BAB III METODE PENELITIAN

dokumen-dokumen yang mirip
3.2 Alat dan Bahan Peralatan yang digunakan dalam akuisisi data adalah seperangkat alat geolistrik supersting R8/IP, yang terdiri dari:

DAFTAR ISI. LEMBAR PENGESAHAN... i. LEMBAR PERNYATAAN KEASLIAN KARYA ILMIAH... ii. ABSTRAK... iii. ABSTRACK... iv. KATA PENGANTAR...

BAB III METODOLOGI PENELITIAN. nilai resistivitas di bawah permukaan. Data primer yang didapat adalah data

BAB III METODOLOGI PENELITIAN. Penelitian dilakukan dengan pengambilan data secara langsung (primer)

Gambar 3.1 Lokasi lintasan pengukuran Sumber: Lembaga Ilmu Pengetahuan Indonesia (LIPI)

BAB I PENDAHULUAN 1.1 Latar Belakang Dzikri Wahdan Hakiki, 2015

III. METODE PENELITIAN

BAB III METODOLOGI PENELITIAN. Data geolistrik dan GPS (akusisi data oleh Pusat Survei Geologi)

BAB III METODOLOGI PENELITIAN

BAB III METODE PENELITIAN

Bab IV Akuisisi, Pengolahan dan Interpretasi Data

PENERAPAN FORWARD MODELING 2D UNTUK IDENTIFIKASI MODEL ANOMALI BAWAH PERMUKAAN

BAB III METODE PENELITIAN

Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D

BAB III METODELOGI PENELITIAN

BAB III METODOLOGI PENELITIAN. 3.1 Alur Penelitian Pada bagian ini akan dipaparkan langkah-langkah yang dilakukan untuk mencapai tujuan penelitian.

Jurnal Sains dan Teknologi Lingkungan Volume 2, Nomor 2, Juni 2010, Halaman ISSN:

IV. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari sampai April 2012,

BAB III METODE PENELITIAN. Penelitian untuk mempelajari karakteristik panas bumi di sepanjang lintasan

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan pada tanggal 5 Mei 2015, mulai dari pukul

Interpretasi Bawah Permukaan. (Aditya Yoga Purnama) 99. Oleh: Aditya Yoga Purnama 1*), Denny Darmawan 1, Nugroho Budi Wibowo 2 1

Penyelidikan Struktur Pondasi Jembatan Lamnyong Menggunakan Metode Geolistrik Konfigurasi Wenner-Schlumberger

BAB III METODE PENELITIAN. geolistrik dengan konfigurasi elektroda Schlumberger. Pada konfigurasi

BAB III DATA dan PENGOLAHAN DATA

Metode Geolistrik (Tahanan Jenis)

Identifikasi Bidang Patahan Sesar Lembang dengan Metode Electrical Resistivity Tomography untuk Mitigasi Bencana Gempa Bumi dan Longsor

BAB III METODE PENELITIAN. Dalam penelitian ini, ada beberapa tahapan yang ditempuh dalam

BAB III METODOLOGI PENELITIAN

METODE EKSPERIMEN Tujuan

V. HASIL DAN PEMBAHASAN. Hasil pemodelan fisik menunjukkan bahwa konfigurasi elektroda yang sensitif

BAB I PENDAHULUAN 1.1 Latar Belakang

PROFIL RESISTIVITAS 2D PADA GUA BAWAH TANAH DENGAN METODE GEOLISTRIK KONFIGURASI WENNER-SCHLUMBERGER (STUDI KASUS GUA DAGO PAKAR, BANDUNG)

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian

ANALISIS DATA INVERSI 2-DIMENSI DAN 3-DIMENSI UNTUK KARAKTERISASI NILAI RESISTIVITAS BAWAH PERMUKAAN DI SEKITAR SUMBER AIR PANAS KAMPALA

PUSAT PENELITIAN GEOTEKNOLOGI - LIPI

IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN JALUR SESAR DI DUSUN PATEN DENGAN METODE GEOLISTRIK KONFIGURASI DIPOLE-DIPOLE

DOKUMENTASI PT.PRIHADITAMA

Bab III Akuisisi dan Pengolahan Data

BAB III METODE PENELITIAN. geologi, seperti data kekar dan cermin sesar, untuk melukiskan karakteristik

