ANALISIS STATIK NON-LINIER PUSHOVER PADA OPTIMASI DESAIN GEDUNG PENDIDIKAN BERSAMA FKUB DENGAN VARIASI KONFIGURASI DINDING GESER NASKAH PUBLIKASI

dokumen-dokumen yang mirip
ANALISIS STATIK NON-LINER PUSHOVER PADA OPTIMALISASI DESAIN GEDUNG PENDIDIKAN BERSAMA FKUB DENGAN VARIASI KONFIGURASI BRESING BAJA

EVALUASI KEMAMPUAN STRUKTUR RUMAH TINGGAL SEDERHANA AKIBAT GEMPA

Pengaruh Core terhadap Kinerja Seismik Gedung Bertingkat

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

PENDAHULUAN Perencanaan gedung tahan gempa telah menjadi perhatian khusus mengingat telah banyak terjadi gempa cukup besar akhir-akhir ini. Perencanaa

ANALISIS KINERJA STRUKTUR BETON BERTULANG DI WILAYAH GEMPA INDONESIA INTENSITAS TINGGI DENGAN KONDISI TANAH LUNAK

II. KAJIAN LITERATUR. tahan gempa apabila memenuhi kriteria berikut: tanpa terjadinya kerusakan pada elemen struktural.

Studi Assessment Kerentanan Gedung Beton Bertulang Terhadap Beban Gempa Dengan Menggunakan Metode Pushover Analysis

EVALUASI BALOK DAN KOLOM PADA RUMAH SEDERHANA

Evaluasi Kinerja Gedung Beton Bertulang Dengan Pushover Analysis Akibat Beban Gempa Padang

ANALISA PORTAL DENGAN DINDING TEMBOK PADA RUMAH TINGGAL SEDERHANA AKIBAT GEMPA

BAB V ANALISIS DAN PEMBAHASAN

PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1

BAB III METODE ANALISA STATIK NON LINIER

BAB II TINJAUAN PUSTAKA

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

KATA KUNCI: sistem rangka baja dan beton komposit, struktur komposit.

Pengaruh Bentuk Bracing terhadap Kinerja Seismik Struktur Beton Bertulang

EVALUASI KINERJA STRUKTUR BANGUNAN YANG MENGGUNAKAN SAMBUNGAN LEWATAN (LAP SPLICES) PADA UJUNG KOLOM

BAB II DASAR TEORI. Pada bab ini akan dibahas sekilas tentang konsep Strength Based Design dan

BAB III METODE ANALISIS

BAB II TINJAUAN PUSTAKA

EVALUASI KINERJA GEDUNG BETON BERTULANG SISTEM GANDA DENGAN VARIASI GEOMETRI DINDING GESER PADA WILAYAH GEMPA KUAT

EVALUASI STRUKTUR DENGAN PUSHOVER ANALYSIS

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI

BAB 5 KESIMPULAN DAN SARAN. Secara keseluruhan, kesimpulan dari studi yang dilakukan adalah :

BAB II TINJAUAN PUSTAKA

ANALISIS KINERJA STRUKTUR PADA GEDUNG BERTINGKAT DENGAN ANALISIS PUSHOVER MENGGUNAKAN SOFTWARE ETABS (STUDI KASUS : BANGUNAN HOTEL DI SEMARANG)

Peraturan Gempa Indonesia SNI

STUDI KINERJA SENDI PLASTIS PADA GEDUNG DAKTAIL PARSIAL DENGAN ANALISIS BEBAN DORONG

EVALUASI KINERJA STRUKTUR BETON BERTULANG DENGAN PUSHOVER ANALYSIS

PENGARUH PASANGAN DINDING BATA PADA RESPON DINAMIK STRUKTUR GEDUNG AKIBAT BEBAN GEMPA

EVALUASI METODE FBD DAN DDBD PADA SRPM DI WILAYAH 2 DAN 6 PETA GEMPA INDONESIA

) DAN ANALISIS PERKUATAN KAYU GLULAM BANGKIRAI DENGAN PELAT BAJA

BAB I PENDAHULUAN. adalah kolom. Kolom termasuk struktur utama yang bertujuan menyalurkan beban tekan

ANALISIS DAN PEMBAHASAN

Pengaruh Penambahan Dinding Geser (Shear Wall) pada Waktu Getar Alami Fundamental Struktur Gedung

PEMODELAN STRUKTUR BANGUNAN GEDUNG BERTINGKAT BETON BERTULANG RANGKA TERBUKA SIMETRIS DI DAERAH RAWAN GEMPA DENGAN METODA ANALISIS PUSHOVER

STUDI KOMPARATIF PERANCANGAN STRUKTUR GEDUNG TAHAN GEMPA DENGAN SISTEM RANGKA GEDUNG BERDASARKAN TATA CARA ASCE 7-05 DAN SNI

ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI

Evaluasi Kinerja Struktur Jembatan akibat Beban Gempa dengan Analisis Riwayat Waktu

EVALUASI KINERJA INELASTIK STRUKTUR RANGKA BETON BERTULANG TERHADAP GEMPA DUA ARAH TUGAS AKHIR PESSY JUWITA

KAJIAN KEANDALAN STRUKTUR TABUNG DALAM TABUNG TERHADAP GAYA GEMPA

EVALUASI KINERJA STRUKTUR BANGUNAN BAJA DENGAN MENGGUNAKAN PENGAKU EKSENTRIS (EBF) Ir. Torang Sitorus, MT.

