4 HASIL DAN PEMBAHASAN

dokumen-dokumen yang mirip
3 BAHAN DAN METODE. Waktu dan Tempat

4 HASIL DAN PEMBAHASAN. 4.1 Transformasi genetik Oryza sativa L. dengan gen MaMt2

HASIL DAN PEMBAHASAN 1. Konstruksi vektor over-ekspresi gen OsWRKY 1.1 Amplifikasi dan purifikasi fragmen gen OsWRKY76

HASIL DAN PEMBAHASAN Transformasi, Kokultivasi, dan Regenerasi

BAHAN DAN METODE. 1. Waktu dan Tempat penelitian

HASIL DAN PEMBAHASAN bp bp bp

KONSTRUKSI VEKTOR BINER GEN KAPPA(κ)-CARRAGEENASE DAN TRANSFORMASI KE Agrobacterium tumefaciens SEBAGAI MEDIA UNTUK PEMBUATAN RUMPUT LAUT TRANSGENIK

I. PENDAHULUAN. genom sel tanaman adalah kloning gen. Proses ini dilakukan dengan

I. PENDAHULUAN. protein dalam jumlah besar (Reece dkk., 2011). kompeten biasanya dibuat dari inokulum awal dengan konsentrasi 2% ( v / v )

VII. UJI EKSPRESI GEN TcAP1 (APETALA1 KAKAO) PADA TANAMAN MODEL. Abstrak

KONSTRUKSI VEKTOR BINER DAN TRANSFORMASI GEN LISOZIM PADA RUMPUT LAUT Kappaphycus alvarezii MENGGUNAKAN PERANTARA Agrobacterium tumefaciens

HASIL DAN PEMBAHASAN

PERBAIKAN METODE INTRODUKSI GEN PADA Kappaphycus alvarezii. IMPROVEMENT METHOD OF GENE TRANSFER IN Kappaphycus alvarezii. *

diregenerasikan menjadi tanaman utuh. Regenerasi tanaman dapat dilakukan baik secara orgnogenesis ataupun embriogenesis (Sticklen 1991; Zhong et al.

BAHAN DAN METODE. Gambar 7 Peta linier pbd80. B11. BamHI. SalI. pflap amp r GOI. pbd80 ColE oriv NPTIII LB NPTII Pro GOI Term RB pbd80

DASAR REKAYASA GENETIKA

BAB VII PEMBAHASAN UMUM

IV. HASIL DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

Konstruksi dan Kloning Plasmid pcambia1301 dengan Gen Cry1Ab

BAB 4 HASIL PERCOBAAN DAN BAHASAN

REKAYASA GENETIKA ( VEKTOR PLASMID )

A. tumefaciens LBA4404 dengan metode TPM, berdasarkan hasil PCR terhadap plasmid pada A. tumefaciens LBA4404 yang membawa gen MaMt2.

HASIL DAN PEMBAHASAN

2 TINJAUAN PUSTAKA. Rumput Laut Kappaphycus alvarezii

VI. PEMBAHASAN UMUM Rhizobium Sebagai Agen Tranformasi Genetika Alternatif

TUGAS TERSTRUKTUR BIOTEKNOLOGI PERTANIAN VEKTOR DNA

Pengertian TEKNOLOGI DNA REKOMBINAN. Cloning DNA. Proses rekayasa genetik pada prokariot. Pemuliaan tanaman konvensional: TeknologiDNA rekombinan:

BAB IV HASIL DAN PEMBAHASAN. Isolasi DNA genom tanaman padi T0 telah dilakukan pada 118

HASIL DAN PEMBAHASAN Isolasi DNA Genomik Sengon

TEKNIK TRANSFORMASI GENETIK. Yushi Mardiana, SP, MSi Retno Dwi Andayani, SP, MP

BAHAN DAN METODE. tumefaciens LBA4404 yang membawa gen xyloglucanase, gen nptii, dan

BAB IV. HASIL DAN PEMBAHASAN

REKAYASA GENETIK Nicotiana tabacum SR1 DENGAN GEN glutathione S-transferase 12 (GST12) PURWANTI PRATIWI PURBOSARI

Teknologi DNA Rekombinan

Pengertian TEKNOLOGI DNA REKOMBINAN. Cloning DNA. Proses rekayasa genetik pada prokariot. Pemuliaan tanaman konvensional: TeknologiDNA rekombinan:

OVER-EKSPRESI GEN OsWRKY76 UNTUK KETAHANAN TERHADAP CENDAWAN BLAS (Pyricularia grisea Sacc.) PADA PADI ANIVERSARI APRIANA

Transformasi Ubi Jalar dengan Gen pinii dan Gen CP-SPFMV

Transformasi Genetik Gen Pembungaan Hd3a (Heading date 3a) Pada Empat Kultivar Padi Hitam (Oryza sativa L.)