IDENTIFIKASI ZONA SESAR OPAK DI DAERAH BANTUL YOGYAKARTA MENGGUNAKAN METODE SEISMIK REFRAKSI

IDENTIFIKASI BIDANG GELINCIR ZONA RAWAN LONGSOR MENGGUNAKAN METODE GEOLISTRIK RESISTIVITAS KONFIGURASI DIPOLE-DIPOLE DI PAYUNG KOTA BATU

ANALISIS KEBERADAAN BIJIH BESI MENGGUNAKAN METODE GEOLISTRIK 2D DI LOKASI X KABUPATEN LAMANDAU KALIMANTAN TENGAH

Aplikasi Metode Geolistrik untuk Identifikasi Sebaran Limbah Lada Putih di Kecamatan Galing Kabupaten Sambas Budiman a, Andi Ihwan a, Joko Sampurno a*

IDENTIFIKASI BIDANG GELINCIR DI TEMPAT WISATA BANTIR SUMOWONO SEBAGAI UPAYA MITIGASI BENCANA LONGSOR

DAFTAR ISI... RINGKASAN... ABSTRACT... KATA PENGANTAR... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN... BAB I. PENDAHULUAN

STUDI BIDANG GELINCIR SEBAGAI LANGKAH AWAL MITIGASI BENCANA LONGSOR

BAB III. METODOLOGI PENELITIAN

Estimasi Arah Strike menggunakan Metode Resistivitas Konfigurasi Persegi

PEMODELAN INVERSI DATA GEOLISTRIK UNTUK MENENTUKAN STRUKTUR PERLAPISAN BAWAH PERMUKAAN DAERAH PANASBUMI MATALOKO. Abstrak

ABSTRAK

PENENTUAN LITOLOGI BATUAN DAN MUKA AIR TANAH DENGAN METODE GEOLISTRIK KONFIGURASI WENNER SCHLUMBERGER DI DAERAH LANDFILL PLTU LABUHAN ANGIN SIBOLGA

BAB III METODOLOGI PENELITIAN

PRISMA FISIKA, Vol. III, No. 2 (2015), Hal ISSN :

Modul Pelatihan Geolistrik 2013 Aryadi Nurfalaq, S.Si., MT

BAB I PENDAHULUAN. memiliki kerentanan longsor yang cukup besar. Meningkatnya intensitas hujan

PENYELIDIKAN BIJIH BESI DENGAN METODE GEOMAGNET DAN GEOLISTRIK

Abstrak

Prosiding Seminar Nasional XII Rekayasa Teknologi Industri dan Informasi 2017 Sekolah Tinggi Teknologi Nasional Yogyakarta

Pemodelan Akuifer Air Tanah dengan Metode Geolistrik Tahanan Jenis Konfigurasi Dipole-dipole

PENGARUH MUKA AIR TANAH TERHADAP KESTABILAN JEMBATAN MENGGUNAKAN METODE ELECTRICAL RESISTIVITY TOMOGRAPHY KONFIGURASI DIPOLE-DIPOLE

e-issn : Jurnal Pemikiran Penelitian Pendidikan dan Sains Didaktika

Identifikasi Jalur Patahan Dengan Metode Geolistrik Hambatan Jenis Di Wilayah Palu Barat

Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1)

APLIKASI GEOLISTRIK RESISTIVITAS KONFIGURASI DIPOLE DIPOLE UNTUK PENDUGAAN ASBUTON

BAB III METODOLOGI PENELITIAN

PENERAPAN GEOLISTRIK RESISTIVTY 2D DAN BANTUAN PROGRAM GEOSOFT UNTUK ESTIMASI SUMBERDAYA ANDESIT DI PT. MDG KULONPROGO DIY

Identifikasi Pola Persebaran Sumber Lumpur Bawah Tanah Pada Mud Volcano Gunung Anyar Rungkut Surabaya Menggunakan Metode Geolistrik

Pemodelan Inversi Data Geolistrik untuk Menentukan Struktur Perlapisan Bawah Permukaan Daerah Panasbumi Mataloko

BAB I PENDAHULUAN. Tugas Akhir merupakan mata kuliah wajib dalam kurikulum pendidikan

Interpretasi Kondisi Geologi Bawah Permukaan Dengan Metode Geolistrik

APLIKASI METODE GEOLISTRIK RESISTIVITAS 2 DIMENSI UNTUK MENENTUKAN PERSEBARAN AIR TANAH DI DESA GUNUNGJATI KECAMATAN JABUNG KABUPATEN MALANG

PENENTUAN SEBARAN DAN KANDUNGAN UNSUR KIMIA KONTAMINASI LIMBAH CAIR BAWAH PERMUKAAN DI TPA CAHAYA KENCANA, KABUPATEN BANJAR

