STUDI POTENSI ENERGI MATAHARI DALAM PERANCANGAN PERALATAN PELAYUAN DAN PENGERINGAN PUCUK DAUN GAHARU

dokumen-dokumen yang mirip
PENGARUH KECEPATAN ANGIN DAN WARNA PELAT KOLEKTOR SURYA BERLUBANG TERHADAP EFISIENSI DI DALAM SEBUAH WIND TUNNEL

POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

IR M. ZAIIRI KADIR, M.T./i.{IDN: LAPORANAKIIIR T'NGGTJLAI{ PERGURUA}T TINGGI TAHUNKE I DARI RE,NCANA2 TAHT'N

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas

INSTRUMENTASI DAN AKUISISI DATA PADA UJI PERFORMANSI KOLEKTOR SURYA PELAT BERLUBANG

Gambar 2. Profil suhu dan radiasi pada percobaan 1

PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA

Pengaruh Sudut Kemiringan Kolektor Surya Pelat Datar terhadap Efisiensi Termal dengan Penambahan Eksternal Annular Fin pada Pipa

Laporan Tugas Akhir BAB I PENDAHULUAN

RANCANG BANGUN ALAT PENGERING UBI KAYU TIPE RAK DENGAN MEMANFAATKAN ENERGI SURYA

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip

BAB II TINJAUAN PUSTAKA

JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: ( Print) B-575

Optimasi periode data berdasarkan time constant pada pengujian unjuk kerja termal kolektor surya pelat datar Amrizal1,a*, Amrul1,b

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print)

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar

STUDI EKSPERIMENTAL PERFORMANSI KOLEKTOR SURYA ABSORBER GELOMBANG TIPE-V

TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING

Performansi Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa dengan Variasi Sudut Kemiringan Kolektor

STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN

Peningkatan Efisiensi Absorbsi Radiasi Matahari pada Solar Water Heater dengan Pelapisan Warna Hitam

PEMBUATAN KOLEKTOR PELAT DATAR SEBAGAI PEMANAS AIR ENERGI SURYA DENGAN JUMLAH PENUTUP SATU LAPIS DAN DUA LAPIS

Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, Oktober 2012

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK


BAB I PENDAHULUAN I.1.

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

PENENTUAN EFISIENSI DARI ALAT PENGERING SURYA TIPE KABINET BERPENUTUP KACA

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN

PENGARUH BAHAN INSULASI TERHADAP PERPINDAHAN KALOR PADA TANGKI PENYIMPANAN AIR UNTUK SISTEM PEMANAS AIR BERBASIS SURYA

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

ALAT PENGERING SINGKONG TENAGA SURYA TIPE KOLEKTOR BERPENUTUP MIRING

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

Analisa Performansi Kolektor Surya Plat Datar Dengan Penambahan Sirip Berlubang Berdiameter Berbeda Yang Disusun Secara Staggered

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di

PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB

PERFORMANCE ANALYSIS OF FLAT PLATE SOLAR COLLECTOR WITH ADDITION OF DIFFERENT DIAMETER PERFORATED FINS ARE COMPILED BY STAGGERED

LAPORAN AKHIR PENELITIAN DOSEN DAN MAHASISWA

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

PEMODELAN DAN SIMULASI PERPINDAHAN PANAS PADAKOLEKTOR SURYA PELAT DATAR

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-91

UJI EKSPERIMENTAL PENGARUH PERUBAHAN TEMPERATUR LORONG UDARA TERHADAP KOEFISIEN PERPINDAHAN PANAS KONVEKSI PELAT DATAR

ANALISIS KINERJA COOLANT PADA RADIATOR

TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS

ANALISA PERFORMA KOLEKTOR SURYA TIPE PARABOLIC TROUGH SEBAGAI PENGGANTI SUMBER PEMANAS PADA GENERATOR SISTEM PENDINGIN DIFUSI ABSORBSI

BAB V KESIMPULAN. parafin dengan serbuk logam sebagai heat storage materials penulis dapat

BAB II TINJAUAN PUSTAKA

PEMBUATAN ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP PRISMA SEGITIGA

Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca

Analisa Performa Kolektor Surya Tipe Parabolic Trough Sebagai Pengganti Sumber Pemanas Pada Generator Sistem Pendingin Difusi Absorpsi

