Analisa Sambaran Petir Terhadap Kinerja Arrester pada Transformator Daya 150 kv Menggunakan Program ATP

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA

Oleh: Dedy Setiawan IGN SatriyadiI H., ST., MT. 2. Dr. Eng. I Made Yulistya N., ST., M.Sc

Dasman 1), Rudy Harman 2)

TUGAS PAPER MATA KULIAH SISTEM PROTEKSI MENENTUKAN JARAK PEMASANGAN ARRESTER SEBAGAI PENGAMAN TRAFO TERHADAP SAMBARAN PETIR

PEMELIHARAAN DAN PERTIMBANGAN PENEMPATAN ARRESTER PADA GARDU INDUK 150 KV PT. PLN (PERSERO) P3B JB REGION JAWA TENGAH DAN DIY UPT SEMARANG

STUDI TEGANGAN LEBIH IMPULS AKIBAT PENGGUNAAN KONFIGURASI MIXED LINES (HIGH VOLTAGE OVERHEAD-CABLE LINES) 150 KV

PEMAKAIAN DAN PEMELIHARAAN ARRESTER GARDU INDUK 150 KV UNGARAN PT. PLN (PERSERO) APP SEMARANG

EVALUASI ARRESTER UNTUK PROTEKSI GI 150 KV JAJAR DARI SURJA PETIR MENGGUNAKAN SOFTWARE PSCAD

STUDI KARAKTERISTIK TRANSIEN LIGHTNING ARRESTER PADA TEGANGAN MENENGAH BERBASIS PENGUJIAN DAN SIMULASI

Studi Pengaman Tegangan Lebih pada Saluran Kabel Tegangan Tinggi 150kV yang Dilindungi oleh Arester Surja

Hendri Kijoyo Jurusan Teknik Elektro Fakultas Teknologi Industri Insttut Teknologi Sepuluh Nopember Surabaya

Abstrak. 1.2 Tujuan Mengetahui pemakaian dan pemeliharaan arrester yang terdapat di Gardu Induk 150 kv Srondol.

PENGGUNAAN ATP DRAW 3.8 UNTUK MENENTUKAN JUMLAH GANGGUAN PADA SALURAN TRANSMISI 150 kv AKIBAT BACKFLASHOVER

BAB I PENDAHULUAN. 1.1 Latar Belakang

I Gusti Ngurah Satriyadi Hernanda, ST. MT Dr. Eng. I Made Yulistya Negara, ST. M.Sc

BAB III PELINDUNG SALURAN TRANSMISI. keamanan sistem tenaga dan tak mungkin dihindari, sedangkan alat-alat

III. METODE PENELITIAN

STUDI PENGARUH KONFIGURASI 1 PERALATAN PADA SALURAN DISTRIBUSI 20 KV TERHADAP PERFORMA PERLINDUNGAN PETIR MENGGUNAKAN SIMULASI ATP/EMTP

Studi Pengaruh Lokasi Pemasangan Surge Arrester pada Saluran Udara 150 Kv terhadap Tegangan Lebih Switching

SISTEM PROTEKSI TERHADAP TEGANGAN LEBIH PADA GARDU TRAFO TIANG 20 kv

BAB III LIGHTNING ARRESTER

Sela Batang Sela batang merupakan alat pelindung surja yang paling sederhana tetapi paling kuat dan kokoh. Sela batang ini jarang digunakan pad

OPTIMASI JARAK MAKSIMUM PENEMPATAN LIGHTNING ARRESTER SEBAGAI PROTEKSI TRANSFORMATOR PADA GARDU INDUK. Oleh : Togar Timoteus Gultom, S.

Analisa Pengaruh Sambaran Petir pada Jaringan Distribusi 13,8 kv di BOB PT. BSP - Pertamina Hulu Bandar Pedada Menggunakan Software ATP-EMTP

ANALISIS DISTRIBUSI TEGANGAN LEBIH AKIBAT SAMBARAN PETIR UNTUK PERTIMBANGAN PROTEKSI PERALATAN PADA JARINGAN TEGANGAN MENENGAH 20 kv di YOGYAKARTA

STUDI TEGANGAN LEBIH IMPULS AKIBAT PENGGUNAAN KONFIGURASI MIXED LINES (HIGH VOLTAGE OVERHEAD-CABLE LINES) 150 KV

ANALISIS KOORDINASI ISOLASI SALURAN UDARA TEGANGAN TINGGI 150 KV TERHADAP SAMBARAN PETIR DI GIS TANDES MENGGUNAKAN PERANGKAT LUNAK EMTP RV

STUDI PENGARUH STRAY CAPACITANCE TERHADAP KINERJA ARRESTER TEGANGAN TINGGI 150 KV DENGAN FINITE ELEMENT METHODS (FEM)

BAB I PENDAHULUAN. 1.1 Latar Belakang

ARESTER SEBAGAI SISTEM PENGAMAN TEGANGAN LEBIH PADA JARINGAN DISTRIBUSI TEGANGAN MENENGAH 20KV. Tri Cahyaningsih, Hamzah Berahim, Subiyanto ABSTRAK

BAB III PROTEKSI SALURAN UDARA TEGANGAN MENENGAH (SUTM) TERHADAP SAMBARAN PETIR

STUDY ON SURGE ARRESTER PERFORMANCE DUE TO LIGHTNING STROKE IN 20 KV DISTRIBUTION LINES. Agung Warsito, Abdul Syakur, Liliyana NS *)