EVALUASI SENDI PLASTIS DENGAN ANALISIS PUSHOVER PADA GEDUNG TIDAK BERATURAN

EVALUASI KINERJA PORTAL BAJA 3 DIMENSI DENGAN PENGAKU LATERAL AKIBAT GEMPA KUAT BERDASARKAN PERFORMANCE BASED DESIGN

BAB V ANALISIS DAN PEMBAHASAN

JURNAL TEKNIK ITS Vol. 6, No. 2 (2017), ( X Print)

STATIC NONLINEAR PUSHOVER ANALYSIS UNTUK PERFORMANCE BASED DESIGN PADA GEDUNG PASCASARJANA FAKULTAS MIPA UGM NASKAH PUBLIKASI TEKNIK SIPIL

STUDI PENEMPATAN DINDING GESER TERHADAP WAKTU GETAR ALAMI FUNDAMENTAL STRUKTUR GEDUNG

DAFTAR ISI JUDUL LEMBAR PENGESAHAN PERNYATAAN BEBAS PLAGIAT PERSEMBAHAN KATA PENGANTAR DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI

EVALUASI KINERJA STRUKTUR BANGUNAN YANG MENGGUNAKAN SAMBUNGAN LEWATAN (LAP SPLICES) PADA UJUNG KOLOM

Prosiding Seminar Nasional Teknik Sipil 1 (SeNaTS 1) Tahun 2015 Sanur - Bali, 25 April 2015

BAB 1 PENDAHULUAN. yaitu di kepulauan Alor (11 Nov, skala 7.5), gempa Papua (26 Nov, skala 7.1),

ANALISIS KINERJA STRUKTUR GEDUNG DENGAN COREWALL TUGAS AKHIR

KAJIAN ANALISIS PUSHOVER

BAB VI KESIMPULAN DAN SARAN. Perencanaan letak sendi plastis dengan menggunakan reduced beam

Kajian Perilaku Struktur Portal Beton Bertulang Tipe SRPMK dan Tipe SRPMM

Kajian Pemakaian Shear Wall dan Bracing pada Gedung Bertingkat

BAB I PENDAHULUAN. Keandalan Struktur Gedung Tinggi Tidak Beraturan Menggunakan Pushover Analysis

ANALISIS EFEK PENEMPATAN DINDING BATA TERHADAP RESPON BANGUNAN AKIBAT EKSITASI GEMPA

ANALISIS KINERJA GEDUNG BERTINGKAT BERDASARKAN EKSENTRISITAS LAY OUT DINDING GESER TERHADAP PUSAT MASSA DENGAN METODE PUSHOVER

ANALISIS PUSHOVER PADA BANGUNAN DENGAN SOFT FIRST STORY

PENGARUH BENTUK PENAMPANG KOLOM TERHADAP KINERJA STRUKTUR BETON BERTULANG

) DAN ANALISIS PERKUATAN KAYU GLULAM KELAS III (NYATOH) DENGAN KAYU KELAS I (BENGKIRAI), KAYU KELAS II (KAMFER) DAN PELAT BAJA

ANALISIS PERILAKU STRUKTUR PELAT DATAR ( FLAT PLATE ) SEBAGAI STRUKTUR RANGKA TAHAN GEMPA TUGAS AKHIR

ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V ABSTRAK

EVALUASI SNI 1726:2012 PASAL MENGENAI DISTRIBUSI GAYA LATERAL TERHADAP KEKAKUAN DAN KEKUATAN PADA SISTEM GANDA SRPMK DAN SRBKK

PENGARUH RASIO KEKAKUAN LATERAL STRUKTUR TERHADAP PERILAKU DINAMIS STRUKTUR RANGKA BETON BERTULANG BERTINGKAT RENDAH

EVALUASI KINERJA SISTEM RANGKA PEMIKUL MOMEN KHUSUS SNI PADA STRUKTUR DENGAN GEMPA DOMINAN

PERBANDINGAN PERUBAHAN KINERJA STRUKTUR RANGKA STRUKTUR BETON BERTULANG DAN BAJA DENGAN DINDING PENGISI

Konferensi Nasional Teknik Sipil 4 (KoNTekS 4) Sanur-Bali, 2-3 Juni 2010

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

KATA KUNCI : direct displacement based design, time history analysis, kinerja struktur.