Studi Alat Destilasi Surya Tipe Basin Tunggal Menggunakan Kolektor Pemanas

Modifikasi Ruang Panggang Oven

Analisa Performansi Kolektor Surya Pelat Datar Dengan Sepuluh Sirip Berdiameter Sama Yang Disusun Secara Staggered

PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR

Seminar Nasional Tahunan Teknik Mesin (SNTTM) VIII

Pemanfaatan Sistem Pengondisian Udara Pasif dalam Penghematan Energi

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR

Kata kunci : pemanasan global, bahan dan warna atap, insulasi atap, plafon ruangan, kenyamanan

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR

ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER

IV. HASIL DAN PEMBAHASAN

DAFTAR ISI. i ii iii iv v vi

KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK (KAJIAN PUSTAKA)

ANALISA PERFORMASI KOLEKTOR SURYA TERKONSENTRASI DENGAN VARIASI JUMLAH PIPA ABSORBER BERBENTUK SPIRAL

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB I PENDAHULUAN 1.1. Latar Belakang

Pengaruh jumlah haluan pipa paralel pada kolektor surya plat datar absorber batu kerikil terhadap laju perpindahan panas

Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi

PENGARUH TEBAL ISOLASI TERMAL BAHAN GLASS WOOL TERHADAP LAJU PENGERINGAN IKAN PADA ALAT PENGERING IKAN

Analisa Pengaruh Variasi Diameter Receiver Dan Intensitas Cahaya Terhadap Efisiensi Termal Model Kolektor Surya Tipe Linear Parabolic Concentrating

RANCANG BANGUN PEMANAS AIR TENAGA SURYA ABSORBER GELOMBANG TIPE SINUSOIDAL DENGAN PENAMBAHAN HONEYCOMB OLEH : YANUAR RIZAL EKA SB

KARAKTERISTIK PERPINDAHAN PANAS PIPA LURUS DAN PIPA PUNTIR PADA SOLAR KOLEKTOR TIPE PLAT DATAR MENGGUNAKAN SIMULASI CFD

METODE PENELITIAN. A. Waktu dan Tempat

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR

MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH. Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK

Transkripsi:

STUDI POTENSI ENERGI MATAHARI DALAM PERANCANGAN PERALATAN PELAYUAN DAN PENGERINGAN PUCUK DAUN GAHARU KMT-5 Irwin Bizzy 1*, Muhammad Faisal 2, Dedi Setiabudidaya 3 1 Jurusan Teknik Mesin, Fakultas Teknik Universitas Sriwijaya, Jl. Raya Inderalaya Km.32, Inderalaya 2 Jurusan Teknik Kimia, Fakultas Teknik Universitas Sriwijaya, Jl. Raya Inderalaya Km.32, Inderalaya 3 Program Studi Fisika, Fakultas MIPA Universitas Sriwijaya, Jl. Raya Inderalaya Km.32, Inderalaya * Koresponensi Pembicara. Phone: +62 711 580272, Fax: +62 711 580272 Email: irwin_bizzymt@yahoo.co.id ABSTRAK Kolektor energi radiasi surya jenis pelat hitam berlubang yang biasa digunakan pada pemanas udara surya tanpa penutup transparan memungkinkan untuk digunakan mengering pucuk daun gaharu. Efisiensi sesaat kolektor bertambah dengan kenaikan kecepatan aliran udara dan peningkatan kapasitas udara panas sebagai fungsi luas absorber dan kecepatan udara yang digunakan. Radiasi matahari yang datang ke permukaan pelat absorber dapat memenuhi standar ASHRAE yang digunakan. Radiasi matahari dapat dimanfaatkan untuk proses pengeringan pucuk daun gaharu yang hanya membutuhkan temperatur di bawah 40 o C.Perancangan peralatan menggunakan absorber berlubang lebih murah dibandingkan memakai kaca transparan. Kata Kunci: absorber, energi, efisiensi, gaharu, surya. 1. PENDAHULUAN Peralatan pemanas surya telah sejak lama ditemukan dan telah banyak dibuat dengan bermacam-macam bentuk. Penerapan secara luas belum berkembang dengan baik, malahan cenderung terjadi kelambatan dikarenakan masih relatif mahal dibandingkan dengan peralatan konvensional dan juga energi surya atau matahari yang tiba dipermukaan bumi selalu berubah-ubah intensitasnya, tergantung waktu dan cuaca. Konstruksi umum pemanas udara surya terdiri dari pelat absorber, penutup transparan dan saluran udara yang salah satu dindingnya adalah dinding kolektor. Penutup transparan yang biasa digunakan terbuat dari plastik atau kaca. Kaca penutup berfungsi untuk memberikan efek rumah hijau (green house), tetapi untuk pemakaian dalam luas yang besar menyebabkan harga pemanas udara surya menjadi sangat mahal. Untuk pemakaian pada temperatur rendah berkisar 40 o C, penghilangan kaca penutup dapat dilakukan dan untuk mengurangi kerugian panas ke udara luar, pelat absorber dilubangi dan udara yang akan dipanaskan dihisap melalui lubang-lubang Fakultas Teknik Universitas Sriwijaya 62