BAB I PENDAHULUAN. Desain isolasi untuk tegangan tinggi (HV) dimaksudkan untuk

SIMULASI PENENTUAN NILAI TAHANAN PENTANAHAN MENARA TRANSMISI 150 KV TERHADAP BACKFLASHOVER AKIBAT SAMBARAN PETIR LANGSUNG

Studi Pengaruh Konfigurasi Peralatan pada Saluran Distribusi 20 kv Terhadap Performa Perlindungan Petir Menggunakan Simulasi ATP/EMTP

Proteksi Terhadap Petir. Distribusi Daya Dian Retno Sawitri

Vol.3 No1. Januari

OPTIMASI PENEMPATAN ARRESTER TERHADAP TEGANGAN LEBIH TRANSIEN PADA TRANSFORMATOR DAYA DENGAN METODE ALGORITMA GENETIKA

OPTIMASI PELETAKKAN ARESTER PADA SALURAN DISTRIBUSI KABEL CABANG TUNGGAL AKIBAT SURJA PETIR GELOMBANG PENUH

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

Analisis Pengaruh Resistansi Pentanahan Menara Terhadap Terjadinya Back Flashover

BAB II IMPEDANSI SURJA MENARA DAN KAWAT TANAH

KINERJA ARRESTER AKIBAT INDUKSI SAMBARAN PETIR PADA JARINGAN TEGANGAN MENENGAH 20 kv

Dielektrika, [P-ISSN ] [E-ISSN X] 85 Vol. 4, No. 2 : 85-92, Agustus 2017

PENENTUAN LETAK OPTIMUM ARRESTER PADA GARDU INDUK (GI) 150 kv SIANTAN MENGGUNAKAN METODE OPTIMASI

STUDI PERENCANAAN SISTEM PERLINDUNGAN PETIR EKSTERNAL DI GARDU INDUK 150 KV NEW-TUREN

FAKTOR - FAKTOR YANG MEMPENGARUHI RESPON TRANSIEN PEMBUMIAN GRID

METODE PENELITIAN. Pengukuran Besaran Elektrik Laboratorium Teknik Elektro Terpadu Jurusan

BAB III LIGHTNING ARRESTER

Kata Kunci Proteksi, Arrester, Bonding Ekipotensial, LPZ.

SIMULASI SAMBARAN PETIR LANGSUNG PADA SALURAN TRANSMISI 150 KV TERHADAP KAWAT FASA DENGAN VARIASI TAHANAN PENTANAHAN

Perbandingan Tegangan Residu Arester SiC dan ZnO Terhadap Variasi Front Time

BAB I PENDAHULUAN. gelombang berjalan juga dapat ditimbulkan dari proses switching atau proses

Model Arrester SiC Menggunakan Model Arrester ZnO IEEE WG

BAB I PENDAHULUAN. utama bagi setiap orang. Ketergantungan masyarakat terhadap listrik

SIMULASI INDUKSI SAMBARAN PETIR DAN KINERJA ARESTER PADA JARINGAN TEGANGAN MENENGAH

PERBANDINGAN WATAK PERLINDUNGAN ARESTER ZnO DAN SiC PADA PERALATAN LISTRIK MENURUT LOKASI PENEMPATANNYA

MAKALAH SEMINAR KERJA PRAKTEK

Analisa Rating Lightning Arrester Pada Jaringan Transmisi 70 kv Tomohon-Teling

SIMULASI DAN ANALISIS PENGARUH TEGANGAN LEBIH IMPULS PADA BELITAN TRANSFORMATOR DISTRIBUSI 20 KV

SISTEM PROTEKSI TERHADAP SAMBARAN PETIR LANGSUNG (DIRECT STRIKE) KE GARDU INDUK. Sudut Lindung. Menara Transmisi Dan Gardu Induk

BAB I PENDAHULUAN. Indonesia terletak di daerah khatulistiwa. Oleh karena itu Indonesia

SISTEM PROTEKSI RELAY

STUDI KARAKTERISTIK TRANSIEN LIGHTNING ARRESTER PADA TEGANGAN MENENGAH BERBASIS PENGUJIAN DAN SIMULASI

ANALISIS PERLINDUNGAN TRANSFORMATOR DISTRIBUSI YANG EFEKTIF TERHADAP SURJA PETIR. Lory M. Parera *, Ari Permana ** Abstract

BAB II TEORI DASAR GANGGUAN PETIR

PROTEKSI PETIR PADA TRANSISI SALURAN UDARA DAN BAWAH TANAH TEGANGAN MENENGAH 20 kv

TINJAUAN PUSTAKA. shielding tiang penangkal dan kawat pada gardu induk. Adapun tujuan dari sistem

Analisis Perbandingan Shielding Gardu Induk Menggunakan Model Electrogeometric

ANALISIS PENGARUH DIAMETER DAN PANJANG ELEKTRODA PENTANAHAN ARESTER TERHADAP PERLINDUNGAN TEGANGAN LEBIH

BAB II GANGGUAN TEGANGAN LEBIH PADA SISTEM TENAGA LISTRIK

Simulasi Tegangan Lebih Akibat Sambaran Petir terhadap Penentuan Jarak Maksimum untuk Perlindungan Peralatan pada Gardu Induk

