PERILAKU LENTUR MORTAR DENGAN SABUT KELAPA. Istiqomah 1 dan Iswandi Imran 2

dokumen-dokumen yang mirip
BAB I PENDAHULUAN. Dewasa ini perkembangan konstruksi bangunan di Indonesia semakin

PENINGKATAN KUAT LENTUR PADA BETON DENGAN PENAMBAHAN FIBER POLYPROPHYLENE DAN COPPER SLAG (TERAK TEMBAGA)

PENGARUH PEMANFAATAN SERAT KELAPA TERHADAP KINERJA BETON MUTU TINGGI

BAB IV HASIL EKSPERIMEN DAN ANALISIS

BAB I PENDAHULUAN. 1.1 Latar Belakang

STUDI EKSPERIMENTAL PENGGUNAAN PORTLAND COMPOSITE CEMENT TERHADAP KUAT LENTUR BETON DENGAN f c = 40 MPa PADA BENDA UJI BALOK 600 X 150 X 150 mm 3

PENGARUH PENAMBAHAN SERAT SABUT KELAPA TERHADAP KUAT TEKAN BETON

BAB 3 METODE PENELITIAN

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN. peningkatan kebutuhan bahan-bahan pendukungnya. Salah satu yang meningkat

BAB I PENDAHULUAN Latar Belakang. Seiring dengan laju pembangunan yang semakin pesat, beton telah banyak

STUDI EKSPERIMENTAL PENGARUH SERAT BAMBU TERHADAP SIFAT-SIFAT MEKANIS CAMPURAN BETON

TINJAUAN KUAT GESER DAN KUAT LENTUR BALOK BETON ABU KETEL MUTU TINGGI DENGAN TAMBAHAN ACCELERATOR

PERKUATAN KOLOM BETON BERTULANG DENGAN FIBER GLASS JACKET PADA KONDISI KERUNTUHAN TARIK

3.4.2 Pemeriksaan Berat Jenis dan Penyerapan Air Agregat Halus Error! Bookmark not defined Kadar Lumpur dalam Agregat... Error!

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN

BAB V KESIMPULAN DAN SARAN

EKSPERIMEN DAN ANALISIS BEBAN LENTUR PADA BALOK BETON BERTULANGAN BAMBU RAJUTAN

BAB I PENDAHULUAN. ini, para insinyur dituntut untuk memberikan inovasi-inovasi baru agar bisa

PERBANDINGAN KUAT TARIK LENTUR BETON BERTULANG BALOK UTUH DENGAN BALOK YANG DIPERKUAT MENGGUNAKAN CHEMICAL ANCHOR

PENGARUH PENGGUNAAN SERAT ALAM TERHADAP KEKUATAN GESER BALOK BETON MUTU TINGGI

STUDI PERILAKU BETON BERKEKUATAN TINGGI YANG MENGGUNAKAN SEMEN PCC DAN POLYPROPYLENE FIBER-MESH

STUDI EKSPERIMENTAL PENGARUH PENGGUNAAN STELL FIBER TERHADAP UJI KUAT TEKAN, TARIK BELAH DAN KUAT LENTUR PADA CAMPURAN BETON MUTU f c 25 MPa

PERBAIKAN KOLOM BETON BERTULANG MENGGUNAKAN GLASS FIBER JACKET DENGAN VARIASI TINGKAT PEMBEBANAN

KAJIAN KUAT TEKAN DAN KUAT TARIK BETON RINGAN MEMANFAATKAN SEKAM PADI DAN FLY ASH DENGAN KANDUNGAN SEMEN 350 kg/m 3

TINJAUAN KEKUATAN DAN ANALISIS TEORITIS MODEL SAMBUNGAN UNTUK MOMEN DAN GESER PADA BALOK BETON BERTULANG TESIS

PENGARUH PERBANDINGAN PANJANG BENTANG GESER DAN TINGGI EFEKTIF PADA BALOK BETON BERTULANG

BAB I PENDAHULUAN. Dalam dunia Teknik Sipil, pengkajian dan penelitian masalah bahan bangunan

PENGUNAAN BAHAN MATRIK SEMEN,GIBSUM, TANAH LIAT TERHADAP PEMANFAATAN SABUT KELAPA SEBAGAI SERAT UNTUK PEMBUATAN PAPAN SERAT SABUT KELAPA

