STUDI PERFORMA TURBIN ANGIN SUMBU VERTIKAL NACA 0012 DENGAN TURBIN ANGIN DARRIEUS-H PADA VARIASI SUDUT PITCH 35 0,40 0,45 0,50 0,55 0,60 0

dokumen-dokumen yang mirip
STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012

PENGARUH VARIASI SUDUT GUIDE VANE TERHADAP PERFORMA WIND TURBINE DARRIEUS TIPE-H DENGAN NACA 0012 DAN NACA 0018

UJI KINERJA TURBIN ANGIN SUMBU VERTIKAL TIPE DARRIEUS-H NACA 0018 MODIFIKASI DENGAN VARIASI SUDUT PITCH 35 0,40 0,45 0,50 0,55 0,60 0

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º

UJI KINERJA TURBIN ANGIN SUMBU VERTIKAL TIPE DARRIEUS-H NACA 0018 MODIFIKASI DENGAN VARIASI SUDUT PITCH 35 0,40 0,45 0,50 0,55 0,60 0

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT

RANCANG BANGUN TURBIN ANGIN TIPE-H DENGAN BENTUK AIRFOIL NACA MODIFIKASI

BAB II LANDASAN TEORI

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

BAB III METODOLOGI PENGUKURAN

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA

UJI EKSPERIMENTAL PENGARUH SUDU PENGARAH ALIRAN (GUIDE VANE) TERHADAP DAYA PADA TURBIN SAVONIUS SKRIPSI

ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

PENGARUH VARIASI SUDUT BLADE ALUMINIUM TIPE FALCON TERHADAP UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbines (HAWT) DENGAN KAPASITAS 500 WATT

RANCANG BANGUN ALAT PEMBANGKIT LISTRIK TENAGA ANGIN SUMBU VERTIKAL DI DESA KLIRONG KLATEN Oleh Bayu Amudra NIM:

NASKAH PUBLIKASI STUDI EKSPERIMEN PENGARUH SUDUT SERANG TERHADAP PERFORMA TURBIN ANGIN SUMBU HORISONTAL NACA 4415

KARAKTERISTIK MODEL TURBIN ANGIN UNTWISTED BLADE DENGAN MENGGUNAKAN TIPE AIRFOIL NREL S833 PADA KECEPATAN ANGIN RENDAH

PENGARUH JUMLAH BLADE DAN VARIASI PANJANG CHORD TERHADAP PERFORMANSI TURBIN ANGIN SUMBU HORIZONTAL (TASH)

Adanya Sistem Pembangkit Listrik Tenaga Angin yang bisa diaplikasikan di daerah pemukiman tersebut tanpa melalui taman nasional

Desain Turbin Angin Sumbu Horizontal

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III PELAKSANAAN PENELITIAN

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 Dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0 º, 10 º, 15 º

KAJI EKSPERIMENTAL TURBIN ANGIN DARRIEUS-H DENGAN BILAH TIPE NACA 2415

PENGARUH SUDUT BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK

Pengaruh Pemasangan Sudu Pengarah dan Variasi Jumlah Sudu Rotor terhadap Performance Turbin Angin Savonius

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN. PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi

Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin

Studi Simulasi dan Eksperimental Pengaruh Pemasangan Plat Bersudut Pada Punggung Sudu Terhadap Unjuk Kerja Kincir Angin Savonius

Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya

JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro

BAB 1 PENDAHULUAN 1.1.Latar Belakang

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : DANANG KURNIAWAN NIM. I

ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI

Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai

BAB I PENDAHULUAN. sangat pesat, menyebabkan peningkatan konsumsi jumlah energi yang. cukup besar pula. Salah satunya yaitu konsumsi energi yang

BAB IV HASIL DAN PEMBAHASAN. : Airfoil Clark Y Flat Bottom. : Bolam lampu 360 Watt

UNIVERSITAS DIPONEGORO PENGARUH BILANGAN REYNOLD TERHADAP KECEPATAN SUDUT TURBIN GORLOV HYDROFOIL NACA SUDUT KEMIRINGAN 45 TUGAS AKHIR

