BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Yufiter (2012) dalam jurnal yang berjudul substitusi agregat halus beton

> NORMAL CONCRETE MIX DESIGN <

BAB 4 ANALISIS DATA DAN PEMBAHASAN

EKSPERIMEN DAN ANALISIS BEBAN LENTUR PADA BALOK BETON BERTULANGAN BAMBU RAJUTAN

MIX DESIGN Agregat Halus

BAB III PERENCANAAN PENELITIAN

BAB III METODOLOGI PENELITIAN

PEMANFAATAN BAMBU UNTUK TULANGAN JALAN BETON

BAB III LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

KUAT LEKAT DAN PANJANG PENANAMAN TULANGAN BAMBU PETUNG DAN BAMBU TALI PADA BETON NORMAL

KUAT LENTUR BALOK BETON TULANGAN BAMBU PETUNG VERTIKAL

BAB 2 TINJAUAN KEPUSTAKAAN. membentuk masa padat. Jenis beton yang dihasilkan dalam perencanaan ini adalah

LAMPIRAN. Universitas Kristen Maranatha

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga

KUAT LENTUR BALOK BETON TULANGAN BAMBU PETUNG TAKIKAN TIDAK SEJAJAR TIPE U LEBAR 1 DAN 2 CM PADA TIAP JARAK 5 CM

BAB II TINJAUAN PUSTAKA

TINJAUAN KUAT LENTUR BALOK BETON BERTULANGAN BAMBU LAMINASI DAN BALOK BETON BERTULANGAN BAJA PADA SIMPLE BEAM. Naskah Publikasi

KAJIAN KUAT LENTUR BALOK BETON BERTULANG BIASA DAN BALOK BETON BERTULANGAN KAYU DAN BAMBU PADA SIMPLE BEAM. Naskah Publikasi

BAB 4 DATA, ANALISIS DATA DAN PEMBAHASAN

BAB III LANDASAN TEORI

PERBANDINGAN KAPASITAS BALOK BETON BERTULANG ANTARA YANG MENGGUNAKAN SEMEN PORTLAND POZZOLAN DENGAN SEMEN PORTLAND TIPE I TUGAS AKHIR.

3. SIFAT FISIK DAN MEKANIK BAMBU TALI Pendahuluan

Pemeriksaan Gradasi Agregat Halus (Pasir) (SNI ) Berat Tertahan (gram)

Tabel 4.1. Hasil Pemeriksaan Gradasi Pasir. Berat. Berat. Tertahan Tertahan Tertahan Komulatif

PENGARUH VARIASI DIMENSI BENDA UJI TERHADAP KUAT LENTUR BALOK BETON BERTULANG

BAB II DASAR TEORI 2.1. UMUM. Beton adalah bahan yang diperoleh dengan mencampurkan agregat, air

Analisis Bambu Walesan, Bambu Ampel dan Ranting Bambu Ampel sebagai Tulangan Lentur Balok Beton Rumah Sederhana

Viscocrete Kadar 0 %

BAB V HASIL PENELITIAN DAN PEMBAHASAN

Kata Kunci : beton, baja tulangan, panjang lewatan, Sikadur -31 CF Normal

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

PERBANDINGAN KUAT TARIK LENTUR BETON BERTULANG BALOK UTUH DENGAN BALOK YANG DIPERKUAT MENGGUNAKAN CHEMICAL ANCHOR

PERILAKU RUNTUH BALOK DENGAN TULANGAN TUNGGAL BAMBU TALI TUGAS AKHIR

KAJIAN KUAT LEKAT DAN KUAT LENTUR BALOK BERTULANGAN BAMBU ORI PADA BETON NORMAL SKRIPSI

Pilinan Bambu sebagai Alternatif Pengganti Tulangan Tarik pada Balok Beton ABSTRAK

BAB III LANDASAN TEORI. dengan atau tanpa bahan tambah yang membentuk masa padat (SNI suatu pengerasan dan pertambahan kekuatan.

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Jln. Ir. Sutami 36 A, Surakarta 57126; Telp

MATERI/MODUL MATA PRAKTIKUM

BAB 3 METODE PENELITIAN

Spesifikasi lapis fondasi agregat semen (LFAS)

PENGUJIAN KUAT LENTUR BALOK BETON BERTULANG DENGAN VARIASI RATIO TULANGAN TARIK

PENGARUH VARIASI LUAS PIPA PADA ELEMEN BALOK BETON BERTULANG TERHADAP KUAT LENTUR

BAB VI KESIMPULAN DAN SARAN

DAFTAR ISI BAB I PENDAHULUAN... 1

BAB 3 METODE PENELITIAN

4. Perhitungan Proposi Campuran menurut SNI

BAB III LANDASAN TEORI

KAJIAN KAPASITAS LENTUR BALOK BETON BERTULANGAN BAMBU WULUNG TAKIKAN TIPE V DENGAN JARAK TAKIKAN 4 CM DAN 5 CM

BAB III LANDASAN TEORI. A. Beton

Pemeriksaan Kadar Air Agregat Halus (Pasir) Tabel 1. Hasil Analisis Kadar Air Agregat Halus (Pasir)

KAJIAN KUAT LENTUR PELAT BERTULANG BIASA DAN PELAT BETON BERTULANGAN KAYU DAN BAMBU PADA TUMPUAN SEDERHANA. Naskah Publikasi

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN

BAB III LANDASAN TEORI. tidak terlalu diperhatikan di kalangan masyarakat.

BAB VI KESIMPULAN DAN SARAN. menggunakan fiber glass diperoleh kesimpulan sebagai berikut.

