BAB II POMPA DAN KOMPRESOR

dokumen-dokumen yang mirip
BAB II LANDASAN TEORI

1. POMPA MENURUT PRINSIP DAN CARA KERJANYA

JENIS-JENIS POMPA DAN KOMPRESOR

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

LU N 1.1 PE P N E G N E G R E TI T AN

LOGO POMPA CENTRIF TR UGAL

POMPA. yusronsugiarto.lecture.ub.ac.id

BAB II TINJAUAN PUSTAKA

BAB II LANDASAN TEORI

BAB I PESAWAT PESAWAT BANTU DI KAPAL

BAB II TINJAUAN PUSTAKA

MODUL POMPA AIR IRIGASI (Irrigation Pump)

BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB I PENDAHALUAN 1.1 Latar Belakang.

BAB II LANDASAN TEORI

BAB IV. P O M P A. P untuk menaikkan kecepatan aliran ( ), dan/atau untuk menaikkan tekanan ( ),

BAB IV GAMBARAN UMUM OBJEK PENELITIAN

BAB II TINJAUAN PUSTAKA. mesin kerja. Pompa berfungsi untuk merubah energi mekanis (kerja putar poros)


Dr. Sukamta, S.T., M.T.

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB II LANDASAN TEORI

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB II LANDASAN TEORI

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II LANDASAN TEORI

BAB II. Prinsip Kerja Mesin Pendingin

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

BAB III TURBIN UAP PADA PLTU

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

II. TINJAUAN PUSTAKA

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING)

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

ANALISA PERFORMANSI POMPA SENTRIFUGAL PADA WATER TREATMENT DENGAN KAPASITAS 60 M 3 /JAM DI PKS PT UKINDO LANGKAT LAPORAN TUGAS AKHIR

BAB II LANDASAN TEORI

BAB 5 DASAR POMPA. pompa

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II LANDASAN TEORI

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan

BAB II TINJAUAN PUSTAKA. Pompa adalah salah satu jenis mesin fluida yang berfungsi untuk

Gambar 1. Fixed Cone Roof with Internal Floating Roff

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

PELATIHAN PENGELASAN DAN PENGOPERASIAN KOMPRESOR

RANCANG BANGUN ALAT UJI PENGARUH VARIASI PANJANG NOZZLE TERHADAP EFISIENSI JET PUMP (PENGUJIAN)

EFEK PENGGUNAAN SUPERCHARGER TERHADAP UNJUK KERJA DAN KONSTRUKSI PADA SEBUAH MESIN DIESEL

KARYA AKHIR KEMAMPUAN KERJA POMPA TORAK (RECIPROCATING) TERHADAP KAPASITAS YANG DIHASILKAN DI PABRIK MINI PTKI MEDAN

BAB II LANDASAN TEORI

Tugas khusus Adi Kunchoro

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin :

MOTOR BAKAR PENGERTIAN DASAR. Pendahuluan

RANGKAIAN POMPA (POM)

BAB II LANDASAN TEORI

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger

BAB II TINJAUAN PUSTAKA. yang bertekanan lebih rendah dari tekanan atmosfir. Dalam hal ini disebut pompa

RANGKAIAN POMPA (POM)

RANCANG BANGUN ALAT UJI PENGARUH VARIASI PANJANG NOZZLE TERHADAP EFISIENSI JET PUMP (PROSES PEMBUATAN)

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB II LANDASAN TEORI

Program Studi DIII Teknik Otomotif JPTM FPTK UPI BAB I PENDAHULUAN

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL

BAB II. LANDASAN TEORI

BAB II LANDASAN TEORI

Cara Kerja AC dan Bagian-Bagiannya

Penggunaan sistem Pneumatik antara lain sebagai berikut :

BAB III TINJAUAN PUSTAKA

Sistem Hidrolik. Trainer Agri Group Tier-2

BAB I PENDAHULUAN 1.1. Latar Belakang

PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS

BAB II LANDASAN TEORI

BAB III TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Dalam pembuatan alat simulator radiator sebagai bentuk eksperimen. Dan

MAKALAH. SMK Negeri 5 Balikpapan SISTEM PENDINGIN PADA SUATU ENGINE. Disusun Oleh : 1. ADITYA YUSTI P. 2.AGUG SETYAWAN 3.AHMAD FAKHRUDDIN N.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Mesin fluida adalah mesin yang berfungsi untuk merubah energi mekanik menjadi energi

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

MESIN PENDINGIN. Gambar 1. Skema cara kerja mesin pendingin.

