IV. HASIL DAN PEMBAHASAN. Sebelum dilakukan pengujian pada alumunium seri 6063 (Al-Mg-Si), terlebih

dokumen-dokumen yang mirip
III. METODE PENELITIAN. Penelitian sekaligus pengambilan data dilakukan di Laboratorium Produksi dan

I. PENDAHULUAN. Perkembangan teknologi yang pesat saat ini membuat persaingan di dunia industri

Kecepatan potong Kecepatan makan Kedalaman potong. Kekasaran Permukaan

III. METODOLOGI PENELITIAN. a. Persiapan dan perlakuan serat ijuk di Laboratorium Material Teknik Jurusan

III.METODE PENELITIAN. Penelitian ini akan dilaksanakan di empat tempat, yaitu sebagai berikut : Laboratorium Material Universitas Lampung.

Bab IV Data Pengujian

III.METODOLOGI PENELITIAN. Tempat penelitian ini dilakukan adalah: 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHASAN

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Proses Produksi Jurusan Teknik

BAB IV HASIL DAN ANALISA

BAB III METODOLOGI PENELITIAN

METODOLOGI PENELITIAN. Penelitian ini dilakukan di beberapa tempat sebagai berikut:

III.METODOLOGI PENELITIAN. 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di

BAB VI Mesin Shaping I

BAB III METODELOGI PENELITIAN. Identifikasi Masalah, Kajian Pustaka.

BAB III METODE PENELITIAN. 3 bulan. Tempat pelaksanaan penelitian ini dilakukan di Program Teknik Mesin,

BAB III METODOLOGI PENELITIAN. Material Jurusan Teknik Mesin Universitas Lampung. Adapun bahan yang digunakan pada penelitian ini adalah :

III. METODE PENELITIAN. Tempat pelaksanaan penelitian sebagai berikut: 2. Pengujian kekuatan tarik di Institute Teknologi Bandung (ITB), Jawa Barat.

BAB III METODE PENELITIAN

Mesin Milling CNC 8.1. Proses Pemotongan pada Mesin Milling

SKRIPSI / TUGAS AKHIR

III. METODOLOGI PENELITIAN. Penelitian sekaligus pengambilan data dilakukan di Laboratorium Produksi dan

III. METODOLOGI PENELITIAN. Penelitian ini akan dilaksanakan di dua tempat, yaitu sebagai berikut :

PENGARUH TEBAL PEMAKANAN DAN KECEPATAN POTONG PADA PEMBUBUTAN KERING MENGGUNAKAN PAHAT KARBIDA TERHADAP KEKASARAN PERMUKAAN MATERIAL ST-60

BAB IV PENGUJIAN ALAT GERINDA SILINDRIS DAN ANALISA

PENGARUH CAIRAN PENDINGIN BERTEKANAN TINGGI TERHADAP GAYA POTONG, KEAUSAN TEPI PAHAT, DAN KEKASARAN PERMUKAAN PADA PROSES BUBUT MATERIAL AISI 4340

PENGARUH VARIASI PUTARAN SPINDEL DAN KEDALAMAN PEMOTONGAN TERHADAP KEKASARAN PERMUKAAN BAJA ST 60 PADA PROSES BUBUT KONVENSIONAL

BAB IV HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

PRESENTASI TUGAS AKHIR PENGARUH SIFAT MEKANIK TERHADAP PENAMBAHAN BUBBLE GLASS, CHOPPED STRAND MAT DAN WOVEN ROVING PADA KOMPOSIT BENTUK POROS

PENGARUH BEBERAPA PARAMETER PROSES TERHADAP KUALITAS PERMUKAAN HASIL PEMESINAN GERINDA RATA PADA BAJA AISI 1070 DAN HSS

METODOLOGI PENELITIAN. Penelitian ini dilakukan di beberapa tempat sebagai berikut: 1. Proses pembuatan kampuh las, proses pengelasan dan pembuatan

BAB IV HASIL DAN PEMBAHASAN

METODOLOGI PENELITIAN. Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik

BAB I PENDAHULUAN. 1.1 Latar Belakang Mesin bubut (Turning machine) adalah suatu jenis mesin perkakas

PROSES FREIS ( (MILLING) Paryanto, M.Pd.

