April 2018