BAB III TEORI PENUNJANG. arsitektur Reduced Instruction Set Computer (RISC). Hampir semua instruksi

dokumen-dokumen yang mirip
MENGENAL MIKROKONTROLER ATMEGA-16

BAB III TEORI PENUNJANG. dihapus berulang kali dengan menggunakan software tertentu. IC ini biasanya

BAB III PERANCANGAN SISTEM

Sistem Mikrokontroler FE UDINUS

BAB III LANDASAN TEORI

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

DAFTAR PUSTAKA.

BAB II LANDASAN TEORI

Mikrokontroler AVR. Hendawan Soebhakti 2009

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor

DAFTAR ISI. Daftar Pustaka P a g e

RANCANG BANGUN ALAT PENGGILING BATU KAPUR MENGGUNAKAN KONTROL LOGIKA FUZZY

MICROCONTROLER AVR AT MEGA 8535

BAB II TINJAUAN PUSTAKA. Atmel AVR adalah jenis mikrokontroler yang paling sering dipakai dalam

MENGENAL MIKROKONTROLER AVR ATMega16

MICROCONTROLER AVR AT MEGA 8535

BAB II TINJAUAN PUSTAKA

BAB II DASAR TEORI. Gambar 2.1 Mikrokontroler ATMega16

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, dimana

ABSTRAK. Kata kunci : Inverter DC-AC, MOSFET, Mikrokonroller ATMEGA 16

BAB II TINJAUAN PUSTAKA. Gambar 2.1. Simbol LED [8]

BAB II LANDASAN TEORI. dan gambar dari komponen-komponen yang dipakai pada perancangan laporan. Skripsi. Adapun komponen-komponennya sebagai berikut :

BAB 2 LANDASAN TEORI

II. TINJAUAN PUSTAKA. Mikrokontroler ATmega8535 merupakan salah satu jenis mikrokontroler keluarga AVR

BAB 2 LANDASAN TEORI

BAB III LANDASAN TEORI. Kinerja tinggi, rendah daya Atmel AVR 8-bit Microcontroller Instruksi Powerfull - Kebanyakan Single-jam Siklus Eksekusi

BAB II TINJAUAN PUSTAKA

1. Pemograman Mikrokontroller Menggunakan BASCOM AVR. Inisialisasi baud yang digunakan.

BAB II DASAR TEORI. ATmega8535 merupakan IC CMOS 8-bit berdaya rendah yang berdasar pada

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. software arduino memiliki bahasa pemrograman C.

Praktikum Mikrokontroler. untuk D4 Lanjut Jenjang. Disiapkan oleh: Hary Oktavianto

PEMROGRAMAN ROBOT PENJEJAK GARIS BERBASIS MIKROKONTROLER

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut.

Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol)

BAB III PERANCANGAN SISTEM

oleh : Syaifullah Agus Setyo Nugroho Dosen Pembimbing : 1. Dr.Ir Achmad Affandi, DEA 2. Ir. Gatot Kusrahardjo, MT

DAFTAR ISTILAH. : perangkat keras sistem : perangkat lunak sistem. xiii

BAB II KONSEP DASAR PERANCANGAN

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di

BAB II TINJAUAN PUSTAKA

TKC210 - Teknik Interface dan Peripheral. Eko Didik Widianto

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

BAB III PERANCANGAN DAN PEMBUATAN ALAT

Kereta Rel Diesel adalah unit kereta api yang terdiri dari beberapa gerbong

BAB II TEORI DASAR 2.1 Pendahuluan 2.2 Sensor Clamp Putaran Mesin

BAB II LANDASAN TEORI

BAB II KONSEP DASAR SISTEM MONITORING TEKANAN BAN

BAB II TINJAUAN PUSTAKA

BAB III PERANCANGAN SISTEM

DAFTAR ISI. HALAMAN PENGESAHAN... i. KATA PENGANTAR... iii. DAFTAR ISI... v. DAFTAR TABEL... x. DAFTAR GAMBAR... xi. DAFTAR LAMPIRAN...