RANCANG BANGUN SISTEM PNEUMATIK PADA MESIN PEMROSES BUAH KELAPA TERPADU

BAB IV HASIL DAN PEMBAHASAN

Bab II Teori Dasar Gambar 2.1 Jenis konstruksi dasar mesin freis yang biasa terdapat di industri manufaktur.

: Teknologi Industri Pembimbing : 1.Dr. Rr Sri Poernomo Sari, ST., MT. : 2.Irwansyah, ST., MT

BAB IV PEMBUATAN DAN PENGUJIAN

BAB III METODOLOGI PENELITIAN. Studi Literatur. Persiapan Alat dan Bahan bahan dasar piston bekas. Proses pengecoran dengan penambahan Ti-B 0,05%

III. METODOLOGI PENELITIAN. 1. Pemilihan panjang serat rami di Laboratorium Material Teknik Jurusan

BAB III PENGUJIAN SIFAT MEKANIK MATERIAL

Aplikasi Cairan Pelumas Pada Pengeboran Pelat ASTM A1011 Menggunakan Mata Bor HSS

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. masing-masing benda uji, pada pengelasan las listrik dengan variasi arus 80, 90,

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan dibeberapa tempat, sebagai berikut:

BAB IV ANALISIS TEKNIK MESIN

BAB III PERENCANAAN DAN GAMBAR

STUDI PENGARUH SUDUT POTONG PAHAT HSS PADA PROSES BUBUT DENGAN TIPE PEMOTONGAN ORTHOGONAL TERHADAP KEKASARAN PERMUKAAN

BAB III METODOLOGI. Pembongkaran mesin dilakukan untuk melakukan pengukuran dan. Selain itu juga kita dapat menentukan komponen komponen mana yang

GESER LANGSUNG (ASTM D

Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester - Hollow Glass Microspheres

ANALISISTEKNISDAN EKONOMIS PEMBUATAN BAMBU LAMINASI IKAN TRADISIONAL

BAB III METODE PENELITIAN

BAB III METODOLOGI PENELITIAN. Persiapan Spesimen

ANALISA PENGARUH KETEBALAN INTI (CORE) TERHADAP KEKUATAN BENDING KOMPOSIT SANDWICH

Jumlah serasah di lapangan

III. METODOLOGI PENELITIAN. Universitas Lampung. Sedangkan estimasi waktu penelitian dikisarkan

BAB I PENDAHULUAN. Pengelasan adalah suatu proses penggabungan antara dua. logam atau lebih yang menggunakan energi panas.

BAB III PERANCANGAN SISTEM ATAP LOUVRE OTOMATIS

Disusun Oleh : BAIYIN SHOLIKHI DIPLOMA III TEKNIK MESIN FAKULTAS TEKNIK INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA JUNI 2012

MATERI KULIAH PROSES PEMESINAN KERJA BUBUT. Dwi Rahdiyanta FT-UNY

PROSES SEKRAP ( (SHAPING) Paryanto, M.Pd. Jur. PT Mesin FT UNY

BAB III METODE PENELITIAN. Mulai

BAB 3 PROSES FRAIS (MILLING)

BAB I PENDAHULUAN Latar Belakang Masalah

ISSN hal

METODOLOGI PENELITIAN. Penelitian dilakukan di Laboratorium Material Teknik Mesin Jurusan Teknik

28 Gambar 4.1 Perancangan Produk 4.3. Proses Pemilihan Pahat dan Perhitungan Langkah selanjutnya adalah memilih jenis pahat yang akan digunakan. Karen

BUKU 3 PROSES FRAIS (MILLING) Dr. Dwi Rahdiyanta

BAB III PERENCANAAN DAN GAMBAR

ANALISIS UMUR PAHAT DAN BIAYA PRODUKSI PADA PROSES DRILLING TERHADAP MATERIAL S 40 C

3. Mesin Bor. Gambar 3.1 Mesin bor

Presentation Title PENGARUH KOMPOSISI PHENOLIC EPOXY TERHADAP KARAKTERISTIK COATING PADA APLIKASI PIPA OVERHEAD DEBUTANIZER TUGAS AKHIR MM091381