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : GALIH PERMANA NIM. I

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan

ANALISIS EKSPERIMENTAL PENGARUH RASIO OVERLAP SUDU TERHADAP UNJUK KERJA SAVONIUS HORIZONTAL AXIS WATER TURBINE SKRIPSI

BAB IV HASIL DAN PEMBAHASAN

STUDI EKSPERIMENTAL EFEK JUMLAH SUDU PADA TURBIN AIR BERSUMBU HORISONTAL TIPE DRAG TERHADAP PEMBANGKITAN TENAGA PADA ALIRAN AIR DALAM PIPA

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H

BAB II LANDASAN TORI

KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF

BAB III PERANCANGAN ALAT

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L

BAB II LANDASAN TEORI

UNIVERSITAS DIPONEGORO KAJI PERKEMBANGAN KECEPATAN TRANSIENT UNTUK MEMBEDAKAN KUALITAS TURBIN DARIEUS NACA DENGAN VARIASI KECEPATAN ALIRAN AIR

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI

KAJI EKSPERIMEN TURBIN ANGIN POROS HORIZONTAL TIPE KERUCUT TERPANCUNG DENGAN VARIASI SUDUT SUDU UNTUK PEMBANGKIT LISTRIK TENAGA ANGIN

PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER. Adi Andriyanto

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER

PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN

BAB I PENDAHULUAN. 1.1 Latar Belakang

Bab IV Analisis dan Pengujian

PENGARUH SUDUT KELENGKUNGAN SUDU SAVONIUS PADA HORIZONTAL AXIS WATER TURBINE TERHADAP POWER GENERATION

PENGARUH SUDUT PUNTIR SUDU PADA SAVONIUS HORIZONTAL AXIS WATER TURBINE SEMICIRCULAR BLADE APLIKASI ALIRAN DALAM PIPA

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

ANALISA PERUBAHAN SUDU TERHADAP DAYA TURBIN ANGIN TIPE HORIZONTAL DI LABORATORIUM TEKNIK LISTRIK POLITEKNIK NEGERI SRIWIJAYA

BAB IV ANALISA DAN PEMBAHASAN

KAJIAN EKSPERIMENTAL PENGARUH JUMLAH SUDU TERHADAP TORSI DAN PUTARAN TURBIN SAVONIUS TYPE U

Perancangan Konstruksi Turbin Angin di Atas Hybrid Energi Gelombang Laut

PENGARUH LEBAR BLADE TERHADAP KINERJA TURBIN ANGIN SUMBU HORIZONTAL

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

STUDI EKSPERIMEN PENGARUH JUMLAH SUDU TERHADAP KERJA TURBIN ANGIN HORISONTAL BERBASIS NACA 4415

Turbin angin poros vertikal tipe Savonius bertingkat dengan variasi posisi sudut

Pengaruh Variasi Pembebanan Pada Poros Utama Turbin Angin Terhadap Putaran, Daya Listrik, dan Kinerja Turbin Angin Golden Blade

TUGAS AKHIR RANCANG BANGUN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL. Diajukan Untuk Memenuhi Persyaratan Kurikulum. Strata Satu (S1) Teknik Mesin

Prestasi Kincir Angin Savonius dengan Penambahan Buffle

STUDI EKSPERIMENTAL TURBIN ANGIN SAVONIUS SUDU U DENGAN PENAMBAHAN SUDU NACA 0012

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB III PERANCANGAN SISTEM

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

SKRIPSI EFEK PEMUNTIRAN SUDU TERHADAP PERFORMANSI TURBIN ANGIN TIPE SUDU ORI

DRAF PATEN. 10 Judul Usulan Invensi: BILAH TURBIN ANGIN DENGAN PENGENDALIAN SUDUT PITCH BILAH. Oleh: Dr. Ramadoni Syahputra, S.T., M.T.

RANCANG BANGUN KINCIR ANGIN PEMBANGKIT TENAGA LISTRIK SUMBU VERTIKAL SAVONIUS PORTABEL MENGGUNAKAN GENERATOR MAGNET PERMANEN ABSTRAK

RANCANGAN SISTEM ORIENTASI EKOR TURBIN ANGIN 50 kw

OPTIMALISASI DESAIN TURBIN PLTA PICO- HYDRO UNTUK MENINGKATKAN EFISIENSI DAYA DENGAN BANTUAN SOFTWARE CFD DAN KONSEP REVERSE ENGINEERING

commit to user Gambar 1.1 Profil kecepatan angin yang keluar dari cooling tower

BAB 1 PENDAHULUAN. Pemanfaatan potesi energi terbarukan saat ini semakin banyak

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

PENELITIAN DAN RANCANGAN OPTIMAL TURBIN PENGGERAK TEROWONGAN ANGIN SUBSONIK SIRKUIT TERBUKA LAPAN

Fakultas Teknik Elektro, Universitas Telkom

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Transkripsi:

STUDI PERFORMA TURBIN ANGIN SUMBU VERTIKAL NACA 0012 DENGAN TURBIN ANGIN DARRIEUS-H PADA VARIASI SUDUT PITCH 35 0,40 0,45 0,50 0,55 0,60 0 NASKAH PUBLIKASI Disusun : H MIM SAFI I NIM : D200120048 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 2016

STUDI PERFORMA TURBIN ANGIN SUMBU VERTIKAL NACA 0012 DENGAN TURBIN ANGIN DARRIEUS-H PADA VARIASI SUDUT PITCH 35 0,40 0,45 0,50 0,55 0,60 0 Abstrak Makin mahal dan berkurangnya ketersediaan sumber daya energi fosil sebagai pembangkit listrik, serta makin meningkatnya kesadaran akan usaha untuk melestarikan lingkungan, maka perlunya adanya alternatif untuk menghasilkan sumber energi, angin adalah salah satu sumber energi terbarukan yang ramah lingkungan. Energi angin dapat dimanfaatkan dengan menggunakan turbin angin. Jenis turbin angin yang dipilih dalam tugas akhir ini adalah turbin angin Darrieus tipe-h dengan aerofoil NACA 0012, dengan panjang chord 0,3 m. Dimensi turbin angin yaitu dengan diameter (D) 0,44 m dan tinggi (H) 0,6 m. Variasi sudut pitch yang dilakukan dalam pengujian ini adalah (35 0, 40 0, 45 0, 50 0, 55 0, 60 0 ). Tujuan dilakukan penelitian ini adalah untuk mengetahui pengaruh sudut pitch terhadap performa turbin angin Darrieus-H. Penelitian ini dilakukan dengan menggunakan wind tunnel dengan kecepatan angin 4,8 m/s. Dari hasil pengujian diperoleh bahwa turbin angin dengan sudut pitch 55 0 lebih efektif dalam mengekstrak energi angin, untuk sudut pitch 35 0, 40 0, 45 0, 50 0, 55 0, 60 0 dengan efesiensi masing-masing 4,11%, 4,16%, 4,39%, 4,51%, 4,62%, 4,16%. Kata Kunci : Turbin Angin Darrieus-H, NACA 0012, Sudut Pitch, Efesiensi Abstracts The more expensive and the more limited fossil energy resaourch as the electricity power, and the increase of awarness to preserve the environmental condition, therefore, alternativ energy resourch is necessary to be taken. Wind is a kind of renewal energy which is environmentaly friendly. Wind energy can be aplied by using wind turbine. The kind of wind turbine used in the final report research is Darrieus type-h wind turbine with aerofoil NACA 0012, the cord long is 0,3 m. The wind turbin dimension is (D) 0,44 m, tall (H) 0,6 m. The pitch degree variations done in this research test are (35 0, 40 0, 45 0, 50 0, 55 0, 60 0 ). The purpose of this research was to find out find out the relationship of pitch degree toward the Darrieus-H turbine performance. The research was done by using wind tunnel with the wind velocity of 4,8 m/s. The result obtained from the test indicated that the wind turbine with pitch degree of 55 0 is more effective to ekstract the wind energy, and each effeciency of the degree of 35 0, 40 0, 45 0, 50 0, 55 0, 60 0 are 4,11%, 4,16%, 4,39%, 4,51%, 4,62%, 4,16%. Keywords : Darrieus-H Wind Turbine, NACA 0012, Pitch Degree, Effeciency 1