Analisa Kinerja Sensor Suhu NTC dan LM35 Dalam Sistem Pendeteksian Suhu Ruangan Berbasis Mikrokontroler AVR ATmega 16

BAB II LANDASAN TEORI

BAB III PERANCANGAN SISTEM

BAB II TINJAUAN PUSTAKA

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51

BAB II DASAR TEORI 2.1. Mikrokontroler AVR ATmega32

BAB 3 PERANCANGAN SISTEM. Bab ini akan membahas tentang perancangan sistem yang digunakan dari alat

BAB II. PENJELASAN MENGENAI System-on-a-Chip (SoC) C8051F Pengenalan Mikrokontroler

BAB II TEORI DASAR. beberapa komponen utama yang digunakan pada simulasi Pengendali Lampu. Jarak Jauh dan Dekat pada Kendaraan Secara Otomatis.

Gambar 3.1 Susunan perangkat keras sistem steel ball magnetic levitation

Gambar 3.1. Diagram alir metodologi perancangan

BAB II TINJAUAN PUSTAKA

IMPLEMENTASI RANCANG BANGUN MODUL PRAKTIKUM SUHU DAN MOTOR DC DENGAN VISUAL BASIC

BAB II DASAR TEORI. Gambar 2.1 Sensor MLX 90614[5]

BAB III METODOLOGI PENELITIAN

BAB II LANDASAN TEORI

BAB II DASAR TEORI. 2.1 Ethanol

BAB III PERANCANGAN ALAT

BAB II LANDASAN TEORI

DISAIN DAN IMPLEMENTASI PENGENDALI LAMPU JARAK JAUH DAN DEKAT PADA KENDARAAN BERMOTOR SECARA OTOMATIS

Journal of Control and Network Systems

BAB II DASAR TEORI Water Bath. Water Bath merupakan peralatan yang berisi air yang bisa

BAB II LANDASAN TEORI. Locker adalah sejenis tempat penyimpanan benda-benda pribadi yang

SISTEM MONITORING TINGKAT KETINGGIAN AIR BENDUNGAN BEBASIS MIKROKONTROLLER

PROTOTIPE ROBOT PENGANTAR BARANG MENGGUNAKAN ANDROID

BAB III PERENCANAAN PERANGKAT KERAS DAN LUNAK

BAB III DESKRIPSI DAN PERANCANGAN SISTEM

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Frequency and Identification (RFID). Teknologi RFID menggunakan

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB III PERANCANGAN SISTEM

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar

BAB II TINJAUAN PUSTAKA. yang telah membuat Data Logger Autoclave, prinsip kerja alat ini adalah pada

BAB II DASAR TEORI Arduino Mega 2560

RANCANG BANGUN SISTEM PENGUKURAN ARUS BERBASIS MIKROKONTROLLER ATMEGA 8535

BAB III LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB II LANDASAN TEORI. pada itu dapat juga dijadikan sebagai bahan acuan didalam merencanakan suatu system.

Simulasi Rancang Bangun Rumah Cerdas Berbasis Mikrokontroler ATMEGA16

BAB II LANDASAN TEORI. seorang profesor di University of California di Berkeley pada tahun Dasar

ARSITEKTUR MIKROKONTROLER AT89C51/52/55

BAB II LANDASAN TEORI

PROCEEDING. sepeti program untuk mengaktifkan dan PENERAPAN AUTOMATIC BUILDING SYSTEM DI PPNS. menonaktifkan AC, program untuk counter

MIKROPENGENDALI C TEMU 2b AVR ARCHITECTURE. Oleh : Danny Kurnianto,S.T.,M.Eng Sekolah Tinggi Teknologi Telematika Telkom

BAB II TINJAUAN PUSTAKA. [10]. Dengan pengujian hanya terbatas pada remaja dan didapatkan hasil rata-rata

Transkripsi:

BAB III TEORI PENUNJANG Pada bab tiga penulis menjelaskan tentang teori penunjang kerja praktek yang telah dikerjakan. 3.1 Mikrokontroler ATMega16 AVR merupakan seri mikrokontroler CMOS 8-bit buatan Atmel, berbasis arsitektur Reduced Instruction Set Computer (RISC). Hampir semua instruksi dieksekusi dalam satu siklus clock. AVR mempunyai 32 register general-purpose, timer/counter fleksibel dengan mode compare, interrupt internal dan eksternal, serial UART, programmable watchdog timer, dan mode power saving, Analog to Didital Converter (ADC) dan Pulse With Modulation (PWM) internal. AVR juga mempunyai In-system programmable flash on-chip yang mengijinkan memori program untuk diprogram ulang dalam sistem menggunakan hubungan Serial Peripheral Interface (SPI). ATMega16. ATMega16 mempunyai throughput mendekati 1 MIPS per MHz membuat disainer sistem untuk mengoptimasi konsumsi daya versus kecepatan proses. Beberapa keistimewaan dari AVR ATMega16 antara lain: 1. Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Fully Static Operation 17