BAB I PENDAHULUAN A. Latar Belakang

TINJAUAN KEKUATAN DAN ANALISIS TEORITIS MODEL SAMBUNGAN UNTUK MOMEN DAN GESER PADA BALOK BETON BERTULANG TESIS

PENGARUH VARIASI LUAS PIPA PADA ELEMEN KOLOM BETON BERTULANG TERHADAP KUAT TEKAN

PERILAKU RUNTUH BALOK DENGAN TULANGAN TUNGGAL BAMBU TALI

Laporan Tugas Akhir Kinerja Kuat Lentur Pada Balok Beton Dengan Pengekangan Jaring- Jaring Nylon Lampiran

8. PEMBAHASAN UMUM DAN REKOMENDASI Pembahasan Umum

Pengaruh Variasi Jumlah Semen Dengan Faktor Air Yang Sama Terhadap Kuat Tekan Beton Normal. Oleh: Mulyati, ST., MT*, Aprino Maramis** Abstrak

BAB III LANDASAN TEORI

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

PENGGUNAAN PASIR DAN KERIKIL LOKAL DI KABUPTEN SUMENEP SEBAGAI BAHAN MATERIAL BETON DI TINJAU DARI MUTU KUAT BETON

3.4.2 Pemeriksaan Berat Jenis dan Penyerapan Air Agregat Halus Error! Bookmark not defined Kadar Lumpur dalam Agregat... Error!

TATA CARA PEMBUATAN RENCANA CAMPURAN BETON NORMAL

BAB IV ANALISIS DATA DAN HASIL PENELITIAN

BAB III LANDASAN TEORI

BAB VI KESIMPULAN DAN SARAN. perkuatan balok dengan Sika Carbodur S512 diperoleh beberapa kesimpulan. pertama dan penurunan defleksi.

BAB III LANDASAN TEORI. Beton merupakan bahan dari campuran antara Portland cement, agregat. Secara proporsi komposisi unsur pembentuk beton adalah:

INFRASTRUKTUR KAPASITAS LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN AGREGAT KASAR TEMPURUNG KELAPA

BAB 1 PENDAHULUAN Latar Belakang

Lampiran A Berat Jenis Pasir. Berat pasir kondisi SSD = B = 500 gram. Berat piknometer + Contoh + Air = C = 974 gram

Naskah Publikasi. untuk memenuhi sebagian persyaratan mencapai derajat Sarjana-1 Teknik Sipil. diajukan oleh : BAMBANG SUTRISNO NIM : D

KAPASITAS LENTUR PLAT BETON BERTULANGAN BAMBU BENDING CAPACITY OF BAMBOO REINFORCED CONCRETE PLATE

KUAT LENTUR BALOK BETON TULANGAN BAMBU PETUNG VERTIKAL TAKIKAN TIPE U LEBAR 3 CM TIAP JARAK 10 CM

BAB 3 METODE PENELITIAN

METODE PENGUJIAN KUAT LENTUR NORMAL DENGAN DUA TITIK PEMBEBANAN BAB I DESKRIPSI

BAB III METODE PENELITIAN. Metodelogi penelitian dilakukan dengan cara membuat benda uji (sampel) di

KAJIAN KUAT TARIK BETON SERAT BAMBU. oleh : Rusyanto, Titik Penta Artiningsih, Ike Pontiawaty. Abstrak

BAB III LANDASAN TEORI. dengan atau tanpa bahan tambahan yang membentuk massa padat (SNI

BAB V KESIMPULAN DAN SARAN

BAB IV HASIL EKSPERIMEN DAN ANALISIS

TINJAUAN KUAT GESER DAN KUAT LENTUR BALOK BETON ABU KETEL MUTU TINGGI DENGAN TAMBAHAN ACCELERATOR

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke

III. METODE PENELITIAN

DAFTAR ISI ABSTRAK ABSTACT. iii KATA PENGANTAR DAFTAR ISI DAFTAR NOTASI DAN SINGKATAN. xii DAFTAR GAMBAR. xiii DAFTAR TABEL. xvi DAFTAR GRAFIK I-1

KUAT LENTUR BALOK TULANGAN BAMBU PETUNG TAKIKAN TIDAK SEJAJAR TIPE U LEBAR 1 DAN 2 CM PADA TIAP JARAK 15 CM

Transkripsi:

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka 2.1.1. Bambu 2.1.1.1. Umum Dampak pemanasan global yang kita rasakan akir akir ini serta berkurangnya sumber daya dan masalah ramah lingkungan, penggunaan dari material alami telah menjadi pembicaraan ramai di industri konstruksi (Vetal, 2014).[ ] Bambu sebagai bahan penguat beton merupakan inovasi terbaru dalam rekayasa struktur, meskipun bangunan dengan bambu kembali ke waktu lampau dan tradisi di daerah di mana bambu tumbuh berlimpah, seperti di Amerika Selatan, Afrika, dan khususnya di Asia Tenggara. Bambu mencapai kekuatan terbesar setelah tiga tahun, ketika berwarna kecoklatan. Kekuatan lentur bambu tergantung pada lokasi noda, dengan batang kaku pada interval yang cukup untuk mencegah tekuk atau runtuh. Yu et al. (2008) melaporkan bahwa nilai kekuatan tarik bambu bervariasi dari antara 115 dan 309 N/mm 2. ( Agarwal, et all, 2011) [ ] mengamati kekuatan tarik 370 N/mm 2 dalam penyelidikan mereka sendiri. Dengan demikian jelas bahwa kekuatan tarik bambu berada di kisaran baja ringan dengan kekuatan tarik lebih dari 250N/mm 2. Hal ini menunjukkan bahwa bambu dapat digunakan untuk menggantikan baja ringan untuk konstruksi struktur biaya rendah (Ikponmwosa, et all, 2014).[ ] Dengan memperhatikan kekuatan bambu yang tinggi, serta bambu dengan kualitas baik dapat diperoleh pada umur hanya 3 5 tahun, bambu mudah ditanam, tidak perlu pemeliharaan secara khusus, mempunyai ketahanan sangat tinggi terhadap gangguan, rumpun yang sudah dibakarpun masih dapat tumbuh lagi, maka bambu mempunyai peluang yang besar untuk menggantikan kayu yang baru siap tebang setelah berumur sekitar 50 tahun (Morisco, 2000).[ ] Penelitian telah dilakukan terhadap berbagai macam model tulangan bambu antara lain dengan bentuk bilah, pilinan dari bagian lapisan kulit, pemberian paku, 4