PENGARUH KETEBALAN DAN PENAMBAHAN

III. METODOLOGI PENELITIAN. Universitas Lampung. Sedangkan waktu penelitian dilaksanakan pada rentang

BAB IV HASIL DAN ANALISA DATA. Dari pengujian yang telah dilakukan, diperoleh kondisi pemotongan yang

BAB IV HASIL DAN PEMBAHASAN

PENGARUH PERLAKUAN PERMUKAAN DAN TEBAL ADHESIF TERHADAP KEKUATAN SAMBUNGAN CAMPURAN SILYL MODIFIED POLYMER - EPOKSI MATERIAL ALUMINIUM TESIS

PROSES PERMESINAN. (Part 2) Learning Outcomes. Outline Materi. Prosman Pengebor horisontal JENIS MESIN GURDI

BAB III METODE PENELITIAN. Alat yang digunakan pada penelitian ini antara lain :

UJI KUAT GESER LANGSUNG TANAH

BAB li TEORI DASAR. 2.1 Konsep Dasar Perancangan

BAB IV HASIL DAN PEMBAHASAN

Cara uji CBR (California Bearing Ratio) lapangan

III. METODOLOGI PENELITIAN. waktu pada bulan Oktober hingga bulan Maret Peralatan dan bahan yang digunakan dalam penelitian ini :

PENGARUH FEED RATE TERHADAP STRUKTUR MIKRO, KEKERASAN DAN KEKUATAN BENDING PADA PENGELASAN FRICTION STIR WELDING ALUMINIUM 5052

BAB III METODOLOGI PENELITIAN

BAB 2 TINJAUAN PUSTAKA

BAB III METODOLOGI PELAKSANAAN. penggerak belakang gokart adalah bengkel Teknik Mesin program Vokasi

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN

Studi Pengaruh Sudut Potong Pahat Hss Pada Proses Bubut Dengan Tipe Pemotongan Orthogonal Terhadap Kekasaran Permukaan

STUDI PENGARUH SUDUT POTONG (Kr) PAHAT KARBIDA PADA PROSES BUBUT DENGAN TIPE PEMOTONGAN OBLIQUE TERHADAP KEKASARAN PERMUKAAN

STUDI EKSPERIMENTAL TERJADINYA KEAUSAN PAHAT PADA PROSES PEMOTONGAN END MILLING PADA LINGKUNGAN CAIRAN PENDINGIN

BAB III METODOLOGI PENELITIAN

Gambar 2.1 Baja tulangan beton polos (Lit 2 diunduh 21 Maret 2014)

Studi Teknis Ekonomis Pengaruh Variasi Sambungan Terhadap Kekuatan Konstruksi Lunas, Gading dan Balok Geladak Berbahan Bambu Laminasi

Transkripsi:

IV. HASIL DAN PEMBAHASAN A. Proses Awal Benda Kerja Sebelum dilakukan pengujian pada alumunium seri 6063 (Al-Mg-Si), terlebih dahulu dilakukan pemotongan dan pengukuran awal benda kerja sehingga benda kerja menjadi dimensi yang diinginkan sesuai dengan standar ASTM D 905-9803 dimana berdimensi panjang 50,8 mm, lebar 44,4 mm dan tebal 19 mm. Untuk tebal spesimen awal di lebihkan menjadi 20 mm karena pada pengerjaan proses freis akan menghilangkan 1 mm sehingga ukuran yang dipakai pada saat pengujian sesuai dengan standar yang tersebut diatas, hal ini dimaksudkan agar benda kerja dapat tercekam dalam ragum mesin freis dan alat uji geser (shearing tools) yang tersedia serta diupayakan agar permukaan sisi benda kerja bebas dari kotoran sehingga data hasil pengujian dapat diperoleh dengan maksimal. Kondisi awal pemotongan benda kerja dapat dilihat pada gambar 4.1 berikut ini. Gambar 4.1. Kondisi awal benda kerja.