BAB III METODOLOGI PENELITIAN

PENGARUH VOLUME SERAT LOKAL TERHADAP KEKUATAN LENTUR REACTIVE POWDER CONCRETE (232M)

BAB 3 METODE PENELITIAN

BAB 4 HASIL DAN ANALISA

KAJIAN KUAT TARIK BETON SERAT BAMBU. oleh : Rusyanto, Titik Penta Artiningsih, Ike Pontiawaty. Abstrak

Keywords: high quality concrete, waste strapping band, polypropylene concrete, fiber concrete

Pengaruh Penggunaan Serat Baja Terhadap Flexural Toughness Reactive Powder Concrete

PERBAIKAN DAN PERKUATAN LENTUR BALOK BETON BERTULANG DENGAN GLASS FIBER TIPE WOVEN ROVING

PENELITIAN AWAL TENTANG PENGGUNAAN CONSOL FIBER STEEL SEBAGAI CAMPURAN PADA BALOK BETON BERTULANG

BAB III METODOLOGI PENELITIAN

BAB V KESIMPULAN DAN SARAN

PENGARUH PENAMBAHAN SERAT KAWAT BENDRAT DAN SERAT IJUK PADA BETON K-225 TERHADAP KUAT GESER

Daftar Pustaka D.P-1 DAFTAR PUSTAKA

ADDED INFLUENCE "OIL PALM COIR FIBER" TO CONCRETE STRENGTH

KAJIAN PENAMBAHAN SERAT SINTETIK PADA CAMPURAN BETON TERHADAP SIFAT MEKANIK BETON

BAB I PENDAHULUANb Latar Belakang Permasalahan

PERILAKU LENTUR BALOK BETON DENGAN PERKUATAN BAMBU PETUNG DAN PEREKAT BERBAHAN DASAR SEMEN (160S)

Gravitasi Vol. 14 No.1 (Januari-Juni 2015) ISSN: ABSTRAK

BAB I 1.1 LATAR BELAKANG

PERILAKU STRUKTUR BETON BERTULANG AKIBAT PEMBEBANAN SIKLIK

PENGARUH VARIASI KADAR LIGHTWEIGHT EXPANDED CLAY AGGREGATE (LECA) TERHADAP KARAKTERISTIK BETON SERAT BAGU

PENGARUH PEMANFAATAN SERAT SABUT KELAPA DENGAN PERLAKUAN ALKALI TERHADAP KUAT TEKAN DAN KUAT TARIK BETON

PENGARUH KUAT TEKAN TERHADAP KUAT LENTUR BALOK BETON BERTULANG

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON

SUB JURUSAN STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

DAFTAR ISI JUDUL PENGESAHAN PERNYATAAN BEBAS PLAGIASI ABSTRAK ABSTRACT KATA PENGANTAR

PENGARUH PENGGUNAAN WIRE ROPE SEBAGAI PERKUATAN LENTUR TERHADAP KEKUATAN DAN DAKTILITAS BALOK BETON BERTULANG TAMPANG T (040S)

BAB I PENDAHULUAN 1.1. Latar Belakang

PENGARUH PENAMBAHAN SERAT BAJA 4D DRAMIX TERHADAP KUAT TEKAN, TARIK BELAH, DAN LENTUR PADA BETON

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

Laboratorium Bahan, Struktur, dan Konstruksi Bangunan, Program Studi Arsitektur, Fakultas Teknik, Universitas Hasanuddin.

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

Pengaruh Persentase Serat Sabut Pinang (Areca Catechu L. Fiber) dan Foam Agent terhadap Sifat Fisik dan Mekanik Papan Beton Ringan

PERKUATAN KOLOM BETON BERTULANG DENGAN GLASS FIBER JACKET UNTUK MENINGKATKAN KAPASITAS BEBAN AKSIAL (034S)

BAB III METODOLOGI PENELITIAN

BAB 1 PENDAHULUAN. Beton merupakan salah satu material yang banyak digunakan sebagai material

KAJIAN EKSPERIMENTAL PERILAKU BALOK BETON TULANGAN TUNGGAL BERDASARKAN TIPE KERUNTUHAN BALOK ABSTRAK

III. METODE PENELITIAN

PEMERIKSAAN KUAT TEKAN DAN MODULUS ELASTISITAS BETON BERAGREGAT KASAR BATU RINGAN APE DARI KEPULAUAN TALAUD

KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL

EFEKTIFITAS PASIR KUARSA SEBAGAI AGREGAT HALUS PADA SIFAT MEKANIK BETON

EFEKTIFITAS PASIR KUARSA SEBAGAI AGREGAT HALUS PADA SIFAT MEKANIK BETON

KARAKTERISTIK BETON DENGAN PENAMBAHAN LIMBAH SERAT NYLON DAN POLIMER CONCRETE

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB III METODE PENELITIAN. Metodelogi penelitian dilakukan dengan cara membuat benda uji (sampel) di

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB II TINJAUAN PUSTAKA. kualitas bahan, cara pengerjaan dan cara perawatannya.

