II. TINJAUAN PUSTAKA 2.1. Fluks dan Emisi CO2 Tanah

dokumen-dokumen yang mirip
II. TINJAUAN PUSTAKA 2.1. Lahan Gambut

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. sebagai sumber daya alam untuk keperluan sesuai kebutuhan hidupnya. 1 Dalam suatu

PRODUKTIVITAS PRIMER DAN SEKUNDER BAB 1. PENDAHULUAN

TINJAUAN PUSTAKA. oleh pemerintah untuk di pertahankan keberadaan nya sebagai hutan tetap.

I. PENDAHULUAN. Biomassa berperan penting dalam siklus biogeokimia terutama dalam siklus

ARUS ENERGI DALAM EKOSISTEM

Pemanfaatan Hutan Mangrove Sebagai Penyimpan Karbon

II. TINJAUAN PUSTAKA

TIGA PILAR UTAMA TUMBUHAN LINGKUNGAN TANAH

I. PENDAHULUAN II. TINJAUAN PUSTAKA

Iklim Perubahan iklim

III. BAHAN DAN METODE

BAB V HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1. Latar Belakang

II. TINJAUAN PUSTAKA. dari umbi. Ubi kayu atau ketela pohon merupakan tanaman perdu. Ubi kayu

II. TINJAUAN PUSTAKA 2.1. Emisi Gas Rumah Kaca di Indonesia

TINJAUAN PUSTAKA. didalamnya, manfaat hutan secara langsung yakni penghasil kayu mempunyai

I. PENDAHULUAN. Pengolahan tanah merupakan suatu tahapan penting dalam budidaya tanaman

BAB I PENDAHULUAN 1.1. Latar Belakang

TINJAUAN PUSTAKA. sektor pertanian (MAF, 2006). Gas rumah kaca yang dominan di atmosfer adalah

II. TINJAUAN PUSTAKA. Tanah merupakan habitat kompleks untuk organisme. Di dalam tanah hidup

BAB I PENDAHULUAN. meningkat dengan tajam, sementara itu pertambahan jaringan jalan tidak sesuai

BAB II TINJAUAN PUSTAKA

MODUL TRAINING CADANGAN KARBON DI HUTAN. (Pools of Carbon in Forest) Penyusun: Ali Suhardiman Jemmy Pigome Asih Ida Hikmatullah Wahdina Dian Rahayu J.

geografi Kelas X PEDOSFER I KTSP & K-13 A. PROSES PEMBENTUKAN TANAH

BAB I PENDAHULUAN. Gambar 1.1. Kenampakan Bentuklahan Karst

Topik C4 Lahan gambut sebagai cadangan karbon

SMP kelas 8 - BIOLOGI BAB 8. FOTOSINTESISLatihan Soal ph (derajat keasaman) apabila tidak sesuai kondisi akan mempengaruhi kerja...

TINJAUAN PUSTAKA. dalam siklus karbon global, akan tetapi hutan juga dapat menghasilkan emisi

Lampiran 3. Rubrik Penilaian Jawaban Esai Ekologi

BAB II TINJAUAN PUSTAKA

INTERAKSI ANTAR KOMPONEN EKOSISTEM

I. PENDAHULUAN Latar Belakang. dan hutan tropis yang menghilang dengan kecepatan yang dramatis. Pada tahun

II. TINJAUAN PUSTAKA. Tebu ( Saccharum officinarum L.) merupakan tanaman penting sebagai penghasil

I. PENDAHULUAN. Peningkatan aktivitas manusia di muka bumi telah mendorong terjadinya

KONSEP EKOSISTEM Living in the Environment BI2001 Pengetahuan Lingkungan SITH ITB 2013

HASIL DAN PEMBAHASAN Pengaruh Pemberian Kotoran Kambing Terhadap Sifat Tanah. Tabel 4.1. Karakteristik Tanah Awal Penelitian

BAB I PENDAHULUAN. Di permukaan bumi ini, kurang lebih terdapat 90% biomasa yang terdapat