5 takikan melingkar, atau laminasi bambu. Perlakuan untuk mengatasi permasalahan penyusutan dilakukan dengan memberi lapisan anti air (water proofing) menggunakan bahan vernis, cat, injeksi bahan minyak resin maupun memakai bahan koloid seperti getah, perekat cair, lem dan sebagainya (Janssen, 1995).[ ] Janssen, JAA, (1988) [ ] dalam Morisco, (1999)[ ] memberikan rekomendasi tentang keunggulan bambu sebagai berikut: 1. Bambu dapat tumbuh sangat cepat dan dapat dibudidayakan secara cepat serta modal dapat diputar berkesinambungan. 2. Bambu mempunyai sifat-sifat mekanika yang baik. 3. Pengerjaan bambu hanya membutuhkan peralatan yang sederhana. 4. Kulit luar bambu mengandung banyak silika yang membuat bambu terlindungi. Energi yang diperlukan untuk menghasilkan 1 m 3 per unit stres diproyeksikan dalam praktek untuk bahan yang biasa digunakan dalam konstruksi sipil, seperti baja atau beton, telah dibandingkan dengan bambu. Ditemukan bahwa untuk baja perlu menghabiskan energi 50 kali lebih banyak dari bambu. Kekuatan tarik bambu sangat tinggi dan bisa mencapai 54 ksi (370 N/mm 2 ). Hal ini membuat bambu menjadi alternatif pengganti baja dalam aplikasi kuat tarik. Hal ini disebabkan oleh fakta bahwa rasio kekuatan tarik berat jenis bambu adalah enam kali lebih besar dari baja (Amanda et al. 1997).[ ] Menurut adewuyi, et all,2015).[ ].Bamboo and rattan can only be used for lineweigt RC structures.the flexural stiffness of bamboo and rattan RC was about 32% and 13,5% respectively of the convensional steel bars RC beams.the first cracking loads of bamboo and rattan RC beams were 55% and 30% respectively of the convensional steel RC beams. The experiantal ultimate failure loads of bamboo and rattan RC beams were 51% and 21% respectely of the convensional steel RC beams.bamboo and steel RC had 40% residual capacity after the first crack,while rattan RC beams had exhausted 75% of its load-carrying capacity after the first crack. The mode of failure for bamboo and steel RC beams was shear,indicated by diagonal cracks because of the short-span specimen adopted

6 and the relatively higher tensile strength than rattan RC beams which failed by flexure (vertical cracks).] Bambu merupakan bahan konstruksi alami, Bambu ori mempunyai bentuk penampang yang tidak prismatis dengan bagian melintang mengecil pada bagian atas, dan mempunyai jarak buku/nodia yang tidak sama sepanjang batangnya, sehingga hal inilah yang membuatnya menjadi unik dan artistik, namun bentuk demikian membuat aplikasi bambu sebagai struktur sulit dalam perangkaiannya. Secara umum batang bambu terbagi atas dua bagian yaitu: 1. Nodia (ruas/buku bambu) Nodia adalah bagian terlemah terhadap gaya tarik sejajar sumbu batang dari bambu, karena pada nodia sebagian serat bambu berbelok, pada nodia arah gaya tidak lagi sejajar semua serat (Morisco,1999). Secara umum nodia mempunyai kapasitas memikul beban yang tidak efektif baik dari segi kekuatan maupun deformasi. Meskipun demikian, adanya nodia pada batang bambu mencegah adanya tekuk lokal yang sangat penting pada perancangan bambu sebagai elemen tekan (kolom). 2. Internodia (antar ruas) Internodia adalah daerah antar nodia, semua sel yang terdapat pada internodia mengarah pada sumbu aksial, sedang pada nodia mengarah pada sumbu transversal. Bagian internodia adalah bagian terkuat dari bambu, sehingga mempunyai kapasitas memikul beban yang efektif. Tiap-tiap jenis bambu memiliki panjang internodia yang berbeda-beda. Berikut ini adalah potongan melintang bambu dengan bagian-bagaiannya: 1. Kulit luar Kulit luar adalah bagian yang paling luar atau paling atas, biasanya berwarna hijau atau hitam. Tebal kulit bambu relatif seragam pada sepanjang batang yaitu kurang lebih 1 mm, sifatnya keras dan kaku. Bambu yang tipis akan mempunyai porsi kulit besar, sehingga kekuatan reratanya tinggi, sedangkan pada bambu tebal berlaku sebaliknya (Morisco, 1999).[ ]

7 2. Bambu bagian luar Bagian ini terletak dibawah kulit atau diantara kulit luar dan bagian tengah. Tebal bagian ini kurang lebih 1 mm, sifatnya keras dan kaku. 3. Bagian tengah Bagian tengah terletak dibawah luar atau antara bagian luar dan bagian dalam, disebut juga daging bambu. Tebalnya kurang lebih 2/3 dari tebal bambu, seratnya padat dan elastis. Untuk bagian tengah yang paling bawah sifat seratnya agak kasar 4. Bagian dalam Bagian dalam adalah bagian yang paling bawah dari tebal bambu, sering disebut pula hati bambu. Sifat seratnya kaku dan mudah patah. Gambar 2.1. Pohon Bambu ori 2.1.1.2. Sifat-Sifat Bambu Pemanfaatan bambu sebagai alternatif tulangan beton untuk struktur bangunan sederhana, diperlukan pengetahuan yang cukup mengenai sifat mekanik dan sifat fisika dari bahan tersebut agar memenuhi persyaratan ekonomis, keamanan, dan kenyamanan bagi penggunanya melalui uji laboratoriun.