SIMULASI DISTRIBUSI TEGANGAN PETIR DI JARINGAN DISTRIBUSI TEGANGAN MENENGAH 20 KV PENYULANG KENTUNGAN 2 YOGYAKARTA

Vol.12.No.1. Februari 2012 Jurnal Momentum ISSN : X

ANALISA PEMASANGAN INSULATOR PADA GSW/KAWAT TANAH TOWER TRANSMISI 150 KV DI PT PLN (PERSERO) P3B SUMATERA

Studi Penempatan Titik Pentanahan Kawat Tanah pada Penyulang Serangan

ANALISIS RANGKAIAN GENERATOR IMPULS UNTUK MEMBANGKITKAN TEGANGAN IMPULS PETIR MENURUT BERBAGAI STANDAR

BAB IV ANALISA DAN PEMBAHASAN

DAMPAK PEMBERIAN IMPULS ARUS TERHADAP KETAHANAN ARRESTER TEGANGAN RENDAH

BAB III TEORI DASAR DAN DATA

Kata kunci : Hubung Singkat 3 Fasa, Kedip Tegangan, Dynamic Voltage Restorer, Simulink Matlab.

Analisa Pengaruh Perilaku Petir pada Saluran Udara Tegangan Tinggi (SUTT) 150 kv Menggunakan Metode Burgsdorf

BAB I PENDAHULUAN. dapat mengamankan manusia dan peralatan siatem tenaga listrik. Sistem pentanahan

BAB III LANDASAN TEORI

PEMODELAN PERLINDUNGAN GARDU INDUK DARI SAMBARAN PETIR LANGSUNG DI PT. PLN (PERSERO) GARDU INDUK 150 KV NGIMBANG-LAMONGAN

LEMBAR JUDUL LEMBAR PENGESAHAN

MITIGASI GANGGUAN TRANSMISI AKIBAT PETIR PADA PT. PLN (PERSERO) P3B SUMATERA UPT TANJUNG KARANG

TUGAS AKHIR DISTRIBUSI TEGANGAN SURJA PETIR PADA TIAP MENARA TRANSMISI MINDO SIMBOLON NIM :

Studi Analisis Gangguan Petir Terhadap Kinerja Arrester Pada Sistem Distribusi Tegangan Menengah 20 KV Menggunakan Alternative Transient Program (ATP)

L/O/G/O RINCIAN PERALATAN GARDU INDUK

Studi Pengaruh Backflashover pada Sistem Pentanahan Menara Saluran Transmisi Tegangan Tinggi Terkonsentrasi Menggunakan ATPDraw

STUDI PENGARUH VARIASI PARAMETER SAMBARAN PETIR TERHADAP TEGANGAN INDUKSI PADA JARINGAN DISTRIBUSI 20 kv (Studi Kasus Feeder 3 GI Bumi Semarang Baru)

STUDI ANALISA SISTEM KOORDINASI ISOLASI PERALATAN DI GARDU INDUK 150 KV NEW-TUREN

ANALISIS SAMBARAN PETIR PADA TIANG TRANSMISI DENGAN MENGGUNAKAN METODE LATTICE

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG)

PEMELIHARAAN LIGHTNING ARRESTER (LA) PADA GARDU INDUK KRAPYAK 150 KV PT. PLN (PERSERO) P3B JAWA BALI APP SEMARANG. Abstrak

BAB I PENDAHULUAN 1.1 Latar Belakang

KOORDINASI ISOLASI. By : HASBULLAH, S.Pd., MT ELECTRICAL ENGINEERING DEPT. FPTK UPI 2009

BAB II PEMAHAMAN TENTANG PETIR

Transkripsi:

Analisa Sambaran Petir Terhadap Kinerja Arrester pada Transformator Daya 5 kv Menggunakan Program ATP Cecillia Stevanny*, Fri Murdiya ** *Teknik Elektro Universitas Riau **Jurusan Teknik Elektro Universitas Riau Kampus Binawidya Km,5 Simpang Baru Panam, Pekanbaru 893 Jurusan Teknik Elektro Universitas Riau Email: stevannycecillia@gmail.com ABSTRACT This study shows the effect of a lightning strike on the performance of lightning arresters at 5 kv power transformers. In the lightning strike case, there are several parameters that may affect to the arresters performance indicator, i.e the current charge and current quadratic integral. The analysis process is conducted by parameters modelling of transmission line and substation. The simulations are done by providing direct strike to the ground wire of MV with a varies of the wave front time (Tf) and the duration of the strike (tau) of lightning impulse. To calculate the current charge and current quadratic integral of a wide variety of Tf and tau was involved trapezoidal numerical integration methods. Current charge and current quadratic integral that arise from direct strike and varies of Tf and tau compared to each phase in order to obtain the effect of Tf and tau lightning impulse on the performance of arresters as complied to the standard IEEE C6.. Keywords: current charge, current quadratic integral, trapezoidal numerical integration methods, arresters, ATP I. PENDAHULUAN Dalam beberapa dekade terakhir, telah terjadi pertumbuhan yang cepat di jaringan listrik di seluruh dunia yang akhirnya mengarah pada penambahan sejumlah besar saluran transmisi dan distribusi. Saluran transmisi merupakan suatu bagian utama pada proses penyaluran energi listrik. Jika terjadi gangguan pada saluran transmisi, maka juga akan mempengaruhi peralatan-peralatan yang terhubung ke sistem tenaga listrik. Saluran transmisi mempunyai menara yang tinggi, sehingga gangguan yang sering terjadi adalah sambaran petir. Sambaran petir dapat menyebabkan kegagalan pada isolator, tegangan lewat denyar (backflashover) dan tegangan induksi. Sambaran petir yang mengenai sistem tenaga listrik akan menimbulkan tegangan lebih, baik sambaran secara langsung maupun tidak langsung. Tegangan lebih ini dapat membahayakan isolator pada saluran serta peralatan-peralatan listrik lainnya apabila dibiarkan mengalir pada sistem dan tersalurkan ke beban. Oleh karena itu, diperlukan sebuah sistem proteksi yang dapat menangani gangguan tersebut. Salah satu perlindungannya adalah dengan pemasangan arrester. Arrester petir memiliki kemampuan mengamankan peralatan listrik dari gangguan surja petir. Alat pengaman ini memiliki nilai tahanan yang tidak linier pada setiap tingkat tegangan dan arus. (Kijoyo, 4) Kinerja arrester sangat dipengaruhi oleh karakteristik arrester terutama dalam merespons tegangan lebih yang datang pada terrminalnya. Oleh sebab itu sangat penting untuk mengetahui unjuk kerja arrester, dalam merespons (menanggapi) tegangan lebih dengan berbagai macam muka gelombang (wave front). Disamping itu perlu diketahui juga nilai tegangan residu arester, karena impuls merupakan ancaman yang membahayakan bagi peralatan listrik apabila besarnya melebihi BIL peralatan yang dilindungi. (Kijoyo, 4) Pada penelitian ini akan dilihat kinerja arrester dalam menanggapi tegangan lebih dengan berbagai perubahan dari durasi muka gelombang (T_f) dan durasi sambaran (tau) impuls petir dengan melakukan analisa muatan arus dan Jom FTEKNIK Volume 4 No. Februari 7

integral kuadrat arus yang terbaca di arrester dengan disimulasikan pada program ATP-EMTP. II. LANDASAN TEORI. Petir Petir atau halilintar merupakan gejala alam yang biasanya muncul ketika musim hujan dimana di langit muncul kilatan cahaya sesaat yang beberapa kemudian disusul dengan suara menggelegar. Perbedaan kemunculan ini disebabkan karena adanya perbedaan antara kecepatan cahaya dan kecepatan suara. Petir juga mempunyai kemampuan dalam merusak objek-objek yang berada diatas tanah melalui sambaran langsung. Sambaran petir bukan hanyak merusak sistem dan peralatan-peralatan, namun juga dapat mengakibatkan kematian pada manusia dan hewan.. Gangguan Petir pada Saluran Udara Tegangan Tinggi 5 kv Tegangan lebih adalah tegangan yang hanya dapat ditahan untuk terbatas. Berdasarkan sumbersumbernya, IEC mengklasifikasikan tegangan lebih menjadi tegangan lebih petir, tegangan lebih switching dan tegangan lebih temporer. Tegangan lebih petir yang terjadi pada sistem tenaga listrik disebabkan oleh dua macam sambaran, yaitu sambaran langsung dan tidak langsung. Pada saluran udara, sambaran langsung tersebut dapat mengenai kawat fasa, kawat tanah, dan menara, sedangkan sambaran tidak langsung adalah sambaran ke tanah yang berada didekat saluran udara. Untuk saluran transmisi seperti SUTT 5 kv, dampak sambaran tidak langsung dapat diabaikan. Saat terjadi sambaran petir pada sebuah saluran transmisi maka akan timbul kenaikan tegangan pada jaringan dan tegangan lebih surja kemudian akan merambat ke ujung jaringan seperti ditunjukkan pada Gambar. dibawah ini. Gambar. Tegangan Surja akibat Sambaran Petir Pada saat gardu induk mengalami tegangan lebih akibat sambaran petir, maka isolasi peralatan yang ada pada gardu induk akan mengalami kerusakan. Sehingga diperlukan suatu peralatan pelindung agar tegangan surja yang tiba di gardu induk tidak melebihi kekuatan isolasi peralatan gardu. Maka dari itu dipakailah kawat tanah tahanan tanah yang serendah mungkin yang tidak boleh lebih dari 5 ohm dan digunakan juga arrester untuk melindungi gardu induk dari gelombang merambat..3 Impedansi Surja Menara Menara dapat direpresentasikan sebagai impedansi surja atau induktansi. Tegangan lebih yang terjadi pada menara sebagai impedansi surja berbanding lurus dengan arus puncak, sedangkan pada menara sebagai induktansi tegangan lebih berbanding lurus dengan kecuraman arus. Impedansi surja menara diturunkan dari bentuk geometri menara. Dalam saluran transmisi terdapat tiga jenis tiang (menara), yaitu (a) Persegi, (b) Gantry, dan (c) Korset Gambar. Jenis Menara Transmisi (Hutahuruk, 99) a. Menara Jenis Persegi Z t = 3 ln [ (h +r ] (.) r Dimana: Z t = Impedansi Tiang (Ω) r = Jarak Tengan Tiang (m) h = Tinggi Tiang (m) b. Menara Jenis Gantry Z t =.5 {[6 ln ( h b ) + 9 (b h ) 6] + [6 ln ( h ) + 9 r (r ) 6]}..(.) h Dimana: b = Jarak Gawang Tiang (m) r = Jarak Tengah Lengan Tiang (m) c. Menara Jenis Korset Z t = [ln ( h ) ]..(.3) r Dimana: Jom FTEKNIK Volume 4 No. Februari 7