APLIKASI METODE GEOLISTRIK KONFIGURASI POLE-POLE UNTUK MENENTUKAN SEBARAN DAN KEDALAMAN BATUAN SEDIMEN DI DESA WONOSARI KECAMATAN NGALIYAN SEMARANG

BAB III METODE PENELITIAN

BAB V INTERPRETASI HASIL PENGUKURAN RESISTIVITAS

SURVEI SEBARAN AIR TANAH DENGAN METODE GEOLISTRIK TAHANAN JENIS DI KELURAHAN BONTO RAYA KECAMATAN BATANG KABUPATEN JENEPONTO

ρ i = f(z i ) (1) V r = ρ ii 2π ρ a = K V AB 2

APLIKASI METODE GEOLISTRIK RESISTIVITAS KONFIGURASI DIPOLE-DIPOLE UNTUK IDENTIVIKASI POTENSI SEBARAN GALENA (PBS) DAERAH-X, KABUPATEN WONOGIRI

Penerapan Metode Resistivitas 2D untuk Identifikasi Bawah Permukaan Situs Maelang Bayuwangi Jawa Timur

Rustan Efendi 1, Hartito Panggoe 1, Sandra 1 1 Program Studi Fisika Jurusan Fisika FMIPA, Universitas Tadulako, Palu, Indonesia

IV. HASIL DAN PEMBAHASAN

INVESTIGASI BAWAH PERMUKAAN DAERAH RAWAN GERAKAN TANAH JALUR LINTAS BENGKULU-CURUP KEPAHIYANG. HENNY JOHAN, S.Si

NILAI RESISTIVITAS DENGAN VARIASI JARAK DI TEMPAT PEMROSESAN AKHIR SAMPAH GUNUNG KUPANG BANJARBARU

ANALISIS DATA GEOLISTRIK UNTUK IDENTIFIKASI PENYEBARAN AKUIFER DAERAH ABEPURA, JAYAPURA

PENENTUAN RESISTIVITAS BATUBARA MENGGUNAKAN METODE ELECTRICAL RESISTIVITY TOMOGRAPHY DAN VERTICAL ELECTRICAL SOUNDING

BAB II. TINJAUAN PUSTAKA

APLIKASI METODA GEOLISTRIK UNTUK IDENTIFIKASI SESAR BAWAH PERMUKAAN DI WILAYAH DAS JENEBERANG SULAWESI SELATAN

MENENTUKAN LITOLOGI DAN AKUIFER MENGGUNAKAN METODE GEOLISTRIK KONFIGURASI WENNER DAN SCHLUMBERGER DI PERUMAHAN WADYA GRAHA I PEKANBARU

BAB III. METODE PENELITIAN

BAB V ANALISIS 5.1 Penampang Hasil Curve Matching

PEMODELAN 3D RESISTIVITAS BATUAN ANDESIT DAERAH SANGON, KAB. KULONPROGO, PROVINSI DIY

Identifikasi Sistem Panas Bumi Di Desa Masaingi Dengan Menggunakan Metode Geolistrik

Pemetaan Akuifer Air Tanah Di Sekitar Candi Prambanan Kabupaten Sleman Daerah Istimewa Yogyakarta Dengan Menggunakan Metode Geolistrik Tahanan Jenis

Pendugaan Zona Endapan Mineral Logam (Emas) di Gunung Bujang, Jambi Berdasarkan Data Induced Polarization (IP)

IDENTIFIKASI PENYEBARAN LIMBAH CAIR DENGAN MENGGUNAKAN METODE TAHANAN JENIS 3D (MODEL LABORATORIUM)

IDENTIFIKASI BENDA ARKEOLOGI DI KEC. MAKASSAR DENGAN METODE GEOLISTRIK KONFIGURASI WENNER - SCHLUMBERGER

Bab II Metoda Geolistrik Tahanan Jenis 2D

PENETROMETER TEST (DCPT) DI JALAN ARTERI

PENENTUAN LAPISAN PEMBAWA AIR DENGAN METODE TAHANAN JENIS DI DAERAH ATAS TEBING LEBONG ATAS BENGKULU

BAB 4 PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA

Transkripsi:

29 BAB III METODE PENELITIAN Dalam penelitian ini menggunakan pendekatan deskriptif - analitik dari data geolistrik resistivitas dan kekar. Berdasarkan hasil pengolahan data geolistrik dan analisis kekar diperoleh penampang resistivitas 2D, model resistivitas 3D serta analisis kekar digunakan untuk menentukan jenis batuan penyusun, zona sesar dan geometri struktur bawah permukaan daerah pengukuran. 3.1. Lokasi Akuisisi Data Geolistrik dan Kekar Akuisisi data geolistrik dan kekar ini dilakukan di Bakauheni Kabupaten Lampung Selatan. Penggamatan geolistrik di lapangan dilakukan pada 5 titik, yakni tiga titik di daerah lintasan Sesar Way Baka dan dua titik di Sesar Bakauheni. Sedangkan pengamatan kekar dilakukan pada dua titik, yakni di Way Baka dan Bakauheni. Gambar 3.1. Lokasi Penelitian Sumber : https://earth.google.com

30 Tabel 3.1. Lokasi pengamatan geolistrik dan kekar. No. Bujur (BT) Lokasi Lintang (LS) Kode lokasi Keterangan 1 105 o 44 39.2 05 o 49 23.3 WBK01 Dusun Suka Baru, Desa Hatta, Bakauheni. Jenis pengamatan : geolistrik 2 105 o 44 01.8 05 o 50 57 WBK02 Dusun Jering, Desa Hatta, Bakauheni. Jenis pengamatan : geolistrik 3 105 o 44 07.8 05 o 50 38.3 WBK03 Dusun Jering, Desa Hatta, Bakauheni. Jenis pengamatan : geolistrik 4 105 o 45 32.7 05 o 51 90 BKN01 Desa Bakauheni. Jenis pengamatan : geolistrik 5 105 o 45 37.8 05 o 51 66.2 BKN02 Belakang Komplek ASDP Bakauheni. Jenis pengamatan : geolistrik 6 105 44 42.4 05 50 37.1 WBK Kampung Minangrua Jenis Pengamatan : Kekar 7 105 45 14.3 05 52 00.7 BKN Komplek ASDP Bakauheni Jenis Pengamatan : Kekar

31 3.2 Proses Pemilihan Konfigurasi Dalam Akuisisi Data Pada gambar 3.2 disajikan sebuah model dengan menggunakan perangkat lunak Res2Mod. Model tersebut disesuaikan dengan foto citra satelit pada gambar 1.1 yang menunjukan adanya sesar. Model yang dibuat berupa pendugaan adannya sesar yang dicirikan oleh perbedaan nilai resistivitas. Terdapat dua buah blok yang diwakili oleh blok berwarna biru muda dengan nilai resistivitas 100 Ohm.m. Gambar 3.2 Model sintetis pendugaan sesar Model sintetis pada gambar 3.2 digunakan sebagai masukan untuk pemodelan awal (forward modeling). Tiga konfigurasi elektroda digunakan dalam pemodelan awal yaitu konfigurasi Wenner, dipole-dipole, dan Schlumberger. Hal ini dimaksudkan untuk mengetahui kelebihan dan kekurangan masing-masing konfigurasi. a. Model Sintetis Wenner Gambar 3.3 memperlihatkan penampang resistivitas sebagai hasil pemodelan awal dengan input model pada gambar 3.2. Penampang resistivitas ini menggunakan konfigurasi Wenner.

32 Gambar 3.3 Hasil inversi dari model sintetis konfigurasi Wenner Pada gambar 3.3 terlihat respon model dan hasil inversi dari model sintetis menggunakan konfigurasi Wenner. Pada model inversi terlihat adanya ketidak menerusan lapisan batuan secara jelas dengan resolusi vertikal dan resolusi lateral yang baik. Penetrasi kedalaman maksimum konfigurasi ini mencapai 3,6 meter dari bentangan elektroda 36 meter dengan spasi elektroda 1 meter. b. Model Sintetis Dipole-dipole Gambar 3.4 memperlihatkan penampang resistivitas sebagai hasil pemodelan awal dengan input model pada gambar 3.2. Penampang resistivitas ini menggunakan konfigurasi Dipole-dipole.

33 Gambar 3.4 Hasil inversi dari model sintetis konfigurasi dipole-dipole Pada gambar 3.4 terlihat respon model dan hasil inversi dari model sintetis menggunakan konfigurasi dipole-dipole. Pada model inversi terlihat adanya ketidak menerusan lapisan batuan secara jelas dengan resolusi lateral yang baik. Penetrasi kedalaman maksimum konfigurasi ini mencapai 4,0 meter dari bentangan elektroda 36 meter dengan spasi elektroda 1 meter. c. Model Sintetis Schlumberger Gambar 3.5 memperlihatkan penampang resistivitas sebagai hasil pemodelan awal dengan input model pada gambar 3.2. Penampang resistivitas ini menggunakan konfigurasi Schlumberger.