BAB IV ANALISA PENELITIAN

BAB V HASIL DAN PEMBAHASAN. A. Hasil Pemeriksaan Bahan

BAB I PENDAHULUAN Latar Belakang

Ganter Bridge, 1980, Swiss. Perencanaan Struktur Beton Bertulang

BAB I PENDAHULUAN. dipakai dalam pembangunan. Akibat besarnya penggunaan beton, sementara material

commit to user 1 BAB 1 PENDAHULUAN

PENGARUH VARIASI DIMENSI BENDA UJI TERHADAP KUAT LENTUR BALOK BETON BERTULANG

PENGARUH SUPERPLASTICIZER TERHADAP BETON PASIR SERAT KAWAT BENDRAT 60 MM

Pengaruh Panjang Serat Kulit Bambu Terhadap Sifat Mekanik Beton

BAB I PENDAHULUAN 1.1 Latar Belakang

The Influence of Steel Fiber Amount And L/D ratio to Mechanical Properties of Concrete

BAB V HASIL PEMBAHASAN

STUDI EKSPERIMENTAL PENGARUH PENAMBAHAN SUPERPLASTICIZER TERHADAP KUAT LENTUR BETON RINGAN ALWA MUTU RENCANA f c = 35 MPa

PENGARUH BEBAN PENEKANAN PADA PROSES PEMBUATAN BATA RINGAN BERSERAT SEKAM PADI TERHADAP KEKUATAN LENTUR & POROSITAS PRODUK

BAB I PENDAHULUAN. dengan cepat. Hal ini disebabkan karena beberapa keuntungan dari penggunaan

PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM

BAB V HASIL PENELITIAN DAN PEMBAHASAN

BAB I PENDAHULUAN. 1 Universitas Kristen Maranatha

1. PENDAHULUAN 1.1. BETON

I. PENDAHULUAN. Beton dan bahan dasar butiran halus (cementitious) telah digunakan sejak

BAB 3 METODE PENELITIAN

PEMAKAIAN SERAT HAREX SF DENGAN SERUTAN BAJA LIMBAH LABORATORIUM TEKNOLOGI MEKANIKA STTNAS TERHADAP PENINGKATAN KEKUATAN TARIK BELAH BETON

Transkripsi:

PERILAKU LENTUR MORTAR DENGAN SABUT KELAPA Istiqomah 1 dan Iswandi Imran 2 1 Jurusan Pendidikan Teknik Sipil, Universitas Pendidikan Indonesia, Jl. Setiabudhi no 207 Bandung Email: istiq1512@gmail.com 2 Departemen Teknik Sipil, Institut Teknologi Bandung, Jl. Ganesa no 10 Bandung Email: iswandiimran@gmail.com ABSTRAK Salah satu kelemahan material beton adalah memiliki kapasitas lentur yang rendah. Oleh karenanya usaha untuk meningkatkan kapasitas lentur tersebut perlu dilakukan. Salah satu upaya untuk meningkatkan kapasitas lentur beton tersebut adalah dengan cara memberi tulangan pada beton polos. Penulangan pada beton polos dapat dilakukan dengan menggunakan tulangan atau penambahan serat. Serat yang dapat digunakan adalah serat baja, serat sintetik dan serat natural. Pada paper ini akan dikaji perilaku lentur mortar dengan penambahan serat natural khususnya sabut kelapa. Perilaku ini ditinjau pada mortar dengan faktor air semen (w/c) 0.65, dengan sabut kelapa sebesar 1% dari berat semen. Sebelum digunakan sabut kelapa mengalami perlakuan yakni dengan dicuci NaOH. Benda uji yang dibuat sebanyak 9 buah, yakni 3 buah benda uji lentur mortar tanpa sabut kelapa, 3 buah benda uji lentur mortar dengan sabut kelapa tanpa perlakuan dan 3 buah benda uji lentur mortar dengan sabut kelapa yang dicuci dengan NaOH. Hasil yang diperoleh adalah benda uji dengan sabut kelapa mengalami peningkatan kapasitas lentur sebesar 27%, kapasitas toughness sebesar 331,36%, defleksi yang terjadi meningkat 638,33%. Kata kunci: kapasitas lentur, mortar, sabut kelapa, perlakuan. 1. PENDAHULUAN Salah satu material yang banyak digunakan dalam pembangunan infrastruktur adalah beton. Hal ini disebabkan beton banyak memiliki kelebihan diantaranya: (1) lebih ekonomis jika dibandingkan dengan material yang lain, (2) beton dapat dengan mudah dicetak sesuai dengan kebutuhan baik untuk keperluan struktural maupun untuk keperluan arsitektur, (3) beton dapat memikul beban yang berat dan memiliki kekakuan yang cukup tinggi, (4) tahan api dan temperatur tinggi, (5) bangunan beton tidak memerlukan perawatan khusus dan (6) ketersediaan material penyusun beton dan kemudahan pengangkutan. Namun demikian beton memiliki kelemahan yaitu: (1) kuat tarik beton sangat kecil jika dibandingkan dengan kuat tekan beton (2) mudah retak (3) pola keruntuhan bersifat getas. Salah satu cara untuk mengatasi kelemahan beton adalah dengan menambahkan serat pada campuran beton. Penambahan serat pada campuran beton diharapkan dapat menjadi tulangan mikro pada campuran. Menurut Hannant (1978) penambahan serat pada semen ataupun beton akan mempengaruhi sifat mekanik beton sebagai berikut: (1) meningkatkan kuat tarik atau kuat lentur, (2) meningkatkan impact strength, (3) mengurangi terjadinya retak, (4) meningkatan daktilitas pasca retak sehingga mengubah pola keruntuhan yang bersifat getas menjadi daktail, ( 5) Mengubah karaktristik rheology atau aliran dari material saat segar. Serat yang dapat digunakan dalam campuran semen atau beton antara lain asbestos, glass, baja, karbon, kevlar, cellulosa, nylon dan polypropylene. Dilihat dari modulus elastisitasnya serat dibagi dalam dua kelompok yaitu: (1) Serat dengan modulus elastisitas tinggi seperti: asbestos, baja, glass, karbon dan kevlar (2) Serat dengan modulus elastisitas rendah contohnya serat alami, polypropylene dan nylon. Secara umum, serat dengan modulus elastisitas yang rendah lebih murah daripada serat dengan modulus elasitas tinggi. Sebagai contoh harga serat alami lebih murah daripada serat baja. Bahkan di negara agraris serat alami dapat berasal dari limbah pertanian dan perkebunan. Indonesia sebagai salah satu negara agraris memiliki sumber serat alami yang melimpah. Salah satunya adalah sabut kelapa limbah dari perkebunan kelapa. Limbah dari perkebunan kelapa ini belum termanfaatkan secara optimal. Ditinjau dari mekanika bahan sabut kelapa memiliki kuat tarik dan perpanjangan yang cukup besar (Ramakrisna & Sundarajan(2005)), hal ini akan sangat bermanfaat untuk mengubah sifat material yang semua getas menjadi daktail. Disisi lain wilayah Indonesia berada didaerah gempa tinggi sehingga membutuhkan material yang memiliki mekanisme keruntuhan yang daktail, dengan mekanisme keruntuhan yang daktail memungkinkan untuk melakukan tindakan penyelamatan. Untuk mengetahui perilaku daktail material juga dapat dilihat dari perilaku pada waktu menerima beban lentur. Hal ini dapat dilihat dari perilaku lentur yang terjadi pada KoNTekS 6 MB-93