BAB IV PEMODELAN STRUKTUR

EVALUASI KINERJA SEISMIK GEDUNG TERHADAP ANALISIS BEBAN DORONG

Keywords: ATC-40, Braced Frames, Level Performance, Pushover analysis, Shear walls

KINERJA STRUKTUR RANGKA BETON BERTULANG DENGAN PERKUATAN BREISING BAJA TIPE X

DAFTAR ISI Annisa Candra Wulan, 2016 Studi Kinerja Struktur Beton Bertulang dengan Analisis Pushover

KAJIAN KINERJA STRUKTUR RANGKA BRESING V-TERBALIK EKSENTRIK DAN KONSENTRIK (215S)

BAB I PENDAHULUAN. 1.1 Latar Belakang. Sebagai negara kepulauan yang terletak pada daerah pertemuan 4 (empat)

EVALUASI KINERJA BANGUNAN GEDUNG DPU WILAYAH KABUPATEN WONOGIRI DENGAN ANALISIS PUSHOVER

STUDI EVALUASI KINERJA STRUKTUR BAJA BERTINGKAT RENDAH DENGAN ANALISIS PUSHOVER ABSTRAK

Cipta Adhi Prakasa dan Sjahril A. Rahim. ABSTRAK

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN. gawang apabila tanpa dinding (tanpa strut) dengan menggunakan dinding (dengan

Studi Perbandingan Dinding Geser dan Bracing Tunggal Konsentris sebagai Pengaku pada Gedung Bertingkat Tinggi

BAB III METODOLOGI. Mulai. Pengumpulan Data. Preliminary Desain Struktur Model-1. Input Beban Yang Bekerja Pada Struktur

STUDI PEMODELAN INELASTIK DAN EVALUASI KINERJA STRUKTUR GANDA DENGAN MIDAS/Gen TM

JURNAL TUGAS AKHIR STUDI KEANDALAN STRUKTUR GEDUNG TINGGI TIDAK BERATURAN MENGGUNAKAN PUSHOVER ANALYSIS PADA TANAH MEDIUM

HALAMAN JUDUL HALAMAN PENGESAHAN MOTTO DAN PERSEMBAHAN KATA PENGANTAR ABSTRAK DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAFTAR LAMPIRAN

LAMPIRAN A. Perhitungan Beban Gempa Statik Ekivalen

BAB IV PERMODELAN STRUKTUR

TESIS EVALUASI KINERJA STRUKTUR GEDUNG BETON BERTULANG SISTEM GANDA DENGAN ANALISIS NONLINEAR STATIK DAN YIELD POINT SPECTRA O L E H

KAJIAN PENGGUNAAN NONLINIEAR STATIC PUSHOVER ANALYSIS DENGAN METODA ATC-40, FEMA 356, FEMA 440 DAN PERILAKU SEISMIK INELASTIC TIME HISTORY ANALYSIS

KRITISI DESAIN PSEUDO ELASTIS PADA BANGUNAN BERATURAN 6- DAN 10-LANTAI DENGAN DENAH PERSEGI PANJANG DI WILAYAH 6 PETA GEMPA INDONESIA

PERENCANAAN STRUKTUR BAJA BERDASARKAN KEKAKUAN DAN KEKUATAN SISTEM GANDA SRPMK DAN SRBE BENTUK DIAGONAL MENURUT SNI 1726:2012 PASAL

STUDI MENENTUKAN PARAMETER DAKTILITAS STRUKTUR GEDUNG TIDAK BERATURAN DENGAN ANALISIS PUSHOVER

Transkripsi:

ANALISIS STATIK NON-LINIER PUSHOVER PADA OPTIMASI DESAIN GEDUNG PENDIDIKAN BERSAMA FKUB DENGAN VARIASI KONFIGURASI DINDING GESER NASKAH PUBLIKASI TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik MARSA ACHADIAN TYARPRATAMA NIM. 135060107111002 UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2017

ANALISIS STATIK NON-LINIER PUSHOVER PADA OPTIMASI DESAIN GEDUNG PENDIDIKAN BERSAMA FKUB DENGAN VARIASI KONFIGURASI DINDING GESER (Nonlinear Static Pushover Analysis on Design Optimization of FKUB College Building using Variation of Shear Wall Configuration) Marsa Achadian Tyarpratama, Ari Wibowo, Desy Setyowulan Jurusan Teknik Sipil, Fakultas Teknik, Universitas Brawijaya Jalan M.T. Haryono 167, Malang 65145, Jawa Timur, Indonesia Email: marsatyar@gmail.com ABSTRAK Desain bangunan tahan gempa sangat diperlukan sebagai upaya meredam getaran akibat percepatan tanah yang sewaktu-waktu bisa terjadi akibat gempa bumi. Untuk mengurangi dampak kerusakan, maka diperlukan elemen penahan gempa untuk memperkuat struktur bangunan. Penelitian ini bertujuan untuk mengetahui pengaruh dihilangkannya dilatasi pada bangunan eksisting, penggunaan variasi konfigurasi dinding geser terhadap periode getar alami, roof displacement, tingkat kinerja dan daktilitas pada struktur Gedung Pendidikan Bersama FKUB. Pemodelan struktur dilakukan secara tiga dimensi dengan SAP2000 menjadi 8 macam tipe. Untuk mengevaluasi kinerja dari masing-masing struktur, dilakukan analisis statik non-linier pushover dengan 2 (dua) prosedur yang mengacu pada metode spektrum kapasitas ATC 40 dengan spektrum respons rencana mengacu pada SNI 03-1726-2012. Dari hasil analisis disimpulkan bahwa variasi jumlah dinding geser yang paling optimum adalah struktur alternatif dengan dinding geser 2 x 8 m (SWB). Kata kunci: analisis statik non-linier pushover, dinding geser, titik kinerja, daktilitas ABSTRACT Earthquake resistant building design is indispensable, in an effort to withstand vibration due to the ground acceleration which can occur at any time by an earthquake. To reduce the damage, then retrofit elements required to strengthen earthquake building structures. This research aims to find out the influence of removing dilatation joints on the existing buildings, the use of a shear wall configuration variations towards the natural period of vibration, roof displacement, performance levels and structural ductility of the FKUB College Building. Modeling the structure done in three dimensions with SAP2000 into 8 variations. To evaluate the performance of each structure, conducted a nonlinear static pushover analysis with 2 (two) procedure that refers to capacity spectrum method from ATC 40 with a spectrum of designed response refers to SNI 03-1726-2012. From the analysis results, it was concluded that the most optimum variation of shear wall configuration is the structure with shear walls 2 x 8 m (SWB). Keywords: nonlinear static pushover analysis, shear wall, performance point, ductility