tadi. Dengan demikian kehilangan panas konveksi ke bagian atas kolektor dapat dihindari. Pemanfaatan pelat absorber berlubang (dengan bentuk permukaan bergelombang) telah dilakukan di Pabrik Teh, Perkebunan Malabar PTP XIII untuk proses pelayuan daun teh. Luas kolektor 560 m 2 dan diameter lubang 1,5 mm. Energi yang dapat diperoleh melalui kolektor surya ini adalah 330,5 GJ per tahun. Proses pelayuan daun teh ini hanya membutuhkan temperatur udara berkisar antara 26 o C hingga 30 o C sehingga kolektor jenis ini dapat digunakan. Pemanas udara dengan bahan bakar masih tetap digunakan sebagai pemanas utama. Penggabungan dengan pemanas udara surya telah memberikan penghematan pertahun sebesar 8,5 persen (Indrayoto:1993). Kolektor jenis pelat berlubang telah diuji dengan diameter, jumlah, dan susunan lubang absorber berbeda untuk melihat pengaruhnya terhadap efisiensi kolektor pada kecepatan aliran udara yang berbeda-beda (Bizzy: 1996). Pucuk daun gaharu merupakan salah satu potensi untuk dijadikan teh mengingat pohon gaharu dapat tumbuh dengan baik di daerah tropis. Pucuk daun gaharu ini diambil dari pohon gaharu. Beberapa jenis Pohon Gaharu dan penyebarannya di Indonesia adalah: Aquilaria malaccensis (Sumatra dan Kalimantan), Aquilaria beccariana (Sumatra dan Kalimantan), Aquilaria microcarpa (Sumatra dan Kalimantan), Aquilaria filaria (Irian dan Maluku), Aquilaria cumingiana (Sulawesi), Aquilaria tomntosa (Irian), Grynops audate dan Grynops podocarpus (Irian), Grynops versteegii (Nusa Tenggara, Maluku, Sulawesi, dan Irian), Wikstoemia androsaemifolia (Jawa, Kalimantan, Nusa Tenggara, dan Sulawesi). 2. LAPISAN BATAS DI ATAS PELAT DATAR DAN BERLUBANG Teori lapisan batas hidrodinamik dan termal pada pelat datar telah dikenal dan dapat diperoleh pada berbagai pustaka (Schlicting:1979 dan Incropera:1990). Secara skematis lapisan batas hidrodinamik dan termal ditunjukkan pada gambar 1. Gambar 1. Lapisan batas hidrodinamik dan termal pada pelat datar. Persamaan tebal lapisan batas hidrodinamik untuk aliran laminar di atas pelat datar telah diselesaikan oleh Blasius sebagai berikut. 5x Untuk tebal lapisan batas termal: δ = 1/2 (1) Re x δ t = δ (2) Pr 1/3 Koefisien perpindahan kalor konveksi lokal (Incropera:1990) untuk aliran laminar: Fakultas Teknik Universitas Sriwijaya 63

