MODIFIKASI PERENCANAAN GEDUNG FMIPA UNIVERSITAS NEGERI MAKASAR MENGGUNAKAN STRUKTUR BAJA DENGAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS

dokumen-dokumen yang mirip
PRESENTASI TUGAS AKHIR MODIFIKASI PERENCANAAN GEDUNG FMIPA UNIVERSITAS NEGERI MAKASAR MENGGUNAKAN BAJA DENGAN SISTEM. Oleh Heri Istiono

MODIFIKASI PERENCANAAN MENGGUNAKAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS PADA GEDUNG APARTEMEN METROPOLIS

Modifikasi Perencanaan Struktur Gedung Tower C Apartemen Aspen Admiralty Jakarta Selatan Dengan Menggunakan Baja Beton Komposit

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

Modifikasi Perencanaan Gedung Office Block Pemerintahan Kota Batu Menggunakan Struktur Komposit Baja Beton

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

menggunakan ketebalan 300 mm.

BAB II TINJAUAN PUSTAKA. A. Sistem Rangka Bracing Tipe V Terbalik

MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO

TUGAS AKHIR RC

MODIFIKASI PERENCANAAN GEDUNG RUMAH SAKIT ROYAL SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA-BETON

MODIFIKASI PERENCANAAN GEDUNG B RUMAH SUSUN SEDERHANA SEWA GUNUNGSARI SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG BANGSA SEMARANG MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL

PERENCANAAN STRUKTUR GEDUNG SYARIAH TOWER UNIVERSITAS AIRLANGGA MENGGUNAKAN BETON BERTULANG DAN BAJA-BETON KOMPOSIT

Disusun Oleh : ZAINUL ARIFIN

Modifikasi Struktur Gedung Graha Pena Extension di Wilayah Gempa Tinggi Menggunakan Sistem Ganda

Gedung Fakultas Teknologi Pertanian Universitas Barwijaya merupakan gedung yang terdiri dari 9 lantai yang dibangun dalam rangka untuk memenuhi

MODIFIKASI PERENCANAAN GEDUNG APARTEMEN PUNCAK PERMAI DENGAN MENGGUNAKAN BALOK BETON PRATEKAN PADA LANTAI 15 SEBAGAI RUANG PERTEMUAN

Oleh : MUHAMMAD AMITABH PATTISIA ( )

MODIFIKASI PERENCANAAN STRUKTUR GEDUNG DIREKTORAT JENDERAL PAJAK WILAYAH I JAWA TIMUR MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

BAB III PEMODELAN STRUKTUR

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

MODIFIKASI PERENCANAAN STRUKTUR RUMAH SUSUN SEDERHANA SEWA (RUSUNAWA) KOTA PROBOLINGGO DENGAN METODE SISTEM RANGKA GEDUNG

MODIFIKASI PERENCANAAN MENGGUNAKAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS PADA GEDUNG APARTEMEN METROPOLIS

Modifikasi Perencanaan Struktur Rumah Susun Sederhana Sewa (Rusunawa) Kota Probolinggo Dengan Metode Sistem Rangka Gedung

PERBANDINGAN ANALISIS RESPON STRUKTUR GEDUNG ANTARA PORTAL BETON BERTULANG, STRUKTUR BAJA DAN STRUKTUR BAJA MENGGUNAKAN BRESING TERHADAP BEBAN GEMPA

Modifikasi Struktur Gedung Graha Pena Extension di Wilayah Gempa Tinggi Menggunakan Sistem Ganda

PERENCANAAN PETRA SQUARE APARTEMENT AND SHOPPING ARCADE SURABAYA MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON-KOMPOSIT

Meningkatnya kebutuhan masyarakat terhadap sekolah dengan fasilitas yang lengkap, maka dibangunlah Sekolah Santa Clara yang terletak di Jalan Ngagel

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

MODIFIKASI PERENCANAAN STRUKTUR APARTEMEN MULYOREJO DENGAN MENGGUNAKAN SISTEM RANGKA BRESING EKSENTRIK

MAHASISWA ERNA WIDYASTUTI. DOSEN PEMBIMBING Ir. HEPPY KRISTIJANTO, MS.