PENDAHULUAN Indonesia merupakan salah satu negara yang memiliki resiko cukup tinggi terhadap gempa. Meningkatnya pertumbuhan penduduk, kelangkaan lahan, dan harga lahan yang terus melambung tinggi di kota-kota besar di Indonesia menuntut pemanfaatan lahan yang efisien, sehingga pembangunan gedung bertingkat ikut meningkat. Dalam perencanaan gedung bertingkat, desain tahan gempa sangat diperlukan untuk menahan getaran akibat percepatan tanah yang disebabkan oleh gempa bumi yang sewaktu-waktu bisa terjadi. Dengan besarnya kebutuhan lahan yang berbanding terbalik dengan ketersediaan lahan, struktur gedung ini dirancang memanjang pada dua sisi sejajar sebesar 98.20 m. Sistem dilatasi pada kasus ini digunakan untuk memisahkan bangunan yang mempunyai sisi panjang, dengan tujuan untuk membagi pusat massa bangunan agar pada saat terjadi gempa, pengaruh gempa akan terdistribusi terhadap pusat massa bangunan yang lain. Dalam penulisan ini dilakukan 8 macam tipe variasi optimasi desain, yaitu 5 (lima) tipe desain alternatif dengan variasi konfigurasi dinding geser dan 3 (tiga) tipe desain dengan variasi lainnya. tersebut akan dibandingkan perilakunya melalui analisis modal, analisis statik nonlinier pushover (CSM ATC 40), dan analisis daktilitas perpindahan dengan bantuan SAP2000 18. TUJUAN Penelitian ini bertujuan untuk mengetahui pengaruh dihilangkannya dilatasi pada bangunan eksisting, penggunaan variasi konfigurasi dinding geser terhadap periode getar alami, roof displacement, tingkat kinerja dan daktilitas pada struktur GPB FKUB. Sehingga dapat disimpulkan variasi yang paling optimum berdasarkan berat, karakteristik dinamika, kapasitas dalam menahan beban lateral, dan daktilitas struktur. TINJAUAN PUSTAKA Gempa Bumi 1. Gempa Bumi Vulkanik Gempa bumi ini terjadi akibat adanya aktivitas magma yang biasa terjadi sebelum gunung api meletus. 2. Gempa Bumi Tektonik Gempa bumi ini disebabkan oleh adanya aktivitas pergerakan lempeng pelat tektonik. 3. Gempa Bumi Runtuhan Gempa bumi yang disebabkan oleh keruntuhan baik di atas maupun di bawah permukaan tanah. 4. Gempa Bumi Buatan Gempa bumi buatan adalah gempa bumi yang disebabkan oleh aktivitas manusia. Desain Bangunan Tahan Gempa Berbasis Kinerja Performance based design mempunyai 2 (dua) elemen utama dalam perencanaannya, yaitu kapasitas (capacity) dan beban yang direncanakan (demand). Kemampuan struktur untuk menahan beban lateral akibat gempa sampai pada sebelum mengalami keruntuhan disebut sebagai kapasitas (capacity). Sedangkan pergerakan tanah akibat gempa yang digambarkan sebagai kurva spektrum respons adalah beban (demand).