1 PENDAHULIAN 1.1 Latar Belakang Energi alternatif yang terbarukan semakin gencar dalam pengembangannya untuk pembangkit listrik. Sumber-sumber energi terbarukan bisa berasal dari matahari, air, panas bumi, biomassa dan juga angin. Energi angin merupakan energi yang fleksibel karena dapat diterapkan dimana-mana, baik di daerah landai, dataran tinggi, dan laut. Pemakaian energi angin di Indonesia masih belum optimal hanya 1,06 Mega Watt (MW) dari 28.658,36 MW kapasitas pembangkit listrik PLN(PLN Statistik 2012) Pemanfaatan sumber energi angin di Indonesia yang masih belum optimal, hal tersebut dikarenakan kurangnya teknologi dan pengetahuan yang belum populer, arah angin di Indonesia yang mudah barubah dan kurang ekonomis. Di Indonesia, kecepatan angin berkisar antara 2 m/s hingga 6 m/s. Dengan kecepatan angi yang dinilai cocok untuk menggunakan pembangkit listrik tenaga angin skala kecil (10 kw) dan menengah (10-100 kw) untuk penggunaan energy misalnya lampu, pompa air, alat-alat elektronik dan lainlain. Dari penelitian yang dilakukan oleh Wahl (2007), merancang turbin darrieus tipe-h dengan 3 blade yang mampu menghasilkan enrgi sebesar 5 kw yang mana energi tersebut akan disimpan di wadah selanjutnya baru digunakan untuk peralatan pengeboran dan pemanasan. Dari segi desain, kontruksi menara dan generator semua telah di uji untuk meminimalisir terjadinya kesalahan dalam merencanakan. Gaoyuan (2015), Melakukan penelitian pada turbin angin vertikal dengan NACA 0012 dan dalam penelitian menggunakan alat uji wind tunnel. Fungsi utama dari tes wind tunnel adalah untuk mengetahui kineja aerodinamis dan tekanan angin pada setiap blade. Elkhoury (2015), melakukan penelitian kinerja pada mikro turbin angin vertikal dengan variasi sudut pitch. Metode penelitian yang 2

dilakukan dengan menggunakan wind tunnel. Mekanisme variabel pitch menunjukkan kinerja yang optimal dibandingkan dengan pitch yang tetap. Perbedaan mekanisme pitch pada airfoil yang lebih tipis NACA 0018 mengakibatkan kinerja yang lebih baik dari pada yang diperoleh dengan NACA 0021. Ini dikaitkan dengan sudut serang dalam mekanisme variabel pitch beroperasi. Dari awal turbin angin vertikal dengan mekanisme variabel pitch dipamerkan kecepatan rendah dapat start-up dibandingkan dengan sudut pitch yang tetap. Napitupulu (2014), melakukan penelitian turbin angin Darrieus-H dengan profil sudu NACA 0012 yang dilakukan dengan melakukan serangkaian pengujian turbin angin dengan menggunakan variasi jumlah sudu dan sudut pitch pada kecepatan 3,85 m/s. Dalam pengujian melakukan pengujian terhadap variasi sudut pitch sudu (0 0, 2 0, 4 0, 6 0, 8 0, 10 0, 12 0 ). Hiren (2014), merancang dan melakukan pengujian turbin angin darrieus pada profil NACA 0012,0015,0018 dan dari pengujian profil di dapatakan profil 0012 profil yang paling optimum. Dari profil 0012 dilakukan pengujian dengan sekala kecil pada sudut pitch sudu (-8 0, -4 0, 0 0, 4 0, 8 0 ) dan pada sudut azimut 0, 30, 60, 90. Dominy (2006), melakukan penelitian kinerja pada turbin angin darrieus sumbu vertikal NACA 0012 dengan 1,2 dan 3 blade terhadap kemampuan untuk self-start, dari hasil pengujian didapatkan dengan turbin 3 sudu mampu self start dari kecepatan angin yang jauh lebih rendah dan disarankan bahwa desain 3 sudu harus selalu dieterapkan dalam pilihan untuk rotor dua berbilah. Mengacu pada beberapa hal di atas maka Ruang lingkup penelitian ini adalah: Spesifikasi prototipe turbin angin Darrieus-H: Diameter rotor: 0,44m, Tinggi blade: 0,6 m, profil sudu: NACA 0012, Panjang chord: 0,3 m. Variasi dalam pengujian adalah sudut pitch 35 0, 40 0, 45 0, 50 0, 55 0, 60 0. Kecepatan angin 4,8 m/s 3