r = Jarak Tengah Lengan Tiang.4 Resistansi dan Induktansi Menara Besarnya nilai resistansi dan induktansi sebuah menara dapat mempengaruhi besarnya tegangan yang timbul pada tiang. Maka dari itu induktansi menara merupakan bagian penting dalam sebuah menara yang dapat dihitung dengan persamaan sebagai berikut (Ametani, ): R R. x...(.4) i R R 4 i R. Z h L.. i R i i R t 4 3. Z t.ln h x 4.(.5).ln...(.6) 4 (.7) dimana : Waktu berjalan sepanjang tower : h c Konstanta atenuasi sepanjang tower : 4.89 Kecepatan cahaya : c m 3 s.8 Arrester Salah satu usaha memperkecil terjadinya gangguan internal maupun eksternal untuk mencegah kerusakan pada peralatan akibat sambaran petir adalah pemasangan arrester. Arrester adalah peralatan pengaman instalasi dari gangguan tegangan lebih akibat sambaran petir (Lightning Surge) maupun oleh surja hubung (Switching Surge). Arrester berfungsi sebagai alat untuk melindungi isolasi atau mengamankan instalasi (peralatan listrik pada instalasi) dari gangguan tegangan lebih yang diakibatkan oleh sambaran petir atau tegangan transient yang tinggi dari suatu penyambung atau pemutusan rangkaian, alat ini bersifat sebagai by-pass disekitar isolasi yang membentuk jalan yang mudah dilalui oleh arus kilat ke sistem pentanahan sehingga menimbulkan tegangan lebih yang tinggi dan tidak merusak isolasi peralatan listrik. By-pass ini harus sedemikian rupa sehingga tidak mengganggu aliran daya ke konsumen. Dalam sistem tenaga listrik arrester merupakan kunci koordinasi isolasi. Saat surja (surge) tiba di gardu induk kemudian arrester akan melepaskan muatan listrik dan tegangan abnormal yang akan mengenai gardu induk dan peralatannya akan berkurang. Setelah surja (petir atau hubung) dilepaskan melalui arrester masih terdapat arus mengalir dikarenakan tegangan sistem yang disebut sebagai arus dinamik atau arus susulan (follow current). Arrester harus memiliki ketahanan termis yang cukup terhadap energi dari arus susulan tersebut, serta harus mampu untuk memutuskannya. Bagian-bagian Arrester: a. Elektroda Elektroda adalah terminal dari lighthing arrester yang dihubungkan dengan bagian yang bertegangan dibagian atas dan elektroda bawah dihubungkan dengan tanah. b. Sela percikan (spark-gap) Apabila terjadi tegangan lebih oleh sambaran petir atau surja hubung pada lighting arrester yang terpasang, maka pada sela percikan (spark-gap) akan terjadi loncatan bunga api. Pada beberapa tipe lighting arrester busur api yang terjadi tersebut ditiup keluar oleh tekanan gas yang ditimbulkan oleh tabung fiber yang terbakar. c. Tahanan katup (Valpe resistor) Tahanan yang diperlukan dalam lighting arrester ini adalah suatu jenis material yang sifat tahanannya dapat berubah bila mendapat perubahan tegangan..9 ATP (Alternative Transients Program) ATP adalah program komputer yang didesain untuk menyelesaikan masalah peralihan pada sistem tenaga listrik untuk rangkaian Jom FTEKNIK Volume 4 No. Februari 7 3