material yang digunakan. Maka penambahan sabut kelapa. pada paper ini akan dikaji mekanisme lentur pada mortar dengan 2. TINJAUAN PUSTAKA Beton Berserat ( serat reinforced concrete) (FRC) Sekarang ini dunia material konstruksi bangunan berkembang dengan pesat. Demikian juga pada material beton, dalam upaya untuk meningkatkan kinerja beton maka dikembangkan beton berserat. Beton berserat ( serat reinforced concrete) (FRC) adalah beton yang mendapatkan tambahan serat dengan takaran tertentu. Penambahan serat ini menjadikan beton memiliki tulangan mikro. Penambahan serat pada beton berdasarkan orentasinya dibedakan menjadi dua yakni secara acak dan berlapis. Pada penambahan serat yang acak, memungkinkan serat memikul beban tarik yang terjadi secara acak sehingga tidak terjadi retak mikro. Kekuatan beton berserat ditentukan oleh interaksi antara matrik dan serat pengisi. Menurut Balaguru & shah (1992) parameter yang menentukan kekuatan dari beton berserat adalah: (1) kondisi matriks, sebelum dan sesudah retak, (2) komposisi matriks, (3) geometri serat, (4) type serat yang digunakan, (5) permukaan serat, (6) kekakuan serat dibanding kekakuan matriks, (7) volume serat yang ditambahkan. Kondisi matriks sebelum retak dan sesudah retak akan membedakan pola penyaluran gaya pada komposit. Geometri serat dan permukaan serat akan menentukan kuatnya lekatan antara serat dan matriksnya. Semakin halus permukaan serat akan menyebabkan lekatan antara mortar dan serat tidak kuat. Kekakuan serat menentukan pola keruntuhan dan penyaluran gaya yang terjadi pada komposit. Pengaruh lain akibat penambahan serat adalah pada workability campuran. Semakin besar volume serat yang ditambahkan pada campuran beton maka workability campuran akan mengalami penurunan. Sabut kelapa Serat yang digunakan pada beton berserat dapat dikelompokkan menjadi 4 yakni: (1) logam (2) polymerir (3) Mineral (4) Natural. Serat logam yang banyak digunakan untuk campuran beton adalah serat baja dan stainlees steel. Serat yang berasal dari mineral salah satunya adalah serat glass. Yang sekarang ini banyak digunakan dalam dunia konstruksi adalah serat sintetis dari polimer seperti aramid, acrilic, nylon polypropilene, polyester dan polyethylene. Serat natural diantaranya adalah sabut kelapa,jute, rami, sisal. Sabut kelapa merupakan serat alami yang berasal limbah dari perkebunan. Sabut kelapa diperoleh dari penguraian kulit luar dari buah kelapa. Ada dua cara untuk penguraian sabut kelapa (1) cara klasik (2) cara modern dengan menggunakan mesin dekurator. Penguraian dengan cara klasik dapat digunakan cara kering dan cara basah. Penguraian dengan cara basah dilakukan dengan merendam kulit kelapa di air dengan waktu 3-6 bulan sehingga kulit dan gabus dari kulit kelapa mulai membusuk kemudian dicuci sampai serbuk kelapa terpisah dari sabut kelapa. Penguraian cara kering dengan cara mengeringkan di bawah sinar matahari lalu di pukul-pukul sampai terurai antara sabut dengan gabus. Penguraian menggunakan cara modern dilakukan dengan memasukkan ke mesin dekurator sehingga terurai antara sabut dan serbuknya. Komposisi senyawa kimia sabut kelapa yang dominan adalah selullosa, hemiselullosa dan lignin. Kandungan lignin sabut kelapa lebih tinggi dari serat alami yang lain. Kandungan lignin yang tinggi menyebabkan sabut kelapa: tidak mudah rapuk, lekatan menjadi lemah dan lebih ulet. Untuk mengatasi hal ini Gu (2009) melakukan treatment dengan menggunakan NaOH dengan konsentrasi 2%, 4%, 6%, 8%, memberikan kesimpulan semakin besar konsentrasi NaOH yang digunakan tegangan tarik sabut kelapa mengalami penurunan. Hasil penelitian ini merekomendasikan konsentrasi yang optimal adalah 2%. Hasil SEM sabut kelapa menunjukkan terjadi perubahan pada permukaan sabut yang ditreatment dengan NaOH, permukaan menjadi rata, pori terlihat dan lebih kasar. Perubahan permukaan ini memungkinkan lebih mudah terjadi lekat dengan matriks dan lekatan yang terjadi lebih kuat. Kapasitas Lentur Perilaku lentur komposit ditentukan oleh kondisi penyusunnya. Pada beton berserat sebagai material komposit yang berperan sebagai matriks adalah mortar dan serat sebagai pengisi, sehingga perilaku beton berserat tergantung pada tipe serat dan jumlah serat yang ditambahkan pada mortar. Berdasarkan tipe serat dan volume serat yang ditambahkan ada empat kemungkinan yang hubungan tegangan dan regangan yang terjadi pada komposit terjadi seperti pada Gambar 1. Pada gambar 1, kurva 1 dan 2 menunjukkan hubungan antara beban dan defleksi yang terjadi jika komposit disusun oleh serat yang memiliki kekuatan kurang dari kekuatan matriks sebelum terjadi retak. Sehingga pada saat kekuatan retak matriks terlampaui maka terjadi penurunan kemampuan komposit memikul beban. Kurva 3 dan 4 menunjukkan kekuatan serat lebih tinggi dari pada kekuatan matriks sebelum retak, sehingga ketika terjadi retak tetap terjadi peningkatan kemampuan komposit dalam menahan beban. Kurva 4 terjadi, jika kekuatan serat lebih kuat dari pada MB-94 KoNTekS 6