PENDAHULUAN Latar Belakang

I. PENDAHULUAN. Indonesia pada umumnya, khususnya Provinsi Lampung. Hal ini dikarenakan

STAF LAB. ILMU TANAMAN

SIKLUS OKSIGEN. Pengertian, Tahap, dan Peranannya

IV. HASIL DAN PEMBAHASAN

II. TINJAUAN PUSTAKA Biomassa

Tim Dosen Biologi FTP Universitas Brawijaya

5/4/2015. Tim Dosen Biologi FTP Universitas Brawijaya

II. TINJAUAN PUSTAKA Pengertian Tanah Gambut

TINJAUAN PUSTAKA. menjadi lahan pertanian (Hairiah dan Rahayu 2007). dekomposisi oleh bakteri dan mikroba yang juga melepaskan CO 2 ke atmosfer.

BAB I PENDAHULUAN. 1.1 Latar Belakang. menyebabkan perubahan tata guna lahan dan penurunan kualitas lingkungan. Alih

I PENDAHULUAN 1. 1 Latar Belakang

III. HASIL DAN PEMBAHASAN

TANAH / PEDOSFER. OLEH : SOFIA ZAHRO, S.Pd

PENDUGAAN SIMPANAN KARBON DI ATAS PERMUKAAN LAHAN PADA TEGAKAN EUKALIPTUS (Eucalyptus sp) DI SEKTOR HABINSARAN PT TOBA PULP LESTARI Tbk

BAB I PENDAHULUAN. berbeda dengan lingkungan luar (Baker,1979). Di dalam hutan terdapat flora

EKOLOGI TANAMAN. Pokok Bahasan II KONSEP EKOLOGI (1)

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

TINJAUAN PUSTAKA. antara cm, membentuk rumpun dan termasuk tanaman semusim.

II. TINJAUAN PUSTAKA. A. Mineralisasi N dari Bahan Organik yang Dikomposkan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Adanya ketidakseimbangan antara jumlah kebutuhan dengan kemampuan

BAB II. TINJAUAN PUSTAKA

1 Asimilasi nitrogen dan sulfur

II. TINJAUAN PUSTAKA. iklim global ini telah menyebabkan terjadinya bencana alam di berbagai belahan

IV. HASIL DAN PEMBAHASAN. Tabel 1 Rata-rata intensitas cahaya dan persentase penutupan tajuk pada petak ukur contoh mahoni muda dan tua

4.1 PENGERTIAN DAUR BIOGEOKIMIA

BAB I PENDAHULUAN. saling berkolerasi secara timbal balik. Di dalam suatu ekosistem pesisir terjadi

I. PENDAHULUAN 1.1. Latar Belakang

II. TINJAUAN PUSTAKA. Pengolahan tanah merupakan tindakan mekanik terhadap tanah yang ditujukan

1.PENDAHULUAN 1.1. Latar Belakang

TINJAUAN PUSTAKA. Perubahan iklim adalah berubahnya kondisi rata-rata iklim dan/atau

Kelembaban dan Suhu. Kelembaban dan suhu sangat mempengaruhi kadar bahan organik

I. PENDAHULUAN. hayati yang tinggi dan termasuk ke dalam delapan negara mega biodiversitas di

I. PENDAHULUAN. di lahan sawah terus berkurang seiring perkembangan dan pembangunan di

IV. HASIL DAN PEMBAHASAN

3. ARUS ENERGI DAN DAUR MATERI DALAM EKOSISTEM

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB I PENDAHULUAN. Pupuk organik adalah pupuk yang berasal dari bahan-bahan makhluk hidup

BAB I PENDAHULUAN. dan Salomon, dalam Rahayu et al. (2006), untuk mengurangi dampak perubahan

Geografi LINGKUNGAN HIDUP DAN PEMBANGUNAN BERKELANJUTAN I. K e l a s. Kurikulum 2006/2013. A. Pengertian Lingkungan Hidup

II. TINJAUAN PUSTAKA. Jagung (Zea mays L.) merupakan tanaman berumah satu (monoecious) yaitu letak

BAB I PENDAHULUAN. utama yang dihadapi dunia saat ini. Pemanasan global berhubungan dengan proses. infra merah diserap oleh udara dan permukaan bumi.