Salah satu analisis yang dapat digunakan untuk desain bangunan tahan gempa berbasis kinerja adalah analisis statik non-linier pushover. Gambar 1. Analisis statik non-linier pushover (Sumber: Applied Technology Council [ATC-40], 1997) Prosedur dalam Menentukan Demand Berdasarkan ATC 40 terdapat 2 (dua metode) untuk menentukan demand, yaitu : a. Capacity Spectrum Method Merupakan metode iterative yang bertujuan untuk menentukan lokasi titik performance struktur dengan kapasitas yang ada dan demand yang diminta. Lokasi performance point harus memenuhi dua kriteria, yaitu : 1. Berada pada kurva spektrum kapasitas. 2. Berada pada kurva demand spectral yang telah direduksi dari keadaan elastis (damping 5%). Ada tiga macam prosedur yang dapat dipilih dalam metode ini : 1. Prosedur A : digunakan oleh pemula karena paling mudah digunakan dalam spreadsheet dan paling mudah dipahami, merupakan cara analisis berdasarkan rumusan rumusan tertentu. 2. Prosedur B : melakukan penyedehanaan bilinier pada kurva kapasitas sehingga cara ini relatif sedikit iterasinya. 3. Prosedur C : murni grafis sehingga paling tepat untuk penyelesaian manual tanpa spreadsheet. b. Displacement Coefficient Method Metode dengan proses numerik langsung dalam menghitung displacement demand sehingga tidak perlu mengonversi kapasitas ke dalam koordinat spektral. Tingkat Kinerja Menurut ATC 40 Tingkat kinerja elemen struktural suatu struktur dalam desain berbasis kinerja dibagi menjadi enam, yaitu: SP 1 Immediate Occupancy SP 2 Damage Control SP 3 Life Safety SP 4 Limited Safety SP 5 Collapse Prevention SP 6 Not Considered Gambar 2. Tingkat kinerja (Sumber: ATC-40, 1997) Perencanaan Dimensi Dinding Geser Ketebalan dinding geser (t w ) minimum direncanakan dengan metode empiris, yaitu :... (1)

(2)... dimana : hw : tinggi bagian dinding lw : panjang bagian dinding Daktilitas Faktor daktilitas perpindahan (displacement ductility factor) biasanya digunakan sebagai evaluasi pada struktur yang dianalisis kinerjanya terhadap beban gempa. Secara umum, faktor daktilitas perpindahan berkisar antara 3 sampai dengan 6. Berikut ini persamaan untuk memperoleh faktor daktilitas tersebut :... (3) dengan : = faktor daktilitas perpindahan = perpindahan maksimum = perpindahan saat terjadi leleh Mekanisme Keruntuhan 1. Beam sidesway mechanism Mekanisme ini terjadi apabila kelelehan mulai terjadi pada penampang kritis dari elemen-elemen balok sebelum elemen-elemen kolom mencapai kondisi tersebut, sehingga sendi-sendi plastis pada balok akan muncul terlebih dahulu. Gambar 3. Beam sidesway mechanism (Sumber : R. Park & T. Paulay, 1975) 2. Column sidesway mechanism Mekanisme ini terjadi apabila kelelehan mulai terjadi pada penampang kritis dari elemen-elemen kolom sebelum elemen-elemen balok mencapai kondisi tersebut, sehingga sendi-sendi plastis pada kolom akan muncul terlebih dahulu. Gambar 4. Column sidesway mechanism (Sumber: R. Park & T. Paulay, 1975) METODE PENELITIAN Desain Pendahuluan Penjelasan mengenai data bangunan secara umum dan mutu bahan yang digunakan dapat dilihat pada Tabel 1 dan Tabel 2 di bawah ini. Tabel 1. Data umum bangunan Nama gedung Gedung Pendidikan Bersama FKUB Lokasi Kota Malang Fungsi Gedung perkuliahan Jumlah lantai 10 lantai (lantai dasar s/d 9) Luas bangunan 2465 m 2 (98.6 m x 25 m) Tinggi 47.3 m (tidak termasuk atap) bangunan Tabel 2. Mutu bahan Bahan Mutu Beton K-350 (f c = 29,05 MPa)

Tulangan Ulir Tulangan Polos U-39 (fy = 390 MPa) U-25 (fy = 240 MPa) geser tipe E Variasi Parameter Penjelasan secara rinci mengenai variasi parameter yang diberikan pada analisis ini dapat dilihat pada Tabel 3 di bawah ini. Tabel 3. Rencana variasi parameter Tipe Jumlah Keterangan OD asli dengan dilatasi OND asli tanpa dilatasi NSW alternatif tanpa dinding geser SWA alternatif dengan dinding geser tipe A SWB alternatif dengan dinding geser tipe B SWC alternatif dengan dinding geser tipe C SWD alternatif dengan dinding geser tipe D SWE alternatif dengan dinding - Bangunan eksisting - - 1 x 8 m 2 x 8 m 3 x 8 m 1 x 4 m + 1 x 5 m 1 x 4 m + 1 x 5 m + 1 x 8 m Dilatasi dihilangkan, ukuran balok dan kolom pada daerah dilatasi diambil yang terbesar dari gambar perancanaan Memperbesar ukuran kolom pada As. 1-3 dan 14-15 menjadi 600 x 800 mm Dinding geser pada as. 9 -AB Dinding geser pada as. 3-DE, 14-DE Dinding geser pada as. 9 -AB, 3-DE, 14-DE Dinding geser pada as. 7-DE, 10-DE Dinding geser pada as. 9 -AB, 7-DE, 10-DE Pembebanan Pembebanan pada masing-masing tipe struktur mengacu pada Peraturan Pembebanan Indonesia untuk Gedung tahun 1983. Material dinding yang digunakan adalah bata ringan dengan berat jenis (γ) sebesar 90 kg/m 2. Beban dinding yang dimodelkan besarnya menyesuaikan tinggi lantai atau bagian dindingnya. Pembebanan untuk beban mati dan beban hidup pada pelat lantai yaitu; spesi 63 kg/m 2, keramik 24 kg/m 2, plafon 11 kg/m 2, penggantung plafon 7 kg/m 2, dan beban hidup 250 kg/m 2. Sedangkan untuk spektrum respons gempa didapatkan melalui perhitungan yang mengacu pada SNI 1726:2012. Pemodelan Elemen Kolom dan balok dimodelkan dengan frame sections section designer pada SAP2000 yang umum digunakan untuk penampang yang sudah diketahui penulangannya dengan penyesuaian yaitu untuk pemutusan tulangan balok pada daerah tumpuan maupun lapangan pada elemen tersebut tidak terdefinisi. Sehingga pemodelan setiap elemen balok menggunakan jumlah tulangan atas dan bawah terbanyak diantara penampang kedua daerah tersebut. Kemudian untuk pelat dimodelkan dengan area sections shell tanpa dilakukan pemodelan tulangan terperinci. Selanjutnya untuk tumpuan pada struktur didefinisikan dengan tumpuan jepit. Pemodelan Dinding Geser Dinding geser dimodelkan dengan mid-pier frame yaitu pemodelan dinding