DASAR REKAYASA GENETIKA

TRANSFORMASI GENETIK Nicotiana benthamiana DENGAN GEN PEMBUNGAAN Hd3a DARI PADI LAILA NUR SYAFITRI

Kloning Domain KS dan Domain A ke dalam Sel E. coli DH5α. Analisis Bioinformatika. HASIL Penapisan Bakteri Penghasil Senyawa Antibakteri

BIO306. Prinsip Bioteknologi

BAB VI KONSTRUKSI VEKTOR RNAi DARI FRAGMEN 3 UTR GEN PENYANDI COPPER/ZINC SUPEROXIDE DISMUTASE DARI Melastoma malabathricum, L.

GENETIKA DASAR Rekayasa Genetika Tanaman. Definisi. Definisi. Definisi. Rekayasa Genetika atau Teknik DNA Rekombinan atau Manipulasi genetik

IV. HASIL DAN PEMBAHASAN

SINTESIS DAN PENGKLONAAN FRAGMEN GEN tat (TRANSAKTIVATOR) HIV-1 KE DALAM VEKTOR EKSPRESI PROKARIOT pqe-80l EKAWATI BETTY PRATIWI

Regenerasi Empat Genotipe Gandum (Triticum aestivum L.) L.) Pasca Transformasi Melalui Agrobacterium tumefaciens.

PADA RUMPUT LAUT Kappaphycus alvarezii MUH. ALIAS L. RAJAMUDDIN

1. Reproduksi Aseksual pada Bakteri Reproduksi aseksual bakteri dilakukan melalui pertumbuhan tunas, fragmentasi, dan pembelahan biner.

REKAYASA GENETIKA. Genetika. Rekayasa. Sukarti Moeljopawiro. Laboratorium Biokimia Fakultas Biologi Universitas Gadjah Mada

I PENDAHULUAN Latar Belakang

BAB 4 HASIL PERCOBAAN DAN BAHASAN. Oligonukleotida sintetis daerah pengkode IFNα2b sintetis dirancang menggunakan

Bab I Pendahuluan. Penyakit infeksi merupakan masalah di Indonesia. Salah satu penanganannya adalah dengan antibiotik.

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS

Efektivitas Agrobacterium mentransfer gen P5CS ke dalam kalus tebu klon PS 851

Bab IV Hasil dan Pembahasan

K092 ABSTRAK. Kata Kunci: protokorm, Phalaenopsis amabilis, inokulum, transformasi genetik, Agrobacterium tumefaciens.

III. METODE PENELITIAN

Konstruksi Kandidat Gen AV1 Begomovirus pada pbi121 dan Introduksinya ke dalam Tembakau Menggunakan Vektor Agrobacterium tumefaciens

SKRIPSI. EFISIENSI TRANSFORMASI PLASMID pta7002-atrkd4 PADA Escherichia coli BL21(DE3) DENGAN METODE KEJUTAN PANAS

I. PENDAHULUAN. Masalah mengenai tebu yang hingga kini sering dihadapi adalah rendahnya

KLONING. dari kata clone yang diturunkan dari bahasa Yunani klon, artinya potongan yang digunakan untuk memperbanyak tanaman.

INTRODUKSI GEN SERIN GREEN FLUORESCENT PROTEIN

Pencarian Kultur Baru. Isolasi dan Perbaikan. Kultur. Teknik plating. Kultur Diperkaya 10/14/2014

BIOTEKNOLOGI TUMBUHAN

HASIL DAN PEMBAHASAN. Hasil konfirmasi dicek dengan elektroforesis gel agarosa 1%.