kekuatan matriks sebelum retak dengan volume serat lebih tinggi dari 10%. Pasca retak matrik tidak terjadi penurunan beban, bahkan terjadi penambahan beban dan defleksi yang terjadi cukup besar. 4 L O A d 1 2 3 1. Matrik lebih kuat dari serat. 2. Matrik lebih kuat dari serat, volume besar. 3. Serat lebih kuat dari matrik 4. Serat lebih kuat dari matriks dengan volume lebih 10% De flek si Gambar 1. Kurva beban vs defleksi untuk komposit serat dengan tipe dan volume serat berbeda Untuk menghitung kontribusi serat pada komposit, Balaguru dan Shah (1992), merekomendasikan pengujian lentur toughness (flexural toughness). Lentur toughness (flexural toughness) adalah kapasitas absorbsi energy dari suatu material. Lentur toughness dapat dihitung dari luasan dibawah kurva tegangan regangan atau perilaku hubungan beban dan defleksi dari suatu elemen. Peningkatan toughness juga berarti peningkatan performance elemen terhadap beban fatigue, impact dan beban impuls, selain itu mekanisme toughness juga menggambarkan daktilas elemen. Kemampuan komposit berdeformasi sebelum mengalami kegagalan diukur dengan indeks toughness. Pengujian kapasitas lentur toughness dilakukan dengan pengujian balok pada tumpuan sederhana dengan empat pembebanan (third point loading ) seperti pada Gambar 2 dibawah ini. P 100mm 100mm 100 mm Ganbar 2. Skema pengujian kuat lentur mortar dengan third point loading. ACI committe 544 memberikan idealisasi perhitungan Indeks toughness sebagai berikut: = Cara lain untuk menentuan indeks toughness berdasarkan ASTM 1018-97. Menurut ASTM indeks toughness dibagi dalam tiga level indeks I 5 I 10 dan I 20 yang didefinisikan sebagai berikut: = = =.. dimana δ adalah defleksi pada saat retak pertama. 1 2 3 4 KoNTekS 6 MB-95

Lebih jelasnya dapat dilihat pada gambar 3 dibawah ini. LuasOABCI I 5 = LuasOAJ LuasOABDH I 10 = LuasOAJ LuasOABEG I 30 = LuasOAJ Gambar 3. Pengukuran toughness dan definisi indeks toughness menurut ASTM C1018 (Balaguru&shah(1992)) The Japan concrete Institute (JCI) mendefinisikan energi toughness adalah luasan dibawah kurva hubungan beban dengan defleksi, defleksi yang diperhitungkan hingga defleksi S/150. Kurva hubungan beban dan defleksi diperoleh dari pengujian lentur prisma. Ukuran prisma tergantung dari panjang serat yang digunakan. Untuk serat lebih pendek dari 40 mm digunakan benda uji prisma 100 x 100 mm dengan bentang 300 mm, sedangkan untuk serat yang lebih panjang disarankan menggunakan benda uji prisma dengan ukuran 150 x 150 mm dengan panjang bentang 450 mm. Gambar 4. Pengukuran toughness dan definisi indeks toughness menurut Japan Concrete Institute (Balaguru & Shah,1992) Sedangakan untuk besarnya modulus of rupture ( kapasitas lentur maksimum) digunakan rumus sebagai berikut: = 5 Dimana: R: Modulus of ruture, P: Beban maksimum, L: panjang bentang, b: lebar benda uji, d: tinggi benda uji. 3. METODA PENELITIAN Metoda penelitian yang dilakukan dibagi dalam beberapa tahapan. Tahapan ini dimulai dengan tahapan material dan pengujiannya, kemudian tahap pembuatan benda uji dan tahap pengujian. Material Material yang dipakai dalam pembuatan benda uji terdiri dari: 1. Semen tipe PCC memenuhi SNI 15-2049-2004. 2. Agregat halus berupa pasir lolos saringan ukuran 5 mm. Dilakukan pengujian untuk mendapatkan sifat fisis dan kandungan bahan organik dari agregat halus, pasir yang digunakan adalah pasir eks galunggung.dengan sifat fisik seperti tabel 1. MB-96 KoNTekS 6

