JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: ( Print) B-581

dokumen-dokumen yang mirip
JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: ( Print) B-575

JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: ( Print) B-587

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-5 1

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-91

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

Analisa Pengaruh Variasi Diameter Receiver Dan Intensitas Cahaya Terhadap Efisiensi Termal Model Kolektor Surya Tipe Linear Parabolic Concentrating

STUDI EKSPERIMENTAL PERFORMANSI KOLEKTOR SURYA ABSORBER GELOMBANG TIPE-V

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

Analisa Performa Kolektor Surya Tipe Parabolic Trough Sebagai Pengganti Sumber Pemanas Pada Generator Sistem Pendingin Difusi Absorpsi

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print)

Performansi Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa dengan Variasi Sudut Kemiringan Kolektor

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

ANALISA PERFORMA KOLEKTOR SURYA TIPE PARABOLIC TROUGH SEBAGAI PENGGANTI SUMBER PEMANAS PADA GENERATOR SISTEM PENDINGIN DIFUSI ABSORBSI

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: B-169

JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: ( Print) B-659

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

RANCANG BANGUN PEMANAS AIR TENAGA SURYA ABSORBER GELOMBANG TIPE SINUSOIDAL DENGAN PENAMBAHAN HONEYCOMB OLEH : YANUAR RIZAL EKA SB

Studi Eksperimen Pengaruh Sudut Blade Tipe Single Row Distributor pada Swirling Fluidized Bed Coal Dryer terhadap Karakteristik Pengeringan Batubara

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Pengaruh Sudut Kemiringan Kolektor Surya Pelat Datar terhadap Efisiensi Termal dengan Penambahan Eksternal Annular Fin pada Pipa

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar

STUDI SIMULASI NUMERIK PENGARUH PENAMBAHAN FINS

Studi Numerik 2D dan Uji Eksperimen tentang Karakteristik Aliran dan Unjuk Kerja Helical Savonius Blade dengan Variasi Overlap Ratio 0,1 ; 0,3 dan 0,5

IV. HASIL DAN PEMBAHASAN

ANALISIS KINERJA COOLANT PADA RADIATOR

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD)

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B13

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar

SIMULASI PERPINDAHAN PANAS GEOMETRI FIN DATAR PADA HEAT EXCHANGER DENGAN ANSYS FLUENT

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-198

JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept, 2012) ISSN: B-38

Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak, Jumlah dan Diameter Tube

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

METODOLOGI PENELITIAN

Unjuk Kerja Kolektor Surya dengan Absorber Bentuk V yang Dilengkapi Honeycomb dengan Beberapa Aspek Rasio

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar

Penelitian Numerik Turbin Angin Darrieus dengan Variasi Jumlah Sudu dan Kecepatan Angin

Muchammad 1) Abstrak. Kata kunci: Pressure drop, heat sink, impingement air cooled, saluran rectangular, flow rate.

Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, Oktober 2012

Pengaruh Tebal Isolasi Termal Terhadap Efektivitas Plate Heat Exchanger

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

PENGARUH BAHAN INSULASI TERHADAP PERPINDAHAN KALOR PADA TANGKI PENYIMPANAN AIR UNTUK SISTEM PEMANAS AIR BERBASIS SURYA

Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

Kata kunci : solar air heater,fin, baffle, kecepatan udara, Qusefull, efisiensi

JURNAL TEKNIK ITS Vol. 1, No. 1, (Sept. 2012) ISSN: F-92

STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

Studi Numerik Distribusi Temperatur dan Kecepatan Udara pada Ruang Keberangkatan Terminal 2 Bandar Udara Internasional Juanda Surabaya

Analisa Variable Moment of Inertia (VMI) Flywheel pada Hydro-Shock Absorber Kendaraan

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

STUDI NUMERIK PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP KARAKTERISTIK ALIRAN FLUIDA MELINTASI SILINDER UTAMA

STUDI NUMERIK VARIASI INLET DUCT PADA HEAT RECOVERY STEAM GENERATOR

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

STUDI KARAKTERISTIK LAJU ALIRAN ENERGI UNTUK FLUIDA AIR DAN UDARA PADA PIPA HORISONTAL

PERANCANGAN TANGKI PEMANAS AIR TENAGA SURYA KAPASITAS 60 LITER DAN INSULASI TERMALNYA

Optimasi periode data berdasarkan time constant pada pengujian unjuk kerja termal kolektor surya pelat datar Amrizal1,a*, Amrul1,b