INTRODUKSI GEN METALLOTHIONEIN TIPE II KE DALAM RUMPUT LAUT Kappaphycus alvarezii MENGGUNAKAN Agrobacterium tumefaciens

Transformasi Plasmid Dengan Sel Bakteri Escherichia coli Menggunakan Metode Heat Shock ISSN: Maya Ekaningtias

TRANSFORMASI GEN SoSUT1 MENGGUNAKAN VEKTOR Agrobacterium tumefaciens PADA TANAMAN TOMAT PRODUK REKAYASA GENETIKA (PRG) Event 4.1

TRANSFORMASI TANAMAN TEBU (Saccharum officinarum L. var. BL) DENGAN GEN SoSUT1 MENGGUNAKAN Agrobacterium tumefaciens strain GV3101 dan EKSPLAN KALUS

TINJAUAN PUSTAKA Bakteri Bintil Akar

BIO306. Prinsip Bioteknologi

Pertemuan VII: BIOTEKNOLOGI

HASIL DAN PEMBAHASAN. eksplan hidup, persentase eksplan browning, persentase eksplan kontaminasi,

SKRIPSI F Oleh LILY FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR

PERAKITAN VEKTOR EKSPRESI PROTEIN G SUBUNIT α DARI KEDELAI (Glycine max) KULTIVAR SLAMET RIAN PRATIWI

BAHAN DAN METODE. ditranskipsi dan produk translasi yang dikode oleh gen (Nasution 1999).

BAB III METODE PENELITIAN. Jenis penelitian yang dilakukan termasuk dalam penelitian dasar yang. dilakukan dengan metode deskriptif (Nazir, 1998).

PENYISIPAN GEN FITASE PADA TEBU (Saccharum officinarum) VARIETAS PS 851 DAN PA 198 DENGAN PERANTARA Agrobacterium tumefaciens GV 2260

FUSI GEN KITINASE Aeromonas caviae WS7b DENGAN PROMOTOR sigb DARI Bacillus subtilis 168 DAN EKSPRESINYA PADA Escherichia coli ADE SAPUTRA

Introduksi Konstruk Over-Ekspresi Kandidat Gen OsWRKY76 melalui Agrobacterium tumefaciens pada Tanaman Padi Nipponbare

Pembuatan Media Kultur Bakteri Pemanenan sel bakteri. Isolasi DNA kromosom bakteri. Kloning DNA

TRANSFORMASI GENETIK JATROPHA CURCAS DENGAN GEN PEMBUNGAAN Hd3a PADI

REKAYASA GENETIK Nicotiana tabacum KULTIVAR SR1 DENGAN GEN Peroksidase (PerL) DARI KEDELAI KULTIVAR LUMUT DESTIK WULANDARI

Transformasi Padi Indica Kultivar Batutegi dan Kasalath dengan Gen Regulator HD-Zip oshox6 untuk Perakitan padi Toleran Kekeringan

HASIL DAN PEMBAHASAN. Derajat Kelangsungan Hidup Embrio dan Derajat Penetasan Berdasarkan hasil pengamatan terhadap derajat kelangsungan hidup

HASIL DAN PEMBAHASAN

BAB in. METODE PENELITIAN

BAB I PENDAHULUAN. Mycobacterium tuberculosis adalah bakteri patogen penyebab tuberkulosis.

Total

OPTIMASI TRANSFORMASI GENETIKA MELALUI AGROBACTERIUM PADA TANAMAN PADI [ OPTIMIZATION OF AGROBACTERIUM-MEDIATED GENETIC TRANSFORMATION IN RICE ]

Di dalam bab ini akan dibicarakan pengertian teknologi DNA rekombinan. beserta tahapan-tahapan kloning gen, yang secara garis besar meliputi

Peranan Vitamin C dan Acetosyringone pada Transformasi genetik anggrek Vanda tricolor Lindl. var. suavis melalui Agrobacterium tumefaciens

HASIL DAN PEMBAHASAN

TRANSGENIK OVEREKSPRESI GEN

TRANSFORMASI GEN NPTII VEKTOR pcl4 DENGAN Agrobacterium tumefaciens PADA TANAMAN TEBU (Saccharum officinarum L.)