47 Setelah didapatkan benda kerja menjadi dimensi yang diinginkan sesuai dengan standar ASTM D 905-9803, maka dilakukan proses freis untuk mendapatkan kekasaran permukaan dengan range kekasaran 1-2 μm dan 2-3 μm. Besar putaran poros utama yang digunakan yaitu sebesar 500 rpm untuk memperoleh kekasaran permukaan 1-2 μm dan 355 rpm untuk memperoleh kekasaran permukaan 2-3 μm. Berdasarkan persamaan 1 dan 3 maka dapat diketahui kecepatan potong dan lama waktu pemotongan sebagai berikut : Kecepatan potong, v Kecepatan potong untuk proses freis dapat didefinisikan sebagai kerja rata-rata pada sebuah titik lingkaran pada pahat potong dalam satu menit, dimana: v = πdn / 1000 (mm/min) sehimgga: 3,14x50mmx500rpm untuk n = 500 rpm, maka v 1 = 1000 = 78.5 mm/min 3,14x50mmx355rpm untuk n = 355 rpm, maka v 1 = 1000 = 55.735 mm/min Kedalaman potong, a Kedalaman potong yang digunakan adalah konstan, a = 1 mm. Waktu pemotongan, t c Waktu pemotongan merupakan panjang pemotongan dibagi dengan kecepatan makan, dimana waktu pemotongan dapat dilihat berikut ini: t c = l t / v f (min)

48 dimana: l t = l v + l w + l n (mm) l v = l n = 20 mm l t = 20 + 50,8 + 20 = 90,08 mm Sehingga, besar panjang pemotongan untuk masing-masing jarak potong didapat 90,08 mm. Dengan hasil panjang pemotongan diatas, maka kita dapat menentukan waktu pemotongan untuk masing masing spesimen sebagai berikut: t c = l t / v f (min), didapat t c = 90,08 mm 20 mm/min = 4,504 min Dengan demikian, setelah memperhatikan data diatas menunjukkan bahwa nilai putaran poros utama pada mesin freis berpengaruh terhadap kecepatan potong mata pahat mulai dari putaran poros utama 500 rpm yang menghasilkan kecepatan potong sebesar 78.5 mm/min dan dengan putaran poros utama 355 rpm yang menghasilkan kecepatan potong sebesar 55.735 mm/min. Jadi dapat disimpulkan bahwa semakin tinggi angka kecepatan poros utama maka semakin besar nilai kecepatan potong mata pahat atau sebaliknya semakin rendah kecepatan putaran poros utama maka semakin kecil nilai kecepatan potong mata pahatnya. Untuk proses freis dalamnya pemotongan seluruh spesimen disamakan sebesar 1 mm, dan waktu pemotongan pada saat proses freis seluruh spesimen disamakan selama 4,504 min.

49 B. Data Kekasaran Permukaan Benda Kerja Setelah dilakukan proses freis pada alumunium, dilanjutkan dengan uji kekasaran permukaan material, dimana pada masing-masing sampel untuk seluruh variasi kecepatan potong diambil kekasaran permukaan sebanyak 5 titik pada alumunium yang selanjutnya diambil rata-ratanya, sehingga nilai tersebut merupakan hasil dari kekasaran permukaan material tersebut. Dimana nilai kekasaran ini diambil secara vertikal 3 titik dan dan horizontal 2 titik pada seluruh masing-masing sampel. Data kekasaran secara lengkap dapat dilihat pada lampiran sedangkan untuk hasil data rata-rata pada masing-masing sampel dapat dilihat pada tabel 4.14 dan 4.15 dibawah ini dan gambar grafik 4.28 yang menjelaskan pengaruh kecepatan potong pada kekasaran permukaan. Tabel 4.1. Data kekasaran permukaan pada alumunium seri 6063 (Al-Mg-Si) pada putaran poros utama (n) 500 rpm Putaran poros utama (n) 500 rpm, a = 1 mm spesimen Ra (μm) spesimen Ra (μm) spesimen Ra (μm) 1 1,218 9 1,456 17 1,320 2 1,312 10 1,370 18 1,306 3 1,378 11 1,320 19 1,264 4 1,152 12 1,202 20 1,478 5 1,308 13 1,354 21 1,212 6 1,206 14 1,466 22 1,244 7 1,078 15 1,492 23 1,568 8 1,172 16 1,250 24 1,376