Up to 16 MIPS Throughput at 16 MHz On-chip 2-cycle Multiplier 2. Nonvolatile Program and Data Memories 8K Bytes of In-System Self-Programmable Flash Optional Boot Code Section with Independent Lock Bits 512 Bytes EEPROM 3. Peripheral Features 512 Bytes Internal SRAM Programming Lock for Software Security Two 8-bit Timer/Counters with Separate Prescalers and Compare Mode Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode Real Time Counter with Separate Oscillator Four PWM Channels 8-channel, 10-bit ADC Byte-oriented Two-wire Serial Interface Programmable Serial USART 4. Special Microcontroller Features Power-on Reset and Programmable Brown-out Detection Internal Calibrated RC Oscillator External and Internal Interrupt Sources 18

Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Powerdown, Standby and Extended Standby 5. I/O and Package 6. Operating Voltages 32 Programmable I/O Lines 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad MLF 2.7-5.5V for ATMega16L 4.5-5.5V for ATMega16 Gambar 3.1 Mikrokontroler ATMega16 Sumber: ATMEL, 2011a 19

Pin-pin pada ATMega16 sebanyak 40-pin DIP (dual inline package) ditunjukkan oleh gambar 3.1. Guna memaksimalkan performa, AVR menggunakan arsitektur Harvard (dengan memori dan bus terpisah untuk program dan data). 3.1.1 Port Sebagai Input/Output Digital ATMega16 mempunyai empat buah port yang bernama PortA, PortB, PortC, dan PortD. Keempat port tersebut merupakan jalur bidirectional dengan pilihan internal pull-up. Tiap port mempunyai tiga buah register bit, yaitu DDxn, PORTxn, dan PINxn. Huruf x mewakili nama huruf dari port sedangkan huruf n mewakili nomor bit. Bit DDxn terdapat pada I/O address DDRx, bit PORTxn terdapat pada I/O address PORTx, dan bit PINxn terdapat pada I/O address PINx. Bit DDxn dalam register Data Direction Register (DDRx) menentukan arah pin. Bila DDxn diset 1 maka Px berfungsi sebagai pin output. Bila DDxn diset 0 maka Px berfungsi sebagai pin input.bila PORTxn diset 1 pada saat pin terkonfigurasi sebagai pin input, maka resistor pull-up akan diaktifkan. Untuk mematikan resistor pull-up, PORTxn harus diset 0 atau pin dikonfigurasi sebagai pin output. Pin port adalah tri-state setelah kondisi reset. Bila PORTxn diset 1 pada saat pin terkonfigurasi sebagai pin output maka pin port akan berlogika 1. Dan bila PORTxn diset 0 pada saat pin terkonfigurasi sebagai pin output maka pin port akan berlogika 0. Saat mengubah kondisi port dari kondisi tri-state (DDxn=0, PORTxn=0) ke kondisi output high (DDxn=1, PORTxn=1) maka harus ada kondisi peralihan apakah 20

itu kondisi pull-up enabled (DDxn=0, PORTxn=1) atau kondisi output low (DDxn=1, PORTxn=0). Biasanya, kondisi pull-up enabled dapat diterima sepenuhnya, selama lingkungan impedansi tinggi tidak memperhatikan perbedaan antara sebuah strong high driver dengan sebuah pull-up. Jika ini bukan suatu masalah, maka bit PUD pada register SFIOR dapat diset 1 untuk mematikan semua pull-up dalam semua port. Peralihan dari kondisi input dengan pull-up ke kondisi output low juga menimbulkan masalah yang sama. Kita harus menggunakan kondisi tri-state (DDxn=0, PORTxn=0) atau kondisi output high (DDxn=1, PORTxn=0) sebagai kondisi transisi. Tabel 3.1 Konfigurasi pin port Sumber : IT Telkom Library, 2008 Bit 2 PUD : Pull-up Disable Bila bit diset bernilai 1 maka pull-up pada port I/O akan dimatikan walaupun register DDxn dan PORTxn dikonfigurasikan untuk menyalakan pull-up (DDxn=0, PORTxn=1). 21