TANAH. Tanah terdiri atas empat komponen : butir-butir mineral materi organik air udara

disinyalir disebabkan oleh aktivitas manusia dalam kegiatan penyiapan lahan untuk pertanian, perkebunan, maupun hutan tanaman dan hutan tanaman

BAB I. PENDAHULUAN. Indonesia tetapi juga di seluruh dunia. Perubahan iklim global (global climate

I. PENDAHULUAN. sekitar 500 mm per tahun (Dowswell et al., 1996 dalam Iriany et al., 2007).

SYARAT TUMBUH TANAMAN KAKAO

BAB 2 TINJAUAN PUSTAKA

5. HASIL DAN PEMBAHASAN

2. TINJAUAN PUSTAKA 2.1. Oksigen Terlarut Sumber oksigen terlarut dalam perairan

TINJAUAN PUSTAKA. menciptakan daerah perakaran yang baik, membenamkan sisa-sisa tanaman

PENDAHULUAN. rumah tangga dapat mempengaruhi kualitas air karena dapat menghasilkan. Rawa adalah sebutan untuk semua daerah yang tergenang air, yang

SMP kelas 7 - BIOLOGI BAB 6. PERAN MANUSIA DALAM PENGELOLAAN LINGKUNGANLatihan Soal 6.2

5 Kimia dalam Ekosistem. Dr. Yuni. Krisnandi

Faktor Pembatas (Limiting Factor) Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 9 April 2018

II. TINJAUAN PUSTAKA. Tanaman kopi merupakan tanaman yang dapat mudah tumbuh di Indonesia. Kopi

TINJAUAN PUSTAKA. Ubi kayu merupakan bahan pangan yang mudah rusak (perishable) dan

KONSEP ENERGI DAN PRODUKTIVITAS DALAM PENGELOLAAN SISTEM PERIKANAN

Air dalam atmosfer hanya merupakan sebagian kecil air yang ada di bumi (0.001%) dari seluruh air.

FOTOSINTESIS PADA TUMBUHAN

Transkripsi:

3 II. TINJAUAN PUSTAKA 2.1. Fluks dan Emisi CO 2 Tanah Tanah merupakan bagian dari sistem yang mengatur konsentrasi CO 2 atmosfer. Hampir 10% CO 2 dari tanah sampai ke atmosfer tiap tahunnya (Raich dan Schlesinger, 1992). Fluks CO 2 tanah atau respirasi tanah adalah jumlah respirasi akar dan dekomposisi bahan organik heterotrofik tanah (Savage dan Davidson, 2001). Menurut Drew (1990 dalam Simojoki, 2001) fluks CO 2 tanah atau respirasi tanah merupakan oksidasi biologi dari senyawa organik pada mikroorganisme, akar, organ atau bagian lain dari tumbuhan, serta organisme lain yang hidup pada tanah. tanah merupakan indikator penting pada suatu ekosistem, meliputi seluruh aktivitas yang berkenaan dengan proses metabolisme di dalam tanah, pembusukan sisa tanaman pada tanah, dan konversi bahan organik tanah menjadi CO 2. Melalui respirasi tanah ini, karbon dilepas dari tanah ke atmosfer (Rochette et al. 2000). Raich & Tufekciogul (2000) menyatakan respirasi tanah merupakan suatu indikator yang baik terhadap mutu tanah. Fluks CO 2 tanah terdiri dari respirasi autotrofik dari akar tanaman dan respirasi heterotrofik dari organisme tanah. Ini juga termasuk respirasi dari lapisan serasah di atas tanah mineral. Jumlah fluks CO 2 tanah sering juga disebut sebagai respirasi tanah, sedangkan peneliti lain mengacu respirasi tanah hanya sebagai fluks CO 2 yang berasal dari respirasi heterotrofik tanah dan menggunakannya berbeda dari respirasi autotrofik yang berasal dari akar tanaman (Kirschbaum, 2001). Tanaman memperoleh karbon dari fotosintesis. Kata "fotosintesis" di sini digunakan untuk menunjukkan karbon hasil dari fotosintesis bruto dikurangi karbon hilang pada fotorespirasi. Beberapa karbon dari proses fotosintesis dapat hilang oleh metabolisme internal tanaman. Kehilangan ini disebut respirasi autotrofik dan biasanya mencapai sekitar setengah karbon yang terkandung pada tanaman, sedangkan respirasi heterotrofik mengacu pada karbon yang hilang oleh organisme dalam ekosistem selain tanaman, atau produsen utama tersebut. heterotrofik merupakan respirasi dari hewan yang hidup di atas tanah, yang cenderung menjadi komponen minor dan tidak diwakili dalam Gambar 1