PERENCANAAN STRUKTUR GEDUNG KANTOR PEMERINTAH DAERAH KABUPATEN PAMEKASAN DENGAN METODE LOAD RESISTANCE AND FACTOR DESIGN

PERANCANGAN MODIFIKASI STRUKTUR GEDUNG APARTEMEN PANDAN WANGI DENGAN MENGGUNAKAN SISTEM GANDA UNTUK DIBANGUN DI BENGKULU

Kata kunci : Dinding Geser, Rangka, Sistem Ganda, Zona Gempa Kuat. Latar Belakang

PERENCANAAN STRUKTUR GEDUNG RUMAH SUSUN SEDERHANA DAN SEWA ( RUSUNAWA ) MAUMERE DENGAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS

MODIFIKASI STRUKTUR GEDUNG WISMA SEHATI MANOKWARI DENGAN MENGGUNAKAN SISTEM GANDA

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK

ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V ABSTRAK

PERENCANAAN GEDUNG RESEARCH CENTER-ITS SURABAYA DENGAN METODE PRACETAK

PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK

MODIFIKASI GEDUNG BANK CENTRAL ASIA CABANG KAYUN SURABAYA DENGAN MENGGUNAKAN SISTEM GANDA

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

MODIFIKASI PERENCANAAN MENGGUNAKAN STRUKTUR BAJA DENGAN BALOK KOMPOSIT PADA GEDUNG PEMERINTAH KABUPATEN PONOROGO

MODIFIKASI PERENCANAAN STRUKTUR GEDUNG PT PERUSAHAAN GAS NEGARA SURABAYA MENGGUNAKAN SISTEM GANDA DI WILAYAH GEMPA TINGGI

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA

TUGAS AKHIR MODIFIKASI STRUKTUR RANGKA GEDUNG PERKANTORAN PETROSIDA GRESIK DENGAN MENGGUNAKAN HEXAGONAL CASTELLATED BEAM NON- KOMPOSIT

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK

MODIFIKASI PERENCANAAN STRUKTUR GEDUNG RAWAT INAP KELAS 1 RSUD SIDOARJO DENGAN MENGGUNAKAN HEXAGONAL CASTELLATED BEAM

PENGARUH BRACING PADA PORTAL STRUKTUR BAJA

BAB II TINJAUAN PUSTAKA

BAB V ANALISA STRUKTUR PRIMER

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength )

PERENCANAAN GEDUNG DINAS KESEHATAN KOTA SEMARANG. (Structure Design of DKK Semarang Building)

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS

PERANCANGAN MODIFIKASI STRUKTUR GEDUNG BPK RI SURABAYA MENGGUNAKAN BETON PRACETAK DENGAN SISTEM RANGKA GEDUNG

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4

PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI

BAB III METODOLOGI PERANCANGAN. Permasalahan utama yang dihadapi dalam perencanaan gedung bertingkat tinggi

BAB II TINJAUAN PUSTAKA

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

EKO PRASETYO DARIYO NRP : Dosen Pembimbing : Ir. Djoko Irawan, MS

MODIFIKASIN PERANCANGAN GEDUNG APARTEMEN THE PAKUBUWONO HOUSE DENGAN BALOK PRATEKAN

PERENCANAAN GEDUNG RESEARCH CENTER-ITS SURABAYA DENGAN METODE PRACETAK

Modifikasi Perencanaan Gedung Apartemen Grand Dhika City Jatiwarna Bekasi Tower Emerald Menggunakan Sistem Rangka Bresing Konsentris

BAB II TINJAUAN PUSTAKA

Studi Perbandingan Perilaku Bangunan menggunakan SRPM, SRBK dan SRBK menggunakan Outrigger terhadap variasi Tinggi Gedung

LAPORAN PENELITIAN EFISIENSI DAN KINERJA STRUKTUR RANGKA BREISING KONSENTRIK TIPE X-2 LANTAI. Nama Peneliti: Ir. Ida Bagus Dharma Giri, M.T.

BAB III PEMODELAN DAN ANALISIS STRUKTUR

MODIFIKASI PERENCANAAN UPPER STRUKTUR SISTEM RANGKA PEMIKUL MOMEN MENENGAH PADA GEDUNG PERKANTORAN DAN PERDAGANGAN JL. KERTAJAYA INDAH TIMUR SURABAYA

Reza Murby Hermawan Dosen Pembimbing Endah Wahyuni, ST. MSc.PhD

PERHITUNGAN ULANG STRUKTUR GEDUNG ASRAMA KEBIDANAN LEBO WONOAYU DENGAN METODE SISTEM RANGKA PEMIKUL MOMEN MENENGAH

PERENCANAAN STRUKTUR GEDUNG KULIAH 4 LANTAI DENGAN SISTEM DAKTAIL TERBATAS

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir

PERENCANAAN STRUKTUR STADION MIMIKA MENGGUNAKAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH DENGAN STRUKTUR ATAP SPACE FRAME