3.1.2 Timer Timer/counter adalah fasilitas dari ATMega16 yang digunakan untuk perhitungan pewaktuan. Beberapa fasilitas chanel dari timer/counter antara lain: counter channel tunggal, pengosongan data timer sesuai dengan data pembanding, bebas glitch, tahap yang tepat PWM, pembangkit frekwensi, event counter external.. 3.1.2.1 Gambaran Umum Gambar diagram block timer/counter 8 bit ditunjukan pada gambar 3.2 Untuk penempatan pin I/O telah dijelaskan pada bagian I/O di atas. CPU dapat diakses register I/O, termasuk dalam pin-pin I/O dan bit I/O. Device khusus register I/O dan lokasi bit terdaftar pada deskripsi timer/counter 8 bit. Gambar 3.2 Blok diagram timer/counter 22

Sumber : Atmel, 2011b 3.1.2.2 Timing Diagram Timer/Counter Timer/counter didesain sinkron clock timer (clkt0) oleh karena itu ditunjukkan sebagai sinyal enable clock pada gambar 3.3. Gambar ini termasuk informasi ketika flag interrupt dalam kondisi set. Data timing digunakan sebagai dasar dari operasi timer/counter. Gambar 3.3 Timing diagram timer/counter, tanpa prescaling Sumber : Atmel, 2011c Sesuai dengan gambar 3.3 timing diagram timer/counter dengan prescaling maksudnya adalah counter akan menambahkan data counter (TCNTn) ketika terjadi pulsa clock telah mencapai 8 kali pulsa dan sinyal clock pembagi aktif clock dan ketika telah mencapai nilai maksimal maka nilai TCNTn akan kembali ke nol. Dan kondisi flag timer akan aktif ketika TCNTn maksimal. 23

3.2 Relay Pengertian relay yang ada pada wikipedia (2010) adalah suatu peranti yang menggunakan elektromagnet untuk mengoperasikan seperangkat kontak saklar. Susunan paling sederhana terdiri dari kumparan kawat penghantar yang dililit pada inti besi. Bila kumparan ini dienergikan, medan magnet yang terbentuk menarik armatur berporos yang digunakan sebagai pengungkit mekanisme saklar. 3.2.1 Prinsip Kerja Relay Relay pada dasarnya sama dengan prinsip kerja pada saklar, namun pada relay saklar dijalankan secara otomatis dengan memberikan catu daya pada coil sebagai tegangan system pada relay. Ketika coil mendapat energi listrik, maka akan timbul gaya elektromagnetik yang akan menarik armature yang berpegas yang juga akan menutup kontak yang terhubung pada output. Relay memiliki tiga jenis kutub yaitu common (kutub acuan), normally close (kutub yang dalam keadaan awal terhubung pada common), dan Normally Open (kutub yang pada awalnya terbuka dan akan terhubung dengan common saat kumparan relay diberi arus listrik). 24

Dalam kerja praktek ini relay digunakan sebagai driver motor tangan pada robot yang dikombinasikan dengan beberapa komponen lain yang membantu kinerja relay. Berikut rangkaian relay. 3.3 Driver H-Bridge Gambar 3.4 Gambar rangkaian relay Sumber : depokinstrument, 2010 Sebuah h-bridge adalah suatu pengaturan transistor yang memungkinkan kontrol atas sirkuit motor DC. Artinya, dengan jembatan-h mikrokontroler, chip 25

logika, atau remot kontrol elektronik dapat memerintah motor untuk maju, mundur, dan rem (wikipedia, 2011a). Driver h-bridge juga merupakan salah satu pengendali motor DC dengan arus yang lebih tinggi daripada menggunakan driver motor biasa seperti l298 atau l293. Driver h-bridge dapat mengendalikan motor DC lebih dari 3A. Dimana besar arus yang dikeluarkan motor DC tergantung besar motor DC dan beban pada robot, maka dari itu driver h-bridge membantu menstabilkan arus yang berasal dari tegangan sumber. Berikut rangkaian driver h-bridge. 26