terkonsentrasi (lumped), rangkaian terdistribusi atau kombinasi kedua rangkaian tersebut. Program versi ini pertama kali dikembangkan oleh H. M. Dommel di Munich Institute of Technology awal tahun 96- an. H. M. Dommel mengembangkan program ini di University of British Columbia. Sekitar tahun 98, EMTP menjadi program yang diminati oleh perusahaan listrik. EMTP DCG (Development Coordinating Group) bekerja sama dengan EFRI (Electric Power Research Industry) untuk pengembangan EMTP. Karakteristik surja petir yang terjadi pada saluran transmisi kemudian sampai pada arrester dapat diketahui dengan mensimulasikannya dengan menggunakan suatu perangkat lunak (software) ATP-EMTP, dimana ATP-EMTP adalah suatu program komputer terintegrasi yang didesain khusus untuk menyelesaikan permasalahan peralihan (transient) pada sistem tenaga listrik dengan parameter R, L, dan C. EMTP digunakan untuk menganalisa tegangan lebih transien yang diakibatkan oleh surja hubung dan surja petir karena program ini menyediakan fasilitas pemodelan generator, pemutus tenaga, arrester, sumber surja petir, dan pemodelan saluran tenaga listrik. (Dedi, 9). Metode Integrasi Numerik Trapezoidal Sambaran petir pada suatu objek dibumi yang di ikuti oleh aliran arus petir yang tinggi dalam yang sangat singkat disebut arus impuls petir. Kerusakan yang dapat ditimbulkan ditentukan oleh parameter tertentu, yaitu muatan arus dan integral kuadrat arus. Muatan arus merupakan jumlah muatan arus petir yang dapat menyebabkan peleburan pada ujung objek sambaran (luas dari terpa petir atau integral kuadrat arus terhadap ). Integral Kuadrat (E) merupakan integral kuadrat arus yang merupakan efek mekanis dan panas petir, dapat dirumuskan seperti dibawah ini: E = I. dt (.8) Pada penelitian ini, untuk mencari nilai muatan arus dan integral kuadrat arus digunakan metode integrasi numerik trapezoidal, dimana metode trapezium merupakan metode integrasi numerik yang didasarkan pada penjumlahan segmen-segmen berbentuk trapesium. Apabila sebuah integral didekati dengan metode trapezium dengan satu segmen saja, maka dapat dituliskan sebagai b f(x)dx (b a) f(a)+f(b) (.9) a Apabila terdapat n segmen, maka panjang masingmasing segmen adalah x = b a (.) n Batas-batas segmen diberi notasi: x = a, x, x,, x n = b..(.) Integral total dapat ditulis dalam bentuk: x I = x f(x) dx + x f(x) dx + + x x n f(x) dx...(.) x n Gambar.3 Metode trapesium dengan banyak segmen Substitusikan persamaan (.9) kedalam persamaan (.) akan didapat: f ( x ( ) ( ) ) f ( x ) f ( x ) f ( x ) f xn f xn I Δx Δx... Δx atau n Δx I f ( x) f ( xi ) f ( xn )..(.3) i atau n Δx I f i ( a ) f ( b ) f ( x ).(.4) i Nilai dibawah kurva itulah yang merupakan muatan arus dan integral kuadrat arus. Maka dari itu, besarnya muatan listrik (coulomb) yang dipikul arrester sama dengan nilai dibawah kurva yang dihitung pada tiap fasanya. III. METODOLOGI PENELITIAN Pada Gambar 3. menunjukkan tentang bagaimana proses penelitian. Proses dimulai dengan pengumpulan data, yang berupa spesifikasi menara transmisi, yaitu data kawat tanah dan kawat fasa jenis ACSR, impedansi surja menara (standar IEEE dan CIGRE), resistansi dan induktansi menara sesuai rumus (.4) sampai (.7). Kemudian data konduktor jenis ACSR impedansi saluran gardu induk 5 kv dengan konstanta impedansi urutan seperti berikut: Jom FTEKNIK Volume 4 No. Februari 7 4

- imp. urutan positif (Z ):,336+j,64 Ω/km - imp. urutan positif (Z ):,336+j,64 Ω/km - imp. urutan positif (Z ):,597+j,483 Ω/km Dan data pendukung penelitian lainnya seperti data arrester zink oksida (standar IEEE), dan data transformator daya. Selanjutnya perhitungan parameter saluran transmisi dari data-data yang telah didapatkan. Hasil dari perhitungan tersebut dimasukkan kedalam parameter saluran transmisi yang telah dimodelkan dengan menggunakan Software ATP. Selanjutnya, untuk mengetahui muatan arus dan integral kuadrat arus pada arrester yang terjadi akibat sambaran dengan impuls petir MV, maka durasi gelombang (Tf) dan durasi sambaran (tau) impuls petir pada ATP akan divariasikan sehingga perbandingan nilai muatan arus dan integral kuadrat arus pada setiap fasa akan terlihat jelas. Sebelum membandingkan nilai muatan arus dan integral kuadrat arus pada tiap fasa, dihitung terlebih dahulu besar muatan arus dan integral kuadrat arus menggunakan metode integrasi numerik trapezoidal dari grafik keluaran ATP dengan bantuan program Matlab. Gambar 3. Diagram Alir Penelitian Pada Gambar 3. merupakan model rangkaian sambaran langsung pada kawat tanah (ground wire) yang dimodelkan menggunakan ATP. Terdapat sumber impuls petir, enam menara transmisi, gardu induk, arrester, dan transformator daya 5 kv. Gambar 3. Model Sambaran Langsung pada Kawat Tanah (Ground Wire) dalam ATP Tabel 3. Variasi Nilai Tf dan tau untuk Setiap Fasa Tsta Tf Tau Fasa E-7.E-6.4E-6 6.E-6 E-5 fasa A,B,C 3E-5 fasa A,B,C E-5 fasa A,B,C 3E-5 fasa A,B,C E-5 fasa A,B,C 3E-5 fasa A,B,C E-5 fasa A,B,C 3E-5 fasa A,B,C Jom FTEKNIK Volume 4 No. Februari 7 5