KONJUGASI PADA BAKTERI

REKAYASA GENETIKA TANAMAN CABAI (Capsicum annuum L.) TAHAN VIRUS MOSAIK KETIMUN (CMV)

BAB IX. DASAR-DASAR TEKNOLOGI DNA REKOMBINAN

Transkripsi:

17 4 HASIL DAN PEMBAHASAN Konstruksi plasmid biner pmsh1-lisozim Konstruksi plasmid biner dilakukan dengan meligasi gen lisozim ayam dan pmsh1. Plasmid hasil ligasi berukuran 13.449 pb (Gambar 5A kolom 1). Bakteri transforman yang membawa plasmid pmsh1-lis diidentifikasi menggunakan PCR dengan pasangan primer Lis-F dan Lis-R; 35S-F dan Lis-R; serta Lis-F dan Nos-R. Hasil analisis PCR dengan pasangan primer tersebut menghasilkan amplikon masing-masing berukuran 460 pb, 670 pb dan 580 pb (Gambar 5B). Gambar 5. A. Pola pemotongan plasmid pmsh1-lis menggunakan enzim NotI dan SpeI. M = marka DNA 1 kb ladder (Fermentas), kolom 1 = pasmid pmsh1-lis, kolom 2 = plasmid pmsh1-lis yang sudah dipotong dengan NotI dan SpeI, dan kolom 3 = gen lisozim (Lis). B. Identifikasi Escherichia coli DH5α transforman pembawa gen lisozim menggunakan PCR dengan primer Lis-F dan Lis-R (kolom 1, 2 dan 3), 35S-F dan Lis-R (kolom 4 dan 5) dan Lis-F dan Nos-R (kolom 6 dan 7). M = marka DNA 100 pb ladder (Fermentas), kolom 1, 4 dan 6 adalah DH5α hasil transformasi pmsh1-lis, kolom 2 = kontrol plasmid pjfker-lis, kolom 3, 5 dan 7 adalah kontrol negatif (DH5α non-transforman). Verifikasi terhadap E. coli yang mengandung plasmid biner (pmsh1 yang mengandung gen lisozim) juga dilakukan dengan menggunakan enzim restriksi terhadap sampel DNA plasmid yang membawa gen lisozim. Berdasarkan hasil restriksi dengan NotI dan SpeI dihasilkan dua fragmen berukuran 12.986 pb dan 460 pb (Gambar 5A kolom 2). Fragmen 12.986 pb merupakan ukuran dari plasmid pmsh1, dan 460 pb merupakan fragmen gen lisozim. Hal tersebut membuktikan bahwa vektor biner pmsh1-lis berhasil dibuat. Transformasi gen lisozim yang terdapat pada plasmid pmsh1 ke dalam bakteri E.coli DH5α telah berhasil dilakukan. Keberhasilan transformasi ini dapat dilihat dari transforman E. coli DH5α yang tumbuh pada media seleksi kanamisin (50 mg/l) dan higromisin (50 mg/l). Kemampuan transforman ini tumbuh pada media seleksi tersebut dikarenakan adanya gen nptii (neomycin phosphotransferase) penyandi ketahanan terhadap antibiotik kanamisin dan hpt (hygromycin phosphotransferase) penyandi ketahanan terhadap antibiotik

18 higromisin pada plasmid pmsh1. Keberhasilan transformasi ini dilakukan dengan amplifikasi gen lisozim yang dikendalikan oleh promoter 35S CaMV dan terminator Nos menggunakan PCR, serta pengujian menggunakan enzim restriksi. Keberhasilan transformasi gen lisozim ke dalam E. coli DH5α, dapat digunakan untuk transformasi ke dalam A. tumefaciens. Transformasi pmsh1-lisozim ke Agrobacterium tumefaciens Plasmid pmsh1-lis ditransformasikan ke dalam A. tumefaciens dengan cara triparental mating (TPM). Proses TPM telah berhasil dilakukan untuk mengintroduksikan plasmid pmsh1-lis ke dalam A. tumefaciens (Gambar 6). Plasmid pmsh1-lis yang terdapat pada E. coli DH5α hasil transformasi (sebagai donor) dipindahkan ke dalam A. tumefaciens (sebagai resipien) melalui proses konjugasi dengan bantuan prk2013 dalam E. coli DH1. Donor E. coli DH5α resisten terhadap antibiotik kanamisin dan higromisin, tetapi rentan terhadap antibiotik streptomisin dan resipien A. tumefaciens yang resisten terhadap antibiotik streptomisin, tetapi rentan terhadap antibiotik kanamisin dan higromisin. Bakteri yang mampu tumbuh pada media seleksi ini hanya A. tumefaciens yang telah mengandung plasmid pmsh1-lis hasil TPM (Gambar 6B). Kemampuan A. tumefaciens untuk tumbuh di media seleksi ini disebabkan karena di dalam sel bakteri ini telah membawa gen resistensi terhadap antibiotik kanamisin dan higromisin yang terdapat pada pmsh1-lis. Gambar 6. Triparental Mating (TPM). A. Hasil TPM yang tumbuh pada media LA tanpa antibiotik. B. Agrobacterium tumefaciens LBA 4404 transforman pada media seleksi higromisin 50 mg/l, kanamisin 50 mg/l dan streptomisin 50 mg/l. C. LBA 4404 non-transforman pada media seleksi higromisin 50 mg/l, kanamisin 50 mg/l dan streptomisin 50 mg/l. Hasil analisis PCR menunjukkan bahwa koloni dari hasil TPM positif membawa gen lisozim. PCR dengan primer Lis-F dan Lis-R menghasilkan amplikon 460 pb, dengan primer 35S-F dan Lis-R menghasilkan amplikon sebesar 670 pb, sedangkan PCR dengan primer Lis-F dan Nos-R menghasilkan amplikon sebesar 580 pb (Gambar 7). Hal ini menunjukkan bahwa A. tumefaciens tersebut sudah mengandung gen lisozim dan dapat digunakan untuk percobaan transformasi gen lisozim ke dalam genom rumput laut K. alvarezii.