8 1. Sifat Mekanik Bambu a. Kuat tekan (ISO 3132-1975) Menurut penelitian Morisco (1999) kekuatan tekan bambu juga dipengaruhi oleh posisinya yaitu di bagian pangkal, tengah, dan ujung. Hasil pengujian kekuatan tekan beberapa jenis bambu ditampilkan pada Tabel 2.1. Tabel 2.1. Kuat Tekan Rata - Rata Bambu Kering Oven Jenis bambu Bagian Pangkal Petung Tengah Ujung Pangkal Tutul Tengah Ujung Pangkal Galah Tengah Ujung Pangkal Tali Tengah Ujung Pangkal Dendeng Tengah Ujung (Sumber: Morisco, 1999) Kuat tekan (kg/cm 2 ) 2,769 4,089 5,479 5,319 5,428 4,639 3,266 3,992 4,048 2,152 2,880 3,354 4,641 3,609 3,238 b. Kuat Tarik (ISO 3346-1975) Berdasarkan penelitian yang dilakukan oleh Morisco pada tahun 1999, yang memperlihatkan perbandingan kuat tarik bambu ori dan wulung dengan baja struktur bertegangan leleh 2400 kg/cm 2 dilaporkan bambu ori kuat tarik rataratanya juga lebih tinggi dari tegangan leleh baja, hanya satu spesimen saja yang kuat tariknya dibawah tegangan leleh baja.

9 Kulit Bambu Ori Bambu Petung Baja Gambar 2.2. Diagram Tegangan - Regangan Bambu dan Baja (Sumber: Morisco, 1999)... Untuk melengkapi penelitiannya, Morisco (1999) juga melakukan pengujian spesimen pada beberapa macam bambu untuk mengetahui perbedaan kekuatan bambu bagian luar dengan bagian dalam. Bambu dibelah tangensial sehingga tebalnya sekitar setengah tebal bambu utuh (Gambar 2.2) hasil pengujian disajikan dalam Tabel 2.2. Bagian Luar Bagian Dalam Gambar 2.3. Pengambilan Spesimen Bambu (Sumber: Morisco, 1999)

10 Tabel 2.2. Kuat Tarik Bambu Tanpa Buku / Nodia Kering Oven Jenis bambu Ori Tegangan tarik (MPa) Bagian dalam Bagian Luar 164 417 Petung Wulung (Sumber: Morisco, 1999) 97 96 285 237 Pada Tabel 2.3 dibawah menunjukan perbedaan kekuatan tarik sejajar sumbu batang pada bambu tanpa buku dengan kekuatan tarik sejajar sumbu batang pada bambu yang memiliki buku. Tabel 2.3. Kuat Tarik Rata - Rata Bambu Kering Oven Jenis bambu Tanpa Nodia Tegangan tarik (MPa) Dengan Nodia Ori Petung Wulung (Sumber: Morisco, 1999) 291 190 166 128 116 147 c. Kuat geser (ISO 3347-1975) d. Kekuatan geser adalah ukuran kekuatan bambu dalam hal kemampuannya menahan gaya-gaya yang membuat suatu bagian bambu bergeser dari bagian lain didekatnya. e. Kuat lentur (ISO 3133-1975 dan ISO 3349-1975) Kuat lentur merupakan ukuran kemampuan suatu bahan menahan lentur (beban) yang bekerja tegak lurus sumbu memanjang serat di tengah - tengah bahan yang ditumpu pada kedua ujungnya tanpa terjadi perubahan bentuk yang tetap. 2. Sifat Fisika Bambu a. Kadar air dan Berat jenis (ISO 3130-1975) Berdasarkan penelitian yang dilakukan oleh Triwiyono dan Morisco (2000) dalam Morisco (2004) diketahui kadar air serta berat jenis bambu khususnya bambu petung. Pengukuran kadar air dan berat jenis masing-masing dilakukan

11 dua kali yaitu pada saat bambu basah yang dilakukan sehari setelah penebangan dan pada saat bambu kering udara setelah diinapkan selama 45 hari. Hasil pengukuran disajikan pada Tabel 2.4. Tabel 2.4. Kadar Air dan Berat Jenis Bambu Ori Posisi Nomor 1 Pangkal Tengah Ujung 2 3 Bambu Basah Bambu Kering Udara Kadar air (%) Berat Jenis Kadar air (%) Berat Jenis 28,610 0,634 5,381 0,646 34,256 0,680 4,390 0,663 35,361 0,603 5,909 0,682 rata-rata 36,076 0,639 5,227 0,664 1 41,129 0,695 6,250 0,711 2 36,402 0,701 6,926 0,702 3 35,965 0,712 6,859 0,769 rata-rata 37,832 0,703 6,678 0,727 1 38,699 0,754 6,034 0,763 2 36,078 0,712 8,756 0,697 3 35,517 0,686 6,818 0,820 rata-rata 36,765 0,717 7,203 0,760 (Sumber : Triwiyono dan Morisco, 2000 dalam Morisco, 2004) b. Kembang susut (ISO 3130-1975) Pengembangan (swelling) dan penyusutan (shrinkage) diartikan sebagai perubahan dimensi bahan yang disebabkan adanya perubahan kadar air pada bahan. 3. Tegangan Ijin Bambu Untuk Perancangan Dalam laporannya Tular dan Sutidjan (1961) dalam Morisco (1999) nilai modulus elastisitas E bambu berkisar 98070-294200 kg/cm2, tetapi untuk perancangan dipakai E sebesar 294200 kg/cm 2. Adapun hasil penelitian selengkapnya dapat dilihat pada Tabel 2.5.