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan

POMPA TORAK. Oleh : Sidiq Adhi Darmawan. 1. Positif Displacement Pump ( Pompa Perpindahan Positif ) Gambar 1. Pompa Torak ( Reciprocating Pump )

BAB II DASAR TEORI. BAB II Dasar Teori

Vol 9 No. 2 Oktober 2014

TUGAS AKHIR PERENCANAAN POMPA SENTRIFUGAL PENGISI KETEL DI PT. INDAH KIAT SERANG

Ilham Budi Santoso Moderator KBK Rotating.

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

BLOWER DAN KIPAS SENTRIFUGAL

9. Pengetahuan Pompa Pemadam Kebakaran SUBSTANSI MATERI 9.1. Fungsi utama pada unit PKP-PK

Penggunaan sistem Pneumatik antara lain sebagai berikut :

BAB II LANDASAN TEORI

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

BAB II DASAR TEORI. kata lain kompresor adalah penghasil udara mampat. Karena proses. dengan tekanan udara lingkungan. Dalam keseharian, kita sering

Transkripsi:

1 BAB I PENDAHULUAN Dalam kehidupan sehari-hari sering kita jumpai alat yang disebut pompa dan kompresor. Pompa (pump) menurut definisi rekayasa mekanika adalah sebuah alat mekanika yang digunakan untuk mengalirkan cairan. Hal ini dilakukan dengan cara menaikkan tekanan sehingga sistem fluida cair itu mempunyai tekanan yang tinggi di sisi hisap pompa, dan tekanan yang rendah di sisi keluar pompa. Hal ini terjadi karena fluida mengalir dari tekanan tinggi ke tekanan rendah. Pompa digunakan untuk mengalirkan fluida dalam bentuk cairan, tidak untuk gas. Meskipun gas juga merupakan fluida, namun fluida gas dan fluida cairan mempunyai dua karakter yang berbeda. Salah satunya adalah reaksi mereka terhadap tekanan. Cairan adalah fluida inkompresibel (tidak dapat ditekan/ tidak berubah volumenya jika mendapat tekanan) sementara gas adalah fluida kompresibel (dapat di tekan). Pada penjelasan di atas, pompa digunakan hanya untuk fluida cair karena sifat dari fluida cair tersebut sehingga pompa tidak digunakan untuk mengalirkan fluida kompresibel. Untuk mengalirkan fluida kompresibel, ada istilah atau alat lain yang digunakan yaitu kompresor. Kompresor adalah alat mekanik yang berfungsi untuk meningkatkan tekanan fluida mampu mampat, yaitu gas atau udara. tujuan meningkatkan tekanan dapat untuk mengalirkan atau kebutuhan proses dalam suatu system proses yang lebih besar (dapat system fisika maupun kimia contohnya pada pabrik-pabrik kimia untuk kebutuhan reaksi). Secara umum kompresor dibagi menjadi dua jenis yaitu dinamik dan perpindahan positif. Secara prinsip, kedua benda ini sama. Masing-masing terdiri dari motor penggerak dan juga bagian untuk meningkatkan tekanan di sisi hisap dan merendahkan tekanan di sisi keluar. Tapi keduanya tidak sama pada segi aplikasi karena cara peningkatan tekanan tersebut dilakukan dengan dua cara yang berbeda. Namun kedua alat ini yaitu pompa dan kompresor tidak dapat saling dipertukarkan fungsinya, kompresor tidak dapat digunakan untuk mengalirkan cairan dan pompa tidak dapat digunakan untuk mengalirkan gas. 1