Tabel 1. Sifat-sifat fisik pasir Kadar air 5,45 % Absobsi air 3,95 % Specifik grafity 2,748 Berat volume 1540 kg/ltr Kandungan lumpur 3,03% FM 2.47 3. Air bersih yang sesuai dengan ASTM 4. Sabut kelapa kelapa yang sudah dibersihkan, dipotong sepanjang 2-3 cm. Sabut kelapa ini dibagi menjadi dua bagian bagian pertama tanpa perlakuan. Bagian kedua dengan perlakukan. Perlakuan ini berupa pencucian dan perendaman 2% NaOH selama 1 jam. Setelah direndam selama satu jam dilakukan pencucian dengan air bersih sampai PH sabut kelapa menjadi netral kembali. Sabut kelapa dikeringkan dibawah sinar matahari sampai kering. Pembuatan Benda Uji. Campuran mortar yang digunakan pada penelitian ini 1: 3 satu bagian semen dan 3 bagian pasir. Faktor air semen yang digunakan 0.65. Volume sabut kelapa yang ditambahkan sebesar 1% dari berat semen. Sabut kelapa dicampurkan secara acak pada campuran mortar. Metoda pencampuran dilakukan secara kering. Tahapan ini dilakukan dengan cara: semen, pasir dan sabut kelapa dicampur tanpa air sampai tercampur rata, baru kemudian ditambahkan air dan diaduk sampai homogen. Setelah homogen dilakukan pencetakan. Pencetakan dilakukan secara bertahap dipadatkan dengan vibrator. Benda uji yang disiapkan prisma ukuran 100x100x350 mm untuk pengujian lentur. Jumlah benda uji yang dibuat adalah sebagai berikut: 1. Tiga benda uji lentur mortar tanpa penambahan sabut kelapa sebagai kontrol 2. Tiga benda uji lentur mortar dengan penambahan sabut kelapa tanpa perlakuan 3. Tiga benda uji lentur dengan penambahan sabut kelapa dengan penucian NaOH. Pengujian Pengujian kuat lentur mortar dilakukan pada umur benda uji 28 hari, sistem pembebanan yang digunakan pembebanan empat titik tumpu, seperti Gambar 2. Beban diberikan secara bertahap dengan kecepatan 0.02 mm/det sampai terjadi keruntuhan. Dari hasil pengujian ini diperoleh data beban pertahapan, lendutan tengah bentang, regangan yang terjadi. Tegangan yang terjadi dihitung berdasarkan persamaan 5. KoNTekS 6 MB-97

4. HASIL DAN PEMBAHASAN Kuat lentur Hasil pengujian kuat lentur mortar menggunakan sabut kelapa dengan dan tanpa perlakuan diberikan pada tabel 2. Pada tabel 3 diberikan prosentase hasil yang diperoleh terhadap kotrol atau mortar tanpa sabut kelapa, untuk menunjukkan peningkatan yang terjadi mortar. Tabel 2 hasil pengujian lentur rata-rata Kontrol TP NaOH Beban Lentur (KN) 9.62 10.58 12.25 Defleksi (mm) 0.45 2.58 2.87 Kapasitas lentur (Mpa) 2.89 3.18 3.67 Luas daerah dibawah kurva saat retak pertama 2.25 2.23 2.22 Luas daerah dibawah kurva 2.79 7.95 9.25 Indeks Toughness 1.13 3.41 3.87 Tabel 3.kapasitas Lentur prosentasi terhadap kontrol Kontrol TP NaOH persen Beban Lentur Defleksi Kapasitas lentur Luas daerah dibawah kurva saat retak pertama Luas daerah dibawah kurva Indeks Toughness 100 110,00 127,29 100 572,52 638,33 100 110,00 127,29 100 99,25 98,67 100 284,68 331,36 100 301,50 342,08 Gambar 5. Hubungan Beban dengan defleksi Dari tabel 3 dapat dilihat bahwa kuat lentur mortar yang menggunakan sabut kelapa tanpa perlakuan (TP) mengalami kenaikan sebesar 10% sedangkan kuat lentur mortar menggunakan sabut kelapa yang mengalami pencucian dengan NaOH (NaOH) meningkat sebesar 27%. Pada mortar dengan penambahan sabut kelapa pasca mortar retak, terjadi penyaluran gaya dari mortar ke sabut, besarnya gaya yang disaluran tergantung dari kuatnya ikatan antara sabut dengan mortar. Hal ini menyebabkan perbedaan besarnya kenaikan kuat lentur antara mortar dengan sabut tanpa perlakuan dangan sabut dengan perlakuan. Pada mortar dengan sabut kelapa yang dicuci dengan NaOH menggambarkan terjadinya peningkatan lekatan antara matriks dengan serat (Gu (2009)). Dengan adanya lekatan yang cukup maka dibutuhkan energy yang MB-98 KoNTekS 6