12 Tabel 2.5. Kuat Batas dan Tegangan Ijin Bambu Macam tegangan Kuat batas Tegangan ijin (kg/cm2) (kg/cm 2 ) Tarik Lentur Tekan E. Tarik 981-3920 686-2940 245-981 98070-294200 294,2 98,07 78,45 196100 (Sumber: Tular dan Sutidjan, 1961 dalam Morisco, 1999) Selanjutnya pada tahun 1987, penelitian lanjutan terhadap 3 spesies bambu di Indonesia antara lain Gigantochloa apus Kurz, Gigantochloa Verticillata Munro, dan Dendrocalamus asper Backer. Tabel 2.6 menunjukan hasil pengujian berdasarkan laporan Siopongco dan Munandar (1987) dalam Morisco (1999). Tabel 2.6. Hasil Pengujian 3 Spesies Bambu, Gigantochloa Apus Kurz, Gigantochloa Verticillata Munro, dan Dendrocalamus Asper Backer... Sifat Kisaran Jumlah Spesimen Kuat tarik 1180-2750 kg/cm 2 234 Kuat lentur 785-1960 kg/cm 2 234 Kuat tekan 499-588 kg/cm 2 234 E tarik 87280-313810 kg/cm 2 54 E tekan 55900-211820 kg/cm 2 234 Batas regangan tarik 0,0037-0,0244 54 Berat jenis 0,67-0,72 132 Kadar lengas 10,04-10,81% 117 (Sumber: Siopongco dan Munandar, 1987 dalam Morisco, 1999) Tegangan ijin yang direkomendasikan di atas dapat dipakai pada berbagai macam bambu. 2.1.2. Beton Beton adalah campuran agregat kasar dan agregat halus sebagai bahan pengisi, ditambah semen dan air yang digunakan sebagai bahan pengikat dan atau menggunakan bahan tambahan.

13 2.1.2.1. Rencana Campuran Beton (Mix Design) Rencana campuran beton bertujuan untuk menentukan proporsi campuran material pembentuk beton agar memenuhi persyaratan umum maupun teknis, sehingga menghasilkan mutu beton sesuai dengan yang direncanakan. Perancangan proporsi campuran beton ini menggunakan metode SNI 03-2834- 2000 (Tata Cara Pembuatan Rencana Campuran Beton Normal), adapun langkahnya sebagai berikut: 1. Menetapkan kuat tekan beton yang disyaratkan (fc ) pada umur tertentu dan nilai standar deviasi (Sr) berdasarkan hasil pengalaman praktek pelaksana. 2. Menghitung nilai tambah (margin) (M) dengan rumus berikut: M = 1,64 x Sr Dengan : M = nilai tambah, MPa 1,64 = tetapan statistik tergantung % kegagalan maksimal 5% Sr = deviasi standar rencana 3. Menetapkan kuat tekan rata-rata yang direncanakan (f cr) dengan rumus: f cr = f c + M dengan : f cr = kuat tekan rata-rata, MPa f c M = kuat tekan yang disyaratkan, MPa = nilai tambah, MPa 4. Menetapkan jenis semen PPC kegunaan tipe 1. 5. Menentukan jenis agregat, berupa agregat alami atau batu pecah berdasarkan Tabel 2.7. Tabel 2.7. Perkiraan Kekuatan Tekan (MPa) Beton dengan Faktor Air-Semen, dan Agregat Kasar Yang Biasa Dipakai di Indonesia Kekuatan tekan (MPa) Jenis semen Jenis agregat kasar Pada umur (hari) Bentuk benda 3 7 28 91 uji Semen Portland Batu tak dipecahkan 17 23 33 40 Tipe I Atau Batu pecah 19 27 37 45 Silinder Semen tahan sulfat Batu tak dipecahkan 20 28 40 48 Tipe II, V Batu pecah 23 32 45 54 Kubus Semen Portland Batu tak dipecahkan 21 28 38 44 Tipe III Batu pecah 25 33 44 48 Silinder Batu tak dipecahkan 25 31 46 53 Batu pecah 30 40 53 60 Kubus (Sumber: SNI 03-2834-2000)

14 6. Menetapkan faktor air-semen berdasarkan jenis semen, jenis agregat kasar dan kuat tekan rata-rata. 7. Menetapkan faktor air-semen maksimum berdasarkan Tabel.2.8. Tabel 2.8. Persyaratan Jumlah Semen Minimum dan Faktor Air Semen Maksimum Untuk Berbagai Macam Pembetonan Dalam Lingkungan Khusus Lokasi Beton di dalam ruang bangunan: a. keadaan keliling non-korosif b. keadaan keliling korosif disebabkan oleh kondensasi atau uap korosif Beton di luar ruangan bangunan : a. tidak terlindung dari hujan dan terik matahari langsung b. terlindung dari hujan dan terik matahari langsung Beton masuk ke dalam tanah : a. mengalami keadaan basah dan kering berganti-ganti b. mendapat pengaruh sulfat dan alkali dari tanah Beton yang kontinyu berhubungan : a. air tawar b. air laut (Sumber: SNI 03-2834-2000) 8. Menentukan nilai slump. 9. Menetapkan besar butir agregat maksimum. Jumlah Semen minimum per m 3 beton (kg) 275 325 325 275 325 Nilai faktor Air-Semen maksimum 0,60 0,52 0,60 0,60 0,55 Tabel Tabel 10. Menetapkan jumlah air yang diperlukan per meter kubik beton, berdasarkan ukuran maksimum agregat, jenis agregat, dan nilai slump yang diinginkan berdasarkan Tabel 2.9.