1.2 Tujuan Tujuan spesifik yang ingin di capai pada perancangan ini adalah: 1. Mengetahui pengaruh variasi sudut pitch 35 0, 40 0, 45 0, 50 0, 55 0, 60 0. dari turbin angin darrieus-h terhadap arah angin dan kecepatan. 2. Mengetahui daya dan effesiensi yang dihasilkan oleh turbin angin yang dibuat. 1.3 Batasan Masalah Banyak aspek yang terlibat dalam kegiatan perancangan dan pembuatan turbin angin ini. Terdapat batasan masalah yang perlu diberikan agar penelitian berjalan. Batasan masalah tersebut adalah: 1. Tipe turbin angin adalah VAWT. 2. Turbin angin menggunakan 3 bilah sudu dan menggunakan NACA 0012. 3. Pengujian dilakukan dengan menggunakan wind tunnel pada variasi sudut pitch 35 0, 40 0, 45 0, 50 0, 55 0, 60 0. 4. Pengujian hanya dibatasi pada bagian sudu turbin angin, sedangkan bagian kontruksi diabaikan. 2. METODE PENELITIAN 2.1 Tahapan Perancangan Jika diuraikan, tahapan yang dilakukan dalam perancannga penelitian ini adalah sebagai berikut: 1. Menentukan profil airfoil yang akan digunakan dengan mendownload pada UIUC Airfoil data site dengan AutoCAD 2. Membuat desain perancangan turbin angin dengan Solidwork. 3. Membuat perancangan turbin angin. 4. Melakukan pengujian kinerja turbin angin. 5. Analisis data dari pengujian turbin angin. 4

2.2 Tahapan Pengujian Pengujian terbagi menjadi dua tahap, yaitu : 1. Pengujian tanpa pembebanan pada sudut pitch (35 0, 40 0, 45 0, 50 0, 55 0, 60 0 ) 2. Pengujian dengan pembebanan 250 gram sudut pitch (35 0, 40 0, 45 0, 50 0, 55 0, 60 0 ) 2.3 Alat dan Bahan Pengujian 1. Prosedur penelitian Dalam penelitian yang dilakukan dengan pembebanan dan tanpa pembebaban. Maka tahapan yang harus dilakuakan sebagai berikut : a. Mempersiapkan dan memasang semua komponen terowongan angin dan kincir angin yang akan digunakan, pastikan semua terpasang dengan benar dan meyiapkan peralatan penelitian yaitu anemometer, stopwatch, tachometer, mistar, beban dan busur. b. Mengatur kemiringan sudut pitch pada kincir angin dan menyalakan tachometer. c. Memasang benang yang sudah terikat dengan beban seberat 250gram pada pully yang terpasang di flange turbin. Pada saat pengujian tanpa pembebanan, beban tidak dipasang. d. Menyalakan fan sebagai suplay angin dengan kecepatan 4,8 m/s. e. Pengamatan mulai dilakukan dengan menghitung waktu beban naik sampai dengan ketinggian 1,9 m dari posisi awal dengan menggunakan stopwatch. f. Mengulangi pengambilan data meliputi waktu, kecepatan angin, putaran turbin dan beban. Mengulangi pengujian dengan variasi sudut pitch. g. Setiap variasi sudut pitch dilakukan percobaan sebanyak 6kali agar hasil yang diperoleh lebih maksimal. 5

2. Alur Penelitian Mulai Tahap persiapan Alat dan Bahan Perancangan Proses pembuatan Alat Uji Proses Pembuatan Turbin Angin Pengujian sudut pitch 35 0 tanpa beban terhadap putaran dan dengan beban terhadap daya, putaran, torsi dan efesiensi Pengujian sudut pitch 40 0 tanpa beban terhadap putaran dan dengan beban terhadap daya, putaran, torsi dan efesiensi Pengujian sudut pitch 45 0 tanpa beban terhadap putaran dan dengan beban terhadap daya, putaran, torsi dan efesiensi Pengujian sudut pitch 50 0 tanpa beban terhadap putaran dan dengan beban terhadap daya, putaran, torsi dan efesiensi Pengujian sudut pitch 55 0 tanpa beban terhadap putaran dan dengan beban terhadap daya, putaran, torsi dan efesiensi Pengujian sudut pitch 60 0 tanpa beban terhadap putaran dan dengan beban terhadap daya, putaran, torsi dan efesiensi Analisis data Kesimpulan Pembuatan Laporan Selesai Gambar 1. Alur penelitian 6