34 Gambar 3.5 Hasil inversi dari model sintetis konfigurasi Schlumberger Pada gambar 3.5 terlihat respon model dan hasil inversi dari model sintetis menggunakan konfigurasi Schlumberger. Pada model inversi terlihat adanya ketidak menerusan lapisan batuan secara jelas dengan resolusi horizontal yang baik, tetapi untuk resolusi lateral konfigurasi Schlumberger kurang baik. Penetrasi kedalaman maksimum konfigurasi ini mencapai 4 meter dari bentangan elektroda 36 meter dengan spasi elektroda 1 meter. Pada dasarnya semua konfigurasi elektroda dapat digunakan untuk mapping meskipun setiap konfigurasi elektroda memiliki sensitivitas yang berbeda. Konfigurasi pole-pole, pole-dipole dan dipole-dipole lebih banyak digunakan untuk mapping karena relatif lebih sensitif terhadap variasi lateral dan penetrasi kedalaman. Konfigurasi Wenner cukup baik untuk mapping karena memiliki resolusi lateral dan vertikal yang relatif baik. Konfigurasi Schlumberger relatif jarang digunakan untuk mapping karena kurang sensitif terhadap variasi lateral. Berdasarkan gambar 3.3, gambar 3.4 dan gambar 3.5 memiliki respon berbeda tiap konfigurasi yang digunakan. Konfigurasi Wenner memiliki resolusi

35 lateral resolusi vertikal yang baik. Sedangkan konfigurasi Schlumberger memiliki resolusi lateral yang kurang baik. Konfigurasi dipole-dipole baik dalam resolusi lateral dan penetrasi kedalaman. Pada penelitian ini menggunakan metode resistivitas dengan konfigurasi Wenner. Metode konfigurasi Wenner cukup baik untuk mengidentifikasi pola dan jenis sesar karena memiliki resolusi lateral dan vertikal yang relatif baik dibandingkan dengan konfigurasi yang lainnya. Metode konfigurasi Wenner ini menjadi metode konfigurasi yang relatif baik constant separation transversing (CST), dengan kata lain dianjurkan untuk teknik akuisisi data mapping. 3.3 Alur Penelitian Penelitian ini dilakukan dengan beberapa tahapan, diantaranya: 1. Studi Pustaka Studi pustaka yaitu melalui beberapa buku, artikel, jurnal ataupun karya ilmiah serta referensi yang mendukung, meliputi : Mempelajari dasar teori metode geolistrik resistivitas, konfigurasi elektroda Wenner, mekanisme kekar dan sesar. Mempelajari penggunaan alat Supersting R8/IP beserta perangkat lunak Res2Dinv dan rockwork15 yang digunakan untuk mengolah data resistivitasnya Mempelajari perangkat lunak Dip5 yang digunakan untuk mengolah data kekar. 2. Pengambilan Data a. Geolistrik Proses pengambilan data dilakukan di Bakauheni menggunakan alat geolistrik Super Sting R8 dengan konfigurasi Wenner. Jumlah elektroda pada alat ini ialah 56 elektroda dan spasi antar elektroda ialah 1,5-2 meter. Data yang diperoleh berupa data resistivitas dan kedalaman dalam format format.stg. Proses pengambilan data ini dilakukan oleh tim lapangan dari Pusat Survei Geologi (PSG).

36 Sebelum pengambilan data lapangan, tim menentukan lintasan pengambilan data terlebih dahulu dengan bantuan data satelit citra satelit. b. Kekar Proses pengambilan data dilakukan didaerah bakauheni. Pengukuran kekar meliputi jurus (strike) dan kemiringan (dip) secara acak di beberapa lokasi yang dilintasi sesar. Proses pengambilan data ini dilakukan oleh tim lapangan dari Pusat Survei Geologi (PSG). Sebelum pengambilan data lapangan, tim menentukan titik pengambilan data terlebih dahulu dengan bantuan data satelit citra satelit. Mulai Citra Satelit Penentuan Lintasan dan Posisi Peta Geologi Akuisisi Data Geolistrik Orientasi Kekar Gambar 3.6. Diagram alur metode pengambilan data 3. Pengolahan Data a. Geolistrik Data yang telah diperoleh dari hasil pengukuran didownload dengan perangkat lunak AGI Supersting Administrator dari alat Supersting R8/IP, data tersebut dalam format.stg. Selanjutnya, dilakukan