geser dengan elemen rangka/frame seperti pada elemen balok dan kolom, dengan menggunakan parameter penampang dinding geser yang sudah ditentukan. Sendi plastis P-M-M terdefinisikan menurut FEMA 356 dengan distribusi penulangan yang diberikan melalui section designer pada SAP2000 18. Gambar 5 menunjukkan pemodelan dinding geser dengan mid-pier frame. Terdapat dua model desain dinding geser, yaitu SW20 dan SW30. Model SW20 dirancang untuk dinding dengan panjang bagian 4-5 m. Sedangkan model SW30 dirancang untuk dinding dengan panjang bagian 8 m. Gambar 6. Pemodelan struktur tipe SWB Diagram Alir Penelitian Gambar 7. Diagram alir penelitian Gambar 5. Pemodelan mid-pier element (Sumber: M. K. Rahman, M. Ajmal, M. H. Baluch & Z. Celep, 2012) Contoh Pemodelan Pada Gambar 6 dapat dilihat contoh pemodelan pada SAP2000 untuk struktur tipe SWB. HASIL DAN PEMBAHASAN Perbandingan Berat Berat struktur sangat penting untuk dibandingkan, karena selain kebutuhan dalam penyelesaian analisis pushover, dapat juga diketahui perkiraan volume pekerjaan struktur, dalam hal ini beton bertulang yang dibutuhkan saat pelaksanaan nanti. Adanya dilatasi membuat struktur tipe OD memiliki berat yang terbesar yaitu 20,824,567 kg dibandingkan dengan struktur alternatif tanpa maupun dengan dinding geser, sehingga dapat disimpulkan bahwa dinding geser dengan jumlah tertentu dapat menggantikan manfaat dilatasi tanpa perlu mengorbankan nilai ekonomisnya.

tersebut memiliki kekuatan terhadap torsi yang baik. Sementara pada struktur asli tipe OD, periode getar alami relatif sangat besar, frekuensi natural juga relatif sangat kecil dan terpaut jauh dengan struktur tipe yang lainnya. Gambar 8. Grafik perbandingan berat struktur Perbandingan Periode Getar Alami dan Frekuensi Natural Dari Gambar 4.8 dapat dilihat bahwa pada mode shape ke-1 dan ke-4, periode getar alami dan frekuensi natural tidak menunjukkan perbedaan yang signifikan dari struktur asli maupun alternatif. Hal tersebut dikarenakan pada mode shape ini, struktur mengalami translasi ke arah sumbu x dimana dinding geser tidak diberikan. Kemudian pada mode shape ke-2, periode getar alami dan frekuensi natural dari struktur alternatif memberikan perbedaan yang signifikan. Dimana periode getar alami terkecil dan frekuensi natural terbesar ditunjukkan oleh struktur tipe SWC. Hal tersebut dikarenakan pada mode shape ini, struktur mengalami translasi ke arah sumbu y dimana dinding geser diberikan. Sehingga kekakuan struktur berbanding lurus dengan jumlah dinding geser dan frekuensi natural, serta berbanding terbalik dengan periode getar alami. Sedangkan pada mode shape ke-3, ke-5 dan ke-6, struktur mengalami rotasi. Pada mode shape ini, struktur alternatif tipe SWB dan SWC menghasilkan periode getar alami terkecil dan frekuensi natural terbesar yang terpaut cukup jauh dari struktur alternatif lainnya. Sehingga dapat disimpulkan bahwa struktur alternatif tipe Gambar 9. Grafik hubungan mode shape dengan periode getar alami (detik) Gambar 10. Grafik hubungan mode shape dengan frekuensi natural (hertz) Perbandingan Kurva Kapasitas Dari Gambar 11 dapat disimpulkan bahwa penggunaan dilatasi tidak berpengaruh signifikan terhadap kekuatan struktur aslinya. Selain itu, jumlah dinding geser berbanding lurus dengan kekuatan struktur, seperti pada struktur alternatif SWC dengan jumlah dinding geser 3 x 8 m memiliki performa struktur terkuat dibanding struktur alternatif lainnya.