19 Gambar 7. Identifikasi transforman Agrobacterium tumefaciens hasil tri-parental mating (TPM) menggunakan tiga jenis primer untuk gen lisozim (kolom 1, 2 dan 3 dengan primer Lis-F dan Lis-R; 4, 5 dan 6 dengan primer 35S-F dan Lis-R; 7, 8 dan 9 dengan primer Lis-F dan Nos-R). M= marka DNA 100 pb ladder (Fermentas), 1 = 4 = 7 adalah A. tumefaciens LBA4404 pembawa pmsh1-lis, 2 = 5= 8 adalah kontrol positif (DH5α hasil transformasi pmsh1-lis), 3 =6 =9 adalah kontrol negatif (LBA4404 non-transforman). Transformasi gen lisozim pada talus Kappaphycus alvarezii Transformasi gen lisozim pada talus K. alvarezii yang sebelumnya diadaptasikan pada media kultur PES cair dan padat. Sebanyak 225 talus digunakan dalam transformasi. Talus yang telah diinfeksi dengan A. tumefaciens diseleksi pada media PES yang mengandung higromisin 20 mg/l selama 2 bulan. Tahapan transformasi genetik K. alvarezii dapat dilihat pada Gambar 8. Talus rumput laut yang mampu bertahan di media seleksi higromisin sebanyak 53 talus, dengan persentase sebesar 23,56%. Talus yang berhasil bertunas putatif berjumlah 6, dengan efisiensi sebesar 11,32% (Tabel 1). Efisiensi talus bertunas putatif ditentukan berdasarkan rasio jumlah talus bertunas putatif terhadap jumlah talus yang mampu bertahan di media seleksi higromisin. Efisiensi tunas putatif talus yang ditransformasi lebih rendah daripada efisiensi tunas pada talus kontrol positif yang tidak ditransformasi (22%). Rendahnya efisiensi tunas putatif diduga disebabkan oleh perlakuan infeksi Agrobacterium dan seleksi antibiotik yang mengakibatkan penurunan daya regenerasi talus untuk bertunas putatif. Hal ini sejalan dengan pendapat Suma et al. (2008) penambahan antibiotik dalam media seleksi dapat menyebabkan penurunan pertumbuhan dan perkembangan kalus. Pembentukan tunas dari talus yang tahan higromisin mulai teramati pada minggu keempat setelah infeksi. Pembentukan tunas diawali dengan munculnya titik-titik coklat pada talus. Setelah 2 minggu, titik coklat membesar dan membentuk tunas (Gambar 8C). Tunas yang terbentuk, secara umum muncul dari bagian talus yang dipotong. Talus yang mampu bertahan dimedia seleksi higromisin, selanjutnya diaklimatisasi skala kecil di media PES cair (Gambar 8D). Analisis molekuler terhadap talus yang tahan higromisin dengan PCR menggunakan kombinasi primer spesifik gen lisozim, promoter 35S CaMV dan terminator Nos menunjukkan bahwa tiga tunas yang terbentuk dari tiga talus mengandung gen lisozim. Tidak semua tunas yang terbentuk mengandung gen lisozim (Tabel 1), hal ini diduga disebabkan oleh tidak semua sel pada satu talus berhasil ditransformasi dengan gen lisozim. Analisis molekuler terhadap tunas