Studi Eksperimental Sistem Pengering Tenaga Surya Menggunakan Tipe Greenhouse dengan Kotak Kaca

Studi Eksperimen Pengaruh Sudut Blade Tipe Single Row Distributor pada Swirling Fluidized Bed Coal Dryer terhadap Karakteristik Pengeringan Batubara

Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK (KAJIAN PUSTAKA)

ANALISIS PERPINDAHAN PANAS PADA KOLEKTOR PEMANAS AIR TENAGA SURYA DENGAN TURBULENCE ENHANCER

PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA

KARAKTERISTIK PERPINDAHAN PANAS PIPA LURUS DAN PIPA PUNTIR PADA SOLAR KOLEKTOR TIPE PLAT DATAR MENGGUNAKAN SIMULASI CFD

PENGARUH KECEPATAN ANGIN DAN WARNA PELAT KOLEKTOR SURYA BERLUBANG TERHADAP EFISIENSI DI DALAM SEBUAH WIND TUNNEL

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2014) ISSN:


BAB 1 PENDAHULUAN. I.1. Latar Belakang

Lingga Ruhmanto Asmoro NRP Dosen Pembimbing: Dedy Zulhidayat Noor, ST. MT. Ph.D NIP

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur

tudi kasus pengaruh perbandingan rusuk b/a = 12/12, 5/12, 4/12, 3/12, 2/12, 1/12, 0/12 dengan Re = 3 x 10 4.

Pengaruh Perbandingan Rasio Inlet Dan Oulet Pada Tabung Reservoir Oscillating Water Column (Owc) Menggunakan Fluida Cair

STUDI NUMERIK : MODIFIKASI BODI NOGOGENI PROTOTYPE PROJECT GUNA MEREDUKSI GAYA HAMBAT

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK

IRVAN DARMAWAN X

BAB II DASAR TEORI. 2.1 Energi Matahari

Simulasi Numerik Karakteristik Aliran Fluida Melewati Silinder Teriris Satu Sisi (Tipe D) dengan Variasi Sudut Iris dan Sudut Serang

Perbandingan Hasil Simulasi Numerik dengan Hasil Eksperimen untuk Aliran Udara di dalam Saluran dengan Penampang Segitiga dari Suatu Kolektor Surya

STUDI EKSPERIMEN dan NUMERIK PENGARUH PENAMBAHAN KEKASARAN PERMUKAAN TERHADAP KARAKTERISTIK BOUNDARY LAYER MELINTASI BUMP (Re = 21000)

Studi Numerik Karakteristik Aliran dan Perpindahan Panas pada Tube Platen Superheater PLTU Pacitan

Studi Eksperimental Pemanas Air Tenaga Surya Pelat Absorber Type Sinusoidal dengan Variasi Terhadap Derajat Kevacuman dan Aspect Ratio

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB I PENDAHULUAN I.1.

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN

BAB IV PERHITUNGAN SOLAR COLLECTOR TYPE PARABOLIC TROUGH

Evaluasi Performa Lube Oil Cooler pada Turbin Gas dengan Variasi Surface Designation dan Reynolds Number

Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin

PEMODELAN DAN SIMULASI PERPINDAHAN PANAS PADAKOLEKTOR SURYA PELAT DATAR

Transkripsi:

JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-581 Studi Simulasi Numerik dan Eksperimental Pengaruh Penambahan Fin Berbentuk Setengah Silinder Tegak Lurus Aliran yang Dipasang pada Bagian Bawah Plat Absorber Berbentuk V Terhadap Efisiensi Kolektor Surya Pemanas Udara Fajar Sri Lestari Pangukir dan Djatmiko Ichsani Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia e-mail: djatmiko@me.its.ac.id Abstrak Energi fosil termasuk energi yang tidak dapat diperbaruhi sehingga keberadaannya lama kelamaan akan habis. Energi surya termasuk energi terbarukan yang mudah didapat dan ramah lingkungan terutama Indonesia. Energi ini dapat dikonversi menjadi energi termal menggunakan kolektor surya. Kolektor surya (solar collector) merupakan alat yang memanfaatkan energi radiasi matahari untuk diserap oleh plat penyerap selanjutnya dipindahkan ke fluida kerja yakni udara atau air. Untuk meningkatkan efisiensi termal kolektor surya dengan meningkatkan koefisien konveksi, turbulensi aliran di dalam duct kolektor surya. Hal ini dapat dicapai dengan memberikan gangguan aliran berupa obstacle dan fin agar memperluas area perpindahan panas. Pemilihan diameter fin yakni 6,8,10 mm berbentuk setengah silinder serta jarak fin terhadap obstacle yakni 0,25L; 0,5L; 0,75L dilakukan dengan metode simulasi numerik menggunakan software Fluent 6.3.26 dan software GAMBIT 2.4.6. Hasil permodelan didapatkan diameter fin 6 mm dan jarak 0,5L paling optimum selanjutnya dilakukan studi eksperimen untuk menguji pengaruh fin terhadap performansi dan efisiensi kolektor surya. V corrugated absorber plate, obstacle berbentuk segitiga dengan sudut tekuk 30 0. Pengambilan data eksperimen dilakukan dengan menvariasikan laju aliran massa dari 0,002 kg/s hingga 0,008 kg/s dengan kenaikan tiap 0,002 kg/s dan intensitas radiasi yakni 431 Watt/m 2 dan 575Watt/m 2. Hasil yang didapatkan dari penelitian tugas akhir ini adalah nilai energi berguna yang dihasilkan (Q) paling tinggi dihasilkan pada laju aliran massa sebesar 0,006 kg/s dengan intensitas radiasi 575 Watt/m 2 yakni 68,331 Watt dan efisiensi paling ditinggi yakni 0,867 pada 0,006 kg/s dengan intensitas radiasi sebesar 431 Watt/m 2 dan penurunan tekanan sebesar 29 Pascal. energi fosil meliputi minyak bumi, batu bara dan gas. Menurut ESDM [1], konsumsi jenis energi Indonesia antara lain batubara, gas bumi, bahan bakar minyak (BBM), Liquified Petroleum Gas (LPG), dan listrik. Konsumsi BBM memiliki porsi terbanyak dari kebutuhan total energi yakni 48% pada akhir 2013. Energi fosil termasuk energi yang tidak dapat diperbaruhi sehingga keberadaannya lama kelamaan akan habis. Ketersedian energi elektromagnetik dari surya (matahari) di Indonesia cukup melimpah. Energi surya termasuk energi terbarukan yang mudah didapat dan ramah lingkungan terutama pada negara yang terletak pada garis khatulistiwa, Indonesia, dengan intensitas radiasi matahari rata-rata sekitar 5,6 kwh per meter persegi per hari. Energi ini dapat dikonversi menjadi energi termal menggunakan kolektor surya. Energi termal dapat dimanfaatkan untuk proses pengeringan misalnya pengeringan hasil pertanian, ikan, dan lain-lain. Kolektor surya (solar collector) merupakan alat yang memanfaatkan energi radiasi matahari untuk diserap oleh plat penyerap selanjutnya dipindahkan ke fluida kerja. Fluida kerja pada kolektor surya dapat berupa air atau udara. Menurut Frank dan DeWitt [2], koefisien perpindahan kalor konveksi gas lebih rendah dari cairan sehingga efisiensi kolektor surya pemanas udara cenderung rendah. Secara umum, bentuk kolektor surya untuk pemanas udara terdiri dari plat penyerap yang berfungsi untuk menyerap radiasi matahari, duct sebagai saluran tempat udara mengalir, kaca penutup dan blower untuk mengalirkan udara. Kata Kunci energi berguna, efisiensi, kolektor surya, v corrugated plate absorber. E I. PENDAHULUAN nergi menjadi bagian vital dalam kehidupan manusia. Kebutuhan energi meningkat seiring dengan meningkatnya jumlah populasi manusia. Sumber energi paling banyak digunakan oleh manusia adalah Gambar 1. Skema kolektor surya pemanas udara konvensional