2 BAB II POMPA DAN KOMPRESOR 2.1 Pengertian Pompa Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara menambahkan energi pada cairan yang dipindahkan dan berlangsung secara terus menerus. Pompa beroperasi dengan prinsip membuat perbedaan tekanan antara bagian masuk (suction) dengan bagian keluar (discharge). Dengan kata lain, pompa berfungsi mengubah tenaga mekanis dari suatu sumber tenaga (penggerak) menjadi tenaga kinetis (kecepatan), dimana tenaga ini berguna untuk mengalirkan cairan dan mengatasi hambatan yang ada sepanjang pengaliran. Pompa memiliki dua kegunaan utama: 1 Memindahkan cairan dari satu tempat ke tempat lainnya (misalnya air dari aquifer bawah tanah ke tangki penyimpan air) 2 Mensirkulasikan cairan sekitar sistim (misalnya air pendingin atau pelumas yang melewati mesin-mesin dan peralatan) Komponen utama sistem pemompaan adalah: 1 Pompa 2 Mesin penggerak: motor listrik, mesin diesel atau sistim udara 3 Pemipaan, digunakan untuk membawa fluida 4 Kran, digunakan untuk mengendalikan aliran dalam sistim 5 Sambungan, pengendalian dan instrumentasi lainnya 6 Peralatan pengguna akhir, yang memiliki berbagai persyaratan 2.1.1 Klasifikasi Pompa Adapun jenis-jenis pompa tersebut antara lain : a. Pompa Sentrifugal (Centrifugal Pump) Sifat dari hidrolik ini adalah memindahkan energi pada daun/kipas pompa dengan dasar pembelokan/pengubah aliran (fluid dynamics). Kapasitas yang di hasilkan oleh pompa sentrifugal adalah sebanding dengan putaran, sedangkan total head (tekanan) yang di hasilkan oleh pompa sentrifugal adalah sebanding dengan pangkat dua dari kecepatan putaran. 2

3 b. Pompa Desak (Positive Displacement Pumps) Sifat dari pompa desak adalah perubahan periodik pada isi dari ruangan yang terpisah dari bagian hisap dan tekan yang dipisahkan oleh bagian dari pompa. Kapasitas yang dihasilkan oleh pompa tekan adalah sebanding dengan kecepatan pergerakan atau kecepatan putaran, sedangkan total head (tekanan) yang dihasilkan oleh pompa ini tidak tergantung dari kecepatan pergerakan atau putaran. Pompa desak di bedakan atas : oscilating pumps (pompa desak gerak bolak balik), dengan rotary displecement pumps (pompa desak berputar). Contoh pompa desak gerak bolak balik : piston/plunger pumps, diaphragm pumps. Contoh pompa rotary displacement pumps : rotary pump, eccentric spiral pumps, gear pumps, vane pumps dan lain-lain.

4 c. Jet pumps Sifat dari jets pump adalah sebagai pendorong untuk mengangkat cairan dari tempat yang sangat dalam. Perubahan tekanan dari nozzle yang disebabkan oleh aliran media yang digunakan untuk membawa cairan tersebut ke atas (prinsip ejector). Media yang digunakan dapat berupa cairan maupun gas. Pompa ini tidak mempunyai bagian yang bergerak dan konstruksinya sangat sederhana. Keefektifan dan efisiensi pompa ini sangat terbatas. d. Air lift pumps (mammoth pumps) Cara kerja pompa ini sangat tergantung pada aksi dari campuran antara cairan dan gas (two phase flow)

5 e. Hidraulic pumps Pompa ini menggunakan kinetik energi dari cairan yang dipompakan pada suatu kolom dan energi tersebut diberikan pukulan yang tiba-tiba menjadi energi yang berbentuk lain (energi tekan). f. Elevator Pump Sifat dari pompa ini mengangkat cairan ke tempat yang lebih tinggi dengan menggunakan roda timbah, archimedean screw dan peralatan sejenis.