E-5 fasa A,B,C 3E-5 fasa A,B,C Untuk mendapatkan besarnya perbandingan muatan arus dan integral kuadrat arus tiap fasa, nilai Tf divariasikan dengan kelipatan, dan tau dengan penambahan dua (+) untuk masing-masing fasa A, B, dan C arrester pada tegangan sumber impuls MV sesuai Tabel 3.. Setelah seluruh grafik variasi Tf dan tau didapatkan, selanjutnya grafik tersebut di input kedalam Matlab untuk dihitung nilai muatan arus dan integral kuadrat arus dari masing-masing fasa. IV. HASIL DAN PEMBAHASAN 4. Pengaruh Perubahan Tf terhadap Kinerja Arrester Gambar 4. merupakan karakteristik tegangan impuls petir yang divariasikan nilai muka gelombangnya, yaitu,e-6;,4e-6; 3,6E-6; 4,8E-6; dan 6,E-6 dalam satuan detik. Sedangkan mulai muka gelombang E-7 dan durasi 5E- 5. Tegangan x 6 9 8 7 6 5 4 3 3 x -4 Gambar 4. Variasi Tf Impuls Petir.E-6.4E-6 6.E-6 Dengan menginjeksi impuls petir seperti karakteristik Gambar 4. diatas, maka akan menyebabkan arrester akan bekerja karena arrester dilalui arus yang direpresentasikan pada Gambar 4. untuk fasa A. 8 7 6 5 4 3.E-6.4E-6 6.E-6-3 x -4 Gambar 4. Gelombang yang Melewati Arrester pada Fasa A terhadap Pengaruh Perubahan Tf Dengan pengaruh karakteristik impuls petir yang sama, gelombang arus yang melewati arrester pada fasa B akan terlihat seperti pada Gambar 4.3 dibawah ini. - - -3-4 -5.E-6.4E-6 6.E-6-6 3 x -4 Gambar 4.3 Gelombang yang Melewati Arrester pada Fasa B terhadap Pengaruh Perubahan Tf Sedangkan untuk fasa C, arus yang melewati arrester dapat dilihat pada Gambar 4.4 dengan pengaruh karakteristik impuls yang sama. Jom FTEKNIK Volume 4 No. Februari 7 6

Joule Coulomb - -4-6 -8-3 x -4 Gambar 4.4 Gelombang yang Melewati Arrester pada Fasa C terhadap Pengaruh Perubahan Tf 4.. Perbandingan Nilai Muatan dan Integral Kuadrat Terhadap Perubahan Tf.5..5..5.775.95.E-6.4E-6 6.E-6.49.79.33.98.99.6.3.8.46.5.57.63.68.E-6.4E6 6.E-6 Gambar 4.5 Grafik Perbandingan Nilai Muatan Terhadap Perubahan Tf 8 6 4 detik Fasa A Fasa B Fasa C 53.7 6.44 67. 734.68 796.7 9.55 63. 93.66 3.39 346.53.6.66.7.76.8.E-6.4E6 6.E-6 detik Fasa A Fasa B Fasa C Gambar 4.6 Grafik Perbandingan Nilai Integral Kuadrat Terhadap Perubahan Tf Grafik diatas merupakan perbandingan nilai muatan arus dan integral kuadrat arus dari variasi Tf impuls petir. Dari grafik diatas dapat dilihat bahwa mulai muka gelombangnya sama setiap fasa, tetapi ketika mencapai puncak terjadi perubahan dimana fasa A lebih cepat mengalami kenaikan daripada fasa B dan C. Sehingga nilai muatan arus dan integral kuadrat arus mengalami perubahan untuk setiap variasi muka gelombang, terutama untuk fasa A karena arus puncak pada fasa A mencapai 7 ka. 4. Pengaruh Perubahan tau terhadap Kinerja Arrester Gambar 4.7 merupakan karakteristik tegangan impuls petir yang divariasikan nilai durasi sambarannya, yaitu 5E-5; 7E-5; 9E-5; E-5; dan 3E-5 dalam satuan detik. Sedangkan mulai muka gelombang E-7 dan muka gelombang,e-6. Tegangan x 6 9 8 7 6 5 4 3 3 x -4 Gambar 4.7 Variasi tau Impuls Petir 5E-5 7E5 9E-5 E-5 3E-5 Dengan menginjeksi impuls petir seperti karakteristik Gambar 4.7 diatas, maka akan menyebabkan arrester akan bekerja karena arrester dilalui arus yang direpresentasikan pada Gambar 4.8 untuk fasa A. 8 7 6 5 4 3 5E-5 7E5 9E-5 E-5 3E-5-3 x -4 Gambar 4.8 Gelombang yang Melewati Arrester pada Fasa A terhadap Pengaruh Perubahan tau Jom FTEKNIK Volume 4 No. Februari 7 7