4 tetapi cukup penting oleh semua organisme (flora dan fauna) yang hidup di tanah dan lapisan serasah serta penguraian bahan organik yang telah mencapai tanah dari serasah yang gugur, pergantian akar, eksudasi akar, organisme yang mati, dan kotoran. Ini juga mencakup pelepasan karbon pada dekomposisi pohon yang telah mati dan puing-puing kayu kasar (Kirschbaum, 2001). Fotosintesis Tajuk Akar Heterotrofik Autotrofik Biomassa di Atas Tanah Biomassa Bawah Tanah Fluks CO2 Tanah Serasah Bahan Organik Tanah Gambar 1: Representasi diagram dari istilah-istilah utama yang menjelaskan fluks karbon dalam ekosistem. Beberapa metode telah dikembangkan untuk mengukur fluks CO 2 tanah. Crill (1991) menyatakan bahwa fluks CO 2 dari tanah ke atmosfer dapat diukur dengan menggunakan metode ruang tertutup (static closed chamber method). Bekku (1996) dalam penelitiannya yang membandingkan empat metode dalam pengukuran respirasi tanah menyatakan metode ruang tertutup cocok untuk pengukuran respirasi tanah. Toma dan Hatano (2007) juga menggunakan metode ruang tertutup untuk pengukuran fluks CO 2 dan N 2 O dari tanah. Emisi adalah zat, energi dan/atau komponen lain yang dihasilkan dari suatu kegiatan yang masuk dan/atau dimasukkannya ke dalam udara ambien yang mempunyai dan/atau tidak mempunyai potensi sebagai unsur pencemar. Emisi CO 2 merupakan besarnya CO 2 yang diukur atau dihitung per satuan luas dan waktu. Satuan emisi adalah massa/luas/waktu (Slamet, 2010).

5 2.2. Faktor yang Mempengaruhi Fluks dan Emisi CO 2 Tanah Fluks CO 2 tanah bervariasi menurut ekosistem, waktu/tahun, kuantitas dan kualitas karbon organik tanah (Raich dan Schlesinger, 1992). Banyak penelitian melaporkan bahwa fluks CO 2 tanah juga dipengaruhi oleh faktor lingkungan, terutama suhu dan kelembaban tanah (Buyanovsky et al., 1986; Kirschbaum, 1995; Davidson et al., 1998; Mosier, 1998; Wang et al., 2000; Kiese dan Butterbach-Bahl, 2002). Crill (1991) menyatakan fluks CO 2 tanah umumnya berkorelasi positif dengan suhu tanah. Namun, respon fluks CO 2 tanah terhadap suhu berbeda tergantung pada kisaran suhu dan jenis ekosistem (Lloyd dan Taylor, 1994). Hasil pengamatan Rochette et al. (2000) menunjukkan respirasi tanah yang lembab dua sampai tiga kali lebih besar dibandingkan tanah yang kering. Selain itu fluks CO 2 juga dipengaruhi oleh tekanan udara (Deqiang et al., 2006). Dalam pengukuran emisi CO 2 terjadi variasi temporal yang tinggi terkait dengan faktor-faktor iklim seperti suhu, kelembaban udara, curah hujan, dan distribusi curah hujan pada suatu daerah. Secara garis besar, musim di Indonesia dibedakan menjadi musim kemarau dan musim penghujan. Karena kondisi pada musim kemarau jelas berbeda dengan musim penghujan, maka emisi CO 2 sangat dipengaruhi oleh kedua musim tersebut (Handayani, 2009). Emisi CO 2 dari tanah bervariasi pada beberapa kedalaman tanah, aerasi, dan musim. Ishizuka et al. (2002) menyatakan fluks CO 2 tertinggi terukur pada kedalaman 10-25 cm dari permukaan tanah dan minimum pada saat pagi hari dan setelah matahari terbenam (Dugas, 1993). Produksi dan emisi CO 2 dari tanah bergantung pada kandungan bahan organik tanah, suhu tanah, ketersediaan oksigen, dan ketersediaan hara sebagai faktor eksternal, sedangkan faktor internal yang berpengaruh adalah biomassa akar dan populasi mikroorganisme (Moren dan Lindrothn, 2000). Kadar CO 2 pada udara tanah bervariasi antara 0,1-5% dan jika aerasi buruk dapat mencapai hampir 20% (Kohnke, 1980 dalam Hanafiah, 2004). Faktor yang mempengaruhi kadar CO 2 udara tanah tertera pada Tabel 1, yang secara umum kadar CO 2 udara tanah akan menurun apabila aktivitas akar dan mikroorganisme tanah terhambat,