6 g. Electromagnetic Pumps Cara kerja pompa ini adalah tergantung dari kerja langsung sebuah medan magnet padi edia ferromagnetic yang dialirkan, oleh karena itu penggunaan dari pompa ini sangat terbatas pada cairan metal. 2.1.2 Fungsi Pompa Pompa berfungsi untuk mengalirkan zat fluida dari suatu tempat ke tempat yang lain melalui system perpipaan, biasanya system operasi pompa menggunakan suatu mekanisme gerak. Tekanan diperlukan untuk memompa cairan melewati sistim pada laju tertentu. Tekanan ini harus cukup tinggi untuk mengatasi tahanan sistim, yang juga disebut head. Head total merupakan jumlah dari head statik dan head gesekan/ friksi: a) Head statik Head statik merupakan perbedaan tinggi antara sumber dan tujuan dari cairan yang dipompakan. Head statik pada tekanan tertentu tergantung pada berat cairan dan dapat dihitung dengan persamaan perikut: Head (dalam feet) = Tekanan (psi) X 2,31 Specific gravity

7 b) Head gesekan/ friksi (hf) Ini merupakan kehilangan yang diperlukan untuk mengatasi tahanan untuk mengalir dalam pipa dan sambungan-sambungan. Head ini tergantung pada ukuran, kondisi dan jenis pipa, jumlah dan jenis sambungan, debit aliran, dan sifat dari cairan. 2.1.3 Aplikasi Pompa Pompa telah banyak digunakan orang sejak lama, mulai dari unit terkecil di rumah tangga sampai industri-industri besar. Penggunaan pompa yang semakin luas dari waktu ke waktu menyebabkan perkembangan pompa sangat pesat. Pada era sekarang ini berbagai macam bentuk pompa dengan berbagai keunggulannya telah banyak ditawarkan oleh perusahaan-perusahaan produsen pompa. Sering kali suatu perusahaan membuat pompa tertentu yang hanya digunakan untuk aplikasi khusus. Mengingat banyaknya jenis pompa di pasaran, maka kejelian dalam memilih pompa menjadi syarat utama agar diperoleh kerja pompa yang optimum sesuai dengan sistem yang dilayani. Dalam rumah tangga pompa banyak digunakan untuk memompa air dari sumur untuk digunakan dalam kehidupan sehari-hari. Dalam bidang pertanian pompa banyak digunakan dalam sisten irigasi untuk mengairi sawah-sawah. Dalam penyediaan air minum untuk masyarakat, pompa digunakan untuk mendistribusikan air minum dari PDAM ke rumahrumah penduduk. Dalam Indusrti kimia, seperti kita ketahui banyak sekali jenis zat cair baik kental maupun encer ( viskositas ), sifat korosif sehingga kita harus tahu pemilihan pompa secara tepat. Dalam industri minyak, pompa tidak hanya digunakan pada pengilangan tetapi juga digunakan pada penyaluran minyak ke pusat-pusat distribusi. Pada pusat pelayanan tenaga khususnya PLTU pompa digunakan sebagai pengisi air ketel (boiler feed pump). Selain itu juga digunakan untuk memompa kondensat (air yang diembunkan di dalam kondensor) ke pompa pengisi ketel (boiler feed pump) dan untuk mengalirkan air dingin ke kondensor. Pada gedung-gedung, pompa digunakan untuk mengalirkan air pendingin ke ruangan-ruangan dalam sistem AC sentral. Pada industri makanan secara umum, kebersihan dalam proses produksi merupakan kebutuhan utama untuk mempertahankan kualitas produk. Oleh karena itu pompa-pompa yang dipakai dalam industri makanan harus tahan karat tanpa ada kebocoran minyak pelumas ke dalam makanan. Proses pembersihannya juga harus dibuat semudah mungkin. Dalam