3. Instalasi pengujian Keterangan : 1. Wind Tunnel 2. Honey Home 3. Sudut Pengarah 4. Anemometer 5. Turbin Angin 6. Tachometer 7. Beban 250 gram 8. Fan Gambar 2. Instalasi pengujian 4. Satu set alat uji dengan komponen penyusunya yaitu: a. Trowongan angin (wind tunnel) digunakan untuk laju aliran angin yang dihasilkan oleh fan Gambar 3. Terowongan angin b. Fan digunakan untuk penyuplai udara yang dialairkan kedalam wind tunnel kemudian digunakan untuk menggerakan kincir angin. c. Guidefan diigunakan untuk mengarahkan arah angin langsung mengenai permukaan blade. d. Honey Home digunakan untuk merubah merubah laju aliran angin dari fan yang awalnya laminer menjadi turbulen. e. Tiang digunakan untuk tempat beban terangkat 7

5. Satu set kincir angin dengan komponen penyusunya antara lain: a. Flange digunakan untuk menempatkan poros utama dan menempatkan batang sudu. b. Batang Sudu, digunakan untuk menghubungkan antara sudu dengan flange. c. Puli, digunakan untuk sarana menggulung tali yang mengakibatkan beban terangkat. d. Poros, digunakan untuk penyangga turbin angin dan tempat terhubungnya flange. e. Sudu (Blade) dengan NACA 0012, digunakan untuk menangkap energi kinetik angin yang akan dikonfersi menjadi gerak (mekanik) putar dalam poros penggerak. 6. Alat ukur yang digunakan a. Tachometer, digunakan untuk mengukur kecepatan putar turbin angin. b. Timbangan, digunakan untuk memgukur berat blade. c. Stopwatch, untuk menghitung waktu beban naik sampai ketinggian 1,9m. d. Anemometer untuk mengukur kecepatan udara yang masuk melewati guildefan. e. Beban dan tali, digunakan untuk proses pengujian pembebabanan. 7. Bahan Pembuatan Blade 1. Kayu dengan tebal 30 mm 2. Plat zeng 8

3. Hasil Dan Pembahasan 3.1 Spesifikasi Turbin Angin Tabel 1 Spesifikasi Turbin Angin No Jenis Turbin Darrieus H 1 Jenis Axis Vertical Axis Wind Turbin 2 Diameter 0,44 meter 3 Panjang Chord 30 cm 4 Tinggi Blade 60 cm 5 Berat Blade 900 gram 6 Material Blade Kayu dengan tebal 30 mm dan Plat Zeng 7 Jumlah Blade 3 buah 8 Nomor NACA 0012 Gambar 4. Turbin Angin dengan NACA 0012 3.2 Hasil Pengujian kinerja turbin angin dengan variasi sudut pitch. Tabel 2 data hasil pengujian tanpa pembebanan No Sudut Kecepatan angin pitch (m/s) Putaran (rpm) 1. 35 0 4,8 66,85 2. 40 0 4,8 67,37 3. 45 0 4,8 68,50 4. 50 0 4,8 68,85 5. 55 0 4,8 70,05 6. 60 0 4,8 68,48 9

Kecepatan Putar (rpm) No Sudut pitch Beban (kg) Tebel 3 data hasil pengujian dengan pembebanan Kecepatan angin (m/s) Putaran (rpm) Daya angin (Watt) Daya turbin (Watt) Torsi (Nm) Efisiens i (%) 1. 35 0 0,25 4,8 47,07 17,51 0,72 0,146 4,11 2. 40 0 0,25 4,8 50 17,51 0,73 0,139 4,16 3. 45 0 0,25 4,8 53,5 17,51 0,77 0,137 4,39 4. 50 0 0,25 4,8 54 17,51 0,79 0,139 4,51 5. 55 0 0,25 4,8 54,67 17,51 0,81 0,142 4,62 6. 60 0 0,25 4,8 50,67 17,51 0,73 0,137 4,16 Dari data di atas menunjukan besarnya daya dan rpm turbin yang dihasilkan mulai dari sudut pitch 35 0 sampai dengan sudut pitch 60 0 mengalami kenaikan seiring dengan bertambah besarnya sudut pitch kenaikan tersebut terjadi pada sudut pitch 35 0 sampai dengan 55 0, namun daya dan rpm turbin mengalami penurunan pada sudut pitch 60 0. Daya turbin angin terbesar pada sudut pitch 55 0 dengan daya yang dihasilkan sebesar 0,81 watt dan rpm yang dihasilkan sebesar 54,67. Dari data pengujian tanpa pembebanan turbin angin darrieus-h dengan NACA 0012 diatas maka didapatkan grafik antara sudut dengan putaran yang dihasilkan oleh turbin angin yaitu sebagai berikut: Grafik Hubungan Sudut Dengan Kecepatan Putar Turbin Angin Tanpa Pembebanan 75 70 65 60 55 30 35 40 45 50 55 60 Sudut ( ) Gambar 5. Grafik hubungan antara sudut pitch dengan putaran tanpa pembebanan 10