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

STUDI PERBANDINGAN PERILAKU RANGKA BERPENGAKU SENTRIS DAN RANGKA BERPENGAKU EKSENTRIS DENGAN KONFIGURASI V-TERBALIK AKIBAT BEBAN LATERAL GEMPA

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB I PENDAHULUAN 1.1 LATAR BELAKANG. Kondisi geografis Indonesia terletak di daerah dengan tingkat kejadian gempa

T I N J A U A N P U S T A K A

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

MODIFIKASI STRUKTUR GEDUNG ASRAMA MAHASISWA UGM KOMPLEKS KINANTI MENGGUNAKAN METODE PRACETAK (PRECAST) DENGAN SISTEM RANGKA GEDUNG (BUILDING FRAME

PRESENTASI TUGAS AKHIR

REVIEW DESAIN STRUKTUR GEDUNG CENTER FOR DEVELOPMENT OF ADVANCE SCIENCE AND TECHNOLOGY (CDAST) UNIVERSITAS JEMBER DENGAN KONSTRUKSI BAJA TAHAN GEMPA

PERANCANGAN GEDUNG FMIPA-ITS SURABAYA DENGAN MENGGUNAKAN BALOK PRATEKAN

PERANCANGAN MODIFIKASI STRUKTUR FLAT SLAB DENGAN SISTEM STRUKTUR SRPMM DAN SHEAR WALL PADA GEDUNG RSUD KEPANJEN MALANG

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

PERENCANAAN ULANG STRUKTUR GEDUNG TUNJUNGAN PLAZA V SURABAYA DENGAN METODE SISTEM GANDA. Huriyan Ahmadus ABSTRAK

PERHITUNGAN STRUKTUR GEDUNG UNIVERSAL MEDICAL CENTER DI PANDAAN DENGAN MENGGUNAKAN SISTEM GANDA (DUAL SISTEM) Alexander Vedy Christianto ABSTRAK

BAB II TINJAUAN PUSTAKA TINJAUAN PUSTAKA

BAB IV PERMODELAN STRUKTUR

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

TONNY RIZKYA NUR S ( ) DOSEN PEMBIMBING :

BAB II TINJAUAN PUSTAKA

JURNAL TEKNIK ITS Vol. 7, No. 1, (2018) ISSN: ( Print)

HARUN AL RASJID NRP Dosen Pembimbing BAMBANG PISCESA, ST, MT Ir. FAIMUN, M.Sc., Ph.D

Transkripsi:

1 MODIFIKASI PERENCANAAN GEDUNG FMIPA UNIVERSITAS NEGERI MAKASAR MENGGUNAKAN STRUKTUR BAJA DENGAN SISTEM RANGKA BRESING KONSENTRIS KHUSUS Heri Istiono dan Endah Wahyuni, Isdarmanu Jurusan Teknik Sipil, Fakultas Teknik Sipil & Perencanaan, Institut Teknologi Sepuluh Nopember Jl Arif Rahman Hakim, Surabaya 60111 E-mail: endahwahyuni@gmail.com Abstrak Gedung FMIPA merupakan bangunan 12 lantai yang mempunyai fungsi sebagai tempat perkuliahan di Universitas Negeri Makasar. Awalnya gedung FMIPA ini didesain dengan menggunakan struktur beton bertulang. Bangunan tersebut harus mampu menahan beban gempa dan memenuhi persyaratan konstruksi. Adapun desain struktur yang dipakai pada gedung FMIPA ini semula menggunakan struktur beton dengan metode Sistem Rangka Pemikul Momen (SRPM) sebagai perhitungan strukturnya. Dalam pengerjaan tugas akhir ini akan dihitung menggunakan struktur baja dengan metode Sistem Rangka Bresing Konsentris Khusus (SRBKK). SRBKK memiliki kelebihan yaitu tidak hanya sebagai penahan gaya aksial tetapi juga sebagai penahan gaya lateral yang diakibatkan oleh beban gempa. Selain itu SRBKK cocok untuk bangunan yang dibangun di wilayah zona gempa tinggi. Modifikasi desain yang akan dilakukan adalah merubah struktur yang semula memakai beton bertulang konvensional menjadi struktur baja dengan sistem rangka bresing konsentris khusus dengan baja yang dipakai adalah mutu BJ 37. Pemindahan lokasi gedung yang semula berada di Makasar ke Padang dimaksudkan agar terdesain bangunan dengan kekuatan struktur yang memenuhi segala persyaratan keamanan konstruksi berdasarkan peraturan yang ada yaitu Tata Cara Perhitungan Struktur Baja untuk Bangunan Gedung (SNI 03-1729-2002) dan Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung (SNI 1726-2012). Tugas akhir ini dihasilkan perencanaan struktur gedung baja meliputi perencanaan pelat lantai dan atap dari bondek, tangga dengan balok utama dari WF 200.100.4,5.7 dan pelatnya menggunakan bondek, balok anak, balok induk atap menggunakan menggunakan WF 450.200.9.14, balok induk lantai menggunakan WF 500.200.11.19, kolom menggunakan profil kingkros yang di bungkus oleh beton dan pondasi yang digunakan adalah pondasi tiang pancang dimana tiang pancang yang digunakan adalah diameter 50 cm. Kata kunci : Baja, Bresing Konsentris Khusus, Gempa, 1. PENDAHULUAN A. Latar Belakang Pada awalnya gedung FMIPA Universitas Negeri Makasar merupakan gedung 12 lantai dengan luas bangunan 48 m x 16 m, dimana luas bangunan sama per lantainya. Strukturnya seperti balok dan kolom mempunyai dimensi yang besar dan jumlah tulangan yang banyak serta diameter yang besar padahal berada pada zona gempa 2 (SNI-03-1726-2002). Ditinjau dari segi kekuatan mungkin baik, tetapi bangunan tersebut mempunyai berat yang cukup besar sehingga berdampak pada banyaknya tiang pancang pada pondasi dan tentunya biaya pembangunannya relatif mahal. Maka dari itu apabila memakai konstruksi baja bangunanya tidak terlalu berat sehingga jumlah tiang pancang pada pondasi bisa berkurang. Dilihat dari permasalahan tersebut penulis akan mengangkat tema perencanaan modifikasi strukur gedung bertingkat menggunakan konstruksi baja dengan Sistem Rangka Bresing Konsentris (SRBK). Berdasarkan SNI- 03-1729-2002 SRBK ada dua macam yaitu Sistem Rangka Bresing Konsentris Biasa (SRBKB) dan Sistem Rangka Bresing Konsentris Khusus (SRBKK). SRBKB diperuntukkan bagi bangunan yang dibangun di wilayah zona gempa rendah hingga menengah dan SRBKK diperuntukkan bagi bangunan yang dibangun di wilayah zona gempa menengah hingga tinggi. Dalam tugas akhir ini penulis memilih SRBKK memiliki tujuan untuk mengetahui penentuan klasifikasi zona gempa tinggi berdasarkan peraturan gempa terbaru yaitu SNI 1726-2012. Oleh karena itu bangunan yang semula berada di Makasar dipindah ke Padang yang merupakan daerah dengan resiko gempa tinggi. Hal ini dimaksudkan agar terdesain bangunan dengan kekuatan struktur yang baik, mampu menahan gaya gempa yang ada dan memenuhi segala persyaratan keamanan konstruksi dengan berdasarkan peraturan yang ada yaitu Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung (SNI 03-1729-2002) dan Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung (SNI 1726-2012). B. Perumusan Masalah Permasalahan utama yang dibahas dalam studi ini adalah: 1. Bagaimana merencanakan struktur sekunder yang meliputi balok anak, plat dan tangga? 2. Bagaimana menganalisa desain struktur menggunakan rangka bresing konsentris dengan menggunakan peraturan yang ada? 3. Bagaimana merencanakan struktur primer yang meliputi balok dan kolom? 4. Bagaimana merencanakan sambungan antar profil sehingga antar profil bisa tersambung dengan kuat dan efisien? 5. Bagaimana merencanakan pondasi yang meliputi poer dan tiang pancang? C. Batasan Masalah Batasan masalah dari studi ini adalah sebagai berikut: 1. Perencanaan tidak memperhitungkan metode pelaksanaan konstruksi.