6 sebaliknya kadar CO 2 akan meningkat bila difusi udara dari tanah ke atmosfer terhambat. Tabel 1. Faktor-faktor yang mempengaruhi kadar CO 2 udara tanah. Faktor-faktor Kadar CO 2 Penyebab Lebih tinggi Lebih rendah Musim musim panas musim dingin terhambatnya aktivitas akar dan mikroorganisme Perlakuan pemberian pupuk kandang, kapur, pupuk, dan ditanami tanpa terhambatnya aktivitas akar dan mikroorganisme Kadar air tanah basah tanah kering terbatasnya difusi Tekstur tanah tekstur halus tekstur kasar terhambatnya difusi, akibat lebih tingginya kelembaban Struktur tanah Kedalaman tanah agregasi lemah atau massif gembur terhambatnya difusi, akibat lebih tingginya kelembaban subsoil topsoil sda, akibat lebih tingginya kelembaban, akibat adanya topsoil Sumber: Kohnke (1980) dalam Hanafiah (2005) 2.3. Siklus Karbon dan Neraca Karbon 2.3.1. Siklus Karbon Siklus karbon menggambarkan dinamika karbon di alam. Siklus ini merupakan siklus biogeokimia yang mencakup pertukaran atau perpindahan karbon diantara biosfer, pedosfer, geosfer, hidrosfer, dan atmosfer bumi. Siklus karbon merupakan proses yang rumit dan setiap proses saling mempengaruhi proses lainnya (Sutaryo, 2009). Tumbuhan memerlukan sinar matahari, gas karbondioksida (CO 2 ) yang diserap dari udara serta air dan hara yang diserap dari dalam tanah untuk kelangsungan hidupnya. Melalui proses fotosintesis, CO 2 di udara diserap oleh tanaman dan diubah menjadi karbohidrat, kemudian disebarkan ke seluruh tubuh tanaman dan akhirnya ditimbun dalam tubuh tanaman berupa daun, batang, ranting, bunga, dan buah. Proses penimbunan karbon (C) dalam tubuh tanaman hidup dinamakan proses penyerapan karbon (C-sequestration). Pengukuran jumlah C yang disimpan dalam tubuh tanaman hidup (biomassa) pada suatu lahan dapat menggambarkan banyaknya CO 2 di atmosfer yang diserap oleh tanaman. Aliran karbon dari atmosfer ke vegetasi merupakan aliran yang bersifat dua arah,