h x = 0,332 k Re 1/2 x x Pr 1/3 (3) Bila persamaan (1) dan (2) disubstitusikan ke persamaan (3) didapat hubungan antara koefisien perpindahan kalor lokal dan tebal lapisan batas hidrodinamik dan termal: x = jarak dari ujung depan pelat h x = koefisien konveksi lokal = tebal lapisan batas hidrodinamik t = tebal lapisan batas termal Pr = bilangan Prandtl Re x = bilangan Reynolds lokal k = konduktivitas termal fluida k h x = 1,66 = 1,66 k (4) δpr 1/3 δ t Koefisien perpindahan kalor lokal akan bertambah jika tebal lapisan batas termal berkurang. Untuk mengurangi tebal lapisan batas maka salah satu cara yang dilakukan adalah membuat lubang-lubang pada pelat datar. Pengisapan fluida pada pelat datar berlubang dapat mengurangi tebal lapisan batas yang akan meningkatkan harga koefisien perpindahan kalor konveksi, berarti meningkatkan perpindahan kalor konveksi dari permukaan pelat. Menurut Schliting (1979) yang telah melakukan analisis untuk kasus pelat berlubang dengan pengisapan kontinu, di mana jumlah udara yang diisap dari arus bebas sangat kecil (gambar 2). Kecepatan aliran fluida pada lubang v o dinyatakan sebagai berikut: v o = 0,0001 0,01 U (5) Gambar 2. Lapisan batas pada pelat berlubang dengan pengisapan kontinu Dengan menggunakan asumsi kecepatan pengisapan pengisapan seperti gambar 2, Kutscher (1993) mendapatkan korelasi tebal lapisan batas hidrodinamik dan termal untuk pelat berlubang dengan pengisapan kontinu sebagai berikut: δ 86 = 2,0 v ; v 86 = α t = δ 86 o v o Pr (6) 86 = tebal lapisan batas hidrodinamik u/u = 0,86 Fakultas Teknik Universitas Sriwijaya 64

Tebal lapisan batas tersebut ternyata konstan sepanjang pelat dan tak bergantung dari jarak maupun kecepatan arus bebas. Dalam penelitian ini, aliran U adalah aliran udara bebas (angin) di mana kecepatan maksimum sebesar 3,5 m/s. Sedangkan v o adalah kecepatan udara pada lubang pengisapan. Oleh karena pada kasus pemanas udara surya, v o berbanding U lebih besar dari 0,01 maka pendekatan teoritis tidak dapat dilakukan dengan analisis Kutscher. Penelitian-penilitian pada pemanas udara surya dengan absorber berlubang juga telah pernah dilakukan, diantaranya oleh Kokko (1992) dan Carpenter. Intensitas radiasi matahari berfluktuasi tergantung waktu dan cuaca. Untuk itu, dalam pengujian kolektor surya ditentukan efisiensi kolektor sesaat. Pedoman yang biasa digunakan adalah standar ASHRAE. Pengertian efisiensi sesaat dari sebuah kolektor yaitu jumlah energi yang dipindahkan oleh fluida persatuan luas kolektor selama periode waktu tertentu dibagi dengan radiasi matahari total yang datang pada kolektor persatuan luas selama periode waktu yang sama. Selanjutnya, efisiensi kolektor dihitung sesaat dilakukan untuk selang waktu 15 menit dan dalam keadaan tunak (Reddy:1986). Standar ASHRAE biasanya digunakan untuk kolektor pemanas udara surya dengan absorber pelat datar yang dilengkapi dengan kaca penutup, di mana udara berada di antara kaca dan absorber. Persamaan balans energinya (Ginting:1990) dituliskan sebagai berikut: Energi radiasi matahari tiba pada pelat = peningkatan energi dalam kolektor + kehilangan panas dari kolektor + energi yang diserap udara τα e A c I c = ρm c p c dt p dt + U L A c T p T a + Q u (7) ( ) e = transmisivitas dan absorbsivitas kolektor kolektif A c = luas permukaan pelat absorber I c = intensitas matahari global (c p ) c = kapasitas kalor kolektor T p = temperatur pelat rata-rata T a = temperatur ambien atau udara sekitar U L = koefisien rugi-rugi kalor global Q u = laju energi yang diserap udara m = laju udara volumetrik Untuk kondisi tunak, persamaan (7) dapat dituliskan sebagai berikut: atau: τα e A c I c = U L A c T p T a + Q u (8) Q u = F R τα e A c I c U L A c T p T a (9) Fakultas Teknik Universitas Sriwijaya 65

F R = faktor perpindahan kalor kolektor Efisiensi sesaat kolektor adalah: = Q u I c A c = F R σα e A c I c U L A c T p T a I c A c (10) = F R τα e U L T p T a I c (11) Efisiensi kolektor untuk selang waktu tertentu: = t 0 Q u dt t 0 I c A c dt (12) Persamaan (12) merupakan persamaan eksprimental dan besarnya ditentukan dari hasil pengukuran. 3. BAHAN DAN ALAT a. Memakai Kaca Transparan Rak Pengering Pelat Absorber Gambar 3. Peralatan Pengering Memakai Kaca Transparan b. Tanpa Kaca Transparan Fakultas Teknik Universitas Sriwijaya 66