2 2. Perencanaan tidak meninjau unsur arsitektural, utilitas, dan mekanikal elektrikal. 3. Pembebanan dalam perencanaan dihitung berdasarkan PPIUG 1983. 4. Beban gempa dalam perencanaan dihitung berdasarkan SNI 1726-2012. 2. TINJAUAN PUSTAKA A. Umum Gedung bertingkat dalam aplikasinya memerlukan perencanaan perhitungan yang mampu menerima berbagai macam beban seperti beban mati, beban hidup, beban angin dan beban gempa. Di Indonesia sendiri dalam mendesain bangunan harus memperhitungkan beban gempa sesuai dengan SNI yang ada. Hal ini dikarenakan sebagian besar wilayah Indonesia merupakan daerah rawan gempa. Dalam perencanaan gedung baja bertingkat salah satu metode perhitungan strukturnya dapat menggunakan Sistem Rangka Bresing Konsentris Khusus (SRBKK), metode ini digunakan bila merencanakan bangunan di wilayah zona gempa tinggi. Keuntungan dari SRBKK tidak hanya berfungsi sebagai penahan gaya aksial saja tetapi juga sebagai penahan gaya lateral yang diakibatkan beban gempa. Dengan adanya rangka bresing tersebut diharapkan bangunan itu menjadi lebih kaku dan lebih mampu menahan beban lateral. B. Konsep Desain Bresing Konsentris Sistem rangka bresing konsentrik merupakan pengembangan dari system portal tidak berpengaku atau lebih dikenal dengan dengan MRF (Moment Resisting Frame). System Rangka Bresing Konsentrik dikembangkan sebagai system penahan gaya lateral dan memiliki tingkat kekakuan yang cukup baik. Hal ini bertolak belakang dengan system MRF yang hanya digunakan sebagai penahan momen. Kekakuan struktur ini terjadi akibat adanya elemen pengaku yang berfungsi sebagai penahan gaya lateral yang terjadi pada struktur. System ini penyerapan energinya dilakukan melalui pelelehan yang dirancang terjadi pada pelat buhul.system ini daktilitasnya kurang begitu baik sehingga kegagalannya ditentukan oleh tekuk bresing. Konsep desain bresing dibedakan menjadi 2 yaitu Sistem Rangka Bresing Konsentris Biasa (SRBKB). Direncanakan pada bangunan baja yang berada di wilayah gempa kecil hingga menengah Sistem Rangka Bresing Konsentris Khusus (SRBKK). Direncanakan pada bangunan baja yang berada di wilayah gempa menengah hingga besar. Adapun tipe-tipe bresing adalah sebagai berikut: 1. Single diagonal 2. Invirted V-Bracing 3. V-Bracing 4. X-Bracing 5. Two Story X-Bracing C. Persyratan Umum Rangka Bresing Mekanisme keruntuhan direncanakan terjadi pada elemen bressing dan pelat buhul sambungan bresing ke balok dan kolom. Pada saat terjadi gempa besar, diharapkan terjadi tekuk pada batang bresing (akibat beban aksial yang diterimanya) sehingga terjadi putaran sudut pada ujung bresing yang kemudian menyebabkan pelat buhul pada sambungan ujung bresing leleh (terjadi sendi plastis). D. Konsep Desain Bresing Konsentris Khusus SNI 03-1729-2002 Bresing yang digunakan sebagai komponen penahan lateral harus memenuhi parameter sebagai berikut : Kelangsingan Batang bresing harus memenuhi syarat K kelangsingan yaitu c L 1900 r fy Beban aksial terfaktor pada batang bresing tidak boleh melebihi ϕ N c Perbandingan lebar terhadap tebal penampang bresing tekan yang berperilaku ataupun yang tidak diperkaku harus memenuhi persyaratan-persyaratan berikut ini : 1. Batang bresing harus bersifat kompak, yaitu (λ 0 <λ p ). Perbandingan lebar terhadap tebal untuk penampang siku tidak boleh lebih dari 135/ fy. 2. Penampang bulat berongga harus mempunyai perbandingan diameter luar terhadap tebal dinding, kecuali dinding penampang tersebut diberi pengaku 3. Penampang persegi berongga harus mempunyai perbandingan lebar terhadap tebal dinding kecuali dinding penampang tersebut diberi pengaku. E. Persyaratan Khusus untuk konfigurasi Bresing Khusus Berdasarkan SNI 03-1729-2012 Pasal 15.11.4.1 Sistem rangka yang menggunakan Bresing tipe V dan tipe V terbalik harus memenuhi persyaratan sebagai berikut : 1. Balok yang bersilangan dengan batang bresing harus menerus dari kolom ke kolom. 2. Balok yang besilangan dengan batang bresing harus direncanakan untuk memikul pengaruh semua beban mati dan hidup berdasarkan kombinasi pembebanan dengan menganggap bahwa batang bresing tidak ada. 3. Balok yang besilangan dengan batang bresing harus direncanakan untuk memikul pengaruh kombinasi pembebanan kecuali bahwa Q b harus disubtitusikan pada suku E. Q b harus dihitung dengan menggunakan minimum sebesar N y untuk bresing dalam tarik dan maksimum sebesar 0,3 ϕ N untuk bresing tekan. c 4. Sayap-sayap atas dan bawah balok pada titik persilangan dengan batang bresing harus direncanakan mampu memikul gaya lateral yang besarnya sama dengan 2% kuat nominal sayap f b t balok y f bf (2.41). Kolom pada SRBKK harus memenuhi persyaratan sebagai berikut :