50 Tabel 4.2. Data kekasaran permukaan pada alumunium seri 6063 (Al-Mg-Si) pada putaran poros utama (n) 355 rpm Putaran Poros Utama (n) 355 rpm, a = 1 mm Spesimen Ra (μm) spesimen Ra (μm) spesimen Ra (μm) 1 2,170 9 2,128 17 2,210 2 2,368 10 2,32 18 2,266 3 2,408 11 2,328 19 2,508 4 2,310 12 2,089 20 2,302 5 2,294 13 2,236 21 2,476 6 2,464 14 2,374 22 2,264 7 2,406 15 2,318 23 2,356 8 2,308 16 2,266 24 2,470 Dari data data tabel 4.1 dan 4.2 di atas dapat dilihat pengaruh putaran poros utama terhadap kekasaran permukaan, dimana semakin besar putaran poros utama maka kekasaran permukaan yang dihasilkan akan semakin halus. Hal ini disebabkan oleh semakin besarnya kecepatan potong yang terjadi seiring dengan kenaikan putaran poros utamanya. C. Data Proses Pengeleman Pada Proses Penyambungan Alumunium (Al- Mg-Si) Seri 6063 Setelah dilakukan proses pemesinan freis dan sebelum dilakukan pengujian shear test spesimen untuk mengetahui pengaruh beban penekanan terhadap kekuatan sambungan maka dilakukan proses pengeleman. Dimana, proses pengeleman ini dilaksanakan dengan acuan yang terdapat pada standar ASTM D 905-9803 yaitu Sambungan tumpang (single lap joint) Alumunium (Al-Mg-Si) seri 6063 bertingkat 2 spesimen menjadi satu. Selanjutnya pada saat proses pengeleman

51 untuk mendapatkan ketebalan lem yang sama pada masing-masing sampel spesimen dilakukan beban penekanan dengan menggunakan barbel, dengan pengukuran beban penekanan yaitu beban sebesar 6 kg,9 kg,12 kg dan 15 kg. sedangkan lamanya waktu penekanan yang dilakukan selama 16 jam. Gambar 4.2 berikut ini menjelaskan tata cara pengeleman Sambungan tumpang (single lap joint) alumunium (Al-Mg-Si) seri 6063. a. Beban penekanan 6 kg b. Beban penekanan 9 kg c. Beban penekanan 12 kg d. Beban penekanan 15 kg Gambar 4.2. Pembebanan pada sambungan tumpang.

52 D. Data Proses Uji Geser 1. Gaya yang dibutuhkan untuk melepaskan sambungan dua jenis material alumunium (Al-Mg-Si) Seri 6063. Dari pengujian yang telah dilakukan dengan menggunakan Shearing Tools mesin uji Universal yang dilakukan di Institut Teknologi Bandung Jawa Barat, maka kita dapat memperoleh data gaya yang dibutuhkan untuk melepaskan sambungan. Dimana dua spesimen tersebut setelah dilem dan disambung dengan menggunakan lem adhesive yang bermerk avian dengan ketebalan lem 0,05 mm untuk keseluruhan spesimen. Untuk mengetahui pengaruh kekasaran permukaan alumunium seri 6063 (Al-Mg-Si) hasil pemesinan freis yang telah disambung melalui proses pengeleman terhadap kekuatan sambungannya. Pada pengujian Shear Test ini dipilih kisaran pembebanan (F maks.) sebesar 40 kn dengan menambahkan disket beban yang belabelkan 40 kn pada roda beban. Setelah mendapatkan beban maksimal, nolkan kembali jarum indikator hitam pada skala dengan menggunakan pemutar yang berada pada sisi kanan mesin pengolah data. Setelah itu pengujian dilakukan dengan menggunakan kecepatan pengujian (kecepatan crosshead) dengan menggerakkan crosshair. Kecepatan crosshead ditentukan menggunakan pemutar katup dengan skala yang memiliki integer 0,1 sampai 1. Agar mesin dapat bergerak setidaknya dilakukan sebanyak 1,6 kali putaran, yaitu 1 putaran penuh ditambah 0,6 integer lagi. Integer tersebut menyatakan banyaknya putaran yang dilakukan. Dalam pengujian ini menggunakan integer sebesar 1,7. Untuk mendapatkan nilai sebenarnya kecepatan crosshead dapat dihitung melalui gambar grafik dibawah ini.