8 industri makanan banyak digunakan pompa saniter yang telah memenuhi syarat-syarat kebersihan dan kesehatan. Pompa ini digunakan untuk mengalirkan bahan-bahan mentah cair (belum mengalami proses produksi) dan juga produk-produk makanan cair. 2.2 Pengertian Kompresor Kompresor adalah alat untuk memompa bahan pendingin (refrigeran) agar tetap bersirkulasi di dalam sistem. Kompresor berfungsi untuk membangkitkan/menghasilkan udara bertekanan dengan cara menghisap dan memampatkan udara tersebut kemudian disimpan di dalam tangki udara kempa untuk disuplai kepada pemakai (sistem pneumatik). Kompresor dilengkapi dengan tabung untuk menyimpan udara bertekanan, sehingga udara dapat mencapai jumlah dan tekanan yang diperlukan. Tabung udara bertekanan pada kompresordilengkapi dengan katup pengaman, bila tekanan udaranya melebihi ketentuan, maka katup pengaman akan terbuka secara otomatis. Pemilihan jenis kompresor yang digunakan tergantung dari syarat-syarat pemakaian yang harus dipenuhi misalnya dengan tekanan kerja dan volume udara yang akan diperlukan dalam sistim peralatan (katup dan silinder pneumatik). Secara garis besar kompresor dapat diklasifikasikan seperti di bawah ini. 2.2.1 Klasifikasi Kompresor Secara garis besar kompresor dapat diklasifikasikan menjadi dua bagian, yaitu Positive Displacement compressor, dan Dynamic compressor, (Turbo), Positive Displacement compressor, terdiri dari Reciprocating dan Rotary, sedangkan Dynamic compressor, (turbo) terdiri dari Centrifugal, axial dan ejector, secara lengkap dapat dilihat dari klasifikasi di bawah ini:

9 a. Kompresor Torak Resiprokal (reciprocating compressor) Kompresor ini dikenal juga dengan kompresor torak, karena dilengkapi dengan torak yang bekerja bolak-balik atau gerak resiprokal. Pemasukan udara diatur oleh katup masuk dan dihisap oleh torak yang gerakannya menjauhi katup. Pada saat terjadi pengisapan, tekanan udara di dalam silinder mengecil, sehingga udara luar akan masuk ke dalam silinder secara alami. Pada saat gerak kompresi torak bergerak ke titik mati bawah ke titik mati atas, sehingga udara di atas torak bertekanan tinggi, selanjutnya di masukkan ke dalam tabung penyimpan udara. Tabung penyimpanan dilengkapi dengan katup satu arah, sehingga udara yang ada dalam tangki tidak akan kembali ke silinder. Proses tersebut berlangsung terusmenerus hingga diperoleh tekanan udara yang diperlukan. Gerakan mengisap dan mengkompresi ke tabung penampung ini berlangsung secara terus menerus, pada umumnya bila tekanan dalam tabung telah melebihi kapasitas, maka katup pengaman akan terbuka, atau mesin penggerak akan mati secara otomatis. b. Kompresor Torak Dua Tingkat Sistem Pendingin Udara Kompresor udara bertingkat digunakan untuk menghasilkan tekanan udara yang lebih tinggi. Udara masuk akan dikompresi oleh torak pertama, kemudian didinginkan, selanjutnya dimasukkan dalam silinder kedua untuk dikompresi oleh torak kedua sampai pada tekanan yang diinginkan. Pemampatan (pengompresian) udara tahap kedua lebih besar, temperatur udara akan naik selama terjadi kompresi, sehingga perlu mengalami proses pendinginan dengan memasang sistem pendingin. Metode pendinginan yang sering digunakan misalnya dengan sistem udara atau dengan sistem air bersirkulasi.

10 Batas tekanan maksimum untuk jenis kompresor torak resiprokal antara lain, untuk kompresor satu tingkat tekanan hingga 4 bar, sedangkan dua tingkat atau lebih tekanannya hingga 15 bar. c. Kompresor Diafragma (diaphragma compressor) Jenis Kompresor ini termasuk dalam kelompok kompresor torak. Namun letak torak dipisahkan melalui sebuah membran diafragma. Udara yang masuk dan keluar tidak langsung berhubungan dengan bagian-bagian yang bergerak secara resiprokal. Adanya pemisahan ruangan ini udara akan lebih terjaga dan bebas dari uap air dan pelumas/oli. Oleh karena itu kompresor diafragma banyak digunakan pada industri bahan makanan, farmasi, obat-obatan dan kimia. Prinsip kerjanya hampir sama dengan kompresor torak. Perbedaannya terdapat pada sistem kompresi udara yang akan masuk ke dalam tangki penyimpanan udara bertekanan. Torak pada kompresor diafragma tidak secara langsung menghisap dan menekan udara, tetapi menggerakkan sebuah membran (diafragma) dulu. Dari gerakan diafragma yang kembang kempis itulah yang akan menghisap dan menekan udara ke tabung penyimpan.