Daya Turbin (w) Torsi (Nm) Kecepatan Putar (m/s) 60 Grafik Hubungan Sudut Dengan Kecepatan Putar Turbin Angin Dengan Pembebanan 55 50 45 40 30 35 40 45 50 55 60 Sudut ( ) Gambar 6. Grafik pembebanan hubungan antara sudut pitch dengan putaran dengan Dari data pengujian dengan pembebanan diatas didapatkan grafik antara sudut dengan putaran yang dihasilkan oleh turbin angin yaitu sebagai berikut: 0,82 0,8 0,78 0,76 0,74 0,72 Grafik hubungan daya turbin dan torsi Daya Turbin 0,148 0,146 0,144 0,142 0,14 0,138 0,7 0,136 30 35 40 45 50 55 60 65 Sudut ( ) Gambar 7. Grafik hubungan antara torsi dan daya turbin terhadap sudut pitch 11

Efesiensi (%) 4,7 4,6 4,5 4,4 4,3 4,2 4,1 4 4,62 4,51 4,39 4,16 4,16 4,11 Sudut ( ) sudut 35 sudut 40 sudut 45 sudut 50 sudut 55 sudut 60 Gambar 8. Grafik hubungan antara sudut pitch dan efisiensi turbin Gambar 9. Segitiga Kecepatan Analisis segitiga kecepatan diatas bahwa pada posisi 1 terjadi resultan gaya yang searah dengan putaran turbin. Pada posisi 2 terjadi resultan gaya yang arah searah dengan putaran turbin sehingga ada penambahan putaran pada posisi ini. Pada posisi 3 terjadi resultan gaya yang searah dengan putaran turbin namun gaya yang dihasilkan lebih kecil dari posisi sebelumnya. Pada posisi 4 terjadi resultan gaya yang berlawanan dengan arah putaran turbin dengan nilai resultan yang besar 12

mengakibatkan hambatan turbin terbesar terjadi pada posisi ini. Pada posisi 5 terjadi resultan gaya yang arahnya berlawanan dengan putaran turbin dan akan menghambat putaran turbin namun nilainya lebih kecil dari posisi 4. Pada posisi 6 terjadi resultan gaya yang searah dengan putaran turbin sehingga menambah putaran turbin dengan nilai resultan yang paling besar. Dari penelitian terdahulu yang dilakukan oleh Napitupulu (2014) yang menggunakan NACA 0012 didapatkan sudut pitch 6 0 yang paling baik dengan efisiensi 15,91% dan Hiren (2014) didapatkan sudut pitch -8 0 yang paling optimal dengan torsi sebesar 607,202. Dari penelitian terdahulu didapatkan daya dan efesiensi yang dihasilkan akan naik seiring dengan besarnya sudut pitch, pada sudut pitch tertentu akan mencapai energi yang optimum kemudian akan mengalami penurunan. Dalam penelitian ini di dapatkan sudut pitch 55 0 yang palig efektif mengkstrak energi dengan efesiensi sebesarb4,62% dan daya yang dihasilkan sebesar 0,81 W. Dengan torsi yang dihasilkan turbin sebesar 0,142 N/m. Torsi besar belum tentu didapatkan daya yang besar. 4. PENUTUP Dari penelitian yang telah dilakukan tentang turbin angin sumbu vertical darrieus-h dengan NACA 0012 dengan jumlah sudu 3 buah, diameter 44 cm, beban 250 gram dan kecepatan angin 4,8 m/s dapat diambil kesimpulan sebagai berikut: 1. Sudut pitch berpengaruh pada kinerja kincir angin, semakin bertambahnya sudut pitch semakin besar putaran yang dihasilkan namun pada sudut tertentu putaran akan menglami penurunan, putaran maksimal didapatkan pada sudut 55 0 sebesar 70,05 rpm. 13