B-582 JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) Upaya untuk meningkatkan koefisien perpindahan panas pada kolektor surya adalah dengan mengganti plat penyerap yang umumnya plat datar dengan plat bergelombang atau v-corrugated absorber plate [3]. Menurut El Sebaii [4], v-corrugated absorber plate mempunyai efisiensi 11-14% lebih tinggi dari plat datar. Upaya peningkatan koefisien konveksi dengan meningkatkan turbulensi aliran dalam plat penyerap adalah gabungan v-corrugated absorber plate ditambahkan obstacles yang ditekuk vertikal dengan sudut 300 [4]. Hasil yang didapatkan bahwa sudut tekuk optimal pada sudut 30 0 memberikan rasio penurunan tekanan dibanding efisiensi yang paling tinggi (ΔP/ΔEff). Penggunaan v-corrugated absorber plate dan penambahan obstacle terbukti dapat koefisien perpindahan panas kolektor surya. Pada penelitian ini upaya peningkatan efisiensi kolektor surya dilakukan dengan penambahan fin sebagai extended surface pada kolektor berbentuk V dengan penggunaan obstacle. Penelitian Numerik II. URAIAN PENELITIAN Penelitian yang dilakukan pada kolektor surya v- corrugated dengan obstacle berbentuk paruh dengan sudut paruh 30 0 dan fin berbentuk setengah silinder. Diameter silinder yang digunakan dalam penelitian ini divariasikan mulai dari 6 mm, 8 mm, dan 10 mm. Jarak fin terhadap obstacle dalam penelitian ini divariasikan mulai 0,25L; 0,5L; 0,75L. L adalah jarak antar obstacle, yakni 50 mm. Penelitian numerik dilakukan dengan menggunakan metode Computational Fluid Dynamics (CFD) dengan software Fluent 6.3.26 dan software GAMBIT 2.4.6. Pembuatan geometri awal model yang akan dibuat selanjutnya dilakukan diskritisasi (meshing) pada model. Tahap pertama yakni pre-processing menggunakan software GAMBIT 2.4.6. Bentuk geometri yang digunakan dalam studi numerik beserta dimensinya dapat dilihat pada Gambar 2. Sudut plat penyerap adalah 20 o dengan dimensi panjang 900 mm dan dimensi saluran masuk berupa segitiga dengan tinggi 85 mm dan lebar 30 mm. Obstacle berbentuk segitiga dengan dimensi lebar alas 18 mm dan tinggi 50 mm. Obstacle diletakkan masing-masing berjarak 50 mm maka terdapat 17 obstacle sepanjang saluran. Selanjutnya membuat domain dan merancang mesh. Konfigurasi mesh yang digunakan terdiri dari jumlah cell sebanyak 786.18, jumlah face 1.654.940, dan jumlah node sebanyak 172.405. adalah aluminium, model dicretization equation menggunakan first order scheme dan hubungan kecepatan dan tekanan menggunakan SIMPLEC. Plat penyerap, fin, obstacle, dan plat penyerap bawah digunakan boundary conditions wall. Inlet didefiniksan sebagai velocity inlet, dan outflow untuk bagian outlet. Plat penyerap dan fin dikondisikan Heat Flux sebesar 431 Watt/m 2, plat penyerap bawah dan obstacle diatur temperature constant sebesar 310 K. Aliran free stream udara masuk saluran dengan kecepatan 6,5 m/s, temperatur 300 K. Hasil simulasi yang digunakan meliputi kenaikan temperatur udara keluar dan penurunan tekanan udara dalam saluran. Selanjutnya pemilihan fin paling optimum digunakan rumus rasio secara matematis T fin T tanpa fin / P fin P tanpa fin (1) T tanpa fin P tanpa fin dengan T adalah perbedaan temperatur keluar dan masuk, Tout Tin. P adalah penurunan tekanan masuk dan keluar, Pin Pout. Rasio dibandingkan dengan hasil simulasi kolektor surya tanpa fin. Rasio paling besar adalah fin paling optimum. Penelitian Eksperimen Test section yang digunakan untuk eksperimen berdasarkan hasil fin optimum simulasi. Penelitian ini dilakukan dalam ruangan Labolatorium Termodinamika dan Perpindahan Panas, Jurusan Teknik Mesin ITS, Surabaya. Lampu halogen sebagai pengganti matahari digunakan sebanyak 5 buah lampu dengan masing masing daya 500 watt. Lampu halogen disusun paralel dan terhubung dengan voltage regulator. Voltage regulator berfungsi sebagai pengatur tegangan agar seragam. Pyranometer (S 97048.32 ML-020 VM, Eko Instrument Trading Co Ltd Jepang) digunakan untuk mengetahui besar intensitas yang diterima kolektor surya dipasang pada permukaan kaca penutup. Kolektor yang dipakai dilengkapi dengan enam belas termokopel tipe K mengukur temperatur udara masuk dan ke luar, kaca penutup, plat penyerap, fin, obstacle, plat penyerap bawah di tiga lokasi berbeda. Penurunan tekanan antara udara masuk dan keluar kolektor diukur dengan magnehelic differential pressure gage (Tipe 2300, Dwyer) dengan ketelitian 2 Pa. Suatu blower tekan (diameter discharge 2,5 inchi, 0,26 kw, 320 Volt input). Laju aliran udara diukur di keluaran dengan anemometer digital (AR816, Smart Sensor). Laju udara yang mengalir diatur dengan mengubah frekuensi putaran motor dengan inverter. Variasi kecepatan udara digunakan aliran turbulen yakni 2,6 m/s (Re 4000); 3,9 m/s (Re 6000); 5,2 m/s (Re 8000) dan 6,5 m/s (Re 10000) dan variasi intensitas 431;575W/m 2. Gambar 2. Model V-corrugated absorber sudut 20 o Pengaturan meliputi simulasi 3 dimensi, double precision, model viscous Shear Stress Transport K-ω (SSTKω), material plat absorber, obstacle, dan fin

JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-583 7 1 2 8 4 6 Gambar 3. Skema alat dan foto eksperimen Keterangan 1 : Blower dan udara masuk 5 : Isolator 2 : Tempered Glass 6 : Thermocouple multiplex 3 : Plat absorber 7 : Lampu halogen 4 : Thermocouple 8 : Pressure gage III. HASIL DAN PEMBAHASAN Simulasi Numerik Berdasarkan hasil simulasi, fin dengan diameter 10 mm pada jarak 0,25L memberikan perbedaan temperatur paling tinggi yakni 9,175 K. Sedangkan, fin berdiamter 6 mm pada jarak 0,5L memberikan perbedaan temperatur paling rendah, 8,809 K. Penggunaan diameter fin semakin besar mengakibatkan peningkatan luas area perpindahan panas selanjutnya akan meningkatkan temperatur keluar. Gambar 4 menunjukkan vektor kecepatan fluida yang dilihat searah sumbu Z dengan iso value 0,01 m pada sumbu Y. Pada Gambar 4 terdapat aliran balik akibat fluida mengenai fin dan obstacle. Arah aliran mendekati plat penyerap setelah mengenai obstacle selanjutnya mengenai fin. Semakin tinggi laju aliran pada sisi plat penyerap dapat meningkatkan temperatur ratarata aliran udara. Aliran balik saat mengenai fin Gambar 4. Vektor kecepatan menggunakan iso surface pada Y coordinate 0,01 m pada fin berdiameter 6 mm dengan jarak obstacle 0,5L Perbesaran vektor kecepatan Aliran balik setelah obstacle Gambar 5. Vektor kecepatan menggunakan iso surface pada X coordinate 0,015 m pada fin berdiameter 6mm dengan jarak obstacle 0,5L Perbesaran vektor kecepatan Gambar 5 menunjukkan vektor kecepatan fluida pada iso surface X coordinate dengan iso value 0,015 m. Gambar 5 menunjukkan aliran balik akibat aliran mengenai obstacle. Obstacle berguna sebagai vortex generator yang mampu mengarahkan aliran dan meningkatkan olakan.vortex merupakan ciri bahwa aliran menjadi turbulen. Ketika aliran turbulen, partikel fluida menunjukkan gerakan tambahan yang dapat meningkatkan kecepatan energi dan pertukaran momentum diantara partikel sehingga dapat meningkatkan perpindahan kalor dan koefisien gesek aliran. Gambar 6 menunjukkan adanya aliran balik setelah mengenai obstacle dan fin. Jarak fin yang semakin dekat dengan obstacle menghasilkan olakan yang cukup besar. Aliran udara yang masuk pertama-tama mengenai obstacle selanjutnya mengenai fin yang berada 0,25L (12,5 mm dibelakang obstacle). Sedangkan, jarak fin sebesar 0,5L (25 mm dibelakang obstacle) menghasilkan olakan yang lebih sedikit dibanding jarak 0,25L. Jadi fin berdiameter 10 mm pada jarak 0,25L menghasilkan peningkatan temperatur paling besar karena vortex paling besar dan luas area perpindahan yang lebih besar dibandingkan fin diameter 6 mm. Penurunan tekanan paling kecil pada fin berdiameter 6 mm pada jarak 0,5L sedangkan paling besar pada fin berdiameter 10 mm pada jarak 0,25L. Aliran fluida yang diganggu dengan obstacle dan fin mengakibatkan adanya penurunan kecepatan aliran secara mendadak dan selanjutnya mengakibatkan adanya aliran balik. Semakin besar aliran balik yang dihasilkan maka akan merugikan karena mengakibatkan pressure drop yang besar pula. Besarnya penurunan tekanan akan mempengaruhi daya blower yang digunakan.