W/m2 Prosiding Seminar Nasional AVoER ke-3 Rak Pengering Pelat Absorber Gambar 3. Peralatan Pengering Tanpa Kaca Transparan c. Absorber Pelat Berlubang Gambar 3. Absorber Pelat Berlubang 4. DATA RADIASI YANG TIBA KE PERMUKAAN 1200 Radiasi Matahari 24-25 Mei 2011 1000 800 600 400 200 0 Waktu Gambar 5. Data Radiasi Matahari dimulai Pukul 05:58 05:58 [Rusnas Unsri Inderalaya] 5. HASIL DAN PEMBAHASAN Sebagaimana diketahui pressure drop dari fluida melalui suatu laluan berbanding lurus dengan kuadrat kecepatan fluidanya. Fluida yang melewati lubang-lubang yang dekat dengan saluran udara ke luar kolektor akan lebih tinggi kecepatannya dibandingkan dengan kecepatan fluida yang melewati lubang yang letaknya jauh dari saluran ke luar kolektor sehingga pressure drop yang ditimbulkan juga berbeda. Fakultas Teknik Universitas Sriwijaya 67

Berdasarkan data yang dihasilkan (Bizzy:1996), unjuk kerja dan pressure drop keseluruhan sistem terendah adalah kolektor yang memiliki diameter lubang 2,5 mm dan temperatur udara rata-rata yang dapat diserap di bawah 40 o C. Data radiasi matahari rata-rata yang datang ke permukaan cukup berpotensi untuk pengeringan pucuk daun gaharu sesuai standar ASHRAE. 6. KESIMPULAN Potensi energi matahari dan perancangan peralatan pengering pucuk daun gaharu dimungkinkan. Faktor-faktor pendukung sebagai berikut: 1. Radiasi matahari dapat dimanfaatkan untuk proses pengeringan pucuk daun gaharu yang hanya membutuhkan temperatur di bawah 40 o C. 2. Perancangan peralatan menggunakan absorber berlubang lebih murah dibandingkan memakai kaca transparan. 7. DAFTAR PUSTAKA Bizzy, Irwin. 1996. Kaji Eksprimental Pemanas Udara Surya Jenis Pelat Berlubang Tanpa Penutup Transparan. Tesis S-2 Jurusan Teknik Mesin. Institut Teknologi Bandung: Bandung. Faisal, M., dan Dedi, S. 2011. Data Pengamatan Radiasi Matahari di Kampus Unsri Inderalaya Tahun 2011. Rusnas Unsri: Inderalaya. Garg, H.P. 1982. Treatise on Solar Energy, Fundamentals of Solar Energy. Volume 1. John Wiley & Sons: Chichester. Kutcher, F. Charles, Christensen, B. Craig, dan Barker, M. Gregory. 1993. Unglazed Transpired Solar Collector: Heat Loss Theory. ASME: Solar Engineering. Schlicting, Hermann. 1979. Boundary Layer Theory. McGraw-Hill Book Company: New York. Incropera, P. Frank., Dewitt, P.David. 1990. Introduction to Heat Transfer. John Wiley & Sons: New York. Reddy, T.A., Bouix, Ph. (Editor). Solar Thermal Component and System Testing: Proceeding of The Fourth Asian School on Solar Energy Harnessing. 1986. Renewable Energy Resources Information Center (RERIC) Asian Institute of Technology: Bangkok. Ginting, Sibuk. 1990. Kaji Eksprimental Berbagai Kolektor Udara Surya dengan Bantuan Data Akusisi. Tesis S-2 Jurusan Teknik Mesin. Institut Teknologi Bandung: Bandung. Indrayoto, Bambang. 1993. Penerapan Pemanas Udara Surya Jenis Pelat Berlubang pada Proses Pelayuan Daun Teh. Tesis S-1 Jurusan Teknik Mesin. Institut Teknologi Bandung: Bandung. Kokko, John P. 1992. Performance of The Next Generation of Solarwalls. Edmonton: SESCI 92 Conference. Jasjfi, E. (Penterjemah). Metode Pengukuran Teknik. Penerbit Erlangga: Jakarta. Seminar Notes. Solar Collectors for Crop Drying Applications Enermodal Engineering Limited:. Canada. Carpenter, Stephen C. Performance of Solar Preheated Ventilation Air Systems. Enermodal Engineering Limited: Waterloo. Hollick C, John. Personal Communication. President of Conserval Engineering Inc.: Canada. Fakultas Teknik Universitas Sriwijaya 68