11 d. Kompresor Putar (Rotary Compressor) Kompresor Rotari Baling-baling Luncur Secara eksentrik rotor dipasang berputar dalam rumah yang berbentuk silindris, mempunyai lubang-lubang masuk dan keluar. Keuntungan dari kompresor jenis ini adalah mempunyai bentuk yang pendek dan kecil, sehingga menghemat ruangan. Bahkan suaranya tidak berisik dan halus dalam, dapat menghantarkan dan menghasilkan udara secara terus menerus dengan mantap. Baling-baling luncur dimasukkan ke dalam lubang yang tergabung dalam rotor dan ruangan dengan bentuk dinding silindris. Ketika rotor mulai berputar, energi gaya sentrifugal baling-balingnya akan melawan dinding. Karena bentuk dari rumah baling-baling itu sendiri yang tidak sepusat dengan rotornya maka ukuran ruangan dapat diperbesar atau diperkecil menurut arah masuknya (mengalirnya) udara. e. Kompresor Sekrup (Screw) Kompresor Sekrup memiliki dua rotor yang saling berpasangan atau bertautan (engage), yang satu mempunyai bentuk cekung, sedangkan lainnya berbentuk cembung, sehingga dapat memindahkan udara secara aksial ke sisi lainnya. Kedua rotor itu identik dengan sepasang roda gigi helix yang saling bertautan. Jika roda-roda gigi tersebut berbentuk lurus, maka kompresor ini dapat digunakan sebagai pompa hidrolik pada pesawat pesawat hidrolik. Roda-roda gigi kompresor sekrup harus diletakkan pada rumah-rumah roda gigi dengan benar sehingga betul-betul dapat menghisap dan menekan fluida.

12 f. Kompresor Root Blower (Sayap Kupu-kupu) Kompresor jenis ini akan mengisap udara luar dari satu sisi ke sisi yang lain tanpa ada perubahan volume. Torak membuat penguncian pada bagian sisi yang bertekanan. Prinsip kompresor ini ternyata dapat disamakan dengan pompa pelumas model kupu-kupu pada sebuah motor bakar. Beberapa kelemahannya adalah: tingkat kebocoran yang tinggi. Kebocoran terjadi karena antara baling-baling dan rumahnya tidak dapat saling rapat betul. Berbeda jika dibandingkan dengan pompa pelumas pada motor bakar, karena fluidanya adalah minyak pelumas maka film-film minyak sendiri sudah menjadi bahan perapat antara dinding rumah dan sayap-sayap kupu itu. Dilihat dari konstruksinya, Sayap kupu-kupu di dalam rumah pompa digerakan oleh sepasang roda gigi yang saling bertautan juga, sehingga dapat berputar tepat pada dinding. g. Kompresor Aliran (turbo compressor) Jenis kompresor ini cocok untuk menghasilkan volume udara yang besar. Kompresor aliran udara ada yang dibuat dengan arah masuknya udara secara aksial dan ada yang secara radial. Arah aliran udara dapat dirubah dalam satu roda turbin atau lebih untuk menghasilkan