20 yang berasal dari sel-sel yang mengandung gen lisozim akan mengandung gen lisozim juga. Sedangkan tunas yang secara molekuler tidak mengandung gen lisozim, kemungkinan berasal dari sel-sel yang tidak mengandung gen lisozim. Persentase transformasi yang diperoleh pada penelitian ini sebesar 23,56% (Tabel 1). Persentase transformasi ini lebih rendah dibandingkan dengan persentase transformasi gen LacZ pada Gracilaria changii menggunakan metode tembakan partikel (particle bombardment) yaitu sebesar 80-94%. Rendahnya persentase transformasi yang diperoleh pada penelitian ini diduga dipengaruhi oleh perbedaan metode yang digunakan dalam proses transformasi. Selain itu, kemungkinan juga disebabkan karena masih kurang optimalnya tahapan dalam proses transformasi menggunakan A. tumefaciens, terutama pada tahap infeksi dan ko-kutivasi. Tabel 1. Persentase transformasi dan tunas putatif rumput laut Kappaphycus alvarezii dengan gen Lisozim. Perlakuan Jumlah Talus Persentase Transformasi a) Jumlah Talus Tahan Higromisin Jumlah Tunas Putatif Jumlah Positif PCR Efisiensi Tunas Putatif Transformasi 225 53 23,56% 6 3 11,32% b) Kontrol - 1) 50 0 0 0 0 0 Kontrol + 2) 50-0 11 0 22% a) Jumlah talus tahan higromisin/jumlah kalus awal x 100% b) Jumlah talus yang bertunas putatif / jumlah kalus tahan higromisin x 100% 1) Talus non-transgenik yang ditumbuhkan pada media seleksi higromisin 2) Talus non-transgenik yang ditumbuhkan pada media PES tanpa higromisin Hasil transformasi menunjukkan bahwa penambahan 100 µm asetosiringon dengan OD 0,5-0,8 selama masa infeksi 30 menit di media PES yang mengandung A. tumefaciens menunjukkan pertumbuhan eksplan pada media seleksi (Gambar 8). Menurut James et al. (1993), penambahan asetosiringon ke dalam media kokultivasi efektif meningkatkan efisiensi transformasi. Penambahan asetosiringon mampu menginduksi gen vir yang berfungsi mentransfer T-DNA ke dalam sel tanaman dan mempertinggi efektivitas infeksi A. tumefaciens sehingga meningkatkan jumlah sel transforman (Rashid et al. 2010). Selain itu, perlakuan lama ko-kultivasi (inkubasi) antara bakteri dan eksplan sangat mempengaruhi efektivitas infeksi bakteri. Inkubasi yang terlalu cepat dapat mempengaruhi keberhasilan transformasi, karena bakteri belum sempat menginfeksi sel-sel eksplan secara sempurna. Menurut Alimohammadi & Bagherieh-Najjar (2009) keberhasilan transfer gen oleh A. tumefaciens sangat ditentukan oleh ada tidaknya luka/perlukaan, kerapatan bakteri (optical density), lama inokulasi dan lama kokultivasi. Talus transforman dapat tumbuh di media seleksi higromisin 20 mg/l, sedangkan talus non-transforman tidak mampu tumbuh pada media seleksi higromisin (Gambar 9). Kemampuan talus transforman tumbuh di media seleksi higromisin disebabkan adanya gen ketahanan terhadap higromisin yaitu hpt (hygromycin phosphotransferase) pada T-DNA yang ditransformasikan ke talus transforman. Sedangkan pada talus non-transforman tidak memiliki gen ketahanan tersebut sehingga talus tidak resisten terhadap higromisin dan mengalami