15 Tabel 2.9. Perkiraan Kadar Air Bebas (kg/m 3 ) Yang Dibutuhkan Untuk Beberapa Tingkat Kemudahan Pekerjaan Adukan Beton Besar Ukuran Jenis Slump (mm) Maks. Kerikil (mm) Batuan 0 10 10 30 30 60 60 180 10 Alami 150 180 205 225 Batu pecah 180 205 230 250 20 Alami 135 160 180 195 Batu pecah 170 190 210 225 40 Alami 115 140 160 175 Batu pecah 155 175 190 205 (Sumber: SNI 03-2834-2000) 11. Menghitung Berat semen yang diperlukan dan kebutuhan semen minimum berdasarkan Tabel 2.7. 12. Menentukan daerah gradasi agregat halus berdasarkan Tabel 2.10 berikut: Tabel 2. 10. Daerah Gradasi Agregat Halus Lubang Persen Berat Butir yang Lewat Ayakan Ayakan (mm) 1 2 3 4 10 100 100 100 100 4,8 90 100 90-100 90-100 95 100 2,4 60 95 75-100 85-100 95 100 1,2 30 70 55-90 75-100 90 100 0,6 15 34 35-59 60-79 80 100 0,3 5 20 8 30 12-40 15 50 0,15 0 10 0 10 0-10 0 15 13. Menetapkan nilai perbandingan antara agregat halus dan agregat kasar. 14. Menghitung nilai berat jenis agregat campuran dengan rumus: Bj. Camp = Dengan : Bj. Camp P K bj. ag. halus bj. ag. kasar 100 100 = berat jenis agregat campuran bj. ag. halus = berat jenis agregat halus bj. ag. Kasar = berat jenis agregat kasar P K = persentase agregat halus terhadap agregat campuran = persentase agregat kasar terhadap agregat campuran 15. Menghitung kebutuhan agregat campuran dengan rumus: Wpasir + kerikil = Wbeton - kebutuhan air kebutuhan semen 16. Menghitung berat agregat halus yang diperlukan dengan rumus: Wpasir = (Persentase agregat halus) x Wpasir+ kerikil

16 17. Menghitung berat agregat kasar yang diperlukan dengan rumus: Wkerikil = Wpasir + kerikil - Wpasir 2.2. Landasan Teori 2.2.1. Sifat Fisika dan Mekanika Bambu Pengujian sifat fisika dan mekanika bambu dilakukan mengikuti standar pengujian ISO 3129-1975 dan Bamboo Current Research. 2.2.1.1. Kadar Air, Berat Jenis, dan Kerapatan (ISO 3130-1975) Pengujian kadar air bambu dilakukan dengan mengeringkan sampel benda uji dalam oven dengan suhu sekitar (103±2ºC) sampai berat sampel menjadi konstan. Wb Wa Ka 100%...(2.1) W a Keterangan: Ka = Kadar air bambu (%) Wb = Berat benda uji sebelum di oven (gram) Wa = Berat benda uji kering oven (gram) Perhitungan besarnya berat jenis kering tanur bambu dipergunakan Persamaan 2.2 dengan benda uji sama seperti benda uji kadar air. W a BJ...(2.2) G b Keterangan: BJ = Berat jenis bambu Wa = Berat benda uji kering oven (gram) Gb = Berat air yang volumenya sama dengan volume benda uji kering oven (gram) Sedangkan pengujian kerapatan bambudihitung menggunakan Persamaan 2.3. m w w...(2.3) Vw

17 Keterangan: w = Kerapatan bambu pada kadar air w (gram/cm 3 ) mw = Massa bambu pada kadar air w (gram) Vw = Volume bambu pada kadar air w (cm 3 ) 2.1.1.2. Kuat Tarik (ISO 3346-1975), Kuat Tekan (ISO 3132-1975), Kuat Geser (ISO 3347-1975), dan Kuat Lentur (ISO 3133-1975 dan ISO 3349-1975) Pengujian sifat mekanika bambu dilakukan dengan mesin Universal Testing Machine (UTM). Untuk pengujian kuat tarik sejajar serat dapat dihitung menggunakan Persamaan 2.4. P maks tr //...(2.4) A Keterangan: tr // = Kuat tarik sejajar serat (MPa) Pmaks = Gaya tarik maksimal bambu (N) A = tebal x lebar = luas bidang yang tertarik (mm 2 ) Pengujian kuat tekan sejajar serat bambu dihitung menggunakan Persamaan 2.5. P maks tk //...(2.5) A Keterangan: tk // = Kuat tekan sejajar serat (MPa) Pmaks = Gaya tekan maksimal bambu (N) A = tebal x lebar = luas bidang yang tertekan (mm 2 ) Pengujian kuat geser sejajar serat bambu dihitung menggunakan Persamaan 2.6. P maks //...(2.6) A Keterangan: // = Kuat geser sejajar serat (MPa) Pmaks = Gaya geser maksimal bambu (N) A = tebal x panjang = luas bidang yang tergeser(mm 2 ) Selanjutnya untuk menghitung kuat lentur (MOR) dan modulus elastisitas (MOE) bambu dihitung dengan menggunakan Persamaan 2.7 dan 2.8.