Joule Coulomb Dengan pengaruh karakteristik impuls petir yang sama, gelombang arus yang melewati arrester pada fasa B akan terlihat seperti pada Gambar 4.9 dibawah ini. - - -3-4 -5 5E-5 7E5 9E-5 E-5 3E-5-6 3 x -4 Gambar 4.9 Gelombang yang Melewati Arrester pada Fasa B terhadap Pengaruh Perubahan tau Sedangkan untuk fasa C, arus yang melewati arrester dapat dilihat pada Gambar 4. dengan pengaruh karakteristik impuls yang sama. 4.. Perbandingan Nilai Muatan dan Integral Kuadrat Terhadap Perubahan tau.5.4.3...393.358.33.45.775.39.5..65.98.46.83.3.58.88 Gambar 4. Grafik Perbandingan Nilai Muatan Terhadap Perubahan tau 5 5 5E-5 7E-5 9E-5 E-5 3E-5 detik Fasa A Fasa B Fasa C 87.46 374.6 984.65 764.93 53.7 365.3 43.6 453.8 34.69 9.55.6.9..54.87 5E-5 7E-5 9E-5 E-5 3E-5 detik - -4-6 -8 5E-5 7E5 9E-5 E-5 3E-5-3 x -4 Gambar 4. Gelombang yang Melewati Arrester pada Fasa C terhadap Pengaruh Perubahan tau Fasa A Fasa B Fasa C Gambar 4. Grafik Perbandingan Nilai Integral Kuadrat Terhadap Perubahan tau Grafik diatas merupakan perbandingan nilai muatan arus dan integral kuadrat arus pada Tabel 4. dari variasi tau impuls petir. Dari grafik diatas dapat dilihat bahwa mulai muka gelombangnya sama hingga mencapai puncak, tetapi setelah arus puncak fasa A lebih cepat turun (menuju ) daripada fasa B dan C. Sehingga perubahan durasi sambaran tersebut sangat mempengaruhi nilai dari muatan arus dan integral kuadrat arus terutama untuk fasa A karena arus puncak pada fasa A mencapai sekitar 7, ka Jom FTEKNIK Volume 4 No. Februari 7 8

V. KESIMPULAN DAN SARAN 5. Kesimpulan. Variasi Tsta pada impuls petir tidak berpengaruh terhadap muatan arus dan integral kuadrat arus.. Variasi Tf pada impuls petir berpengaruh terhadap muatan arus dan integral kuadrat arus pada arrester. Waktu mulai muka gelombangnya sama setiap fasa, tetapi ketika mencapai puncak terjadi perubahan dimana fasa A lebih cepat mengalami kenaikan daripada fasa B dan C. 3. Variasi tau pada impuls petir sangat berpengaruh terhadap muatan arus dan integral kuadrat arus. Waktu mulai muka gelombangnya sama setiap fasa hingga mencapai puncak, tetapi setelah arus puncak fasa A lebih cepat turun (menuju ) daripada fasa B dan C. 4. Variasi nilai dari Tf dan tau impuls petir pada penelitian ini tidak menyebabkan nilai arus sambaran yang terjadi pada arrester melebihi batas arus tahanan arrester yang direkomendasikan IEEE, yaitu ka. 5. Muatan arus yang terjadi pada arrester tidak melebihi batas muatan (coulomb) arrester, yaitu 3, coulomb sehingga tidak mempengaruhi tegangan transformator daya pada gardu induk. 5. Saran Melakukan analisa muatan arus dan integral kuadrat arus pada arrester dengan variasi nilai dari Tf dan tau yang dapat menyebabkan nilai arus dan muatan arus melewati batas dari rating arrester, yaitu 3, C dan ka. DAFTAR PUSTAKA Ali, Shehab Abdulwadood. 3. Modeling of Power Networks by ATP-Draw for Harmonics Propagation Study. Aden University, Yemen. Ambarita, Rindu Putra. Simulasi Sambaran Petir Langsung pada Saluran Transmisi 5 kv Terhadap Kawat Fasa dengan Variasi Tahanan Pentanahan. Universitas Diponegoro, Semarang. Ametani, Akihiro.. Lightning Surge Analysis by EMTP and Numerical Electromagnetic Analysis Method, International Conference on Lightning Protection ICLP, Cagliari Italy. Denno. Khalil. 99. High Voltage Enginnering in Power System. New Jersey Institute of Technology Newark, New Jersey. Hidayatulloh, Nurul. 9. Kemampuan Arester untuk Pengaman Transformator pada Gardu Induk Srondol 5 kv. UNES, Semarang. Hidayatulloh, Rachmad.. Analisa Gangguan Hubung Singkat pada Jaringan SUTT 5 kv Jalur Kebasen Balapulang Bumiayu Menggunakan Prgram ETAP. Universitas Diponegoro, Semarang. Hutagaol, Soli Akbar. 9. Studi tentang Sistem Penangkal Petir pada BTS (Base Transceiver Station). Universitas Sumatera Utara, Medan. Hutauruk, T.S. 989. Gelombang Berjalan dan Proteksi Surja. Erlangga, Bandung. Kijoyo, Hendri. 4. Analisis Kerja Arrester Tegangan Tinggi 5 kv pada GIS Tandes Terhadap Gangguan Impuls Petir dan Hubung Menggunakan Power System Computer Aided Design. ITS, Surabaya. L. Tobing, Bonggas.. Teknik Pengujian Tegangan Tinggi. Gramedia Pustakan Utama, Jakarta. Novizon, dkk.. Condition Monitoring of Zinc Oxide Surge Arresters. UTM, Malaysia Pratomo, Fariz Dwi. Studi Tegangan Lebih Impuls Akibat Penggunaan Konfigurasi Mixed Lines (High Voltage Overhead-Cable Lines) 5 kv. ITS, Surabaya. Wibowo, Lucky Arie.. Modeling 5 kv Power System for Voltage Stability Studies. Delft University of Technology Zoro, Reynaldo. 999. Karakteristik Petir dan Kondisi Cuaca di Daerah Tropis Kasus Gunung Tangkuban Perahu. Disertasi Doktor. ITB, Bandung. Jom FTEKNIK Volume 4 No. Februari 7 9