37 inversi data dengan menggunakan perangkat lunak AGISSAdmin sehingga menghasilkan data dalam format.dat. 1. Penampang 2D Untuk proses pengolahan data geolistrik untuk penampang 2D menggunakan perangkat lunak Res2Dinv. Langkah pertama ialah data hasil penelitian diproses dengan mengatur parameter awal untuk forward modeling dan resistivity inversi. Selanjutnya, dilakukan edit data elektroda yang dianggap sebagai noise sehingga model yang didapatkan akan baik, inversi dilakukan untuk memperoleh model yang terdiri dari Pseudosection Apperent Resistivity, Calculate Resistivity dan True Resisitivity. Apabila hasil model yang didapat masih kurang baik (Misfit) maka dilakukan kembali pengeditan data dan kemudian inversi. Setelah penampang resistivitas 2D dianggap baik, simpan model dalam format.jpg. 2. Model 3D Model penampang 2D kurang memberikan gambaran nyata yang dapat diinterpretasikan, karena kenyataannya adalah bumi merupakan bentuk 3D. Dengan demikian model 3D digunakan untuk membantu menginterpretasi model 2D itu sendiri, meskipun model 3D ini masih kasar karena data yang digunakan adalah data resistivitas yang teknik pengukurannya menggunakan tenkik pengukururan 2D. Pemodelan 3D menggunakan perangkat lunak RockWork15 dengan input data resistivitas dan kedalaman dari hasil inversi resistivitas model 2D perangkat lunak Res2dinv serta koordinat - koordinat tiap elektroda yang didapat dari perangkat lunak Garmin. Setelah itu, lakukan scan data dan solid model untuk mendapatkan model resistivitas 3D. Setelah model dianggap baik simpan model dalam format.jpg.

38 b. Kekar Data yang diperoleh dari pengukuran lapangan selanjutnya diolah menggunakan perangkat lunak DIP5. Langkah pertama ialah data hasil penelitian diinput kedalam perangkat lunak DIP5, selanjutnya diproses dengan mengatur parameter dasar sehingga akan mendapatkan pole bidang kekar. Setelah itu, buat bidang kekar dengan sudut 90 0 dari pole bidang kekar. Buat bidang sesar dan tentukan gaya yang bekerja pada sesar tersebut 30 0 dari bidang sesar menuju titik pusat. 4. Analisa Hasil Pengolahan Data Interprestasi yang akan digunakan pada penelitian ini ialah terbatas pada interprestasi analitik yaitu pendugaan geologi bawah permukaan berdasarkan analisa nilai penampang resistivitas 2D dan model resistivitas 3D serta analisa Kekar. Nilai resisitivitas yang diperoleh dapat digunakan untuk mengetahui jenis batuan, sehingga struktur batuan yang terdapat dibawah permukaan akan terlihat jelas melalui skala warna. Sehingga memudahkan untuk mengidentifikasi struktur geologi berupa sesar. Dalam menentukan jenis sesar daerah penelitian, bisa dengan menganalisis bentuk proyeksi stereografi sehingga akan terlihat jelas pola dan jenis sesar. Dari analisis secara keseluruhan bisa diketahui pola dan jenis sesar daerah penelitian tersebut.

39 Mulai Data Lapangan (Geolistrik wenner dan orientasi kekar) Res2Dinv DIP5 Data resistivitas Data Kekar Edit data Plot Nodal Plane Inversi Penampang resistivitas 2D Baik? Rock Works 15 Data Resistivitas Hasil Inversi dan UTM Model Streonet Solid Model Penampang resistivitas 2D Model Resistivitas 3D Analisis Peta Geologi Analisis Kesimpulan Gambar 3.7 Diagram alur pengolahan dan analisa data

40 3.4 Peralatan Lapangan Peralatan lapangan yang digunakan untuk survei geolistrik dan kekar didaerah Bakauheni terdiri dari : Alat geolistrik SuperSting R8 Switch box Kabel @ 350 meter sebanyak 2 box Elektroda 56 buah Palu 4 buah Accu 12 volt Toolkits Inventer DC-AC Laptop GPS AVO meter Altimeter Kompas Geologi Kamera Alat tulis Gambar 3.8 a. Peralatan Supersting R8 IP b. Kompas geologi