53 Gambar 4.3. Banyaknya putaran katup terhadap kecepatan crosshead Dari gambar grafik diatas didapatkan persamaan untuk menentukan nilai dari kecepatan crosshead yaitu: y = 71, 933x 113, 37 dengan y = besarnya kecepatan crosshead (mm/menit) x = banyaknya putaran katup dengan persamaan diatas maka kecepatan crosshead yang didapat adalah: y = 71, 933x 113, 37 y = 71, 933 (0,7) 113, 37 = 8, 9161 mm/menit. Setelah didapatkan kecepatan crosshead, spesimen yang akan diuji ditempatkan pada posisinya lalu gaya diberikan. Data gaya yang dibutuhkan untuk melepaskan sambungan dapat dilihat pada dial indikator, dimana pada saat awal pengujian jarum warna hitam dan merah berada diposisi 0. Pada saat buckling (spesimen yang telah disambung lepas) jarum warna hitam akan kembali ketitik nol

54 sedangkan jarum warna merah tetap diam. Jarum warna merah akan menyatakan beban yang diaplikasikan pada saat buckling. Berikut ini gambar 4.4 menunjukkan spesimen benda uji yang telah diberikan gaya tabel 4.3 dan 4.4 menjelaskan data gaya yang dibutuhkan untuk melepaskan sambungan. Gambar 4.4. Spesimen benda uji yang telah diberikan daya. Tabel 4.3. Gaya yang dibutuhkan untuk melepaskan sambungan pada range kekasaran 1-2 μm dan 2 3 μm Gaya yang di Butuhk -an (N) Range kekasaran 1-2 μm Beban (kg) Range kekasaran 2-3 μm Beban (kg) 6 9 12 15 6 9 12 15 1 11.200 11.800 14.700 16.700 12.500 15.400 16.300 20.200 2 10.400 12.300 12.800 15.000 14.600 14.800 18.200 18.800 3 10.200 12.200 13.000 16.800 12.000 16.000 18.000 20.200 Rata-rata 10.600 12.100 13.000 16.166 13.033 15.400 17.500 19.733

55 Pada tabel 4.3 diatas merupakan data hasil pengujian langsung tanpa memperhatikan faktor standar error atau faktor koreksi pada shearing tools mesin uji Universal. Untuk mendapatkan nilai yang sebenarnya dengan acuan hasil kalibrasi alat yang dilakukan 1 tahun sekali pada laboratorium kalibrasi ITB untuk perhitungan mencari gaya yang sesungguhnya dapat dihitung dengan faktor koreksi dibawah ini. Nilai Koreksi Faktor koreksi = xf (N) AngkaPenunjuk Nilai sebenarnya = Faktor koreksi + F (N) sehingga : Range Kekasaran Permukaan 1-2 μm Faktor koreksi: F1 F2 246 10.000 246 10.000 x11.200 275, 5 N x10.400 255, 8 N F3 246 10.000 x10.200 250, 9 N Nilai sebenarnya: F1 = 275,5 N + 11.200 N = 11.475,5 N F2 = 255,8 N + 10.400 N = 10.655,5 N F3 = 250,9 N + 10.200 N = 10.450,9 N Selanjutnya perhitungan nilai-nilai gaya sebenarnya untuk tiap-tiap beban penekanan pada range kekasaran 1-2 μm dn 2-3 μm dapat dilihat pada lampiran.

56 Nilai gaya sebenarnya yang dibutuhkan untuk uji geser sehingga sambungan pada masing-masing spesimen tersebut lepas dapat dilihat pada tabel 4.4 dan gambar grafik 4.5 berikut ini. Tabel 4.4. Gaya sebenarnya yang dibutuhkan untuk melepaskan sambungan pada range kekasaran 1-2 μm dan 2-3 μm Gaya yang di Butuhk -an (N) Range kekasaran 1-2 μm Beban (kg) Range kekasaran 2-3 μm Beban (kg) 6 9 12 15 6 9 12 15 1 11.475,5 12.192,7 15.007,7 17.049,5 12.761,6 15.722,3 16.641,2 20.124,2 2 10.655,5 12.602,5 13.067,9 15,314 14.905,6 15.109,8 18.580,9 18.915,6 3 10.450,9 12.500,1 13.272,1 17.151,6 12.251,2 16.334,9 18.376,8 20.324,2 Rata-rata 10.860,9 12.431,7 13.782,5 16.505 13.306,1 15.722,3 17.886,3 19.787,8 Gambar 4.5. Gaya sebenarnya yang dibutuhkan untuk melepaskan sambungan Dari grafik diatas dapat dilihat nilai kekuatan geser pada range kekasaran 1-2 μm untuk beban penekanan 6 kg, gaya yang dihasilkan untuk melepaskan sambungan sebesar 10.860,9 N, beban 9 kg sebesar 12.431,7 N, beban 12 kg sebesar 13.782,5