7 yaitu pengikatan CO 2 ke dalam biomassa melalui fotosintesis dan pelepasan CO 2 ke atmosfer melalui proses dekomposisi dan respirasi (Hairiah dan Rahayu, 2007). Tumbuhan akan mengurangi karbon di atmosfer melalui proses fotosintesis dengan menyerap CO 2 dan menyimpannya dalam jaringan tumbuhan. Sampai waktunya karbon tersebut tersikluskan kembali ke atmosfer, karbon tersebut akan menempati salah satu dari sejumlah kantong karbon. Penyusun vegetasi, baik pohon, semak, liana, dan epifit merupakan bagian dari biomassa atas permukaan. Akar tumbuhan di bawah permukaan tanah juga merupakan penyimpan karbon selain tanah itu sendiri (Sutaryo, 2009). Meskipun CO 2 terdapat di atmosfer dengan konsentrasi yang relatif rendah (sekitar 0,03%), karbon bersiklus ulang dengan laju yang relatif cepat, karena tumbuhan mempunyai kebutuhan yang tinggi akan gas ini. Setiap tahun, tumbuhan menyerap sekitar sepertujuh dari keseluruhan CO 2 yang terdapat di atmosfer, jumlah ini sebagian besar diseimbangkan melalui respirasi. Sejumlah karbon dapat berpindah dari siklus tersebut dalam waktu yang lebih lama. Hal ini terjadi misalnya, ketika karbon terakumulasi di dalam kayu dan bahan organik yang tahan lama lainnya. Secara alami, perombakan metabolik oleh detritivora dapat mendaur ulang karbon ke atmosfer sebagai CO 2, meskipun api dapat lebih cepat mengoksidasi bahan organik menjadi CO 2 (Campbell et al., 2003). 2.3.2. Neraca Karbon Neraca karbon dapat didefinisikan sebagai perbedaan antara karbon yang diasimilasi oleh tumbuhan melalui fotosintesis dan karbon yang dihasilkan melalui respirasi autotrofik dan heterotrofik (Churkina et al., 2010). Neraca karbon ekosistem adalah perbedaan antara serapan dan emisi karbon. Ketika serapan karbon oleh pertumbuhan tanaman lebih besar dari emisi karbon oleh respirasi metabolik, ekosistem adalah penyerap karbon, yang berarti bahwa karbon atmosfer disimpan dalam biota dan tanah. Ketika emisi karbon lebih besar dari penyerapan karbon, ekosistem adalah sumber karbon, yang berarti karbon dari ekosistem (dari biota dan tanah) dilepaskan ke atmosfer (Schuur et al., 2008).

8 Kirschbaum (2001) mengemukakan beberapa istilah yang umumnya digunakan dalam perhitungan neraca karbon (Gambar 2). Fotosintesis GPP Autotrofik NPP NEE = NEP Heterotrofik Hilang karena gangguan NBE = NBP Gambar 2: Representasi diagram dari istilah-istilah utama yang menggambarkan sistem neraca karbon. Gross Primary Production (GPP) atau Produksi Primer Kotor (PPK) mengacu pada jumlah total karbon dalam proses fotosintesis oleh tanaman dalam suatu ekosistem. Suatu Hutan atau padang rumput, misalnya, dapat menyerap 20 ton C ha -1 tahun -1 selama proses fotosintesis. Net Primary Production (NPP) atau Produksi Primer Bersih (PPB) mengacu pada produksi bersih dari karbon organik oleh tanaman dalam suatu ekosistem. PPB biasanya diukur selama satu periode dalam satu tahun atau lebih. PPB merupakan hasil pengurangan PPK dengan jumlah karbon yang direspirasikan oleh tanaman dalam respirasi autotrofik (Ra). PPB = PPK Ra...(1) PPB menggambarkan jumlah kenaikan pertumbuhan tahunan (baik di atas dan di bawah tanah) ditambah dengan jumlah pertumbuhan dan gugur saat penuaan, reproduksi atau kematian dari individu yang berumur pendek ditambah jumlah yang dikonsumsi oleh herbivora. Hanya jumlah karbon yang dihasilkan dan hilang dalam setahun untuk PPB yang dihitung, bukan apa yang diproduksi

9 dalam tahun sebelumnya dan hilang pada tahun sekarang. Perbedaan ini kadangkadang sulit dilakukan dalam praktek. Net Ecosystem Exchange (NEE) atau Net Ecosystem Production (NEP) mengacu pada produksi primer bersih dikurangi kehilangan karbon dalam respirasi heterotrofik, Rh: NEE = NEP = NPP - Rh...(2) Net Biome Exchange (NBE) atau Net Biome Production (NBP) mengacu pada perubahan stok karbon setelah kehilangan karbon episodik akibat gangguan alam atau antropogenik telah dihitung: NBE = NEE - Ld......(3a) NBP = NEP - Ld...(3b) Ld adalah kehilangan karbon oleh gangguan episodik yang besar. Beberapa sistem biasanya tidak terpengaruh oleh gangguan tidak teratur. Dalam sistem tersebut, NBE = NEE.