Gambar 3.5 Rangkaian driver h-bridge Sumber : Cook, 2011 3.4 Motor DC 27

Motor arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/direct-unidirectional. Motor DC digunakan pada penggunaan khusus di mana diperlukan penyalaan torque yang tinggi atau percepatan yang tetap. Komponen utama motor DC : 1. Kutub medan Secara sederhana digambarkan bahwa interaksi dua kutub magnet akan menyebabkan perputaran pada motor DC. Motor DC memiliki kutub medan yang stasioner dan dynamo yang menggerakan bearing pada ruang di antara kutub medan. Motor DC sederhana memiliki dua kutub medan yaitu kutub utara dan kutub selatan. 2. Dynamo Bila arus masuk menuju dynamo, maka arus ini akan menjadi dynamo magnet. Dynamo yang berbentuk silinder, dihubungkan ke as penggerak untuk menggerakan beban. Untuk kasus motor DC yang kecil, dynamo berputar dalam medan magnet yang dibentuk oleh kutub-kutub, sampai kutub utara dan selatan magnet berganti lokasi. Jika hal ini terjadi, arusnya berbalik untuk merubah kutub-kutub utara dan selatan dynamo. 3. Commutator Kegunaan komponen ini adalah untuk membalikan arah arus listrik dalam dynamo. Commutator juga membantu dalam transmisi arus antara dynamo dan sumber daya. 28

3.5 Rotary Encoder Gambar 3.6 Motor DC Sumber : Artha, 2011 Fungsi rotary encoder pada robot KRI adalah untuk menghitung jumlah putaran yang telah terjadi pada motor ketika robot berbelok. Pengertian dari rotary encoder seperti adalah Rotary encoders digunakan dalam berbagai aplikasi yang membutuhkan sensor perputaran yang presisi (wikipedia, 2011b). 3.6 Sensor Cahaya Sensor cahaya ini terdiri dari sebuah LED ultrabright dan photodiode. Di mana LED ultrabright digunakan sebagai transmiter dan photodide sebagai receiver. Antara kaki photodiode dan resistor akan mengeluarkan tegangan sesuai dengan input tegangan yang diterima oleh photodiode dari pantulan LED. 29

3.6.1 Photodiode Gambar 3.7 Rangkaian sensor cahaya Sumber : Kuncoro, 2009 Photodiode adalah jenis photodetektor yang mampu mengubah cahaya menjadi tegangan (wikipedia, 2011c). 30

3.6.2 Komparator Komparator adalah sebuat rangkaian yang dapat membandingkan besar tegangan masukan. Komparator biasanya menggunakan Op-Amp atau ic LM339 sebagai piranti utama dalam rangkaian. 3.7 Limit Switch Gambar 3.8 Rangkaian komparator Sumber : Atmelmikrokontroler, 2010 Pada dasarnya prinsip kerja limit switch sama dengan prinsip kerja relay yaitu sesuai dengan sakelar. Di mana pada kaki-kakinya memiliki 3 inputan yaitu normally 31

close, normally open, dan common. Pada keadaan awal kaki normally close tersambung dengan kaki common dan jika ditekan, maka kaki normally open akan tersambung dengan common. Adapun rangkaian limit switch seperti yang ditunjukkan pada gambar berikut. Gambar 3.9 Limit switch Sumber : Garage, 1998 3.8 Rangkaian Reset 32

Chandra MDE (2011) menjelaskan sebagai berikut : Rangkaian reset adalah Pin reset pada mikrokontroler ATMEL AVR adalah aktif low. Jika sebuah sinyal low diaplikasikan pada pin ini, maka mikrokontroler akan direset. Peresetan sistem dilakukan dengan tujuan : 1. Untuk melepas semua pin (kecuali pin-pin XTAL) untuk masuk ke keadaan tri-state, menginisialisasi semua register I/O, dan mereset program counter (PC=0). 2. Untuk memasuki mode pemrograman paralel. Jalur reset memiliki resistor pull-up internal berukuran 100k-500k ohm. Secara teori, resistor pull-up tersebut berfungsi menahan pin reset pada logika high dan tidak mengambang. Resistor pull-up juga berfungsi sebagai penahan dari noise yang diakibatkan oleh pengaruh lingkungan luar yang tinggi. 33

Gambar 3.10 Rangkaian reset AVR 34