18 3Pmaks L MOR...(2.7) 2 2bt 3 Pmaks L MOE...(2.8) 3 4bt Keterangan: MOR = Modulus lentur bambu (MPa) MOE = Modulus elastisitas bambu (MPa) Pmaks = Beban maksimum (N) L = Panjang (mm) b = Lebar bambu (mm) t = Tebal bambu (mm) = Lendutan proporsional dari benda uji (mm) 2.2.2. Material penyusun beton Pemilihan bahan-bahan pembentuk beton yang mempunyai kualitas baik, perhitungan proporsi campuran yang tepat, cara pengerjaan dan perawatan yang baik dan penambahan bahan tambah yang tepat dengan kadar yang optimum yang diperlukan akan menentukan kualitas beton yang dihasilkan. Bahan pembentuk beton diantaranya adalah semen, agregat, air, dan bahan tambahan. 2.2.2.1. Semen Portland Pozolan Suatu semen hidrolis yang terdiri dari campuran yang homogen antara semen portland dengan pozolan halus, yang di produksi dengan menggiling klinker semen portland dan pozolan bersama-sama, atau mencampur secara merata bubuk portland dengan bubuk pozolan, atau gabungan antara menggiling dan mencampur, dimana kadar pozolan 6 % sampai dengan 40 % massa semen portland pozolan. Pozolan adalah bahan yang mengandung silika atau senyawanya dan alumina, yang tidak mempunyai sifat mengikat seperti semen, akan tetapi dalam bentuknya yang halus dan dengan adanya air, senyawa tersebut akan bereaksi secara kimia dengan kalsium hidroksida pada suhu kamar membentuk senyawa yang mempunyai sifat seperti semen Berdasarkan tujuan penggunaannya, semen portland pozolan di Indonesia dibagi menjadi lima jenis semen seperti tertera pada Tabel 2.1.

19 Tabel 2.11. Jenis dan Penggunaan Semen Portland Pozolan Jenis Semen Penggunaan Portland Pozolan Semen portland pozolan yang dapat dipergunakan untuk IP-U semua tujuan pembuatan adukan beton. Semen portland pozolan yang dapat dipergunakan untuk IP-K semua tujuan pembuatan adukan beton, semen untuk tahan sulfat sedang dan panas hidrasi sedang. Semen portland pozolan yang dapat dipergunakan untuk P-U pembuatan beton dimana tidak disyaratkan kekuatan awal yang tinggi. Semen porland pozolan yang dapat dipergunakan untuk pembuatan beton dimana tidak disyaratkan kekuatan awal P-K yang tinggi, serta untuk tahan sulfat sedang dan panas hidrasi rendah. (Sumber: SNI 15-0302-2004) 2.2.2.2. Agregat Material berbutir, misalnya pasir, kerikil, batupecah, dan kerak tungku pijar, yang dipakai bersama-samadengan suatu media pengikat untuk membentuk suatu beton atau adukan semen hidrolik (SNI 03-2847-2002). Persyaratan gradasi agregat halus dapat dilihat dalam Tabel 2.12 berikut ini: Tabel 2.12. Persyaratan Gradasi Agregat Halus Ukuran Saringan PersentaseLolos Saringan(%) 9,50 mm (3/8 in) 100 4,75 mm (No.4) 95-100 2,36 mm (No.8) 80-100 1,18 mm (No.16) 50-85 600 mm (No.30) 25-60 300 mm (No.50) 5-30 150 mm (No.100) 0-10 (Sumber: ASTM C33-03) Persyaratan gradasi untuk agregat kasar dapat dilihat pada Tabel 2.13 berikut ini:

20 Tabel 2.13. Persyaratan Gradasi Untuk Agregat Kasar Ukuran Saringan Persentase Lolos Saringan(%) 2 in (50 mm) 100 1,5 in (38 mm) 95-100 3/4 in (19mm) 35-70 3/8 in (9,5mm) 10-30 No.4 (4,75 mm) 0-5 (Sumber: ASTM C33-03) 2.2.2.3. Air Dapat dilakukan uji Laboratorium sehingga memenuhi persyaratan sebagai berikut: 1. Tidak mengandung lumpur (benda melayang lainnya) lebih dari 2 gram/liter. 2. Tidak mengandung garam-garam yang dapat merusak beton (asam, zat organik, dan sebagainya) lebih dari 15 gram/liter. 3. Tidak mengandung klorida (Cl) lebih dari 0,5 gram/liter. 4. Tidak mengandung senyawa sulfat lebih dari 1 gram/liter 2.2.3. Balok 2.2.3.1. Kuat Lentur Balok Kuat lentur beton adalah kemampuan balok beton yang diletakan pada dua perletakan untuk menahan gaya dengan arah tegak lurus sumbu benda uji, yang diberikan padanya, sampai benda uji patah dan dinyatakan dalam Mega Pascal (MPa) gaya tiap satuan luas (SNI 03-4431-1997). Bagian Dalam 1/2 P Bagian Dalam P Bagian Dalam 1/2 P Tampak Samping Bagian Dalam 1/3 Bagian Dalam 1/3 Bagian Dalam 1/3 Bagian Dalam b Bagian Dalam h Bagian Dalam L Gambar 2.4. Perletakan dan Pembebanan Balok Uji (Sumber: SNI 03-4431-1997)

21 Ket : L = Jarak (Bentang) Antara Dua Garis Perletakan b = Lebar Tampak Samping Arah Horizontal h = Tinggi Tampak Samping Arah Horizontal P = Beban Tertinggi Yang Ditunjukkan Oleh Mesin Uji Rumus-rumus perhitungan yang digunakan dalam metode pengujian kuat lentur beton dengan 2 titik pembebanan adalah sebagai berikut: 1. Untuk pengujian dimana patahnya benda uji ada di daerah pusat pada 1/3 jarak titik perletakan pada bagian tarik dari beton seperti Gambar 2.4 (a), maka kuat lentur beton dihitung menurut persamaan: P. L 2...(2.9) b. h 2. Untuk Pengujian dimana patahnya benda uji ada di luar pusat (diluar daerah 1/3 jarak titik perletakan) di bagian tarik beton, dan jarak antara titik pusat dan titik patah kurang dari 5% dari panjang titik perletakan seperti Gambar 2.4 (b), maka kuat lentur beton dihitung menurut persamaan: 3. P. a 2...(2.10) b. h Dengan: = Kuat lentur benda uji (MPa) P = Beban tertinggi yang dilanjutkan oleh mesin uji ( pembacaan dalam ton sampai 3 angka dibelakang koma) L = Jarak (bentang) antara dua garis perletakan (mm) b = Lebar tampang lintang patah arah horizontal (mm) h = Lebar tampang lintang patah arah vertikal (mm) a = Jarak rat-rata antara tampang lintang patah dan tumpuan luar yang terdekat, diukur pada 4 tempat pada sisi titik dari bentang (m). 3. Untuk benda uji yang patahnya di luar 1/3 lebar pusat pada bagian tarik beton dan jarak antara titik pembebanan dan titik patah lebih dari 5% bentang, hasil pengujian tidak dipergunakan.