21 kematian. Talus non-transforman mengalami kematian secara bertahap pada media seleksi higromisin. Kematian talus non-transforman mulai teramati pada minggu ketiga di media seleksi higromisin 20 mg/l. Kematian talus diawali dengan memutihnya warna talus dan tekstur talus lebih rapuh. Setelah 12 minggu di media seleksi higromisin, seluruh talus non-transforman mengalami kematian (Gambar 9). Warna talus hijau menunjukkan talus masih hidup, sedangkan warna talus putih menunjukkan talus mengalami kematian (Gambar 9B, 9E dan 9H). Gambar 8. Tahapan transformasi genetik rumput laut Kappaphycus alvarezii. A. Talus rumput laut pada media ko-kultivasi; B. Talus rumput laut pada media recovery; C. Talus rumput laut pada media seleksi higromisin 20 mg/l; D. Talus positif PCR yang mengandung gen lisozim yang telah diaklimatisasi skala kecil. Konfirmasi rumput laut transgenik melalui keberadaan gen lisozim pada talus rumput laut hasil transformasi dilakukan dengan PCR. Pasangan primer yang digunakan adalah Lis-F dan Lis-R dengan ukuran fragmen amplikon yang dihasilkan sebesar 460 pb, 35S CaMV-F dan Lis-R dengan ukuran fragmen amplikon yang dihasilkan sebesar 680 pb serta Lis-F dan Nos-R dengan ukuran fragmen amplikon yang dihasilkan sebesar 570 pb. Plasmid pmsh1-lis digunakan sebagai kontrol positif, sedangkan rumput laut tipe liar digunakan sebagai kontrol negatif. Hasil PCR menunjukkan bahwa rumput laut hasil transformasi terbukti positif sebagai rumput laut transgenik (Gambar 10), sedangkan rumput laut non transgenik tidak menunjukkan amplifikasi fragmen tersebut.

22 Gambar 9. Tahapan perkembangan talus Kappaphycus alvarezii. Talus transforman pada media seleksi higromisin 20 mg/l, masingmasing umur empat (A), delapan (D) dan 12 minggu (G). Talus non-transforman pada media seleksi higromisin 20 mg/l, masingmasing umur empat minggu (B), delapan minggu (E) dan 12 minggu (H). Talus non-transforman pada media tanpa higromisin, masing-masing umur empat minggu (C), delapan minggu (F) dan 12 minggu (I). Pada B, E, dan H, warna talus hijau menunjukkan talus hidup, sedangkan warna talus putih menunjukkan talus mati. Keberhasilan transformasi genetik pada rumput laut ditandai dengan terintegrasinya gen yang diintroduksikan ke dalam genom rumput laut dan terekspresi serta tetap terpelihara dalam seluruh proses pembelahan sel sampai regenerasi rumput laut. Untuk mengetahui integrasi gen lisozim ke dalam rumput laut K. alvarezii dapat dilakukan dengan menggunakan marka seleksi terhadap antibiotik higromisin dan dapat dianalisis secara molekuler menggunakan teknik PCR. Berdasarkan kemampuan talus K. alvarezii tumbuh di dalam media seleksi (media PES dengan penambahan higromisin) (Tabel 1) dan konfirmasi rumput laut transgenik melalui keberadaan gen lisozim pada talus rumput laut hasil transformasi dengan PCR (Gambar 10), menunjukkan bahwa gen lisozim telah terintegrasi ke dalam genom rumput laut.

23 Gambar 10. Hasil analisis PCR DNA rumput laut hasil transformasi dengan gen Lisozim menggunakan tiga jenis primer (kolom 1, 2 dan 3 dengan primer Lis-F dan Lis-R; 4, 5 dan 6 dengan primer 35S-F dan Lis-R; 7, 8 dan 9 dengan primer Lis-F dan Nos-R). M = marka DNA 100 pb ladder (Fermentas), 1 = 4 = 7 adalah rumput laut transgenik, 2 = 5= 8 adalah kontrol positif (plasmid pmsh1-lis), 3 = 6 = 9 adalah kontrol negatif (rumput laut non-transforman). Kappaphycus alvarezii transgenik ini dapat dimanfaatkan untuk mempelajari mekanisme pertahanan rumput laut terhadap infeksi bakteri penyebab penyakit ice-ice. Uji tantang K. alvarezii terhadap bakteri penyebab iceice dapat dilakukan setelah diperoleh talus yang berasal dari subkultur tunas yang mengandung gen lisozim. Selain itu, ketika K. alvarezii transgenik ini telah tahan terhadap penyakit ice-ice, dapat berguna untuk meningkatkan produksi rumput laut di musim pada saat penyakit ice-ice sering menginfeksi. Metode transformasi yang diperoleh dalam penelitian ini dapat digunakan untuk menghasilkan rumput laut transgenik lainnya yang mengekspresikan protein yang mengatur sifat penting dalam akuakultur.