13 kecepatan aliran udara yang diperlukan. Energi kinetik yang ditimbulkan menjadi energi bentuk tekanan. h. Kompresor Aliran Radial Percepatan yang ditimbulkan oleh kompresor aliran radial berasal dari ruangan ke ruangan berikutnya secara radial. Pada lubang masuk pertama udara dilemparkan keluar menjauhi sumbu. Bila kompresornya bertingkat, maka dari tingkat pertama udara akan dipantulkan kembali mendekati sumbu. Dari tingkat pertama masuk lagi ke tingkat berikutnya, sampai beberapa tingkat sesuai yang dibutuhkan. Semakin banyak tingkat dari susunan sudusudu tersebut maka akan semakin tinggi tekanan udara yang dihasilkan. Prinsip kerja kompresor radial akan mengisap udara luar melalui sudu-sudu rotor, udara akan terisap masuk ke dalam ruangan isap lalu dikompresi dan akan ditampung pada tangki penyimpanan udara bertekanan hingga tekanannya sesuai dengan kebutuhan. i. Kompresor Aliran Aksial Pada kompresor aliran aksial, udara akan mendapatkan percepatan oleh sudu yang terdapat pada rotor dan arah alirannya ke arah aksial yaitu searah (sejajar) dengan sumbu rotor. Jadi pengisapan dan penekanan udara terjadi saat rangkaian sudu-sudu pada rotor itu berputar secara cepat. Putaran cepat ini mutlak diperlukan untuk mendapatkan aliran udara yang mempunyai tekanan yang diinginkan. Teringat pula alat semacam ini adalah seperti kompresor pada sistem turbin gas atau mesin-mesin pesawat terbang turbo propeller. Bedanya, jika pada turbin gas adalah menghasilkan mekanik putar pada porosnya. Tetapi, pada kompresor ini tenaga mekanik dari mesin akan memutar rotor sehingga akan menghasilkan udara bertekanan.

14 2.2.2 Fungsi Kompresor Dalam pembahasan siklus refrigeran pada sistem refrigerasi kompresi gas telah diketahui operasi kompresor. Maksud dari operasi kompresor adalah untuk memastikan bahwa suhu gas refrigeran yang disalurkan ke kondenser harus lebih tinggi dari suhu condensing medium. Bila suhu gas refrigeran lebih tinggi dari suhu condensing medium (udara atau air) maka energi panas yang dikandung refrigeran dapat dipindahkan ke condensing medium. akibatnya suhu refrigeran dapat diturunkan walaupun tekanannya tetap. Oleh karena itu kompresor harus dapat mengubah kondisi gas refrigeran yang bersuhu rendah dari evaporator menjadi gas yang bersuhu tinggi pada saat meninggalkan saluran discharge kompresor. Tingkat suhu yang harus dicapai tergantung pada jenis refrigeran dan suhu lingkungannya. 2.2.3 Aplikasi Kompressor Kompressor merupakan alat yang berguna untuk mengalirkan udara atau gas. Dimana fungsi ini sangat diperlukan dalam berbagai bidang. Beberapa aplikasi kompressor antara lain: a. Pada Bidang Otomotif 1.Pengkompressian udara untuk dimasukkan dalam reservoir yang akan digunakan untuk pengisian ban kendaraan. 2. Untuk pengecatan semprot (dyco) pada dinding mobil, kapal laut, pesawat dll. 3. Sebagai pengering dan pembersih dalm perbengkelan. b. Pada Bidang Industri 1. Dalam industri minuman botol dimana udara dalam botol dihampakan dengan daya isap kompressor. 2. Industri pertambangan gas, gas akan diisap dengan kompressor untuk ditampung dalam reservoir dan untuk dilanjutkan pada aplikasi lainnya.

15 3. Dalam pertambangan juga digunakan dalam pengeboran hidrolik dengan menggunakan gas yang bertekanan dari kompressor yang menekan mata bor. c. Aplikasi Lainnya 1. Digunakan dalam sistem pengkondisian udara untuk menaikkan temperature dan tekanannya. 2. Digunakan dalam mekanisme turbo charge untuk memperbesar udara yangmasuk ke silinder. 3. Digunakan dalam sistem pembangkitan listrik seperti pada PLTU dan PLTG.