lebih besar untuk mematahkan ikatan antara matrik dan serat. Kondisi ini tidak terjadi pada mortar dengan sabut tanpa perlakuan, kandungan lignin yang besar pada permukaan sabut menyebabkan lekatan sabut dengan mortar tidak kuat, sehingga peningkatan kuat lentur tidak signifikan. Penambahan serat pada mortar terbukti memberikan peningkatan defleksi yang sangat signifikat. Peningkatan sebesar 638.33% terjadi pada mortar dengan sabut kelapa yang dicuci dengan NaOH. Dengan adanya serat pada mortar, mekanisme peralihan gaya pasca mortar retak terjadi, gaya dialihkan dari mortar ke serat. Namun dengan kondisi serat yang memiliki modulus elasititas yang kecil menyebabkan penurunan beban yang dapat dipikul oleh komposit. Dengan adanya peningkatan defleksi pada mortar maka energi yang terserap semakin besar, maka toughness dihasilkan semakin tinggi ini ditunjukkan dari hasil perhitungan indeks toughness yang meningkat menjadi 342,07%. Dari gambar 5 terlihat defleksi yang terjadi pasca retak, sangat besar sehingga daktilitas yang terjadi juga sangat besar. Kendala yang ada adalah kemampuan menahan beban pada saat pasca retak sangat kecil jika dibandingkan dengan kemampuan awal dari mortar.misalkan pada mortar dengan sabut kelapa yang dicuci kemampuan memikul beban lentur rata-rata sebesar 12,25 MPa pasca beban maksimum hanya mampu menerima beban sebesar 33.33% dari beban maksimumnya yakni sekitar 4 MPa, 5. KESIMPULAN Dari data hasil pengujian dapat disimpulkan bahwa: 1. Perlakuan terhadap sabut kelapa meningkatkan kapasitas lentur mortar terhadap mortar tanpa serat sebesar 11 % untuk serat tanpa perlakuan dan 27% pada serat dengan perlakuan. 2. Penambahan sabut kelapa meningkatkan defleksi pada mortar menjadi 638%. 3. Penambahan sabut kelapa meningkatkan energi toughness mortar sebesar 331 %. DAFTAR PUSTAKA ACI Committe 544.2R, (1998), Measurement of Properties of Serat Reinforced Concrete ASTM C1018, Standart test Method for Flexural Toughness and First Crack Strength of Serat Reinforced Concrete (Using Beam with Third-Point Loading), ASTM Standart Vol 04.02, Concrete and Aggregates,1996. Balaguru, Perumalsamy N and Shah Surendra P,(1992), Serat Reinforced Cement Composites International edition 1992, McGraw-Hill,Inc. Gu, Huang (2009), Tensile behaviours of the coir fibre and related composites after NaOH treatment, Material and design 30 (2009) 3931-3934. Hannant, D.J. (1978), Fibre Cement and Fibre Concrete,John Wiley &Sons Ltd, Chichester. Ramakrisna, G & Sundararadjan, (2005), Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement &Concrete Composite 27 (2005) 575-582 Reis J.M.L (2006), Fracture and flexure characterization of natural serat-reinforced polymer concrete, Construction and Materials 20 (2006) 673-678. KoNTekS 6 MB-99

MB-100 KoNTekS 6