Gambar 11. Grafik perbandingan kurva kapasitas Spektrum Respons Rencana Dalam analisis statik, beban gempa diberikan melalui spektrum respons. Pada kasus ini, spektrum respons mengacu pada SNI 1726:2012. Klasifikasi situs yang digunakan adalah tanah sedang (S D ) sesuai dengan nilai tahanan penetrasi standar lapangan (N) situs GPB FKUB. Gambar 12. Spektrum respons rencana Spektrum Respons Elastis Teredam 5% Spektrum respons elastis teredam 5% didapatkan melalui spektrum respons rencana, kemudian lakukan konversi dari standard format response spectrum menjadi ADRS format response spectrum dengan merubah satuan pada periode, T (s) menjadi spectral displacement, Sd (m). Gambar 13. Spektrum respons elastis teredam 5% Perbandingan Hasil Prosedur A dan B Dari Tabel 4, Tabel 5 dan Gambar 14 dan 15, dapat disimpulkan bahwa prosedur A dan B metode spektrum kapasitas ATC- 40 menunjukkan hasil yang relatif sama dan tren yang sama pula. Apabila ditinjau dari titik kinerjanya, kedua prosedur menunjukkan bahwa struktur tipe SWC adalah yang paling kuat diantara struktur tipe lainnya. Kecuali untuk roof displacement (Δ roof ), kedua prosedur tidak menunjukkann tren yang sama, dan cenderung tidak beraturan. Pada prosedur A, struktur yang mengalami roof displacement terkecil adalah struktur tipe SWC yaitu 0.1272 m, sesuai dengan kekuatannya. Sedangkan pada prosedur B, struktur yang mengalami roof displacement terkecil adalah struktur tipe SWD yaitu 0.1630 m.

Tabel 4. Perbandingan titik kinerja prosedur A Tipe Titik Kinerja Prosedur A Sd Sa Δ roof V Tingkat m g M kg Kinerja OD 0.113 0.178 0.1636 2,776,524 IO OND 0.108 0.183 0.1557 2,770,382 IO NSW 0.108 0.190 0.1560 2,896,850 IO SWA 0.105 0.213 0.1525 3,279,994 IO SWB 0.093 0.215 0.1344 3,359,152 IO SWC 0.088 0.225 0.1272 3,557,849 IO SWD 0.100 0.220 0.1452 3,399,641 IO SWE 0.090 0.225 0.1308 3,519,362 IO Gambar 15. Perbandingan titik kinerja prosedur B Perbandingan Daktilitas Dari analisa daktilitas dapat disimpulkan bahwa penambahan dinding geser memang menambah kekuatan pada struktur, akan tetapi seiring dengan itu, daktilitas akan berkurang karena deformasi ultimit terpaut dekat dengan deformasi lelehnya. Gambar 14. Perbandingan titik kinerja prosedur A Tabel 5. Perbandingan titik kinerja prosedur B Tipe Titik Kinerja Prosedur B Sd Sa Δ roof V Tingkat m g M kg Kinerja OD 0.109 0.194 0.1780 2,858,737 IO OND 0.112 0.193 0.1710 2,878,185 IO NSW 0.110 0.202 0.1690 3,002,876 IO SWA 0.102 0.218 0.1730 3,456,044 IO SWB 0.098 0.228 0.1720 3,774,278 IO SWC 0.093 0.238 0.1720 4,128,554 IO SWD 0.103 0.223 0.1630 3,623,198 IO SWE 0.098 0.235 0.1660 4,013,045 IO Gambar 16. Perbandingan daktilitas struktur KESIMPULAN Berdasarkan hasil dari analisis yang sudah dilakukan, maka dapat disimpulkan poinpoin sebagai berikut : 1. Dihilangkannya dilatasi berpotensi menimbulkan bahaya akibat munculnya sendi plastis pada kolom struktur bagian sayap. Hal tersebut dikarenakan kekakuan kolom