Perbandingan Lebar terhadap Tebal Perbandingan lebar terhadap tebal penampang kolom dalam tekan yang diberi pengaku ataupun yang tidak diberi pengaku, harus memenuhin persyaratan untuk batang bresing pada penjelasan Perbandingan lebar terhadap tebal sebelumnya Penyambungan Penyambungan kolom pada SRBKK juga harus direncanakan untuk mampu memikul minimal kuat geser nominal dari kolom terkecil yang disambung dari 50% kuat lentur nominal penampang terkecil yang disambung.penyambungan harus ditempatkan di daerah 1/3 tinggi bersih kolom yang di tengah. 1. 3. METODOLOGI Dengan mengacu pada tabel perencanaan praktis untuk bentang menerus untuk bentang 2,75 m dengan beban berguna 200 kg/m 2 maka didapatkan: - Tebal pelat = 9 cm - tulangan negatif = 2,09 cm 2 /m Digunakan tulangan Ø 10 (As = 0,785 cm 2 ) jumlah tulangan yang dibutuhkan tiap meter adalah: 2,09 - n = 2, 66 3 buah 0,785 1000 mm 3 - Jarak antar tulangan s = 333, 33 - Jadi dipasang tulangan negatif Ø 10 300 B. Pelat Lantai Gedung Berdasarkan hasil perhitungan, pelat lantai gedung didapat: - Tebal = 90 mm - Bahan = Pelat bondek dan beton - Tul. Utama = Ø 10 250 - Tul. Susut suhu = wiremesh M5 C. Balok anak lantai gedung Berdasarkan hasil perhitungan balok anak atap menggunakan Profil WF 400 x 200 x 7 x 11. 3 4. PERENCANAAN STRUKTUR SEKUNDER A. Pelat Lantai Atap Dalam perencaan pelat lantai atap, peraturan pembebanan pada struktur pelat atap ini menggunakan PPIUG 1983. Beban Mati: - Berat aspal 0,01 x 1400 = 14 kg/m 2 - Berat plafon (11+7) = 18 kg/m 2 - Berat ducting dan plumbing = 10 kg/m 2 + q D = 42 kg/m 2 Beban Hidup: - Lantai atap q L = 100 kg/m 2 BebanBerguna : - Q u = q D + q L = 42 + 100 = 142 kg/m 2 200 kg/m 2 D. Balok Anak Atap Berdasarkan hasil perhitungan balok anak atap menggunakan profil WF 350 x 175 x 6 x9 E. Tangga Tangga direncanakan dengan mengunakan WF pada baloknya dan bondek pada pelatnya. Adapun profilprofil hasil perhitungan adalah sebagai berikut: - Pelat Tangga Tebal = 90 mm Bahan = Pelat bondek dan beton Tul. Utama = Ø 10 500 Tul. Susut suhu = wiremesh M5 - Balok Utama Tangga Balok utama tangga menggunakan profil WF 200 x 100 x 4,5 x 7 - Balok Penumpu Tangga Balok Penumpu Tangga menggunakan profil WF 200 x 100 x 4,5 x 7 F. Balok Lift Menggunakan profil WF 350 x 175 x 6 x9 4. PERENCANAAN STRUKTUR PRIMER A. Kontrol Desain Sesuai dengan peraturan SNI 03-1726-2002, maka hasil analisis struktur harus dikontrol terhadap suatu batasan-batasan tertentu untuk menentukan kelayakan sistem struktur tersebut. Adapun hal-hal yang harus dikontrol adalah sbb : - Kontrol nilai akhir respon spectrum