2. Pada sudut pitch yang sama pengujian dengan pembebanan menghasilkan daya maksimum sebesar 0,81 watt dan efisiensi maksimum 4,69%. SARAN 1. Diperlukan kontruksi yang lebih kuat lagi dikarenakan sempat terjadi kerusakan di beberapa komponen turbin angin. 2. Keterbatasan alat yang digunakan sehingga memperlambat proses pembuatan turbin maka alat harus di persiapkan terlebih dahulu agar proses pembuatan berjalan sesuai dengan waktu yang ditentukan. 3. Diperlukan tachometer otomatis yang mencatat dan menyimpan data hasil pengukuran agar didapatkan data yang lebih akurat. 4. Untuk mendapatkan hasil yang lebih optimal dan mendapatkan data dengan berbagai variasi angin, penggunaan fan dengan kecepatan angin yang bisa diatur sangat direkomendasikan dari pada fan dengan kecepatan angin yang konstan. PERSANTUNAN Puji syukur alhamdulillah, penulis panjatkan kehadirat Allah SWT atas bekah, rahmat, dan hidanya-nya sehingga penyusunan laporan penelitian tugas akhir dapat terselesaikan : Tugas Akhir berjudul Studi Performa Turbin Angin Sumbu Vertikal NACA 0012 Dengan Turbin Angin Darrieus-H Pada Variasi Sudut Pitch 35 0,40 0,45 0,50 0,55 0,60 0 dapat diselesaikanatas dukungan dari beberapa pihak. Untuk itu pada kesempatan ini, penulis menyampaikan rasa terimakasih sebesar-besarnya kepada : 1. Bapak Ir. Sri Sunarjono, MT., Ph.D selaku Dekan Fakultas Teknik Universitas Muhammadiyah Surakarta. 14

2. Bapak Tri Widodo BR, ST., MSc., Ph.D selaku Ketua Jurusan Teknik Mesin Universitas Muhammadiyah Surakarta. 3. Bapak Nur Aklis, ST., M.Eng. Selaku dosen pembimbing utama telah memberikan bimbingan ilmu, saran, arahan, dan motivasi dalam menyelesaikan Tugas Akhir ini. 4. Bapak Ir. Tri Tjahjono, MT. Selaku dosen pembimbing pendamping telah memberikan pengarahan dan bimbingan dalam menyelesaikan Tugas Akhir ini. 5. Seluruh dosen Teknik Mesin yang telah mengajarkan banyak ilmu dan segala hal yang baik. 6. Kedua orang tua tercinta Bapak K.Hartono dan Ibu Suyatmi yang senantiasa memberikan semangat dan doa tak henti-henti sehingga dalam awal masuk kuliah sampai akhir kuliah dapat berjalan dengan lancar. 7. Keluarga besar mbah Citro Sardi yang telah merawat dari kecil. 8. Teman-teman Teknik Mesin yang tidak bisa disebutkan satu persatu. DAFTAR PUSTAKA Dominy Robert G, 2007, Self-Starting Capability of a Darrieus Turbine, Northumbria University. Elkhoury.M, T. Kiwata & E. Aoun, 2015, Experimental and Numerical Investigation of a Three-Dimensional Vertical-Axis Wind Turbine with Variable-Pitch, Lebanese American University, 139(2015)111-123. Erich Hau, Wind Turbines Fundamentals, Technologies, Application, Economics, 2005, 2 nd Edition, terjemahan Horst von Renuard, Springer, Germany. Jin Xin, Gaoyuan Zhao, Kejun Gao, Wenbin Ju, 2015, Darrieus Vertical Axis Wind Turbine Basic Research Methods, Mechanical Engineering Chongqing University, 42(2015)212-225. 15

Napitupulu Farel H, Ekawira K. Napitupulu, 2014, Uji Performa Turbin Angin Tipe Darrieus-H dengan Profil Sudu NACA 0012 dan Analisa Perbandingan Efesiensi Menggunakan Variasi Jumlah Sudu dan Sudut Pitch, Universitas Sumatera Utara, 0216-7492. Schlichting, H., Truckendrobt, E., & Ramm, H.J. (1979), Aerodynamics Of The Airplane, McGraw-Hill International Book Company. Tala Hiren & Sandip Patel, 2014, Simulation of Small Scale Straight Blade Darrieus Wind Turbine Using Latest CAE Techningquest to get Optimum Power Output, Engineering College Valsed, 1036. Wahl Mats, 2007, Designing an H-rotor type Wind Turbine Of Operation on Amundsen-Scott South Pole Station, UPPSALA UNIVERSITET.. 16