22 Patah Pada Pusat 1/3 Bentang (L) Rumus (1) Patah Diluar 1/3 Bentang (L) Dan Garis Patak < 5% Dari bentang Rumus (2) Gambar 2.5. Daerah Patah Pada Balok Uji (Sumber: SNI 03-4431-1997) Pada penelitian yang dilakukan Pathurahman (2003), menunjukkan bahwa keruntuhan yang terjadi pada benda uji balok beton ukuran 150x200x2000 mm diawali dengan retaknya beton. Retak yang selalu terjadi pada awal proses keruntuhan adalah retak lentur ditandai dengan pola retak yang tegak lurus. Secara umum retak tersebut terjadi pada saat beban mencapai di atas 90% dari beban teoritis atau sekitar 78% dari beban runtuh. Retak awal biasanya terjadi pada daerah pembebanan di sekitar tumpuan rol, kemudian retak terjadi di daerah tengah bentang selanjutnya di daerah sekitar sendi, atau sebaliknya. Rumus-rumus perhitungan yang digunakan dalam metode pengujian kuat lentur beton berdasarkan ASTM C78/C78M-10e1adalah sebagai berikut: 1. Jika dalam pembebanan terjadi retak di dalam sepertiga tengah bentang, perhitungan modulus pecah sebagai berikut R =...(2.11)

23 keterangan : R = modulus pecah (psi, MPa) P = beban maksimum (lbf, N) L = panjang bentang (in, mm) b = lebar rerata benda uji (in, mm) d = tinggi rerata benda uji (in, mm) 2. Jika dalam pembebanan terjadi retak di luar sepertiga tengah dari panjang bentang dengan tidak lebih dari 5% panjang bentang, perhitungan modulus pecah sebagai berikut R =...(2.12) keterangan a = jarak rerata antara garis pecah dan tumpuan terdekat berdasarkan beban dalam balok catatan : berat balok tidak termasuk dalam perhitungan 3. Jika retak terjadi pada sepertiga tengah dari panjang bentang lebih dari 5% dari panjang bentang maka pengujian gagal

24 2.2.3.2 Analisis Balok P/2 P/2 q A B C D 1/3 L 1/3 L 1/3 L 0 ( + ) ( - ) 0 ( + ) Mmax Gambar 2.6. SFD dan BMD Reaksi Tumpuan: MB = 0 = (RAvxL) ( 1 2 Px 2 3 L) (1 2 Px 1 3 L) (qxlx 1 2 L) RAv = = RAvxL 2 6 PL 1 6 PL 1 2 ql2 3 6 PL + 1 2 ql2 L RAv = 1 2 P + 1 2 ql RAv = RBv

25 Momen: Mmax = (RAvx 1 2 L) (1 2 Px 5 30 L) (qx 1 2 Lx 1 4 L) =[( 1 2 P + 1 2 ql) 1 2 L] ( 5 60 PL) (1 8 ql2 ) = 1 4 PL + 1 4 ql2 5 60 PL 1 8 ql2 = 1 6 PL + 1 8 ql2 Gambar 2.7. Distribusi Tegangan dan Regangan Pada Penampang Beton Kondisi regangan seimbang (balance) terjadi jika: εc = 0.003 dan εs = εy = fy Es Pada kondisi balans didapat: cb = ab cc T 0,003 0,003 + fy Es = β * Cb*d = 0.85 fc * b * ab = Asb * fy Karena H = 0, maka T = Cc Asb * fy = 0.85 * fc * b * ab

26 Asb = Mn Mu 0,85 fc b ab fy = T (d - a/2) = 0.80 *Mn Dari hasil analisa balok dapat diketahui besarnya beban P yang dapat bekerja pada balok, dari hasil percobaan juga akan diperoleh nilai P yang berguna untuk menghitung besarnya momen ultimit yang dapat dilayani, kedua nilai momen hasil dari analisis dan hasil pengujian akan dibandingkan. 2.2.4. Uji Anova Anova merupakan singkatan dari Analysis of Varian yaitu salah satu uji komparatif yang digunakan untuk menguji perbedaan mean (rata-rata) data lebih dari dua kelompok. Ada dua jenis Anova, yaitu analisis varian satu faktor (one wayanova) dan analisis varian dua faktor (two ways anova). Menurut Trihendradi, C. (2005)[14], Analisis varian satu variable digunakan untuk menentukan apakah rata-rata dua atau lebih kelompok berbeda secara nyata. Analisis ini memiliki asumsi bahwa kelompok varians memiliki asumsi yang sama. Pada penelitian ini digunakan analisis varian satu faktor. Prinsip uji Anova adalah melakukan analisis variabilitas data menjadi dua sumber variasi yaitu variasi di dalam kelompok (within) dan variasi antar kelompok (between). Bila variasi within dan between sama (nilai perbandingan kedua varian mendekati angka satu), maka berarti tidak ada perbedaan efek dari intervensi yang dilakukan, dengan kata lain nilai mean yang dibandingkan tidak ada perbedaan. Sebaliknya bila variasi antar kelompok lebih besar dari variasi didalam kelompok, artinya intervensi tersebut memberikan efek yang berbeda, dengan kata lain nilai mean yang dibandingkan menunjukkan adanya perbedaan.