4 - Kontrol partisipasi massa - Kontrol simpangan (drift) - Kontrol Waktu Getar Alami Kontrol Nilai Akhir Respon Spektrum Berdasarkan SNI 1726-2012 Pasal 7.9.4, nilai akhir V dinamik harus lebih besar sama dengan 85% V statik. Maka persyaratan tersebut dapat dinyatakan sbb: V dinamik 0,85*V statik. Tabel 4.1 Base Shear Respon Spektrum Arah-x : V dinamik 0,85.V statik 204.746,03 kg > 202.460,41 kg ok Arah-y : V dinamik 0,85.V statik 202.723,51 kg > 202.460,41 kg ok Tabel 4.3 Kontrol Simpangan Arah-Y Kontrol Partisipasi Massa Menurut SNI 1726-2002 Pasal 7.2.1 bahwa partisipasi massa harus menghasilkan sekurangkurangnya 90 % respon total dari perhitungan respon dinamik. Dibawah ini adalah output parstisipasi massa dari program SAP 2000 v 14.2.0 Berdasarkan analisis program SAP 2000 v 14.2.0 bahwa pada mode 10 syarat rasio partisipasi massa sudah memenuhi persyaratan SNI 1726-2002 Pasal 7.2.1 Kontrol Simpangan (Drift) Berdasarkan SNI 1726-2012 pasal 7.8.6 untuk kontrol drift dan syarat drift dirumuskan sebagai berikut : Cd xe x I syarats 0, 015 h sx Dimana : δ x = defleksi pada lantai ke-x Cd = faktor pembesaran defleksi (5) I = faktor keutamaan gedung (1,0) h sx = Tinggi lantai (m) Tabel 4.2 Kontrol Simpangan Arah-X Kontrol Waktu Getar Alami Periode struktur fundamental, T, dalam arah yang ditinjau harus diperoleh menggunakan property struktur dan karakteristik deformasi elemen penahan dalam analisis yang teruji. Periode fundamental, T, tidak boleh melebihi hasil koefisien untuk batasan atas pada periode yang dihitung (Cu) dan periode fundamental pendekatan, Ta. T c < T = T a.cu Dimana : Ta = Periode Fundamental pendekatan (= 1,303) Cu =Koefisien untuk batas atas (=1,4) Gambar 4.1 Output Periode dari Program SAP Sehingga : Arah X T cx = 1,128 dt < T =1,303 dt..ok Arah Y T cy = 1,085 dt < T =1,303 dt..ok B. Bresing Konsentris Khusus Pada struktur ini, bresing didominasi oleh gaya aksial karena tidak direncanakan memikul momen yang besar agar perilakunya sesuai dengan kebutuhan leleh pada sambungan. Bresing yang didesain didasarkan pada besaran gaya normal yang dipikul olehnya. Kontrol Penampang

5 Menggunakan Profil WF 175 x 175 x 7,5 x 11 Persyaratan perbandingan lebar terhadap tebal penampang batang bresing untuk SRBKK sesuai SNI 03-1729-2002 Butir 15.11.2.5yaitu : Batang bresing harus bersifat kompak (λ<λp ). - Cek Kelangsingan penampang Pelat sayap bf 175 λ = = 7,95 λ p = 2 t = f 2(11) 135 fy Pelat badan λ = h tw 170 = = 10,97 240 = 149 = 19,87 7,5 1680 1680 λ p = = fy 240 = 108,44 - Persyaratan kelangsingan batang bresing untuk SRBKK sesuai SNI 03-1729-2002 Butir 15.11.2.1 yaitu : kondisi tumpuan sendi-sendi, k c = 1 L = max k c L r R 2625 fy 2 2 500 400 = 640,31 cm 1x640,31 2625 10 240 64,03 169,44 λ λ p 7,95 < 10,97 maka penampang kompak dengan 19,87<108,44 penampang kompak Maka batang bresing memenuhi persyaratan kelangsingan. M M * pcx 1 * pbx Zc ( f yc Nuc Ag 1 (1,1 R M M ) y p y 2{4320,4x(46088 445257,82 / 4900)} 4{(1,1 x1,5 x((2462x2400) (2230x2400))} = 5,35 >1.ok 5. PERENCANAAN PONDASI 750 1250 1250 750 4000 1250 1250 750 750 4000 1250 1250 750 Gambar 5.1 Pondasi Tiang Pancang Kedalaman rencana = 28 m Diameter tiang pancang = 50 cm P max = 56683.90 kg < P ijin x efisiensi P max = 56683.90 kg < 152370 x 0,877 kg P max = 56683.90 kg < 133628,49 kg Poer Dimensi = 4x4m Tebal = 1 m Tulangan Arah X = D25-150 mm Tulangan Arah X = D25-150 mm Sloof 1000 750 4000 E. Perhitungan elemen Balok Berdasarkan Hasil Perhitungan menggunakan Profil WF 500 x 200 x 11 x 19 Rasio kapasitas Momen M u M n 51319,36 = 87677,34 = 0,61 < 1 V V 20181,99 72135,36 u Rasio Kapasitas Geser 0,28 1 n F. Perhitungan Kolom Berdasarkan Hasil Perhitungan menggunakan King Cross 588x300x12x20. Pada SNI 03-1729 ps. 15.7.6, perbandingan momen kolom terhadap momen balok adalah 6. Kesimpulan Gambar 5.2 Penampang Sloof 40/60