57 N dan beban 15 kg sebesar 16.505 N. Gaya yang diperlukan untuk melepaskan sambungan pada tiap-tiap sampel bervariasi, sesuai dengan range kekasaran nya (1-2 μm dan 2-3 μm). Hal ini diseabkan oleh perbedaaan beban penekan yang diberikan saat proses pengeleman, dimana semakin besar beban penekan yang diberikan mengakibatkan peningkatan kekuatan rekatnya, sehingga gaya yang dibutuhkan untuk melepaskan sambungan akan semakin besar, seperti pada hasil proses pengujian diperoleh gaya sebesar 16.505 N yang merupakan gaya terbesar pada range kekasaran 1-2 μm yaitu pada beban penekan yang paling besar (15 kg). Selain itu juga beban dapat menghindari terjadinya void / gelembung-gelembung udara yang dapat mengurangi kekuatan rekat dari sambungan. Pada range kekasaran 2-3 μm dari data yang diperoleh untuk range kekasaran 2-3 μm sama halnya dengan range kekasaran 1-2 μm, dimana semakin besar beban penekan yang diberikan mengakibatkan peningkatan gaya yang dibutuhkan untuk melepaskan sambungan semakin besar. Namun, hal yang terlihat berbeda adalah pada range kekasaran 2-3 μm Hal ini disebabkan oleh kekasaran permukaan yang lebih besar, dimana semakin kasar permukaan maka semakin besar kekuatan adhesi dari lem dan kekuatan kohesi antara lem dan alumuniumnya. Selain itu juga permukaan yang kasar pada permukaan adherend menyebabkan pengerasan adhesive terperangkap dalam permukaan.

58 2. Kekuatan Geser Yang Dibutuhkan Untuk Melepaskan Sambungan Dua Jenis Material Alumunium (Al-Mg-Si) Seri 6063. Untuk mencari kekuatan geser (τ) yang terjadi pada sambungan spesimen uji tersebut dapat diketahui dengan menggunakan persamaan berikut ini: F A F W x L dengan: F = gaya tertinggi yang diberikan (N) W = lebar permukaan yang dilem (mm) L = panjang permukaan yang dilem (mm) τ = kekuatan geser (MPa) Karena permukaan spesimen yang dilem berupa bidang berbentuk persegi panjang (sesuai dengan standar ASTM D 905-9803), dengan panjang pengeleman sebesar 50,8 mm dan lebar 38,2 mm, maka nilai A didapat: A = W x L = (38,2 x 50,8 ) mm 2 = 1.949,56 mm 2 Sehingga: Kekuatan geser pada range kekasaran 1-2 μm dengan beban 6 kg F1 = 11.475,5 N 11.475,5 N 1.949,56 mm F2 = 10.655,5 N 5,88 N mm 1 2 2 10.655,5 N 1.949,56 mm 5,46 N mm 2 2 2 5,88MPa 5,46MPa

59 F3 = 10.450,9 N 10.450,9 N 1.949,56 mm 5,36 N mm 3 2 2 5,36MPa Selanjutnya perhitungan kekuatan geser untuk tiap beban dapat dilihat pada lampiran. Kekuatan geser yang dibutuhkan sehingga sambungan pada masingmasing spesimen tersebut lepas dapat dilihat pada tabel 4.5 dan gambar grafik 4.6. Tabel 4.5. Kekuatan geser yang dibutuhkan untuk melepaskan sambungan pada range kekasaran 1-2 μm dan 2-3 μm Kekuatan geser yang dibutuhk an τ (MPa) Range kekasaran 1-2 μm Beban Penekanan (kg) Range kekasaran 2-3 μm Beban penekanan (kg) 6 9 12 15 6 9 12 15 1 5,88 6,25 7,69 8,74 6,54 8,06 8,53 10,32 2 5,46 6,46 6,70 7,85 7,64 7,75 9,53 9,70 3 5,36 6,41 6,80 8,79 6,28 8,37 9,42 10,42 Rata-rata 5,56 6,37 7,06 8,46 6,82 8,21 8,21 10,14 Gambar 4.6. Grafik kekuatan geser untuk melepaskan sambungan