B-584 JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) Aliran balik saat mengenai Gambar 6 Vektor kecepatan menggunakan iso surface pada Y coordinate 0,01 m Vektor kecepatan menggunakan iso surface pada X coordinate 0.015 m pada fin berdiameter 6mm dengan jarak obstacle 0.5L Hasil perhitungan rasio total yakni diameter fin 6mm dengan jarak 0,5L memiliki nilai paling tinggi yakni sebesar 0,022. Diameter 6mm dengan jarak 0,5L dianggap sebagai fin paling optimum karena vortex yang dihasilkan cukup besar serta vektor kecepatan lebih tinggi pada sisi plat penyerap sehingga temperatur ratarata aliran udara lebih tingi serta penurunan tekanan yang paling kecil. Hasil Eksperimen Aliran balik setelah mengenai obstacle Dari data eksperimen, perhitungan dilakukan untuk menghitung energi berguna dan efisiensi kolektor surya. Energi berguna adalah besar energi panas yang diserap oleh fluida kerja untuk menaikkan temperatur keluar. Terdapat dua energy berguna dari kolektor surya dengan tinjauan termodinamika (Q th ) dan energi surya (Q sol ). Berdasarkan grafik pada gambar 7 dapat kita lihat bahwa tren grafik Q th berubah terhadap besarnya laju aliran massa yang diberikan, semakin besar laju aliran massa yang diberikan maka nilai Q th juga akan semakin tinggi, begitu pula dengan besar intensitas radiasi yang diberikan. Hal ini sesuai dengan rumus Qth = m f x C p x (T f,out T f,in ) (2) dimana Q th adalah energi berguna termodinamika (watt), m f adalah laju aliran massa (kg/s), Cp adalah panas jenis fluida (J/Kg. o K), T f,out adalah temperatur udara keluar (K), dan T f,in adalah temperatur udara masuk (K). Gambar 7. Grafik energi berguna termo fungsi laju aliran massa pada variasi intensitas radiasi Pada grafik Q th, nilai paling tinggi dihasilkan pada laju aliran massa sebesar 0,006 kg/s dengan intensitas radiasi paling tinggi yakni, 575 Watt/m 2 yakni 63,331 Watt. Hal ini terjadi karena perhitungan Q th dipengaruhi oleh besar laju aliran massa dan beda temperatur yang dihasilkan. Pada intensitas yang sama, semakin kecil laju aliran massa yang dialirkan dalam kolektor surya maka semakin mudah fluida tersebut untuk menyerap panas dan menghasilkan beda temperatur yang besar. Ketika beda temperatur yang dihasilkan besar tetapi laju aliran massa kecil maka nilai Q th yang didapatkan kecil. Namun pada laju aliran massa 0,008 kg/s, Q th yang didapatkan menurun. Dari grafik diatas, 0,006 kg/s adalah laju aliran massa optimum untuk menghasilkan Q th paling besar. Pada gambar 8 grafik Q sol, nilai paling tinggi pada laju aliran massa sebesar 0,008 kg/s dengan intensitas 575 Watt/m 2 yakni 49,575 Watt. Hal berbeda terlihat pada grafik Q sol dimana tren grafik cenderung naik seiring bertambahnya laju aliran massa pada semua intensitas radiasi. Rumus energi berguna berdasarkan Duffie [5] yakni Q sol = A p. F R [S U L (T f,in T amb )] (3) Menunjukkan bahwa besar Q sol dipengaruhi oleh S, besar intensitas yang diterima (Watt/m 2 ), dan atau energi yang hilang, Q loss (watt). Q loss = A p. (U T (T abs T amb ) (4) A p adalah luasan efektif plat penyerap. T abs adalah temperatur plat absorber. T amb adalah temperatur sekitar. Fr adalah faktor pelepasan panas. U L adalah overall heat coefficient total (W/m 2.K). U T adalah overall heat coefficient top (W/m 2.K). Gambar 8. Grafik energi berguna energi surya fungsi laju aliran massa pada variasi intensitas radiasi

JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) B-585 Gambar 9. Grafik temperatur plat penyerap fungsi laju aliran massa pada variasi intensitas radiasi Jika perumusan U T dijabarkan maka, nilainya bergantung pada koefisien konveksi dan radiasi pada plat penyerap dan cover glass, dimana U T = 1 R t,u.a p (5) R t,u = 1 1 + + h w h r,cg amb 1 + 1 (6) h c,cg ap h r,cg ap h w adalah koefisien konveksi wind, h r,cg amb adalah koefisien radiasi kaca penutup dan lingkungan, h c,cg ap adalah koefisien konveksi kaca penutup dan plat absorber, h r,cg ap adalah koefisien radiasi kaca penutup dan plat absorber (W/m 2.K) Dari gambar 9 dapat dilihat jika temperatur plat penyerap memiliki tren menurun seiring dengan naiknya laju aliran massa. Semakin besar intensitas yang diberikan, maka temperatur cover glass dan plat penyerap juga akan naik sehingga menaikkan koefisien konveksi dan radiasi. Koefisien konveksi dan radiasi sebanding dengan overall heat coefficient top (U T ). Bila temperatur plat semakin besar maka Q th akan semakin kecil karena Q loss yang dihasilkan besar. Begitu pula dengan semakin tinggi intensitas radiasi, Q loss yang dihasilkan juga besar. Hal ini mengakibatkan tren grafik Q th naik seiring kenaikan laju aliran massa pada semua intensitas. Dari hasil perhitungan antara Q th dan Q sol terdapat selisih yang cukup tinggi begitu pula pada tren grafiknya. Hal ini dikarenakan dalam melakukan perhitungan Q sol terdapat banyak asumsi yang digunakan seperti faktor pelepasan panas, F R, dan koefisien absorbsivitas plat absorber dan transmisivitas kaca dalam menghitung jumlah intensitas radiasi yang diterima kolektor surya, S, serta asumsi dalam perhitungan overall heat coefficient total sehingga hasil yang didapatkan kurang mendekati kondisi aktual eksperimen. Pada grafik Q sol tidak terdapat penurunan nilai Q. Hal ini dikarenakan terdapat variabel yang dijaga konstan yakni intensitas radiasi yang diberikan dan temperatur sekitar maka tren yang dihasilkan cenderung naik. Dengan demikian, nilai Q yang digunakan didasarkan pada perhitungan termodinamika. Berdasarkan perhitungan energi berguna, kinerja kolektor surya dapat dilihat dari nilai efisiensi. Efisiensi merupakan perbandingan antara energi yang berguna dengan energi yang masuk. Nilai efisiensi ini menunjukkan baik atau tidaknya kolektor surya yang diuji dalam mentransfer energi panas ke fluida kerja yaitu, udara. Besar efisiensi sebanding dengan energi berguna dan berbanding terbalik dengan intensitas. Energi berguna sebanding dengan intensitas radiasi yang diterima sesuai dengan gambar 10. Gambar 10. Grafik efisiensi kolektor surya fungsi laju aliran massa pada variasi intensitas radiasi Dari gambar 10 dapat dilihat jika efisiensi desain paling ditinggi yakni 0,8677305 pada laju aliran optimum, 0,006 kg/s dan intensitas 431 Watt/m 2. Efisiensi paling tinggi dihasilkan pada variasi intensitas paling rendah, 431 Watt/m 2. Perumusan efisiensi jika dijabarkan yakni η = Q th A p.i T (7) η = 1 Qloss A p.i T (8) Dimana η adalah efisiensi termal, Q th adalah energi berguna termo (watt), Q loss adalah energi yang hilang (watt), I T adalah intensitas radiasi (Watt/m 2 ). Hal ini sesuai dengan rumus sehingga tren grafik naik. Efisiensi dipengaruhi oleh overall heat coefficient top (U T ). Pada perhitungan overall heat coefficient top (U T ) dipengaruhi oleh temperatur plat penyerap dan kaca penutup. Semakin kecil intensitas radiasi maka U T semakin kecil dan Q use energi surya semakin besar dengan demikian efisiensi yang dihasilkan akan besar saat intensitas rendah. Pada gambar 11 terlihat bahwa U T memiliki tren menurun seiring kenaikan laju aliran massa pada semua intensitas. Nilai U T paling tinggi pada laju aliran massa 0,002 kg/s dengan intensitas 575 Watt/m 2 yakni sebesar 12,412 W/m 2.K Gambar 11. Grafik overall heat coefficient top (U T ) fungsi laju aliran massa pada variasi intensitas radiasi Gambar 12. Grafik koefisien friksi aliran fungsi reynolds number pada intensitas 719 Watt/m 2