struktur bagian sayap tidak cukup kuat untuk mengimbangi kekakuan kolom struktur bagian utama. 2. Periode getar alami (T) dari struktur dengan dinding geser menunjukkan perbedaan, dimana pada mode shape ke-2, periode getar alami terkecil ditunjukkan oleh struktur alternatif tipe SWC yaitu 1,009 detik dengan jumlah dinding geser 3 x 8 m. Sementara periode getar alami struktur asli dengan dilatasi tipe OD mencapai 1,343 detik. Sehingga kekakuan struktur berbanding lurus dengan jumlah dinding geser, dan berbanding terbalik dengan periode getar alami. 3. Roof displacement (Δ roof ) yang terjadi untuk kedua prosedur yang dilakukan menunjukkan hasil yang berbeda. Untuk prosedur A, yang dihasilkan secara manual dengan spreadsheet, menunjukkan bahwa struktur alternatif tipe SWC dengan jumlah dinding geser terbanyak, 3 x 8 m, menghasilkan Δ roof terkecil yaitu 12.72 cm. Sementara untuk prosedur B, yang dihasilkan dari program SAP2000 18, menunjukkan bahwa struktur alternatif tipe SWD dengan jumlah dinding geser 1 x 4 m dan 1 x 5 m, menghasilkan Δ roof terkecil yaitu 16.60 cm dibanding variasi lainnya. 4. Karena tingkat kinerja pada desain asli sudah dalam tingkat Immediate Occupancy (IO), maka peningkatan yang terjadi lebih kepada kapasitas struktur dalam menahan beban lateral, bukan kepada peningkatan tingkat kinerjanya. 5. dengan dinding geser memiliki daktilitas yang rendah dibandingkan dengan struktur tanpa dinding geser. Karena dinding geser berfungsi untuk meningkatkan kapasitas struktur dalam menahan beban lateral, bukan untuk meningkatkan daktilitas. Dimana struktur asli tanpa dilatasi (OND) memiliki daktilitas tertinggi yaitu 4.3246. Namun apabila dibandingkan antara struktur dengan dinding geser saja, struktur tipe SWB memiliki daktilitas tertinggi yaitu 3.6403. 6. Dari seluruh informasi yang sudah didapatkan, penulis menarik kesimpulan bahwa variasi jumlah dinding geser yang paling optimum adalah struktur alternatif dengan dinding geser 2 x 8 m (SWB) karena; pertama, berat struktur ini masih dibawah struktur tipe OD sehingga lebih ekonomis dari bangunan eksisting; kedua, daktilitasnya cukup baik dibandingkan dengan struktur alternatif lainnya meskipun dari segi kekuatan tipe SWC lebih unggul. SARAN Adapun saran penulis untuk penelitian selanjutnya mengenai analisis statik nonlinier pushover adalah perlunya : 1. Pemahaman yang cukup mengenai analisis statik non-linier pushover dengan program SAP2000 18, terutama pengertian dari parameterparameter pushover. 2. Pemahaman yang menyeluruh mengenai penempatan elemen dinding geser dengan menggunakan program SAP2000 18 sebagai midpier frame maupun sebagai shell. 3. Penelitian lebih lanjut mengenai pengaruh perubahaan keadaan situs dari tanah sedang (S D ) menjadi tanah lunak (S E ) terhadap tingkat kinerja

struktur untuk memberikan kondisi gempa yang terburuk. 4. Data data struktur yang dimasukkan dalam program SAP2000 18 agar lebih terperinci. 5. Evaluasi kembali pada hinge results untuk mengetahui apakah perilaku sendi plastis yang muncul dapat diterima atau tidak. DAFTAR PUSTAKA Federal Emergency Management Agency. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings: Seismic Rehabilitation Prestandard. FEMA Edition 356. Nov. Virginia: ASCE. Applied Technology Council. ATC 40. (1997). Seismic Evaluation and Retrofit of Concrete Building. Volume 1. California. California Seismic Safety Comision. Badan Standarisasi Nasional. (2012). SNI 1726:2012 Tata Cara Perencanaan Tahan Gempa untuk Bangunan Gedung dan Non Gedung. Jakarta: BSN. Badan Standardisasi Nasional. (2014). SNI 2052: 2014 Baja Tulangan Beton. Jakarta: Badan Standardisasi Nasional Churrohman, F. (2012). Studi Perilaku Dinding Geser Beton Bertulang dan Dinding Geser Pelat Baja dengan Analisis Statik Non-Linier Pushover. Skripsi. Dipublikasikan. Depok: Universitas Indonesia. Departemen Pekerjaan Umum. (1983). Peraturan Pembebanan Indonesia untuk Gedung. Bandung: Departemen Pekerjaan Umum. Departemen Permukiman dan Prasarana Wilayah. (2002). SNI-1726-2002 Standar Perencanaan Ketahanan Gempa untuk Bangunan Gedung. Bandung: Departemen Permukiman dan Prasarana Wilayah. Departemen Permukiman dan Prasarana Wilayah. (2002). SNI-2487-2002 Tata Cara Perhitungan Beton untuk Bangunan Gedung. Bandung: Departemen Permukiman dan Prasarana Wilayah. Febriana, A. (2016). Analisis Pushover untuk Performance Based Design (Studi Kasus Gedung B Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya). Skripsi. Tidak dipublikasikan. Malang: Universitas Brawijaya. Nawy, E.G. (2005). Reinforced Concrete: A Fundamental Approach. New Jersey: John Wiley & Sons, Inc. Park, R. (1988). Ductility Evaluation from Labolatory and Analytical Testing. Proceedings of Ninth World Confrence on Earthquake Engineering: 605-616. Tokyo- Kyoto: World Confrence on Earthquake Engineering. Park, R., & Paulay, T. (1975). Reinforced Concrete Structures. New York: John Wiley & Sons. Inc Rahman, M.K., Ajmal, M., Baluch, M.H., Celep, Z. (2012). Nonlinear Static Pushover Analysis of an Eight Story RC Frame-Shear Wall Building in Saudi Arabia. Proceedings of 15 th World Confrence on Earthquake Engineering. Lisboa: World Confrence on Earthquake Engineering.

Riza, M. (2006). Perencanaan Gedung Swalayan Ramai Semarang. Skripsi. Dipublikasikan. Semarang: Universitas Diponegoro.