60 Dari grafik diatas dapat dilihat bahwa nilai kekuatan geser pada range kekasaran 1-2 μm untuk beban penekanan 6 kg diperoleh nilai kekuatan geser sebesar 5,56 MPa, beban penekan 9 kg sebesar 6,37 MPa, 12 kg sebesar 7,06 MPa dan 15 kg sebesar 8,46 MPa. Dalam hal ini terlihat bahwa dengan peningkatan beban penekanan yang diberikan pada sambungan tumpang (single lap joint), dapat mempengaruhi untuk melepaskan sambungan pada proses pengujian. Semakin besar beban penekanan yang diberikan semakin besar pula nilai kekuatan geser yang dihasilkan. Pada saat proses penyambungan dua spesimen Alumunium (Al- Mg-Si) seri 6063. Mengalami suatu reaksi kimia antara resin epoxy dan polyamide yang berfungsi sebagai hardener dan diberikan beban penekan. Pada kedua material yang telah disambung kemudian yang hasilnya ditandai dengan mengerasnya campuran tersebut dan membentuk ikatan tiga dimensi yang kokoh dan kuat, maka semakin besar energi yang dibutuhkan untuk memutuskan ikatanya. Selain itu juga, beban penekanan dapat menghindarkan pergeseran dua spesimen Alumunium (Al-Mg-Si) seri 6063 Pada saat proses sambungan tumpang (single lap joint). Pada range kekasaran 2-3 μm saat diberikan beban penekanan 6 kg diperoleh nilai kekuatan geser sebesar 6,82 MPa, beban penekanan 9 kg sebesar 8,06 MPa, 12 kg sebesar 8,21, dan beban penekanan 15 kg sebesar 10,14 MPa. Namun pada range kekaarn 2-3 μm nilai kekuatan geser yang diperoleh lebih besar, yaitu pada beban penekanan 15 kg diperoleh kekuatan geser sebesar 10,14 MPa hal ini disebabkan oleh pengaruh kekasaran permukaan yang lebih besar. Dimana semakin besar beban penekanan dan kekasaran permukaannya menyebabkan semakin banyaknya lem yang akan terperangkap dalam lubang yang akan semakin mengeras akibat

61 adanya beban penekanan yang diberikan dan dapat meningkatkan ketangguhan rekatannya. Epoxy resin berdasarkan mekanisme pembentukan film nya termasuk dalam jenis resin thermosetting, yaitu resin yang terbentuk karena adanya reaksi polymerisasi yang membentuk ikatan tiga dimensi yang tidak dapat diuraikan kembali.selain itu juga dalam proses reaksi polymerisasi terdapat unsur kimia yang terkandung yaitu kobalt dan katalis, kobalt adalah bahan kimia yang berbentuk cair digunakan untuk tambahan campuran adonan resin & katalis dan katalis merupakan Cairan pendamping setia resin, Cairan ini berfungsi untuk mempercepat proses pengerasan, Hasil reaksinya adalah sebuah campuran polymer yang mempunyai enam ikatan,yaitu O-H, C-H, C-C, C=O, NO2 dan C-O, dimana semakin panjang rantai polymer yang terbentuk maka kekuatan rekat juga akan semakin meningkat. Pada gambar grafik diatas terlihat peningkatan kekuatan geser untuk range kekasaran 1-2 μm terjadi peningkatan kekuatan geser sebesar 14 % pada beban penekanan 9 kg, 10 % pada beban penekanan 12 kg dan kemudian naik lagi sebesar 19 % pada beban penekanan 15 kg. Untuk range kekasaran 2-3 μm pada beban penekanan 9 kg terjadi peningkatan kekuatan geser sebesar 18,18 %, 1,86 % pada beban penekanan 12 kg dan 23,35 % pada beban penekanan 15 kg.