B-586 JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) Pada eksperimen yang dilakukan, penurunan tekanan dapat diukur dengan menggunakan differential magnetic pressure gage. Penurunan tekanan adalah hasil dari gaya gesek pada fluida ketika mengalir melalui saluran. Penurunan tekanan banyak bergantung pada kecepatan aliran. Penurunan tekanan diukur selama proses pemanasan pada tiap variasi Reynolds number. Selanjutnya, dengan mengetahui panjang saluran udara, L, dan kecepatan udara, V, koefisien friksi aliran dapat dicari dengan persamaan yaitu, f = P L ρ V2 D h 2 dimana f adalah koefisien friksi aliran, P adalah penurunan tekanan masuk dan keluar (Pascal), L adalah panjang salura (m), D h adalah diameter hidrolik (m), ρ adalah massa jenis udara (kg/m 3 ), dan V adalah kecepatan aliran masuk (m/s) Gambar 12 adalah grafik koefisien friksi aliran (f) terhadap reynolds number pada intensitas 575 Watt/m 2. Koefisien friksi paling besar pada reynlod number 1281. Tren grafik menurun menunjukkan koefisien friksi aliran berkurang seiring bertambahnya reynolds number selanjutnya tren grafik cenderung konstan pada Reynolds number 2562 dan 3202. Hal ini bersesuaian dengan diagram moody [3]. Besarnya bilangan reynolds sebanding dengan kecepatan aliran (V). Pada diagram moody ketika aliran dalam kategori laminar, nilai koefisien gesek dipengaruhi oleh reynolds number dan kekasaran permukaan saluran (roughness, e/d). Maka semakin besar reynolds number mengakibatkan semakin kecil nilai koefisien gesek. Sedangkan, saat aliran dalam kategori turbulen, nilai f cenderung konstan terhadap kenaikan reynolds number. Maka saat aliran semakin turbulen, koefisien friksi tidak semakin kecil seperti kondisi laminar. Penambahan obstacle dan fin mengakibatkan penurunan tekanan maka energi yang diperlukan untuk mengalirkan udara semakin besar. Ketika penurunan tekanan semakin besar maka akan menyebabkan kenaikan daya blower. (9) IV. KESIMPULAN Dari penelitian kolektor surya v corrugated absorber plate dengan penambahan obstacle dan fin setengah silinder dapat disimpulkan yakni fin optimum diameter 6mm dan jarak terhadap obstacle sebesar 0,5L dengan beda temperatur 8,809 Kelvin dan penurunan tekanan 357,046 Pascal. Hasil eksperimen, Q th paling tinggi pada laju aliran massa sebesar 0,006 kg/s dengan intensitas radiasi 575 Watt/m 2 yakni 63,331 Watt. Kenaikan temperatur paling besar yakni 17 Kelvin pada laju aliran massa 0,002 kg/s dengan intensitas 575 Watt/m 2. Efisiensi paling ditinggi yakni 0,868 pada laju aliran massa 0,006 kg/s dengan intensitas radiasi sebesar 431 Watt/m 2. Penurunan tekanan paling besar saat reynolds number 3202 yakni 54 Pascal dan menghasilkan koefisien friksi aliran sebesar 0,028. UCAPAN TERIMA KASIH Terima kasih saya ucapkan kepada Jurusan Teknik Mesin FTI-ITS yang telah memberikan dukungannya terhadap penelitian ini DAFTAR PUSTAKA [1] Sudirman Said. 2014. Outlook Energi Indonesia. Indonesia. ESDM. [2] Incropera, Frank.P., David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine. 2011. Fundamentals of Heat and Mass Transfer. Seventh Edition. New York. John Wiley and Sons Inc. [3] A.A. El-Sebaii, Aboul Enein, M.R.I. Ramadan, S.M. Shalaby, B.M. Moharram. 2005. Investigation of thermal performance of double pass flat and v corrugated plate solar air heaters. Egypt: University of Tanta. [4] Handoyo, Ekadewi A. 2014. Peningkatan Kinerja Kolektor Surya Tipe V-Corrugated Absorber Plate Menggunakan Obstacle yang Ditekuk Secara Vertikal. Tugas Akhir. Tidak dipublikasikan. Surabaya : Institut Teknologi Sepuluh Nopember. [5] Duffie, J.A. and W.A. Beckman. 1991. Solar Engineering of Thermal Processes. Second Edition. New York. John Willey and Sons Inc.