16 BAB III PENUTUP Pompa & Kompresor Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media pemipaan dengan cara menambahkan energi pada cairan yang dipindahkan dan berlangsung secara terus menerus. pompa berfungsi mengubah tenaga mekanis dari suatu sumber tenaga (penggerak) menjadi tenaga kinetis (kecepatan), dimana tenaga ini berguna untuk mengalirkan cairan dan mengatasi hambatan yang ada sepanjang pengaliran. Sedangkan kompresor adalah alat untuk mengalirkan fluida gas fungsi untuk membangkitkan/menghasilkan udara bertekanan dengan cara menghisap dan memampatkan udara tersebut kemudian disimpan di dalam tangki udara kempa untuk disuplai kepada pemakai (sistem pneumatik). Adapun klasifikasi dari pompa dan kompresor yaitu: a. Klasifikasi Pompa Pompa Sentrifugal (Centrifugal Pump) Pompa Desak (Positive Displacement Pumps) Jet pumps Air lift pumps (mammoth pumps) Hidraulic pumps Elevator Pump Electromagnetic Pumps b. Klasifikasi Kompresor Kompresor Torak Resiprokal (reciprocating compressor) Kompresor Torak Dua Tingkat Sistem Pendingin Udara Kompresor Diafragma (diaphragma compressor) Kompresor Putar (Rotary Compressor) Kompresor Sekrup (Screw) Kompresor Root Blower (Sayap Kupu-kupu) Kompresor Aliran (turbo compressor) Kompresor Aliran Radial Kompresor Aliran Aksial 16

17 DAFTAR PUSTAKA http://pingujie.blogspot.com/2011/11/dalam-kehidupan-sehari-hari-kita-sering.html (di akses pada tanggal 20 September 2013) http://peralatann.wordpress.com/2012/11/29/jenis-jenis-kompresor/ (di akses pada tanggal 20 September 2013) http://www.mediaproyek.com/2013/06/mengenal-jenis-jenis-pompa-berdasarkan.html (di akses pada tanggal 20 Sepetember 2013) http://sinelectronic.blogspot.com/2012/01/macam-macam-kompresor-pembangkit-udara.html (di akses pada tanggal 20 September 2013) http://www.mediaproyek.com/2013/06/mengenal-jenis-jenis-pompa-berdasarkan.html (di akses pada tanggal 20 September 2013) http://fitrahchem.blogspot.com/2013/01/kompresor-dan-pompa.html (di akses pada tanggal 18 September 2013)

18 MAKALAH UTILITAS POMPA DAN KOMPRESOR Disusun Oleh : Kelompok : IV Hilda Khofifah 0611 3040 0321 Warni Fatimah 0611 3040 0335 Kelas : 5 KB Dosen Pembimbing : Ir. Sahrul Effendy, M.T JURUSAN TEKNIK KIMIA POLITEKNIK NEGERI SRIWIJAYA 2013

19 KATA PENGANTAR Puji syukur kami panjatkan kehadirat Allah SWT yang telah memberikan rahmat serta karunia-nya kepada kami sehingga kami berhasil menyelesaikan Makalah ini yang alhamdulillah tepat pada waktunya. Makalah kami berjudul Pompa dan Kompresor Kami mengharapkan Makalah ini dapat memberikan informasi kepada kita semua. Kami menyadari bahwa Makalah ini masih jauh dari sempurna, oleh karena itu kritik dan saran yang bersifat membangun selalu kami harapkan demi kesempurnaan Makalah ini. Akhir kata, kami sampaikan terima kasih kepada semua pihak yang telah berperan serta dalam penyusunan Makalah ini dari awal sampai akhir. Semoga Allah SWT senantiasa meridhai segala usaha kita. Amin. Palembang, 23 September 2013 Penyusun i

20 DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... ii BAB I PENDAHULUAN... 1 BAB II POMPA DAN KOMPRESOR... 2 2.1 Pengertian Pompa... 2 2.1.1 Klasifikasi Pompa... 2 2.1.2 Fungsi Pompa... 6 2.1.3 Aplikasi Pompa... 7 2.2 Pengertian Kompresor... 8 2.2.1 Klasifikasi Kompresor... 8 2.2.2 Fungsi Kompresor... 14 2.2.3 Aplikasi Kompressor... 14 BAB III PENUTUP... 16 DAFTAR PUSTAKA ii