6 Dari hasil perhitungan dan analisa yang telah dilakukan, maka dapat diambil kesimpulan sebagai berikut : 1. Dari hasil analisa perhitungan struktur sekunder didapatkan : A. Pelat lantai menggunakan Bondex dengan tebal plat beton : Atap t = 90 mm Lantai gedung t = 90 mm B. Balok anak Atap Profil WF 350 x175x6x9 Lantai Profil WF 400x200x7x11 2. Dari hasil analisa perhitungan struktur primer didapatkan :. A. Balok induk : Atap Profil WF 450x200x9x14 Lantai Profil WF 500x200x11x19 B. Kolom komposit : Lantai 1-3 KK 588x300x12 x20; beton 70 x 70 cm Lantai 4-6 KK 500 x200 x10 x16; beton 60 x 60 cm Lantai 7-9 KK 450 x200 x9 x14; beton 55 x 55 cm Lantai 10-12 KK 400x200x8x13; beton 50 x 50 cm C. Bresing : Bresing dipakai tipe Konsentris khusus dengan model inverted V menggunakan profil WF 350x350x7,5x11 3. Pondasi memakai tiang pancang PT. JAYA BETON untuk D = 50 cm (tipe AB ) dengan kedalaman 28 m dari hasil penyelidikan tanah sondir. Marwan dan Isdarmanu. 2006. Buku Ajar Struktur Baja I. Jurusan Teknik Sipil-FTSP Institut Teknologi Sepuluh Nopember. Octaviana, Ravi. 2008. Perencanaan Struktur Rangka Baja Bresing Konsentrik Biasa dan Struktur Rangka Baja Bresing Konsentrik Khusus tipe X. Institut Teknologi Bandung. Salmon G Charles dan Johnson, JE. 1996. Struktur Baja Desain & Perilaku Edisi 2, Jakarta : Gramedia Pustaka Tama. Setiawan, Agus. 2008. Perencanaan Struktur Baja dengan Metode LRFD, Jakarta : Erlangga. Soewardojo. Buku Ajar Struktur Baja II. Jurusan Teknik Sipil-FTSP Institut Teknologi Sepuluh Nopember. Sosrodarsono, Suyono. 2000. Mekanika Tanah dan Teknik Pondasi. Jakarta: PT. Pradnya Paramita Teruna. Daniel Rumbi. 2007. Perencanaan Bangunan Tahan Gempa dengan Menggunakan Base Isolator (LRB). Prosiding Seminar dan Pameran HAKI 2007. DAFTAR PUSTAKA BSN.2011. SNI 1726-2012 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. Departemen Pekerjaan Umum. BSN.2002. SNI 03-1729-2002 Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung. Departemen Pekerjaan Umum. BSN.2002. SNI 03-1729-2002 Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung. Departemen Pekerjaan Umum. Direktorat Penyelidikan Masalah Bangunan. 1983. Peraturan Pembebanan Indonesia untuk Gedung 1983. Bandung : Yayasan Lembaga Penyelidikan Masalah Bangunan. Fauzi, Aan. 2011. Modifikasi Perencanaan menggunakan Sistem Rangka Bresing Konsentris Khusus pada Gedung Apartemen Metropolis. Jurusan Teknik Sipil-FTSP Institut Teknologi Sepuluh Nopember.